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Abstract 

Studies on optimal control strategy have been discussed for long years by academic 
institutions and by industrial persons. This thesis contributes to this wide range of study and 
compares the Linear quadratic optimal control and Model Predictive control based on 
constraints handling. MPC is much more popular and used controller than LQ optimal 
controller and comparison between these controllers are done based on their performance 
to reach the set point and constraints handling.    
Theoretical study and literature overview of LQ and MPC is provided and also theoretical 
description on how constraints are handled. A non linear process like quadruple tank system 
is selected to compare the performance of these controllers. Quadruple tank system is a 
multiple input multiple output, contains unknown slowly varying process and measurement 
disturbance. Minimum phase and Non-minimum phase of the quadruple tank also discussed 
based on placement of zero. LQ optimal controller is implemented in the quadruple tank 
system, in two forms such that constrained using if else loops and unconstrained. MPC 
controller is implemented in three forms such that algorithm based constraints, if else loop 
constraints and unconstrained form. 
Comparisons are performed within LQ control, within MPC controller and also between 
constraints handling of LQ and MPC. PI control was also implemented using RGA analysis for 
comparison. Kalman filter was used to predict the state of unmeasured tank level.  
It is observed that MPC unconstrained reaches the set point much quicker, but it violates 
the constraint limits. MPC algorithm based constraint handling reaches the set point much 
faster than other controller, it is stable, and robust. MPC if else constraint also reaches the 
set point at the same time, but it has some overshoot. LQ optimal controller reaches the set 
point later than MPC but earlier than PI. Finally PI takes a long time to reach the set point. 
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Nomenclature 

This section gives a list of symbols and abbreviations used in the report. 

Abbreviation                             Meaning/Explanation 

LabView   Laboratory Virtual Instrument Engineering Workbench 

LQ    Linear Quadratic 

LQOC     Linear Quadratic Optimal Control 

MATLAB   Matrix Laboratory 

MIMO    Multiple Input Multiple Output 

MPC    Model Predictive Control 

PI    Proportional Integral 

PID    Proportional Integral Derivative  

RGA    Relative Gain Array 

 

Symbols                                      Meaning/Explanation 

푢 , 푢 /    Control signal and Control vector 

∆푢 , ∆푢 /                                  Change in control signal, change in control vector 

푟 , 푟 /                                     Reference signal and future reference signal 

H    Hamiltonian Matrix 

K    Kalman Gain 

R    Solution to Riccati equation 

퐽     Cost function 

I    Identity matrix 

A, B, C and D   State space matrices 

퐴 , 퐵 , 퐶  푎푛푑 퐷   Continuous time matrices  

G    Feedback for optimal controller 

P, Q    weighting matrices 

퐾 , 푇                                           Proportional Gain and integral time 

푘 , 푘                                           Pump Constant 

훾 , 훾                                            Valve constant 

푇 , 푇 , 푇 , 푇                                Time constant 

푛, 푟,푚                                         Size of A matrices, Size of control matrix and size of D matrix 
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1. Introduction 

Controlling a physical process or an industrial process has always been a challenge. Control 

theory engineering deals with various physical process / dynamic systems, its inputs and set 

point. Mostly a controller is used to control the physical process. The main part of this thesis 

is regarding this controller.  

The most common controller used is PID Controller. Various types of advance controllers are 

also used, based on a survey in Japanese industries like steel, power, petrochemical and 

paper industries the following advance controllers are used (Takatsu et al., 1998) 

1) Advance PID 

2) Decoupling control 

3) Dead time compensation 

4) Gain scheduled (G-Schedule) 

5) PID Auto Tune 

6) LQ Optimal 

7) Observer 

8) Kalman Filter 

9) MPC 

10) Adaptive controller 

11) 퐻⋈ Optimal control 

12) Rule base control 

13) Fuzzy control 

14) Application of Neural Networks 

15) Repetitive control 

16) Exact Linearization for Nonlinear system Control (Exact-Linearized) 

17) Sliding mode control 

18) Optimizing  control 

This thesis is focused on advance controllers and more specifically on optimal control 

theory. Optimization has always played a crucial role in decision processes concerning 

physical or organization systems. Every time there is a need to make a selection between a 

set of possible choices, one would like to pick the decision that costs the least, provide an 

optimal solution, satisfies all constraints and is practical to implement. Therefore, 

optimization has become an integral part of any scientific and engineering discipline. 

Optimal control theory is a mature mathematical discipline with numerous applications in 

both science and engineering (Todorov, 2006). The objective of optimal control theory is to 

determine the control signals that will cause a process to satisfy the physical constraints and 

at the same time minimize (or maximize) some performance criterion(Ruscio, 2012c).  
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Three important parameters of the optimal controls are Model of the system, performance 

criterion and control structure which can be summarized visually in figure 1.1. 

 

Figure 1-1: Components of Control System (Kwon. and Han, 2005) 

 

The core part of the thesis report consists of LQ and MPC as performance criterion, control 

structure as nonlinear and model as state space. The main contributions of this thesis are 

itemized below:  

 Quadruple tank process used as a benchmark process, which is a Non-Linear process 

 LQ optimal control with integral action with constraint (if else loop) and 

unconstrained forms are implemented on the tank process 

 MPC with integral action with constraint and unconstrained forms are implemented 

on tank process. Also, PI control in velocity form implemented on the non linear 

process. 

 Compare the performance of LQ optimal control based on constraints and 

unconstrained on a quadruple tank process.  
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 Compare the performance of MPC control based on constraints and unconstrained 

on a quadruple tank process.  

 Compare the performance of LQ optimal control, MPC and PI Control based on 

constraints handling on a quadruple tank process.  

 

The thesis is formulated in such way that the flow of information is easy to understand and 

clear. The further part of thesis is divided into 9 chapters. Chapter 2 theory and formulation 

of LQ optimal control defined. Chapter 3 theory and formulation of MPC control described. 

Chapter 4 describes the types of constraint and how constraints are handled on both these 

controllers. Chapter 5 provides a brief concept of Kalman filter. Chapter 6 describes the PID 

in velocity form briefly. Problem formulation of the quadruple tank is described on chapter 

7. Chapter 8 is the important part of thesis whether the results of simulation are plotted and 

described in detail. Comparisons are based within LQ optimal control based on constraint 

and unconstrained and similarly next section describes comparison on MPC controller based 

on constraint and unconstrained, last section compares the LQ, MPC and PI controller based 

on constraints. Future developments are discussed on chapter 9 and conclusions are pen 

downed on chapter 10. Further References are provided and at last Appendix is provided 

where MATLAB codes for various simulations are shown and a compact disc is attached with 

this thesis report.  
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2. Linear Quadratic Optimal Control 

This chapter provides an overview of linear quadratic optimal control (LQOC). The main 

concept behind this method is to provide optimal control i.e. the output should follow the 

setpoint in the best way. Control design objectives are formulated in terms of cost function. 

The cost function is quadratic and the main objective is to reduce the cost function and to 

have infinite prediction horizon (Ruscio, 2012c). 

Linear quadratic (LQ) optimal control was pioneered by Kalman, which has been playing a 

central role in modern control theory. Up to now, deterministic LQ problem has been 

investigated extensively by many researchers. Stochastic LQ control for the system 

governed by Ito equation was initiated by Wonham (Huang et al., 2006). The solution of the 

unconstrained linear quadratic (LQ) optimal control problem is well known (Anderson and 

Moore, 1989). Several methodologies for solving the linearly constrained case have also 

been developed (Faybusovich, 1982; Faybusovich and Moore, 1995; Faybusovich and 

Moore, 1996). Faybusovich and Moore (1995) and Faybusovich and Moore (1996), the 

interior point methodology (IPM) for solving the quadratic programming problems is 

extended to the infinite-dimensional setting with complexity estimates similar to the finite 

dimensional case. When applied to the constrained LQ optimal control problem, in the case 

of linear or quadratic constraints, the authors show that the optimal control can be 

obtained by solving a sequence of unconstrained LQ problems together with a sequence of 

finite dimensional linear algebraic equations. 

This chapter is further divided various section and sub section. Discrete linear quadratic 

optimal control is described in section 2.1, which is further divided into subsections. 2.1.1 

Provides valuable information about pontryagin maximum principle, 2.1.2 talks in detail on 

discrete optimal control of a linear system (non linear system is converted to a linear 

system) and last subsection 2.1.3 describes the Riccati equations. Section 2.3 provides the 

valuable information and equation of integral action in linear quadratic optimal control.  

 

2.1 Discrete Linear Quadratic Optimal Control 

LQOC can be divided into continuous time linear quadratic optimal control and discrete time 

linear quadratic optimal control. This thesis will focus more on discrete time linear quadratic 

optimal control as discrete is more computer friendly and can be easily implemented in 

software’s for computational.   
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The approach followed here relies on the application of Pontryagin maximum principle to 

the dynamic linear model, and a quadratic cost function is considered. In continues time, 

the system to be controlled is assumed to be described by a linear controllable state space 

model with the state variable for direct measurement. The resulting controller problem 

consists of a state feedback whose gain G depends on the solution R, where R is the positive 

solution to the discrete time algebraic Riccati equation.  

2.2.1 Pontryagin Maximum Principle  

The classical result of optimal control theory is the Pontryagin Maximum Principle (PMP), 

which provides necessary optimality conditions for control system governed by differential 

equations under various constraints (Mordukhovich and Shvarsman, 2012). The Discrete 

Maximum time maximum principle which is a method for solving the discrete time optimal 

control problem (Ruscio, 2012c). Pontryagin’s maximum principle (PMP) states a necessary 

condition that must hold on an optimal trajectory. It is a calculation for a fixed initial value 

of the state, x(0) (University).  

 

The following ideas and equations are based on Lecture notes “Optimal model based 

Control” (Ruscio, 2012c). 

 

Consider a discrete time dynamic process model 

                                         푥 − 푥 = 푓(푥   ,  푢  , 푘)                                                                       (1) 

Equation (1) denotes f(.) as a general non-linear vector function and k as a discrete time. 

Further we consider an optimal performance index or cost function in a discrete form 

                                          Ji = 푆(푥 ) + ∑ 퐿(푥  , 푢 )                              (2)   

                                  

S(.) is a scalar weighting function of the state at the final time instant N and L(.) is a scalar 

weighting function of the state vector xk and the control input vector uk over the horizon 

푖 ≤ 푘 ≤ 푁 − 1, both these functions are non linear function. The discrete start time is ‘i’ 

and final time is ‘N’ where푁 > 푖.  

 

Further the discrete Hamiltonian function is defined, we have 

                                          퐻 = 퐿(푥  , 푢  ) + 푝  푓(푥   ,  푢  , 푘)                               (3)   

Based on equation (1), equation (3) becomes 

                                          퐻 = 퐿(푥  , 푢  ) + 푝  푓(푥 − 푥 )                    (4)   
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There exists an optimal solution or optimal control to a problem which can minimize the 

cost function Ji, if the below conditions are satisfied:  

      

(i) The impulse vector 푝  and the state vector 푥  satisfy the below differential 

equations:  

          푥 − 푥 =  =  푓(푥   ,  푢  , 푘)                                                                   (5)       

          푝 − 푝 = −                                                     (6) 

 

The solutions to the above two equations are found based on the known initial 

value of state vector 푥 and final boundary condition of the impulse vector as 

mentioned below:  

          푥 = 푥                                                                                                                                     (7) 

          푝 =                           (8) 

       

(ii) The Hamiltonian function 퐻  must have an absolute minimum or maximum (This 

thesis is dealing with optimal control problem, hence the cost function is 

subjected to be minimized) with respect to the unknown control 푢  휖 푈 where 푈 

is the allowed control space. This must hold true for all time instants 푘 =

푖 푡표 푁 − 1, with the constraints on the control vector included. Conditions for 

such a minimum value is:  

= 0   푎푛푑 > 0                                                      (9)      

 

From equation (9) the optimal control  푢   is obtained and only the first control signal is 

used for control of the process.  

2.1.2 Discrete optimal control of linear systems 

Section 2.1.1, describes about certain conditions for non-linear systems to have optimal 

control solutions. Non-linear systems model are converted to Linearized model to solve it. 

The following ideas and equations are based on Lecture notes “Optimal model based 

Control”(Ruscio, 2012c). Consider a process described by the discrete time state space 

model 

 

                                                            푥 = 퐴 푥 + 퐵 푢                                (10) 

 

As this is a common notation which means 푥  is a state vector of the dynamic process 

with푥  휖 푅 , control vector 푢  휖 푅 , transition matrix 퐴  휖 푅  and 퐵  휖 푅  is a control 

input system matrix.  
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The next step would be considering a cost function/optimal criterion in a Linear Quadratic 

form, which is mentioned in equation (11). 

                                            퐽 =  푥 푆 푥 +  ∑ (푥 푄 푥 + 푢 푃 푢 )                      (11) 

SN, Qk and Pk are symmetric matrices, these matrices are time variant, varying in each time 

step. Based on equation (10), subtract 푥  on both sides of equation (10) 

                                       푥 − 푥  = 퐴 푥 + 퐵 푢 − 푥                                                              (12) 

                                      푥 − 푥  = (퐴 − 퐼)푥 + 퐵 푢                   (13) 

 

To find the optimal control  푢∗  which minimize the optimal criterion equation (11), below 

mentioned Hamiltonian equation is written 

                                     퐻 =  (푥 푄 푥 + 푢 푃 푢 ) + 푝 (푥 − 푥 )                                 (14) 

Based on equation (13), the equation (14) is modified as 

                                   퐻 =  (푥 푄 푥 + 푢 푃 푢 ) + 푝 (퐴 − 퐼)푥 + 퐵 푢                        (15)                         

                    

Now, the optimal control is given by differentiating equation (15) with 푢  and making it 

equal to zero, the equation (15) now becomes  

                      = 0               푃 푢 + 퐵 푝 = 0                (16)

  

This leads to an optimal solution as:   

                                  푢∗ = −푝 퐵 푝                                                                                            (17) 

Substituting equation (17) back into the state space model equation (10) 

                                  푥 = 퐴 푥 − 퐵 푝 퐵 푝                    (18) 

 

Based on the previous chapter of maximum principle equation (6), the impulse vector can 

be defined as 

                                 푝 − 푝 =  − = −푄 푥 − (퐴 − 퐼) 푝               

                   푝 − 푝 == −푄 푥 − 퐴 푝 + 푝                                         (19) 

Therefore,   푝 = −푄 푥 − 퐴 푝  

Now, equation (18) and (19) forms an autonomous system and equation (20) denotes state 

vector and the impulse vector at different time instants at the same side of the equality 

sign.  
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푥
푝 =  

퐴 퐵 푝 퐵

푄 퐴
 
푥
푝                               (20) 

2.1.3 Discrete time Algebraic Riccati equation 

Riccati equations are named after Count Riccati (Ruscio, 2012c). Algebraic Riccati equations 

can be divided into continues time and discrete time Riccati equations (Lancaster and 

Rodman, 1995). As the thesis is focused on discrete time system, this chapter presents 

topics in detail regarding discrete time algebraic Riccati equations.  

 

The discrete time Riccati equation in LQOC solution may be formulated in different ways. 

The two different formulations are(Ruscio, 2012c):  

(i) This equation must hold for an arbitrarily state vector 푥  ≠ 0 and also assumes 

that the control weighting matrix 푝  is non-singular. This gives the following 

matrix equations for finding 푅  

 푅 = 푄 + 퐴 푅 (퐼 + 퐵 푃 퐵 푅 ) 퐴                                                                      (21) 

 

 

(ii) An alternative formulation in the case when  푅  is non-singular is 

푅 = 푄 + 퐴 (푅 + 퐵 푃 퐵 ) 퐴                                                                                  (22) 

 

Now in this section two different formulations of discrete time Riccati equation are 

formulated which does not involve the inversion of the weighting matrix 푝 . The below 

mentioned formulations are most used formulations.  

Assume that       

                                                            푝 =  푅 푥                                                       (22a) 

The main aim is to show that there is a linear relationship between the impulse vector 푝  

and the state vector 푥 . This means if there is an equation for defining 푅 then it proves that 

there exists such a relationship as described above in equation (22a).  

 

Based on equation (19), it’s known that 푝 = 푄 푥 + 퐴 푝  , substituting equation (19) 

into (22a) 

                                                         푅 푥 = 푄 푥 + 퐴 푝                    (23) 

Based on equation (22), it’s assumed푝 =  푅 푥 , substituting this into equation (23) 

                                                        푅 푥 = 푄 푥 + 퐴  푅 푥                                    (24)     
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An expression for closed loop system is obtained by putting the optimal control 푢∗ = 퐺 푥  

and 퐺 = −(푃 + 퐵  푅 퐵 ) 퐵  푅 퐴  (this part will be discussed in next section) into 

the state equation 푥 = 퐴 푥 + 퐵 푢 , this gives 

                          푥 = (퐴 − 퐵 (푃 + 퐵  푅 퐵 ) 퐵  푅 퐴 )푥                (25) 

Now, putting equation (25) into (24), gives 

                         푅 푥 = 푄 푥 + 퐴  푅 (퐴 − 퐵 (푃 + 퐵  푅 퐵 ) 퐵  푅 퐴 )푥         (26) 

 

This equation must hold for all states 푥 ≠ 0, which gives 

                       푅 = 푄 + 퐴  (푅 − 푅 퐵 (푃 + 퐵  푅 퐵 ) 퐵  푅 )퐴               (27) 

This formulation of the discrete time Riccati equations is always preferred and the only 

matrix 푃 + 퐵  푅 퐵  needs to be inverted. The Boundary condition always remains same 

as 푅 = 푆 , where 푆  is the weighting matrix for the final state 푥 .  

 

The fourth formulation of the Riccati equation is presented as:  

                      푅 = (퐴 + 퐵 퐺 ) 푅 (퐴 + 퐵 퐺 ) + 퐺  푃 퐺 + 푄                   (28) 

                     퐺 =  −(푃 + 퐵  푅 퐵 ) 퐵  푅 퐴                  (29) 

This formulation of the discrete time Riccati equation is known as Joseph’s stable version of 

the Riccati equation. This equation consists only of symmetric terms, and this formulation is 

more preferred in numerical calculations.  

It’s also observable that for a given control gain matrix 퐺 , the equation (28) is a discrete 

time Lyapunov equation. Equation (28) and (29) with advantage be used in order to iterate 

to find the stationary solution to the LQOC problem with infinite horizon.  

2.2 Integral Action in Discrete LQ Optimal Controller 

Integral action is required in Discrete LQOC so that output should follow the setpoint in the 

best way or zero steady state error is to be observed. The theory and equations described 

below are based on journal paper “Discrete LQ Optimal Control Integral Action” (Ruscio, 

2012a).  

 

Let’s consider a process model as described below with unknown slowly varying noises:   

                                                       푥 = 퐴푥 + 퐵푢 + 푣                 (30) 

                                                       푦 = 퐷푥 + 푤                    (31) 

where 푘 ≥ 푖 is the discrete time and initial state   푥  is given and  푥  휖 푅  is the state vector, 

control vector 푢  휖 푅 , output measurement vector 푦  휖 푅  and A,B and D are known 
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system matrices of appropriate dimensions. The disturbance 푣 and 푤 are both unknown, i.e. 

푣 is an unknown constant or a slowly varying process disturbance and 푤 is an unknown 

constant or a slowly varying measurement noise vector.  

Point to be noted is that the model equation (30) and (31) may arise from linearizing non 

linear models around some nominal steady state and input variables or from system 

identification.  

 

The main aim of this controller is to make the output 푦  to be as close as possible to a 

known reference vector 푟 . In this case, it makes sense to use a control input 푢  which 

minimizes a control objective where the deviation 푟 − 푦  is weighted in the objective, but 

control action costs, so the control input 푢  is also weighted in the objective.  

 

The Control Objective/Performance index/Cost function for large or infinite prediction 

horizon N  

                                     퐽 =  ∑ ((푦 − 푟 ) 푄 (푦 − 푟 ) + ∆푢 푃 ∆푢 )               (32) 

Where 푄  휖푅  and 푃  휖푅  is symmetric weighting matrices. The reference vector r is 

treated as constant or slowly varying in the design phase of the LQ optimal controller with 

integral action for MIMO system. Assume P>0.  

 

Based on the state equation of (30) and (31), we can re write into 

                                     푥 = 퐴푥 + 퐵푢 + 푣                   (33) 

                                     푦 = 퐷푥 + 푤                                 (34) 

Subtracting equation (30)-(33) and (31)-(33) 

푥 − 푥 = 퐴푥 − 퐴푥 + 퐵푢 − 퐵푢 + 푣 − 푣 

                                     ∆푥 = 퐴∆푥 + 퐵∆푢                    (35) 

Similarly 

                                     푦 − 푦 = 퐷푥 − 퐷푥 + 푤 − 푤   

                                     푦 = 푦 + 퐷∆푥                                            (36) 

Now augmented matrix (the matrix is made greater in size) can be constructed from the 

latest formulations and is expressed as 

                                    
푥
푦 =  

퐴 0
퐷 퐼

 
∆푥
푦

+  
퐵
0

∆푢                   (37) 

                                     푦 = [퐷     퐼  ] 
∆푥
푦

                 (38) 
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The performance index in equation (32) with r=0 and the augmented state space model in 

(37) and (38) define a standard LQ control problem. If r is a non-zero constant reference 

then the measurement equations (37) can be written as 

                                        푦 − 푟 =  푦 − 푟 + 퐷∆푥                                               (39) 

Hence, the state and output equation (37) and (38) can be rewritten as:            

                                       
푥
푦 − 푟 =  

퐴 0
퐷 퐼

 
∆푥

푦 − 푟
+  

퐵
0

∆푢                (40) 

                                        푦 − 푟 = [퐷     퐼  ] 
∆푥

푦 − 푟
                 (41) 

The above equation can be rewritten shortly as 

                                      푥. = 퐴 푥. + 퐵∆푢                                (42) 

             푦. =  퐷 푥.                                                          (43) 

The pair (퐴, 퐵) is stabilizable. Hereafter, Hamilton matrix defined and relation between 

impulse vector and state vector is assumed (refer above section for detail discussion). The 

solution to the LQ optimal control minimizing the performance index (32) with respect to 

the control deviation ∆푢  subject to the state equation (41) and (42) is given by the state 

feedback 

            ∆푢 = 퐺푥.                                             (44) 

Where the feedback matrix G is obtained as 

                                    퐺 = −(푃 + 퐵  푅 퐵)  퐵  푅퐴                    (45) 

Where R is the positive solution to the discrete solution to the discrete time algebraic Riccati 

equation 

                                    푅 = 푄 + 퐴 푅퐴 − 퐴 푅퐵(푃 + 퐵 푅퐵) 퐵 푅퐴 

   = 푄 + 퐺 푃퐺 + (퐴 + 퐵퐺) 푅(퐴 + 퐵퐺)                (46) 

Where the above formulation of the Riccati equation is known as the Joseph’s stable version 

which ensures symmetry of the solution R. Based on equation (44) the controller on 

incremental form is:  

                                     ∆푢 = [퐺  퐺 ] 
∆푥

푦 − 푟
                                    (47) 

The above solution is not directly used in calculation, rather using the known equation푢 =

푢 + ∆푢 , the above equation (47) is modified as 

                                     푢  = 푢 + 퐺 ∆푥 + 퐺 (푦 − 푟 )                 (48) 

The above equation is the resulting control input signal for the state space equation.  
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3. Model Predictive Control 

Tradition feedback controllers (PID Controllers) were most dominated control strategy used 

in industrial process. These controllers operate by adjusting control action in response to a 

change in the setpoint of a system. Hence a more efficient/optimal control strategy was 

required due to growing quality requirement and cost management. Focus was made on 

advance control/predictive control. Model predictive control is a technique that focuses on 

constructing controllers that can adjust control action before a change in the setpoint 

actually occurs.  

 

Evolution of Model Predictive Controller(Morari, 2008): 

 1980: Seminar By Haydel and Prett at U.Wisconsin on work with cutler and Ramaker 

 Early 1980s: Work with Garcia on Internal Model Control 

 1993: rawlings & Muske, Stability of Receding Horizon Control. IEEE-TAC 

 2000: Mayne, Rawlings,Rao,Scokaert: MPC, Stability & Optimality. Auomatica 

 2003: Qin & Badwell: Survey of Industrial MPC Technology Control Eng Practice.  

Several Authors have published excellent reviews of MPC theoretical issues including the 

paper of Garcia et al. (Garcia et al., 1989), Ricker (Ricker, 1991)and Rawlings(Rawlings et al., 

1994). With over 2000 industrial installation model predictive control is currently most 

widely implemented advance process control technology for process plant(Nikolaou, 2011).  

 

Model Predictive control (MPC) refers to a class of computer control algorithm that utilize 

an explicit process model to predict the future response of a plant. At each control interval, 

an MPC algorithm attempts to optimize future plant behaviour by computing a sequence of 

future manipulated variable adjustment. The first input in the optimal sequence is then sent 

into the plant, and the entire calculation is repeated at subsequent control intervals.               

Programming tools like MATLAB (Matrix Laboratory, Model Predictive Control Toolbox) and 

Labview (Laboratory Virtual Instrumentation Engineering Workbench, Control Design and 

Simulation Module) has MPC functionality (Halvorsen., 2011).  

  

Further part of this chapter describes about introduction to MPC in 3.1. Subsection 3.1.1 

provides various definitions of critical terms, subsection 3.1.2 provides the theoretical 

description of MPC and section 3.2 provides the equations for MPC with integral action.  
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3.1 Introduction  

Model Predictive Control refers to a class of algorithm that compute a sequence of 

algorithm that computes a sequence of manipulated variable adjustment in order to 

optimize the future behaviour of a plant. Originally developed to meet the specialized 

control needs of power plant and petroleum refineries (Qin and Badgwell).  Model 

predictive control is a control strategy which is a special case of the optimal control theory 

developed in 1960 and later (Ruscio, 2012b). Receding Horizon control, also known as model 

predictive control (Nicola et al., 2000).  

Model Predictive control can be divided into  

 Non-Linear Model Predictive Control 

 Linear Model Predictive Control 

The above classification is based on the linear or non-linear model used in the process and 

prediction model. Most of the MPC used in daily life are linear as non-linear model 

predictive control is not guaranteed to converge in fixed computation time(Ruscio, 2012b).   

3.1.1 Definitions 

MPC algorithm consist of various terms and their definitions are as follows (Ruscio, 2012b) 

 Prediction Horizon  

The symbol ‘L’ denotes prediction horizon, which means the number of samples in 

the future the MPC controller predicts the plant output (Halvorsen., 2011). 

 

 Control Horizon 

The number of samples within the prediction horizon where the MPC controller can 

affect the control action (Halvorsen., 2011) 

 

 Output Error Weightings (Q) 

Specifics the weight matrix Q for each system output error in cost function. The 

dimension of this matrix must match the number of plant outputs (National, 2012). It 

is symmetric and positive semi-definite weighting matrices specified by user. The 

more specific choice would be a diagonal weighting matrices. The weighting matrices 

are almost always chosen as time invariant matrices such that the weighting 

matrices are constant over the prediction horizon L so that Q1 = Q2 =…..= QL.  

 

  Control Action change weightings (R) 

Specifies the weight matrix R for each rate of control action change in cost function. 

The dimension of this matrix must match the number of plant inputs (National, 

2012). It is symmetric and positive semi-definite weighting matrices specified by 

user. The more specific choice would be a diagonal weighting matrices. The 
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weighting matrices are almost always chosen as time invariant matrices such that 

the weighting matrices are constant over the prediction horizon L so that R1 = R2 

=…..= RL.  

 

 Control Action Error Weightings (P) 

Specifies the weight matrix P for each control action error change in cost function 

and recommends to specify this matrix only for system with more inputs than 

outputs (National, 2012). Its symmetric and positive semi-definite weighting 

matrices specified by user. Often, P matrix is chosen as zero in order to obtain MPC 

with offset free control i.e. y=r in steady state.  

 

 Cost Function 

The Control Objective/Cost function  J  , which is a scalar criterion measuring the 

difference between future output  y /  and specified reference (future) r /  and 

at the same time recognizing that the control u  is costly. The objective is a measure 

of the process behaviour over the prediction horizon L. This objective is minimized 

with respect to the future control vectors u /  and optimization process is solved 

again at the next time instant K=K+1.  

 

The common control objective used is given by scalar function 

퐽 =  ∑ ((푦 − 푟 ) 푄 (푦 − 푟 ) + 푢 푃 푢 + ∆푢 푅 ∆푢 )       (49) 

 

The summation loop runs from time instants one and until it reaches the Prediction 

horizon (L).  푄 휖푅 , 푃 휖푅  and 푅 휖푅  are weighting matrix as described 

above. The problem of choosing these matrices are usually process dependent and 

must usually be trial and error.   

 

The matrix formulation of the objective 퐽  will be  

퐽 = (푦 / − 푟 / ) 푄(푦 / − 푟 / ) + 푢 / 푃 푢 / + ∆푢 / 푅 ∆푢 / )                    (50)  

Where푄휖푅 , 푃휖푅  and 푅휖푅   are symmetric and positive semi definite 

block diagonal weighting matrices.  

Where ‘K’ is the starting point of the matrix and ‘L’ is the ending row of the matrix. 

For example: Let’s take L=4. 

푦
푦
푦
푦

� |

     Or     

푢
푢
푢
푢

� |

      Or  

푦 − 푟
푦 − 푟
푦 − 푟
푦 − 푟

� | � |

 

 The control problem is subjected to minimize the cost function. 
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 Prediction Model:  

 The linear dynamic process model can always be written as a prediction model (PM) 

which takes the standard form  

                                            푦� | = 푝 + 퐹 푢 � |                                                                  (51) 

Where 퐹 ∈ 푅   a constant matrix is derived from the process model and 

푝 ∈  푅  is a vector which is in general is dependent of a number of inputs and 

outputs older than time K as well as the model parameters. Equation (51) can be 

used directly in MPC algorithm which is computing the actual control input vector.  

 

Some algorithm for MPC are computing process deviation variable such that 

computing the vector ∆푢� |  of future control deviation variables. Then 푢 = ∆푢 +

푢  is used as the actual control vector, for this case the prediction model can be 

written as 푦� | = 푝
∆ + 퐹∆푢 � |   .         

 

 Constraints: 

Constraints are a sought of limitation or boundary value given to a variable. 

Constraints can be applied to many variables. These are discussed in detail in chapter 

4.  

3.1.2 Theory 

MPC is a predictive controller which will predict the future control signal of the system/plant 

process. This section describes this theory in detail.  

 

MPC consist of an optimization problem at each time instant k. The main point of this 

optimization problem is to compute a new control input vector푢 , to be feed to the system 

and at the same time take process constraints into consideration. An MPC is a computer 

based algorithm and it consists of(Halvorsen., 2011): 

 Model of the Process 

 Cost Function 

 Constraints 

 

According to Holkar and Waghmare (Holkar. and L.M.Waghmare, 2010) MPC usually 

contains the following three ideas:  

 Explicit use of a Model to predict the process output along a future horizon. 

 Calculation of a control sequence to optimize a performance index 

 A receding horizon strategy, so that at each time instance the horizon is moved 

towards the future, which involved the application of the first control signal of the 

sequence calculated at each step.  
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Figure 3-1: Sketch of an MPC Controller(Halvorsen., 2011) 

 

Refer figure 3-1, the sketch of Model Predictive controller and according to Hans-Petter 

Halvorsen (Halvorsen., 2011), Model predictive controller refers to a class of computer 

control algorithm that utilize an explicit process model to predict the future response of a 

plant. At each control interval an MPC algorithm attempts to optimize the future plan 

behaviour by computing a sequence of future manipulated variable adjustment. The first 

input in the optimal sequence is then sent into the plant and the entire calculation is 

repeated at subsequent intervals.  

 

The above theoretical concept is provided in a pictorial representation as a moving horizon 

MPC. Refer figure 3-2, where x axis represents time and y axis represents the value of 

control and output measurements. For the current time instant ‘t’, the prediction horizon 

would be ‘t+N’ and the control horizon will be less than the predication horizon.  
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Figure 3-2: The moving horizon strategy of MPC (Holkar. and L.M.Waghmare, 2010)  

 

The MPC methodology is characterized by the strategy as represented in figure 3-2 (Holkar. 

and L.M.Waghmare, 2010) 

1) The process model calculates the predicted future output for the prediction horizon 

(N) at each time instant t. These depends upon the known values up to instance t 

(past inputs and outputs) including the current output (initial condition of y (t)) and 

on the future control signals to be calculated.  

2) The sequence of future control signals is computed to optimize a performance index. 

Usually the control effort is included in the performance index. 

3) Only the current control signal u(t) is send to process, at the next sampling instant 

y(t+1) is measured and step 1 is repeated and all sequence brought up to date.  

Figure 3-3, represents the moving 

Prediction horizon for next instant of 

time. Hence the time instant increases 

by k+1 and prediction horizon increases 

by k+N+1.  

 

 

Figure 3-3: Moving horizon representation for MPC (Halvorsen., 2011).  
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With reference to figure 3-4, the above concept is provided in a flowchart or the critical 

for loop is provided in a pictorial represents in Nikolaou (Nikolaou, 2011). As the concept 

is discussed in detail above, hence this picture is not explained in detail as its self 

explanatory.  

 

Figure 3-4: Model Predictive Control Scheme (Nikolaou, 2011).  
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3.2 Model Predictive control with Integral Action 

MPC with integral action uses control deviation variable ∆푢 /  to obtain offset free control 

and with ∆푢  gives offset free control if the weighting matrix P=0. Another Advantage of 

computing ∆푢 /  and choosing P=0 is to avoid practical problems with non zero mean 

variables (Ruscio, 2012b).  

 

The below discussed equation and theory are based on (Ruscio, 2012b). A proper 

deterministic linear dynamic system can be written as a state space model 

                                                푥 = 퐴푥 + 퐵푢                (3.1) 

                                                푦 = 퐷푥                   (3.2) 

The above state space model is converted to augmented or extended state space model as 

described in section 2.2.  

 

The matrix equivalent of cost function as discussed in detail in section 3.1.1. Note: this cost 

function consists of deviation variable ∆푢 / .  

                  퐽 = (푦 / − 푟 / ) 푄(푦 / − 푟 / ) + 푢 / 푃 푢 / + ∆푢 / 푅 ∆푢 / )    (3.3) 

 

A prediction model in terms of process deviation can be derived from 푦� | = 푝 + 퐹  푢� |   

and 푢� | = 푆훥푢 � | + 퐶푢 � |  this is build from state space equation in 3.1 and 3.2 and later 

based on 푢 = 훥푢 + 푢  , for detail derivation refer to (Ruscio, 2012b). The matrices S 

and c consist of ones and zero, Hence we have prediction as 

                                               푦 | = 퐹
∆∆푢 | + 푃

∆                 (3.4) 

 

Where  

                                  퐹 ∆ = 퐹 푆                                                                                            (3.5) 

                                              푃 ∆ = 푃 + 퐹 퐶푢                                                                     (3.6) 

 

Where  p = O Ax   and F = [O B H ] , O  is the extended observability matrix of 

and H  is the toeplitz matrix.  

Now, substituting (3.4) into (3.3) with P=0 for achieving integral action:  

                          퐽 = (퐹 ∆∆푢 | + 푃
∆ − 푟 / ) 푄(퐹

∆∆푢 | + 푃
∆ − 푟 / ) + ∆푢 / 푅∆푢 /  

                         퐽 = (퐹∆푈 + 푃 − 푟) 푄(퐹∆푈 + 푃 − 푟) + ∆푈 푃∆푈      
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    퐽 = ∆푈 퐹 푄퐹∆푈 + ∆푈 퐹 푄(푃 − 푟) + (푃 − 푟) 푄∆푈퐹 + ∆푈 푃∆푈

( )

+ (푃 − 푟) 푄(푃 − 푟)   

 

                       퐽 = ∆푈 (퐹 푄퐹 + 푃)∆푈 + 2(푃 − 푟) 푄∆푈퐹 + 퐽  

Gives, 

                       퐽 = ∆푈 / 퐻∆푈 / + 2푓 ∆푈 / + 퐽                                      (3.5) 

Where= 퐹∆ 푄퐹∆ + 푅 + 푆 푃푆 ,  퐽 = (푝∆ − 푟 / ) 푄 푝
∆ − 푟 / + 푈 푐 푃 푐 푈  and 

푓 = 퐹∆  푄(푝∆ − 푟 / ) + 푆 푃푐푈  

 

Now, minimizing the control objective in equation (3.5) with respect to ∆U /  and equating 

it to zero which gives 

 

                
푑퐽

푑∆푈 /
= 0 =

= 푑(∆푈 / 퐻∆푈 / + 2푓 ∆푈 / + 퐽 )

푑∆푈 /
 

 

              
푑퐽

푑∆푈 /
= 2퐻∆푈 / + 2푓 = 0 

 

                ∆푢 /
∗ = −퐻 푓                                                        (3.6) 

The above is also known as unconstrained MPC controller, where ∆푢 /
∗  is a vector of length 

‘L’, which consist of the future deviational control signal for the system. As we know 푢 =

훥푢 + 푢 , hence only the first value from ∆푢 /
∗  is used to find the control signal 푢 .  

 

According to (Ruscio, 2012b), Advantage of using integral action is zero steady state error 

and the resulting controller is insensitive to non-zero mean control variables and constant 

disturbance. Most importantly, it leads to an MPC which are computing control deviation 

variable ∆푢 / .  

 

 

 

 



  

30 
 

4. Handling Constraints  

Today’s process need to be operated under tighter performance specification and at the 

same time more and more constraints, stemming for example from environmental and 

safety consideration need to be satisfied (Findeisen. and Allgower).   According to Nunes 

(Nunes, 2001), all process are subjected to restrictions and these can be considered in the 

objective function as constraints in input and outputs. The main requirements for 

constraints are mostly because badly tuned optimal controllers tend to take the 

system/plant to extreme and sometimes unstable condition like going beyond the physical 

limit of valve opening.  

According to authors (Lee. et al.) to have a stabilizing receding horizon control is to adopt a 

finite input and state horizon with the terminal equality constraint  that all states should be 

zero within a finite horizon. Another approached provided in this paper is to introduce 

invariant ellipsoid constraint in order to relax terminal equality constraints.  

Constraints are an important part of this thesis and it’s discussed in detail in this chapter. 

This chapter is divided into various sections where section 4.1 describes about classification 

of constraints, section 4.2 provides the different type of constraints, section 4.3 provides the 

equation and theory for handling constraints in MPC and section 4.4 provides the equation 

and theory for handling constraints in LQ optimal control. 

 

4.1 Classification of Constraints  

Constraints can be classified into different types and they are shown below.  

Hard Constraints:  

They are inequality constraints (e.g. lower and upper bounds) on parameters to be 

estimated (Benavoli et al.). Hard constraints are those which definitely need to be satisfied.   

 

Soft Constraints:  

These constraints would like to true but not at the expense of the hard constraints example 

cost function are called soft constraints (Encylopedia, 2012).  

 

Linear Equality Constraints: 

Linear equality constraints take the form 퐴푥 = 푏, where A and b has m rows. Note this is 

usually an underdetermined system. Most optimization do not operate this way because of 

numerical errors in computing N (Hauser, 2012).  
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Linear Inequality Constraints: 

Most linear MPC methods lead to a quadratic problem with inequality constraints. They take 

the form 퐴푥 ≤ 푏 which is solved iteratively. The numbers of iterations are finite and the 

solution is guaranteed to converge if the Quadratic problem is well formulated and a 

solution is feasible. Where 퐴 ∈ 푅  and 푏 ∈  푅 . Note that this case can allow the 

number of inequality constraints m to be greater than the number of parameter n in x 

(Ruscio, 2012b).  

 

4.2 Types of Constraints 

Different type of constraints exists in order to obtain a better performance from optimal 

controller. For simplicity single input single output constraints are discussed. The  following 

ideas are based on (Ruscio, 2012b) 

 Input Amplitude / Control Variable Amplitude Constraint 

These are the most common encountered constraints among all constraints. These 

are physical hard constraints on the system. For example 

 

푢 ≤ 푢(푘) ≤ 푢                      (4.1) 

 

A typical example for these type of constraints are valve which cannot operate 

beyond 100% open or a certain voltage or current valve to go beyond a certain 

range. 

 

 Input rate/Control Variable Incremental Constraint 

These are hard constraints are rate of change in control signal constraints, for some 

process it’s not advisable to have a huge increase in the control variable. Hence 

limiting the rate of change will in turn limit the control signal. It’s denoted by  

∆푢 ≤ ∆푢(푘) ≤ ∆푢                           (4.2) 

 

 Output Constraints 

These constraints are typically operating range for the plant output. For instance the 

output y(k) has an upper limit 푦  and a lower limit 푦 , then the output 

constraints are specified as 

 

푦 ≤ 푦(푘) ≤ 푦                                                                   (4.3) 

 

 State Constraints 

These constraints are applied on state variable, if they are measurable or they 

posses critical outcome. (Wang, 2009) 
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4.3 Constraints Handling in MPC 

The constraints in MPC can be handled in two types of programming 

1) Algorithm based constraints, which is discussed in this section in detail 

2) Unconstrained MPC can be limited with an if else loop constraints, if else loop is 

discussed in detail in section 4.4 of LQ optimal control.  

MPC uses Deviation variable and linear inequality constraints. The following equations are 

based on Ruscio (2012 b). 

Given a linear quadratic objective function which is based on deviation variable 

 

퐽 = (푦 / − 푟 / ) 푄(푦 / − 푟 / ) + ∆푢 / 푃 ∆푢 / + 푢 / 푅 푢 / ) 

Minimizing  퐽 with respect to the future control inputs, subject to input and output 

constraints, this problem can be formulated as follows:  

min
∆ /

퐽 

Subject to  

   푢 / ≤   푢 /     ≤ 푢 /  (Input amplitude constraints) 

                                       ∆푢 / ≤ ∆푢 / ≤ ∆푢 /          (Input change constraints) 

                                       푦 / ≤ 푦 / ≤ 푦 /         (Output constraints) 

The above can be written as a linear inequality as:  

퐴∆푢 / ≤ 푏 

Where  

퐴 =

⎣
⎢
⎢
⎢
⎢
⎡
푆
−푆
퐼
−퐼
퐹
−퐹 ⎦
⎥
⎥
⎥
⎥
⎤

 ,  푏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
푢 / − 푐푢

푢 / − 푐푢

∆푢 /

−∆푢 /
푦 / − 푝 (푘)

−푦 / − 푝 (푘)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Where 푝 (푘) is defined in terms of known past inputs and outputs, 퐹  is a constant lower 

triangular matrix. Where matrices 푆 푎푛푑 퐼 found to statisfes the following the relationship 

푢 / = 푆∆푢 / + 푐푢  

Matrices 푆 푎푛푑 퐼 are found through a Matlab program ‘scmat.m’ written by Rusico (2012,b). 

These matrices contain ones and zeros only.  
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The above quadratic problem with constraints can be solved in Matlab by the optimization 

toolbox function as:  

∆푢 / = 푞푝(퐻, 푓, 퐴, 푏) 

4.4 Constraints Handling in LQ Optimal Control 

MPC handles constraints in its algorithm whereas LQ optimal control doesn’t handle in its 

algorithm. But still hard limit constraint can be used in the form of if-else loop. An example 

for Input change constraints ∆푢 /  is shown. Let the constraint be ∆푢 / ≤ ∆푢 / ≤

∆푢 / , where  ∆푢 /  푎푛푑 ∆푢 / , are minimum and maximum value for input change is. 

It’s known that  

∆푢 = 퐺 ∆푥 + 퐺 (푦 − 푟 ) 

The if-else loop can be implemented as:  

     if ∆푢  (1,1)> ∆푢 /  

        ∆푢  (1,1)= ∆푢 / ; 

     elseif ∆푢  (1,1)<  ∆푢 /  

        ∆푢  (1,1 ∆푢 / ; 

     end 

The above algorithm can be used for Input amplitude constraints and Output constraints 

and also if there are many inputs or outputs the same loop algorithm can be used but with 

different index like  ∆푢  (1,2).  
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5. Kalman Filter  

The four tank process (which will be discussed chapter 7)  used for simulation has state 

variable measurement only in two tanks, other two tanks level are not measured. There is a 

need to estimate the level or state variable estimation, Kalman Filter is used to estimate the 

level of the two tanks. If States are not measured then 푥  may be computed from the 

knowledge of a number of past inputs and outputs over the past horizon J. The states can 

also be estimated in a state observe, using Kalman filter gain (Ruscio, 2012b).  

 

The Kalman filter is a set of mathematical equation that provides an efficient computational 

(recursive) solution of the least square methods (Welch and Bishop). The Kalman filter is a 

state estimator which produces an optimal estimate in the sense that the mean value of the 

sum of the estimation error gets a minimal value. Kalman filter is a set of mathematical 

algorithm which is implemented in the simulation. The algorithm is described briefly below. 

 

Let’s consider a process in state space form as 푥 = 퐴푥 + 퐵푢 + 푣  and 푦 = 퐷푥 + 푤  

Where 푣  and 푤  are white process and measurement noise respectively. The Kalman filter 

K is a 푛푋푟 matrix, where n is the number of states need to be observed. The Kalman filter 

gain is found in simulation using “dlqe”, given the covariance of the noises, a Kalman gain K 

can be calculated using the function dlqe (Verhaegen et al., 2007). Set the initial state 

estimate as: 푥 =  푥  

Measurement Estimate:                        푦(푘) =  푥 (푘) 

 

Estimator Error:                                     푒(푘) = 푦(푘) − 푦(푘) 

 

Corrected State Estimate:                   푥 (푘) = 푥 (푘) + 퐾 푒(푘)  

                            푥 (푘) = 푥 (푘) + 퐾 푒(푘) 

 

Predicted State Estimate:                    푥 (푘 + 1) = 푥 (푘) + 푇 푘 푈(푘) − 푇 푥 (푘) 

푥 (푘 + 1) = 푥 (푘) 

The above equation are based on (Halvorsen., 2011). These 4 steps are running inside a loop 

and calculate new estimates for each iteration of the MATLAB code. Note the different 

notation may be used:  

Apriori (Predicted) estimate:  푥 = 푥̅ and  Aposteriori (Corrected) estimate: 푥 = 푥 
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6. PID 

Proportional Integral Derivative (PID) is the most commonly used controller in the industries 

as it doesn’t require the model of the process. There are many forms of the PID controllers, 

but discrete type of PID controllers are more preferred as they easy to implement in 

computer software and for the simulation velocity form of the PID controllers used because 

it doesn’t require specification of the bias term 푝̅  and is less prone to reset 

windup(Triratanajaru, 2011).  

Refer below for the velocity form of PI Controller and for complete derivation refer to 

(Ruscio, 1996),  

푢 = 푢 + 퐺 (푦 − 푦 ) + 퐺 (푦 − 푟) 

Where 

퐺 = −푘  

 

                                                                           퐺 = − ∆푡  

The above discussion shows that the PI controller is exactly of the same structure as a state 

feedback controller (LQ optimal Controller).  The controller takes feedback from the 

deviation state vector ∆푥 = 푥 − 푥  while the PI controller only uses feedback from the 

output deviation ∆푦 = 퐷∆푥   (Ruscio, 1996).  

Two separate PI controllers are used to control the tank 1 and tank 2, the values of P and I 

are chosen after trial and error method. The value of PI for minimum phase system is kp = [8 

12]; Ti= [10 4] and the value for non minimum phase system is kp = [15 -.12]; Ti = [100 250].  

 

6.1 RGA Analysis 

As the quadruple tank is a MIMO system, hence pairing is one of the main concepts to 

analysis before implementing the PI controller. The following equation are based on (Ruscio, 

1996). The quadruple tank has 2 inputs, hence lets discuss an example of 2x2 system where 

푢  and 푢  are input and 푦 푎푛푑 푦  are output variables. The system can be represented as 

푦
푦 =

푥 푥
푥 푥

푢
푢  

 

The above equation can be written as:  

푦 = 퐻 푢 
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The relative gain array is given by  

Λ = 퐻  (퐻 )     (Element by element multiplication), where 퐻  is a non singular matrix 

and Λ is described by  

Λ =
휆 휆
휆 휆

=
휆 1 − 휆
1 − 휆 휆

 

 

Where 휆 =  , The pairing of the variables depends on  

1. Chose the pairing 푥푖 → 푦 , for which the corresponding RGA element 휆  is positive and 

so close to 1 in magnitude as possible.  

2. The pairing 푥푖 → 푦 , must be avoided if the RGA element is negative i.e. when 휆 < 0. 

RGA analysis is performed for minimum phase and non-minimum phase system. The 

transfer matrix as discussed in (Johansson, May 2000) 

퐺(푠) =

⎣
⎢
⎢
⎢
⎡

훾 푐

1 + 푠푇

(1 − 푦 )푐

(1 + 푠푇 )(1 + 푠푇 )
(1 − 푦 )2

(1 + 푠푇 )(1 + 푠푇 )

훾 푐

1 + 푠푇 ⎦
⎥
⎥
⎥
⎤

 

 

Where 푐 =  and 푐 =  , now by substituting the values for minimum and non-

minimum from table 7-3 and 7-4: 

Minimum phase system:  

퐺(푠) =

⎣
⎢
⎢
⎡

2.6

1 + 62푠

1.5

(1 + 23푠)(1 + 62푠)
1.4

(1 + 30푠)(1 + 90푠)

2.8

1 + 90푠 ⎦
⎥
⎥
⎤

 

Non-minimum phase:  

퐺(푠) =

⎣
⎢
⎢
⎢
⎡

1.5

1 + 63푠

2.5

(1 + 39푠)(1 + 63푠)
2.5

(1 + 56푠)(1 + 91푠)

1.6

1 + 91푠 ⎦
⎥
⎥
⎥
⎤

 

 

Refer appendix 13, where the MATLAB code of RGA is provided and figure 6-1, shows the 

output from the MATLAB code. Value closer to 1 should be selected for pairing of input and 

output, hence for minimum phase system (left side picture on figure 6-1) input 푢  with 

output 푦  and input 푢  with output 푦  can be paired. Similar, for non minimum phase 



  

37 
 

system (right side picture on figure 6-1) input 푢  with output 푦  and input 푢  with output 푦  

can be paired. Table 6-1 provides the final result of input output pairing in the form of table. 

 

 

 

Figure 6-1: RGA analyses for minimum and non-minimum phase of quadruple tank system. 

 

Table 6-1: Pairing combination for minimum phase and non-minimum phase quadruple tank system 

Input Minimum phase  Non-minimum phase 

푢1 (Input 1, Pump 1) 푦
1
 (Output 1, Tank 1) 푦

2
(Output 2, Tank 2) 

푢2 (Input 2, Pump 2) 푦
2
 (Output 2, Tank 2) 푦

1
(Output 1, Tank 1) 
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7. Problem Formulation 

The main task of thesis is to investigate optimal control by simulation of non-linear process 

in MATLAB. Non-linear process doesn’t satisfy the superposition principle or whose output 

is not directly proportional to its input. Most of the real life process or physical processes 

are non-linear process. Various non linear processes exist such as four tank level process, 

chemical reactors, distillation column etc. Four tank level process is chosen and optimal 

control is implemented and simulations are performed MATLAB.  

 

This chapter is divided into various sections. Section 7.1 provides the introduction to four 

tank process, its inputs and outputs. Section 7.2 discusses the various steps in creating the 

state space model of the four tank process. Section 7.3 and section 7.4 provides the short 

introduction to minimum phase and non-minimum phase respectively. Section 7.5 deals 

with analysing the properties of a Linearized model of the system which is performed in 

MATLAB to find out the eigen values, observability and controllability of the system. If it 

satisfies the requirement then the Linearized model can be used for MPC and LQ optimal 

control simulation.  

 

 

7.1 Four Tank Level Process 

Four tank system is a Multiple input multiple output (MIMO) system. It’s a non-linear 

system. The Linearized dynamics of the system have a multivariable zero that is possible to 

move along the real axis by changing a valve. The zero can be placed in both the left and 

right half plane, in this way the quadruple-tank process is ideal for illustrating many 

concepts in multivariable control (Johansson, May 2000).  

 

The diagram of four tank process is shown in figure 7-1, there is a common reservoir from 

which water is pumped via pump p1 and p2. The voltages applied to pump are u1 and u2, 

these are the two input to the system. Table 7-1, provides the various inputs, outputs and 

state of the process which is common to minimum and non-minimum phase system.  
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Table 7-1: Information on Inputs, outputs and states of Quadruple tank process 

Description Quantity  Description  Variables name 

(Refer figure 7-1) 

Number of Inputs 2 Voltages to Pump (Volts) 푢1 푎푛푑 푢2 

Number of Outputs 2 Water level in lower 2 tank 

(Centimetre), (The main objective is 

to control these two levels) 

푦1 푎푛푑 푦2 

Number of states 4 Water level in all 4 tank 

(Centimetre) 

푥1, 푥2, 푥3 푎푛푑 푥4 

 

The flow from pump 1 is divided by valve v1 to tank1 and tank 4, similarly flow from pump2 

is divided by valve v2 to tank2 and tank4. This phenomenon is shown in table 7-2. All tanks  

interacts with each other, as all tanks have exit opening from which water is flowing out and 

this process is not measured, hence it can be observed as disturbance.  

 

Table 7-2: Flows to the tanks generated by the two pumps 

              Tank 

Pump 

Tank1 Tank2 Tank3 Tank4 

Pump 1 훾 푘 푣  - - (1 − 훾 )푘 푣  

Pump2 - 훾 푘 푣  (1 − 훾 )푘 푣  - 

 

The main objective of the quadruple tank process is to control the level in lower tanks such 

as Tank 1 and Tank 2.  
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Figure 7-1: Diagram of quadruple-tank process(Johansson, May 2000).  

 

 

7.2 Physical Model 

Optimal control are based on model, hence a physical model is required to simulate the 

quadruple tank process.  According to Nunes (2001) different type of model can be formed 

such as  

 Impulse/Step response model 

Models are obtained by simple experiment but it required a large amount of 

parameter. 

 

 Transfer Function Model 

Process model can be obtained on the basis of physical law or by system 

identification, less parameter needed than step response model.  

 

 State Space Model 

Generally used for linear time invariant system 

 

For quadruple tank process continues state space Model is derived from the physical data.  
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As the process is non-linear, using mass balance and Bernoulli law the model is derived. The 

following equations are based on (Richter, 2010). Mass balance of tanks is given by:  

                                                   푉̇    = 푞 − 푞 = 푎 ℎ̇                  (7.1) 

With V= Volume water in Tank 

          a     = Cross section area of the tank 

          h     = water level in tank 

          푞   = inflow of water to tank 

         푞 = Outflow of water from tank  

 

Bernoulli’s Law which states 

                                              푝 +  휌푣 + 휌푔ℎ = 푐표푛푠푡               (7.2) 

At water surface (푣 = 0) and at the bottom of each tank (ℎ = 0) and subtracting the 

resulting equations from each other results in  

                                               푞 = 푎 푣 = 푎 2푔√ℎ                           (7.3) 

Where  

푎   = cross section area of an outlet 

푣   = speed of water outflow 

H    = water level in tank 

G    = acceleration due to gravity 

 

Pump generated flow is proportional to the applied voltage, hence 푞 = 퐾 . 푣 , where 

퐾  is pump gain.  

The following ideas , equation and physical data are based on (Johansson, May 2000). Non-

linear Mathematical model in the form of differential equations are derived from the 

physical data of the quadruple tank process.  

                                         =  −  2푔ℎ +  2푔ℎ +  푣               (7.4) 

 

                                       
 
= −  2푔ℎ +  2푔ℎ +  푣               (7.5) 

 

                                        =  −  2푔ℎ +
( )

 푣                (7.6) 
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= −  2푔ℎ +

( )
 푣                                         (7.7) 

The parameter 훾 , 훾 ∈ (0,1)  are determined from how valves are set prior to an 

experiment. The common parameter values of the process are given in table 7-3.  

 

Table 7-3: Common Parameter for Quadruple Tank process(Johansson, May 2000) 

Parameter Unit Description Value 

퐴  푐푚  Cross Sectional  Area of Tank 1 28 

퐴  푐푚  Cross Sectional  Area of Tank 2 32 

퐴  푐푚  Cross Sectional  Area of Tank 3 28 

퐴  푐푚  Cross Sectional  Area of Tank 4 32 

푎  푐푚  Cross Sectional Area of the outlet hole of Tank 1 0.071 

푎  푐푚  Cross Sectional Area of the outlet hole of Tank 2 0.057 

푎  푐푚  Cross Sectional Area of the outlet hole of Tank 3 0.071 

푎  푐푚  Cross Sectional Area of the outlet hole of Tank 4 0.057 

퐾   푉/푐푚 Gain of Level measurement for tank 1 and tank 2 0.50 

푔 푐푚/푠  Gravity 981 

 

The quadruple tank can be studied based on two operating point such as minimum and non-

minimum phase system (discussed in detail in section 7.3 and 7.4), the chosen operating 

values of certain parameter are shown in table 7-4.  

 

Table 7-4: Operating condition of quadruple tank process 

Parameter Unit Description Minimum 

Phase 

Non-minimum 

phase 

ℎ1 cm Initial height of tank 1 12.4 12.6 

ℎ2 cm Initial height of tank 2 12.7 13.0 

ℎ3 cm Initial height of tank 3 1.8 4.8 

ℎ  cm Initial height of tank 4 1.4 4.9 

푣  volt Initial voltage to pump 1 3 3.15 
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푣  volt Initial voltage to pump 2 3 3.15 

k  cm /Vs Gain of Pump 1 3.33 3.14 

k  cm /Vs Gain of Pump 2 3.35 3.29 

훾          - Setting of Valve 1 for tank 1 and 4  0.70 0.43 

훾          - Setting of Valve 2 for tank 2 and 3 0.60 0.34 

 

As non linear system can be converted to Linearized state space equation by:  

퐴 =

⎣
⎢
⎢
⎢
⎢
⎡ 0

0 0

0 0 0

0 0

 

0

0
0
⎦
⎥
⎥
⎥
⎥
⎤

      퐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0

0    

0             
( )

( )  
       0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

    퐷 =
퐾 0 0  
0 퐾 0  

0
0

 

Where time constant푇 , for i=1, 2,3 and 4 refers to 푇 =  
 

.  

The above equation can be formulated to state space equation and ‘x’ refers to the state 

variable which is the height of tanks.   

푥̇ = 퐴푥 + 퐵푢 

푦 = 퐷푥 

7.3 Minimum Phase 

A system with all poles and zeros inside the unit circle, both the system function and inverse 

is casual and stable (Arslan, 2005). Whose transfer function have all pole and zero in the left 

half of S-plane (D.Viswanath, 2011) 

 

According to Johansson (2000), the condition for minimum phase is 1 < 훾 + 훾 < 2 , 

where 훾 푎푛푑 훾 determined from how valves are set prior to an experiment. Let 푞  denote 

the flow through pump 푖 and assume 푞 = 푞 . Then the sum of the flows to the upper tank 

is [2 − (훾 + 훾 )]푞  and the sum of the flow to the lower tank is  (훾 + 훾 )푞 . Hence, the 

flow to the lower tank is greater than the flow to the upper tanks if  훾 + 훾 > 1, such that if 

the system is minimum phase. Refer table 7-4 for the various values of the minimum phase 

system.  



  

44 
 

7.4 Non-Minimum Phase 

Non-minimum phase systems are those whose transfer function have one or more poles or 

zero in the right half of the S-plane (D.Viswanath, 2011).   

According to Johansson (2000), the condition for minimum phase is 0 < 훾 + 훾 < 1. The 

flow to the lower tank is smaller than the flow to the upper tanks if the system is in non-

minimum phase. Refer table 7-4 for the various values of the non minimum phase system.  

Control Engineers have been aware of non-minimum phase systems showing either 

undershoot or time delay characteristics for some considerable time (Urgen and Schoor, 

2011) 

7.5 Properties of Linearized Model 

The given non-linear model was converted to a linear model as described in section 7.2. 

Refer figure 7-2 for the various values of the simulation results of the MATLAB programming 

as provided in appendix 2.  The main criteria to check a linear model are  

 Eigen Value: If the  eigenvalues are all real, distinct and have negative values (which 

means they lie in the negative half of the complex plane) then the system is stable 

(Ruscio, 1996). With reference to figure 7-2 the eigenvalues for minimum and non-

minimum phase are distinct and negative, hence the system is stable. Both systems 

have four time constant.  

 

 Controllability: The system is controllable if the controllability matrix has full rank 

(Ruscio, 1996). The controllability matrix was found and then rank was found for 

minimum and non-minimum phase system. The rank is 4, which is full rank which 

means all state variables are controllable.  

 

 Observability: The system is observable if the observability matrix has full rank 

(Ruscio, 1996). The observability matrix was found and then rank was found for 

minimum and non-minimum phase system. The rank is 4, which is full rank.  

 

 Transmission zero: The position of the valves determine the location of a 

multivariable zero of the Linearized model, the zero can be put in either left or the 

right half plane (Johansson, May 2000). For minimum phase system the zeros are in 

the left half of the complex plane whereas for non-minimum phase system the one 

zero is in right half and the other in left half of the plane. According to Johansson 

(May 2000) this quadruple tank process which is ideal to show performance 

limitation due to zero in right half plane.  

 

Refer figure 7-3, for the various steps or various simulation performed till now in this thesis.  
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Figure 7-2: Linear model analysis of quadruple tank system, left shows the minimum phase system 
and right show non-minimum phase properties. 

 

 

 

 

 

 

 

 

 

Figure 7-3: Various steps performed in this thesis so far. 

 

Non- Linear Model 

Linear Model 

Eigen Value 

 

Controllability 

Observability 

Zeros 
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8. Problem Solution (Matlab Simulation) 

This chapter contains the simulation results to the problem mentioned in chapter 7 which is 

a four tank system. Mainly LQ optimal control and MPC control with integral actions are 

simulated. Refer figure 8-1, which represents the various type of MATLAB programming 

implemented for the four tank system. LQ optimal control is implemented using 

unconstrained and constraints (if-else loop), whereas MPC with integral action is 

implemented using an algorithm based constraints, if else loop constraints and 

unconstrained. PID (using RGA analysis) controller simulation is also performed as an 

additional task. By using Kalman filter in simulation unmeasured states are predicted (tank 

level for tank 3 and tank 4).  

 

 

 

 

 

 

 

 

Figure 8-1: Various type of simulation performed in MATLAB for quadruple tank process using 
minimum and non-minimum phase system. 

This chapter is divided into three section, where section 8.1 provides the results of LQ 

optimal control which is again divided into subsection as 8.1.1 for minimum phase system 

and 8.1.2 non-minimum phase system, in both these subsection the comparison is based on 

constraints and unconstrained LQ optimal control. Section 8.2 provides the results of MPC 

which is again divided into subsection as 8.2.1 for minimum phase system and 8.2.2 non-

minimum phase system, in both these subsection the comparison is based on constraints 

and unconstrained MPC. Section 8.3 provides the comparison based on constraints for 

controllers like LQ, MPC and PI for minimum phase system.  

 

 

 

 

 

Model Predictive Controller LQ Optimal Controller 

Unconstrained Constrained 

(If-Else loop) 

Unconstrained Constrained 

(Algorithm based) 

Constrained 

(If-Else loop) 
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8.1 LQ Optimal Control (Constraints handling Comparison) 

Theoretical description of LQ optimal control with integral action is discussed in section 2.3 

and constraint handling are discussed in section 4.4. Based on these theoretical description 

and equation LQ optimal control is implemented on the four tank process. The simulation of 

LQ optimal control can be divided into 4 types depending on constraints, minimum or non-

minimum phase system of four tank process refer figure 8-2. Use of Kalman filter is for state 

estimation and reduction of noise within the model.  

 

 

 

 

 

 

 

 

 

Figure 8-2: Different types of LQ optimal control simulation implemented on four tank process. 

Tuning of LQ optimal control depends on selection of weighting matrices 푅  푎푛푑 푄, which 

is based on trial and error selection method. The main calculation of optimal control is 

based on a sub program named “dlqdu_pi.m” created by Ruscio (2012a). And inside this 

program “dlqr” is used to find the feedback/gain matrix.  

 

The main task of the thesis is to deal with constraint handling, hence simulation result for 

specific programming like minimum phase system with constraint or non-minimum phase 

system with unconstrained are rather not provided, whereas only the comparison plot of 

tank 1 level of minimum phase system with constrained and unconstrained are compared 

similarly for tank 2 and for control signal etc. As discussed in section 4.4, constraints are 

implemented in LQ optimal control with if-else loop only.   

 

The flow chart of the LQ optimal control programming using constraint and unconstrained 

method is provided in figure 8-3 and figure 8-4.  

 

 

LQ Optimal control 

With integral action 

Unconstrained  

Minimum Phase system 

Non-Minimum Phase system 

Non-Minimum Phase system 

Minimum Phase system 

Constrained (푢 & ∆푢)              

(if-else loop) 
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 Start 

 

                                                                    Physical Parameter 

                                                                    Of Tank common 

 

 

                                             1                       1.Minimum phase                2 

                                                                  2. Non-minimum Phase 

 

 

Tank, pump, y1, 푅 , 푄        Tank, pump, y1 Y2 푅 , 푄 

y1 y2 value  chosen                      y1 y2 value  chosen 

                                                                    

                                                                    

     

                              Time constant for all 

     Four tanks calculated 

 

                  Linearized SSM 

                                                                   Calculated  

       C2dm 

                                                                   N, 푡 , ℎ value chosen 

 

 

                               퐺 , 퐺  Calculated 

                   

. 

      Kalman Gain and prbs1 

        

  
 For loop 1: N 

   

                 

Figure 8-3: Flow chart of LQ optimal control programming Part I.                                                                          
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     Predict new state of x  

          

                                                                    
                                                                   ∆푢 found 

                               

      

     Apply constraints on ∆푢 
     If required 

 

     푢 Found 

 

     Apply constraints on 푢 
     If required 

 

     Store and exchange  
     Variables 

 

     Plot 

 

 

Figure 8-4: Flow chart of LQ optimal control programming part II. 

 

As shown in the above flowchart, the main difference between Constrained and 

Unconstrained LQ optimal control is hard limit constraints for 푈 푎푛푑 ∆푈  , which is 

implemented in MATLAB coding via if-else loop for Tank 1 and Tank 2.   
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8.1.1 Minimum Phase system Comparison 

This section provides the comparison of LQ optimal control with integral action on a 

minimum phase quadruple tank system based on constraint and unconstrained. Two 

separate MATLAB programs are simulated for LQ optimal control with unconstrained (refer 

appendix 3) and for LQ optimal control with constrained (refer appendix 4).  

Instead of showing two sets of plotting based on constrained and unconstrained, single 

plotting is shown which combines both the data’s of constraints and unconstrained. The 

above two MATLAB coding was simulated separately and the data was transferred to excel 

file (this concept applies to section 8.1.2 also). Refer appendix 5 for the MATLAB code, this 

code helps to write the data’s to excel file, reading from excel file and plotting it. The main 

parameters for the simulation of this task are provided in table 8-1. 

 

Table 8-1: Critical parameter for simulation for LQ optimal control for minimum phase system 

N 푹풘           Q  Constraints on Control signal U 

(Pump voltage) [Volts] 

Tank 1 Set 

point 

Tank 2 Set point 

푼풎풂풙 푼풎풊풏 ∆푼풎풂풙 ∆푼풎풊풏 

1500 10*[1,0;0,1] 

 

0.1*[100,0;0,1] 

 

5 0 0.4 -0.4 12.5  and 12.3 

cm 

12.8 and 12.6 

cm 

 

Above parameters were used for simulation and refer figure 8-5, which shows the tank 1 

and tank 2 level with respect to reference for constrained and unconstrained LQ optimal 

control. X axis denotes the time stamp and y axis denote the level in centimetre. One 

important point observed in this plot was the output of both tank level were following the 

reference/set point level, but there is no change  in output level for tank 1 and tank 2 for 

constrained and unconstrained LQ because the change in ∆푈  or 푈 in constrained LQ 

optimal was within the constraints limits refer figure 8-6 and 8-7. The major difference 

between the unconstrained and constrained LQ is the if else loop, which is used to 

implement the constraints, as the ∆푈  and  푈  values are within the constraint limit, there is 

no difference observed in the performance of constrained and unconstrained LQ optimal 

control. In the plot, only red line is shown whereas red (constrained) and green 

(unconstrained) are overlapped with each other. Tank 1 and tank 2 are stable and 

controllable.  
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Figure 8-6 shows the control signal U plot with respect to time stamp. X-axis denotes the 

time and y-axis denotes the voltage to pump. In this plot, it is observed that LQ optimal 

control for constrained and unconstrained remains same as they are overlapped.  

 

  

Figure 8-5: Level of Tank 1 and Tank 2 of minimum phase quadruple tank system comparison based 
on constraints and unconstrained LQ optimal controller. 

  

 

 

 

Figure 8-6: Control signal U of Tank 1 and Tank 2 of minimum phase quadruple tank system 
comparison based on constraints and unconstrained LQ optimal controller. 
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Figure 8-7 which shows the comparison of LQ unconstrained and constrained plot of, 

change in control signal ∆푈 for tank 1 and tank 2. In this plot, it is observed that there is no 

change or deviation in change in control signal for constrained and unconstrained LQ as they 

both overlap with each other.  

 

 

Figure 8-7:  Change in control signal ∆U of Tank 1 and Tank 2 of minimum phase quadruple tank 
system comparison based on constraints and unconstrained LQ optimal controller 

 

Remark 1: Based on the above comparison for constrained and unconstrained LQ optimal 

control for minimum phase system of quadruple tank system, it is observed that constrained 

(if else loop) and unconstrained LQ optimal controller provide the same result because when 

the constraints are implemented in the LQ optimal control, the value of 푈 푎푛푑 ∆푈 were 

within the constraint limit, hence no major change in output level control of tank 1 and tank 

2 are observed for constrained and unconstrained LQ optimal controller. Tank 1 and Tank 2 

level are stable and controllable for minimum phase quadruple tank process.  The changes in 

∆푢 are very small. Control signal U, change in control signal ∆푈 and the output level for tank 

1 and tank 2 overlap with each other for constrained and unconstrained LQ optimal control.  
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8.1.2 Non-Minimum Phase system Comparison 

This section provides the comparison of LQ optimal control with integral action on a non-

minimum phase quadruple tank system based on constraint and unconstrained. Two 

separate MATLAB programs are simulated for LQ optimal control with unconstrained (refer 

appendix 3) and for LQ optimal control with constrained (refer appendix 4). The MATLAB 

codes for plotting the results are provided in appendix 6. The main parameters for the 

simulation of this task are provided in table 8-2. 

 

Table 8-2: Critical parameter for simulation for LQ optimal control for non minimum phase 

N 푹풘           Q  Constraints on Control signal U 

(Pump voltage) [Volts] 

Tank 1 Set 

point 

Tank 2 Set point 

푼풎풂풙 푼풎풊풏 ∆푼풎풂풙 ∆푼풎풊풏 

1500 [.1,0;0,.1] 

 

[.01,0;0,.001] 

 
5 0 0.4 -0.4 12.5  and 12.3 

cm 

12.8 and 12.6 

cm 

 

As four tank process are very interactive process, change in one set point in one tank affects 

the level in another tank. The tuning parameter 푅  푎푛푑 푄 had been modified to match the 

non-minimum phase process because when the value of minimum phase was used, the 

system was more unstable and uncontrollable, hence these matrices are modified. 

Constraints limit, set point level and number of sample remain same.  Refer figure 8-8, it is 

observed that tank 1 is closely following the reference, whereas Tank 2 is controllable to a 

slight extent, as the deviation observed is 0.15 cm of water level. In this case also LQ 

constrained and LQ unconstrained values are overlapped, hence in the plot only one curve is 

visible. The reason for deviation in level in tank 2 is due to the non minimum phase whose 

zero is in the right half of the plane and control engineers have been aware of non-minimum 

phase systems showing either undershoot or time delay characteristics for some 

considerable time (Urgen and Schoor, 2011).  

 

 

Figure 8-9 the change of control signal U values are plotted and it is observed that the 

values are also overlapped here for constrained and unconstrained LQ, similarly in figure 8-

10 where changes in control signal ∆푈 are also overlapped. Reason for overlapping of values 

is mainly due to constrained LQ where the values of 푈 푎푛푑 ∆푈 where within the constraint 

limits.  
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Figure 8-8: Level of Tank 1 and Tank 2 of non minimum phase quadruple tank system comparison 
based on constraints and unconstrained LQ optimal controller 

 

 

 

Figure 8-9: Control signal U of Tank 1 and Tank 2 of non minimum phase quadruple tank system 
comparison based on constraints and unconstrained LQ optimal controller. 
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Figure 8-10: Change in control signal ∆U  of Tank 1 and Tank 2 of non minimum phase quadruple 
tank system comparison based on constraints and unconstrained LQ optimal controller. 

 

Remark 2: Based on the above comparison for constrained and unconstrained LQ optimal 
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tank 1 and tank 2 observed for constrained and unconstrained LQ optimal controller. Tank 1 
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8.2 MPC (Constraints Handling Comparison) 

Theoretical description of MPC control with integral action is discussed in section 3.2 and 

constraint handling is discussed in section 4.3. Based on these theoretical description and 

equation MPC is implemented on the four tank process. The simulation of MPC with integral 

action can be divided into 6 types depending on constraints and minimum or non-minimum 

phase systems of four tank process refer figure 8-11. Use of Kalman filter is for state 

estimation and reduction of noise within the model.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-11: Different types of LQ optimal control simulation implemented on four tank process. 

Tuning of MPC control depends on selection of weighting matrices 푅, 푄 and prediction 

Horizon L.  Selections of matrices  푅 푎푛푑 푄  are based on trial and error methods. 

Constraints also play an important role in MPC, constraints are chosen based on the process 

requirements. Depending upon the programming type different MATLAB codes are 

generated. Refer appendix 7 for MATLAB code for MPC Constrained (Algorithm based) with 

integral action, appendix 8 for MATLAB code for MPC Constrained (if else loop) with integral 

action and appendix 9 for MATLAB code for MPC unconstrained with integral action.  

As discussed earlier, a comparison plot where tank 1 level of minimum phase system with 

constrained and unconstrained simulations are compared, similarly for tank 2 also. Control 

signal U and change in control signal ∆푈 are also compared. The flow chart of the MPC 

programming using constraint and unconstrained method is provided in figure 8-12 and 

figure 8-13. 
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                                                                    Physical Parameter 

                                                                    Of Tank common 

 

 

                                             1                       1.Minimum phase                2 

                                                                  2. Non-minimum Phase 

 

 

Tank, pump, y1                               Tank, pump,y1 

Y2 value chosen                  y2 value chosen 

                                                                    

                                                                    

     

                              Time constant for all 

     Four tanks calculated 

 

                  Linearized SSM 

                                                                   Calculated  

       C2dm 

                                                                   Discrete SSM then 

                                                                   Augmented SSM 

                                                                   calculated 

    

                  Prediction Horizon (L) 

                                                                   Weight matrices Q,R  

                                                                   Also extended via q2qt 

       Ss2h 

  

Figure 8-12: Flow chart of MPC with integral action programming part I. 
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퐻   , 푂 , 푂 , 퐹  

     calculated    

                          scmat 

 S,C  matrices 

  calculated 

      

                                                       Reference signal 

                                                                   Created for lower tank 

    Prbs1 

                                                                    Kalman gain and  

                                                                    Initial states defined 

 

 For loop 
                                                                         K=1 : N-L 

 

     Predict new state of x 

          

                                                                    
                                                                   Reference signal  
                                                                   Extended based on L    

  

                               

1.  Constrained 

2. Unconstrained 

 

Quadprog ∆푢 = 퐻 푓     ∆푢 = 퐻 푓 
(Alogrthim) 

 

Store and exchange         Constraint using            Store and exchange 
Variables                            if else loop                        Variables                                             

   

Model Update                  Store & exchange vari           Model Update 
                                             Model update  

                                  

Figure 8-13: Flow chart of MPC with integral action programming part II                
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Plot 
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As shown is flowchart, MPC provides a possibility to handle constraints in the algorithm 

itself and also through hard limit constraints (if else loop). The unconstrained MPC can be 

compared to LQ optimal control.  

 

8.2.1 Minimum Phase    

This section provides the comparison of various MPC techniques on minimum phase 

quadruple tank process. Three different MATLAB code was simulated namely Unconstrained 

MPC, constrained MPC (Algorithm based) and Constrained MPC (if else loop), these data’s 

were written to a excel file and plotted, coding provided on appendix 10.  

Table 8-3, provides the list of critical parameter which were used in simulation of MPC 

controller, these values were common to different types of simulation. The matrices R and 

Q were selected on trial and error method.  

 

Table 8-3: Critical parameter for MPC simulation on minimum phase quadruple tank process. 

N L R           Q  Constraints on Control signal U                             

(Pump voltage) [Volts] 

Tank 1 Set 

point 

Tank 2 Set point 

푼풎풂풙 푼풎풊풏 ∆푼풎풂풙 ∆푼풎풊풏 

250 8 0.09*eye(2) 

 

50*eye(2) 

 
5 0 0.4 -0.4 14.1 & 13.9 

cm 

12.1 and 11.9 

cm 

 

 

Figure 8-14 provides a comparison plot of difference type of MPC simulation, where Tank 1 

and tank 2 level are compared with reference level. Different colour coding clearly 

distinguishes the type of controllers. As all outputs change their state before the reference 

signal changes, hence all simulation follows MPC main behaviour. With reference to figure 

8-14, it is clearly visible that unconstrained MPC follows the reference much faster than 

other types of controller and also it has less overshoots compared to others.  

Hence from the figure 8-14, its understood that Unconstrained MPC settles/follows the 

reference much faster, then its constrained (Algorithm) based MPC which follows the 

reference and  with little delay and little overshoot compared to other controllers, finally 

constrained (if else loop) MPC follows the reference with big undershoot.  
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Figure 8-14: Level of Tank 1 and Tank 2 of minimum phase quadruple tank system comparison based 
on constraints and unconstrained MPC with integral action  

 

Referring to plot 8-15, which shows the plotting of input control signal U, which is the 

voltage to pump is compared with different type of MPC. The constrained applied on 

control signal U is 0 < U <5, this is due to physical/mechanical constraint on instruments. 

This constraint is valid for both tanks. But figure 8-15 shows that the unconstrained MPC 

which provides a control signal U maximum of nearly 8.1 volt and minimum of nearly -0.08 

V, which violates the required constraints limit on control signal. 
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Figure 8-15: Control signal U of Tank 1 and Tank 2 of minimum phase quadruple tank system 
comparison based on constraints and unconstrained MPC with integral action 

 

In the same figure 8-15, it clearly shows that constrained MPC (algorithm and if else loop) 

follows the applied constraints, whenever unconstrained violated the constrained limit and 

rise up to 8v, the control signal was 5v for constrained MPC. This clearly shows constrained 

MPC are following the constraints limit.  

 

 

Figure 8-16: Change in control signal U of Tank 1 and Tank 2 of minimum phase quadruple tank 
system comparison based on constraints and unconstrained MPC with integral action 
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Referring to figure 8-16, which shows the plotting of change in control signal ∆푢, which is 

the voltage to pump is compared with different type of MPC. The constrained applied on 

change in control signal U is -0.04 < ∆푢 <0.04, this value is chosen randomly. These 

constraints are valid for both tanks.  But figure 8-16 shows the unconstrained MPC, provides 

a change in control signal maximum of nearly 1.2 volt and minimum of nearly -4.5 V, which 

violates the required constraints limit. It clearly shows that constrained MPC (algorithm and 

if else loop) follows the applied constraints, whenever unconstrained violated the 

constrained limit rise up to 1.2v, the change in control signal was 0.04v for constrained MPC. 

This clearly shows constrained MPC are following the constraints limit.  

 

Remark 3: Based on the reference and output plot for tank level, unconstrained MPC was 

much better controller as it followed the reference much quicker with less overshoot or 

undershoots. But referring to control signal plot and change in control signal plot, it was 

observed that unconstrained MPC violated the physical constraints limit, hence 

unconstrained MPC is not preferred controller for minimum phase quadruple tank system.  

By comparing the constrained MPC on algorithm based and if else loop, it is observed from 

control and change in control signal plot that both follow the required constraint limit. Based 

on the observation of reference and output plot for tank 1 and tank 2, it clearly shows that 

MPC constraint algorithm based (red colour in the plot) has less overshoot and follows the 

reference much quicker as compared to MPC constrained if else loop.  

MPC constrains algorithm based follows the constraint limit and also follows the reference 

much quicker comparing with other MPC techniques.  
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8.2.2 Non-Minimum Phase   

This section provides the comparison of various MPC techniques on non minimum phase 

quadruple tank process. Three different MATLAB code was simulated namely Unconstrained 

MPC, constrained MPC (Algorithm based) and Constrained MPC (if else loop), these data’s 

were written to a excel file and plotted, coding provided on appendix 11.  

Table 8-4, provides the list of critical parameter which were used in simulation of MPC 

controller, these values were common to different types of simulation. The matrices R and 

Q were selected on trial and error method.  

 

Table 8-4: Critical parameter for MPC simulation on non minimum phase quadruple tank process. 

N L R           Q  Constraints on Control signal U                             

(Pump voltage) [Volts] 

Tank 1 Set 

point 

Tank 2 Set point 

푼풎풂풙 푼풎풊풏 ∆푼풎풂풙 ∆푼풎풊풏 

250 8 0.09*eye(2) 

 

50*eye(2) 

 
5 0 0.4 -0.4 14.1 & 13.9 

cm 

12.1 and 11.9 

cm 

 

 

Figure 8-17, provides a comparison plot of difference type of MPC simulation, where Tank 1 

and tank 2 levels are compared with reference level. Different colour coding clearly 

distinguishes the type of controller. As all output change their state before the reference 

signals changes, hence all simulation follows MPC main behaviour. With reference to figure 

8-17, it is clearly visible that unconstrained MPC follows the reference much faster than 

other types of controller and also it has less overshoots compared to others.  

 

Hence from the figure 8-17, it is understood that unconstrained MPC settles/follows the 

reference much faster, than its constrained based MPC which follows the reference with a 

little delay. For tank 2, constrained MPC (algorithm and if else based) follows the reference 

with much delay, overshoot observed in tank 2 is similar for different type of MPC. Based on 

this plot Unconstrained MPC is preferable.  

 

  

  

    



  

64 
 

  

                                                                    

 

Figure 8-17: Level of Tank 1 and Tank 2 of non minimum phase quadruple tank system comparison 
based on constraints and unconstrained MPC with integral action. 

 

Referring to plot 8-18, which shows the plotting of input control signal U, which is the 

voltage to pump is compared with different type of MPC. The constrained applied on 

control signal U is 0 < U <5, this is due to physical/mechanical constraint on instruments. 

This constraint is valid for both tanks. But the figure shows the unconstrained MPC, provides 

a control signal which higher than 5v and lower than 0v. For tank1, the higher value is nearly 

8.2v and lower value is nearly -3.2v whereas for tank2, the higher value is 10.2v and lower 

value is nearly -4.2v, which clearly violates the constraint limits on control signal.  
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Figure 8-18: Control signal U of Tank 1 and Tank 2 of non minimum phase quadruple tank system 
comparison based on constraints and unconstrained MPC with integral action 

 

In the same figure 8-18, it clearly shows that constrained MPC (algorithm and if else loop) 

follows the applied constraints, whenever unconstrained violated the constrained limit and 

rise up to 10.2v, the control signal was 5v for constrained MPC. This clearly shows 

constrained MPC are following the constraints limits.  

 

 

Figure 8-19: Change in Control signal U of Tank 1 and Tank 2 of non minimum phase quadruple tank 
system comparison based on constraints and unconstrained MPC with integral action 
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Referring to plot 8-19, which shows the plotting of change in control signal ∆푢, which is the 

voltage to pump is compared with different type of MPC. The constrained applied on 

change in control signal ∆푢  is -0.04 < ∆푢  <0.04, this value is chosen randomly. This 

constraint is valid for both tanks.  But this figure shows the unconstrained MPC, provides a 

change in control signal maximum value of nearly 1.2 volt and minimum value of nearly -5 V, 

which doesn’t follow the required constraints limit. It clearly shows that constrained MPC 

(algorithm and if else loop) follows the applied constraints, whenever unconstrained 

violated the constrained limit rise up to 1.2v, the change in control signal was 0.04v for 

constrained MPC. This clearly shows constrained MPC are following the constraints limits.  

 

Remark 4: Based on the reference and output plot for tank level, unconstrained MPC was 

much better controller as it followed the reference much quicker. But referring to control 

signal plot and change in control signal plot, it was observed that unconstrained MPC 

violated the physical constraints limit. Unconstrained MPC violated the control signal U and 

change in control signal ∆푢 constraint limit, hence unconstrained MPC is not preferred 

controller for non-minimum quadruple tank system.  

By comparing the constrained MPC on algorithm based and if else loop, it is observed from 

control signal plot and change in control signal plot that both follow the required constraint 

limit. Based on the observation of reference and output plot for tank 1 and tank 2, it’s 

observed for tank 1 that MPC constrained and MPC if else simulation nearly follows each 

other and settles at the set point at nearly same time. For tank 2, it’s clearly visible that both 

simulations overlap each other.  

MPC constrains algorithm and MPC if else loop both follows the constraint limit and also 

follows the reference much quicker comparing with other unconstrained MPC.  
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8.3 LQ, MPC and PI comparison  

One of important requirement of this master thesis is comparison of various controllers on 

the basis of constraints handling on quadruple tank process. The performance of these 

controllers mainly depends on their algorithm and how these controllers handle constraints.  

The comparisons of all the controllers are based on minimum phase of the quadruple tank 

system.  

Regarding LQ and MPC it’s already discussed on how constraints are been handle, PI 

controller handle constraint through hard limit (if else), as it can’t handle through algorithm. 

PI controller computes the input control signal 푈  directly, hence constraints can be 

implemented on 푈 only and for ∆푈 constraints can’t be imposed as PI controller doesn’t 

compute change in control signal.  A separate MATLAB coding was executed for PI controller 

for minimum and non-minimum phase of quadruple tank process refer appendix 12.  

In order to compare the LQ, MPC and PI controller, the simulation time ‘N’, should be same, 

hence N was chosen as 2500 and all programs were modified and simulated and results 

were transferred to a excel file and plotted. Refer table 8-5 which provides the constraint 

limits on  푈 푎푛푑 ∆푢. 

 

Table 8-5: Constraint limits on all Controller (for PI only U constraints used) 

푼풎풂풙 푼풎풊풏 ∆푼풎풂풙 ∆푼풎풊풏 

5 0 0.04 -0.04 

 

Figure 8-20 shows the plots of various controllers performance or tank 1 level outputs with 

respect to reference signal. The reference was changed between 12.5 cm and 12.3 cm. The 

following points are observed based on figure 8-20. 

 PI controller (pink colour in the plot) follows the reference signal at every change, 

but it takes long time to settle, whereas a LQ or MPC controller settles much quicker 

than PI controller. PI controller has big overshoot compared to others, reason for 

lager overshoot can be referred to figure 8-23 where the control signal U is larger 

compared to other controller for longer duration.   

 LQ controller (green colour in the plot) follows the reference signal with perfection 

and no overshoots or undershoots are observed when there is a change in reference 

signal, it takes less time than a PI controller to settle. But LQ controller takes more 

time to settle compared to MPC constrained controller.  

 MPC Algorithm based (red colour in plot) and MPC if else based (pale green colour) 

controller follows the reference at each instant of time. Both of these controllers 

follow the reference much quicker than any other controller. Even both these 



  

68 
 

controllers more or less have the same values or the same path they follow to the 

reference. But in order to find a difference between these two controllers, from 

figure 8-20, it’s observed that MPC if else based constraint controller has a larger 

undershoot compared to MPC algorithm based controller.  

 

Figure 8-20: Comparison of LQ, MPC and PI control with reference signal for Tank 1. Constrained 
implemented in all controller. It’s a minimum phase quadruple tank process. 

Figure 8-21 shows the plot of various controllers performances or tank 2 level output with 

respect to reference signal. The reference was changed between 12.8 cm and 12.6 cm. The 

following points are observed based on figure 8-21. 

 LQ controller (green colour in plot) follows the reference signal and attains the 

required setpoint. Comparing with others controller, it’s observed from figure 8-21 

that LQ controller takes more time to reach the setpoint/reference signal than other 

controllers.  A point to be noticed is LQ controller has no overshoot or undershoots. 

 PI controller (pink colour in the plot) follows the reference signal at every change, 

but it has a big undershoot and overshoots compared to other controllers. It takes 

less time than LQ controller but takes more time than MPC controller to reach the 

setpoint.  

 MPC Algorithm based (red colour in plot) and MPC if else based (pale green colour) 

controller follows the reference at each instant of time.  Both these controllers have 
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less overshoot compared to PI controller. Even both these controllers more or less 

have the same values or follow the same path to the reference. Even the overshoot 

values of both these controllers are more or less the same value. But if the picture is 

zoomed and observed, it clear that MPC if else based constraint has bigger 

undershoot compared to MPC algorithm based constraint.  

 

Figure 8-21: Comparison of LQ, MPC and PI control with reference signal for Tank 2. Constrained 
implemented in all controller. It’s a minimum phase quadruple tank process. 

To have a check on constraints whether all simulation were within the constrained limits, 

figure 8-22 and 8-23 shows the plotting of control signal U for every time stamp for various 

controller. Figure 8-22 shows tank 1 control signal and it’s observed that U has the 

maximum value of 5 and minimum value of 0, hence constraints limit has been followed by 

all controllers. Similarly figure 8-23 shows tank 2 control signals, which also clearly shows 

that all values of control signal U are within the limit.  

One interesting thing to be noted from figure 8-22 and 8-23 is that MPC algorithm based 

and MPC if else constraints often attain the peak value of 5v, when there is a change in 

setpoint in tank level.  PI controller doesn’t reach the peak value of 5v, but the voltage level 

reaches 4.5v when there is change in setpoint in tank level. PI controllers control signal 

varies rapidly, but these changes introduce overshoots in the plot and take a long time to 
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settle with the reference signal. On the other hand LQ controller, most of the times its 

nearby 3v and very little changes in the control signal U value. These can one of the reasons 

for long settling time for LQ controller.  

 

Figure 8-22: Comparison of LQ, MPC and PI control, based on constraint limit (0≤U≤5) on control 
signal U for Tank 1. It’s a minimum phase quadruple tank process. 

 

Figure 8-23: Comparison of LQ, MPC and PI control, based on constraint limit (0≤U≤5) on control 
signal U for Tank 2. It’s a minimum phase quadruple tank process 
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Figure 8-24, provides the plotting of change in control signal ∆푈 for tank 1 and tank 2 with 

respect to time. The constraints are −0.4 ≤ ∆푈 ≤ 0.4, from the figure its clear that all 

controller follows the constraints limit. As PI controller calculates only control signal U, 

hence change in control signal can’t be plotted for PI control. From the figure it is observed 

that LQ optimal controller change in control signal ∆푈 values changes very little whereas 

MPC algorithm based and MPC if else loop controller change in control signal ∆푈 vary to the 

maximum and minimum values.  

 

Table 8-6 provides a comparison of various controllers with constraints limitation on a 

minimum phase quadruple tank process. Based on these comparisons, it is apt to say that 

MPC algorithm based constraint controller is preferred for this process.   

 

 

 

 

Figure 8-24: Comparison of LQ, MPC and PI control, based on constraint limit (-0.4≤∆U≤0.4) on 
control signal ∆U for tank 1 and tank 2. It’s a minimum phase quadruple tank process. 
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Table 8-6: Comparison overview of various controllers based on constraint for minimum phase 
quadruple tank system. 

Controller (Constrained) Control Signal value 

observed (풖) 

(Tank1, Tank2) 

Change in Control 

Signal value observed  

( ∆풖 )                           

(Tank1, Tank2) 

Overshoot Remark 

풖풎풂풙 풖풎풊풏 ∆풖풎풂풙 ∆풖풎풊풏 

MPC Algorithm based 5,5 0,0 0.4,0.4 -0.4,-0.4 Very less Settles quicker than LQ and PI, 

but takes same time as MPC if 

else based. Less overshoot or 

undershoots than MPC if else 

loop. Preferred Controller. 

MPC if else loop 5,5 0,0 0.4,0.4 -0.4,-0.4 Very less Settles quicker than LQ and PI, 

but takes same time as MPC 

Algorithm based, but it has 

more overshoot and 

undershoots compared to MPC 

Algorithm.  

LQ Optimal controller 3.1,3.02 2.77,2.95 0.18,0.02 -0.18,-0.02 No Less time than PI but more time 

than MPC to settle. Very less 

change in control signal may be 

the reason for long time to 

settle. No overshoot or 

undershoot observed.  

PI controller 4.5, 5 1.4,0.52 NA NA High Takes very long time to settle 

and high control signal u for 

long duration (figure 8-22 and 

8-23) makes larger overshoot.  
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9 Future Developments 

This thesis provides the various results and simulation for the tasks mentioned in appendix 

1. Improvements are always a part of scientific study. This thesis can also be improved or 

future developments can be made as follows 

 

 MPC can handle constraints in its algorithm itself, similarly algorithm for PI and LQ 

shall be found where the constraints are handled in the algorithm itself.   

 

 This thesis discusses results mostly from input/control signal and change in control 

signal constraints. Output constraints implementation can be considered as a future 

development or any other type of constraints should be also be implemented in the 

algorithm for any type of controller.  

 

 Model of the tank was obtained from Johansson 2000. A new model of the four tank 

process can also be obtained using experiment analysis such as system identification. 

 

 The operating point of four tank was also obtained from Johansson 2000, new 

operating point or the steady state value for four tank can be found from simulating 

the non linear model.  

 

 Results are discussed based on simulation of the four tank process in MATLAB. The 

written program can be implemented in the real process and results can be 

compared. 

 

 Simulation of the four tank process can also be executed in LABVIEW and results of 

MATLAB and LABVIEW can be compared.  
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10 Conclusion 

Linear quadratic optimal control and Model predictive control with integral action was 

studied in detail in theory, equation and simulation. Multiple input multiple output, highly 

interactive system are hard to control, hence to compare these both controllers quadruple 

tank process was selected which is a non linear, MIMO , unknown slowly varying process, 

measurement disturbance and continuous process. Non linear model was converted to 

linear model.  

Constraints handling in LQ optimal control and MPC was studied and discussed in detail. 

Simulations were performed on quadruple tank process based on LQ, MPC and PI controller 

with the main focus on constraints handling.  

It is observed that LQ optimal control constrained (if else loop) and unconstrained take 

same time to reach the set point for minimum and non-minimum phase system the reason 

for this behaviour was mainly due to the very less change in control signal ∆푢.  As change in 

control signal was very less, even the constrained LQ was within the constraint limits, hence 

same behaviour was observed. Unconstrained MPC controller reached the set point much 

quicker than other MPC control, but it violated the constraints limits for minimum and non 

minimum phase system. For minimum phase system algorithm based MPC control reaches 

the set point much quicker and has less overshoot compared to MPC with if else loop. For 

non-minimum phase the performance of MPC algorithm based and MPC if else are similar.  

Various controllers comparison was performed based on constraints handling for minimum 

phase system and its concluded that MPC algorithm based constraints handling reaches the 

set point much quicker, MPC if else constraint handling reaches next but with little 

overshoot, LQ optimal control with if else constraints handling reaches later than MPC and 

finally PI controller with if else constraints takes long time to reach the set point.  

It is also observed that MPC algorithms in the unconstrained form are equivalent to Linear 

quadratic control the major change was the mathematical algorithm and equations.  

Based on the comparison it’s concluded that Model predictive control with algorithm based 

constraint handling reaches the set point quicker and satisfies the constraint limit for 

quadruple tank process.  

PI Controller and LQ optimal controller (state feedback controller) has exactly the same 

structure.  

Constraints handling are apt and more preferable if it is accommodated in the algorithm 

itself, may be this is the reason behind the better performance of MPC with algorithm based 

constraints.  
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Appendix 1: Master Thesis task description SIV-

53-13 
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Appendix 2: Properties of Linearized Model 

 MATLAB code for analysis the properties of the Linearized model of quadruple tank system 

for minimum and non-minimum phase.  

 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 10-Feb-2013 
%% MATLAB file to check the properties of the Linearized model 
% of quadruple tank process 

  
clear all; 
clc;close all; 

  

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quadruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28; 
A2=32; 
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in cm2 
a1=0.071; 
a2=0.057; 
a3=0.071; 
a4=0.057; 

  
kc=1; % volts/cm  
g=981;% cm/sec2 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nProperties check for Linearized SSM of Four Tank system') 
fprintf('\n1 : Minimum Phase System  \n2 : Non - Minimum Phase System '); 
Option=input('\nYour Choice:'); 

  

  
if Option==1 % minimum phase chosen 

     
%initial heights in cm for all four tank 
h1=12.4; 
h2=12.7; 
h3=1.8; 
h4=1.40; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 
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y1=0.70; 
y2=0.60; 

  

  
elseif Option==2 % Non-minimum phase 

     
% initial heights in cm for all four tank 
h1=12.6; 
h2=13; 
h3=4.8; 
h4=4.9; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, the parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 

  
end 

  
%Calculation of time constants 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 

  
% Model Development, This is the linear Model based on  
% xdot = Ax +Bu 
% y=Dx 
% the below model is Continues Time model 
A11=[-1/T1,0,A3/(A1*T3),0; 
    0,-1/T2,0,A4/(A2*T4); 
    0,0,-1/T3,0; 
    0,0,0,-1/T4]; 

  
B1=[y1*k1/A1,0; 
   0,y2*k2/A2; 
   0,(1-y2)*k2/A3; 
  (1-y1)*k1/A4,0]; 

  
D1=[kc,0,0,0; 
   0,kc,0,0]; 

  

  
% Properties of the Linearized model SSM of quadruple tank system 
Eigen_values_of_linearized_system=eig(A11) 
controllanility_linear=ctrb(A11,B1); 
obsvervability_linear=obsv(A11,D1); 

  
% showing the properties on screen 
Rank_of_Controllability_matrix=rank(controllanility_linear) 
Rank_of_observability_matrix=rank(obsvervability_linear) 
Transmission_zeroes_of_system_is_given_by=tzero(A11,B1,D1,zeros(2,2)) 
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Appendix 3: LQ with Unconstrained  

MATLAB coding for LQ Optimal control with unconstrained for Quadruple tank system 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs    

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 15-March-2013 
%% MATLAB file to simulate quadruple tank system for minimum and Non-

minimum 
% phase with LQ Control with Integral action  

  
clc 
clear all; close all 

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quadruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28;  
A2=32;  
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in cm 
a1=0.071;  
a2=0.057;  
a3=0.071; 
a4=0.057; 

  
kc=1; % Pump gain [V/cm] 
g=981; % Gravity [cm/s^2] 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nLQ Control of 4 tank system \n1 : Minimum Phase System ') 
fprintf('\n2 : Non - Minimum Phase System ') 
Option=input('\nYour Choice:'); 

  

  
if Option==1 % Minimum phase case  

     
%initial heights in cm for all four tank 
h1=12.4;  
h2=12.7;  
h3=1.80; 
h4=1.40; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 
y1=0.7; 
y2=0.6; 

  
% Initial pump voltages in Volts 
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u=[3;3]; 
Rw=10*[1,0;0,1]; 
Q=0.1*[100,0;0,1]; 

  

  
elseif Option==2 % Non-minimum phase case 

  
%initial heights in cm for all four tank 
h1=12.6;  
h2=13;  
h3=4.8; 
h4=4.9; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 

  
% Initial pump voltages in Volts 
u=[3.15;3.15]; 

  
% LQ setting depending upon Min and NM phase 
Rw=[.1,0;0,.1]; 
Q=[.01,0;0,.001]; 
end 

  
% Calculating Time constants using T=A(sqrt(2h/g))/a, this formula obtained 
% from paper of (K.H.Johansson May 2000) 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 

  
% Model Development, This is the linear Model based on  
% xdot = Ax +Bu 
% y=Dx 
% the below model is Continues Time model 
A=[-1/T1, 0 , A3/(A1*T3), 0 
0 , -1/T2, 0 , A4/(A2*T4) 
0 , 0 , -1/T3 , 0 
0 , 0 , 0 , -1/T4]; 
B=[y1*k1/A1 ,0 
0 ,y2*k2/A2 
0 ,(1-y2)*k2/A3 
(1-y1)*k1/A4,0]; 
D=[kc, 0, 0, 0 
0, kc, 0, 0]; 

  
 %Discretzing the model (sampling time in sec.) 
ts=0.1; 
[Ac,Bc,Dc]=c2dm(A,B,D,zeros(2),ts,'zoh'); 

  
% Step length and time interval parameters 
h=1; t0=0; t1=1500; N=(t1-t0)/h; 
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[G1,G2]=dlqdu_pi(Ac,Bc,Dc,Q,Rw); % LQ-controller 
r_init=[h1,h2]; % Nominal reference for output y=kc*[h10;h20] 

  
% Initial States 
x=[h1;h2;h3;h4]; 
x_est=x;x_old=x;xx_old=x_old; 
y_old=D*x_old; yy=y_old; yy_old=yy; 
u_old=u;uu_old=u_old; 
r=r_init; 

  
% Calculation of Kalman Gain 
G=eye(4); 
Q1=10*eye(4); 
R1=0.01*eye(2); 
[Ke,Pp,Pe,E]=dlqe(A,G,D,Q1,R1);% given the covariance of the noise,  
                               % kalman gain Ke can found 

  

  
% Generating a random set point (Reference Signal rk) 
% from a predefined m file made by David Di Ruscio 
rand('seed',0), randn('seed',0) 
ref=[h1*ones(N,1)+0.1*prbs1(N,400,400) ... 
h2*ones(N,1)+0.1*prbs1(N,400,400)];  

  
%Control Loop 
for i=1:N 
    y=D*x_est; 
    ychec=D*x; 
    r=ref; 

  
    %Kalman filter Algorithm 
    xp=x_old; % set initial (apiroi) predicted state estimate 
    yp=D*xp;  % measurement update model 
    ep=y-yp;  % estimator error 
    xp=x_old+Ke*ep; % Corrected state estimate 
    x_est=[xp(1);xp(2);xp(3);xp(4)]; 

  
if Option==1 
du=G1*(x_est-x_old)+G2*(y_old-r(i,:)'); % finding delta U control signal 
u=u_old+du; % u signal from kalman estimator 

  
% Storing variables for next loop usage 
x_old=x_est;  
y_old=y;  
u_old=u;  

  
U(i,:)=u'; Y(i,:)=y'; R(i,:)=r(i,:); Y1(i,:)=ychec'; 
X_est(:,i)=x_est; XX(:,i)=x;DeltaU_x(i,:)=du'; 

  
%Non linear model simulation with estimated states 
f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x_est=x_est+h*f; 
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%Non linear model simulation with measured states 
f(1)=(-a1*sqrt(2*g*x(1)) +a3*sqrt(2*g*x(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x(2)) +a4*sqrt(2*g*x(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x=x+h*f; 
end 

  

  
if Option==2 %Non-Minimal Phase 
du=G1*(x-x_old)+G2*(y_old-r(i,:)'); 
u=u_old+du; 

  
x_old=x; 
y_old=y; 
u_old=u; 

  
U(i,:)=u'; Y(i,:)=y'; R(i,:)=r(i,:); 
X_est(:,i)=x_est; XX(:,i)=x;DeltaU_x(i,:)=du'; 

  
%Non linear model simulation with estimated states 
f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x_est=x_est+h*f; 

  
%Non linear model simulation with measured states 
f(1)=(-a1*sqrt(2*g*x(1)) +a3*sqrt(2*g*x(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x(2)) +a4*sqrt(2*g*x(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x=x+h*f; 
end 
t0=t0+h; 
end 

  

  
T=1:t1; % Time stamp for plotting 

  
% Plotting all details of Tank 1 
figure(1) 
subplot(222), plot(T,U(:,1)), grid on 
title('Tank 1: Input Control signal to Pump') 
ylabel('Input [V]'),xlabel('Time [s]') 

  
subplot(221), plot(T,R(:,1),'r--',T,Y(:,1),'b-')  
grid on 
title('Tank 1: Output Level Vs Reference Plot'), ylabel('level [cm]') 
legend('Reference','Output Level'), xlabel('Time [s]') 
if Option==1 
axis([0 1500 12.1 12.6]) 
else  
axis([0 1500 12.2 12.8])   
end 
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subplot(223),plot(T,X_est(1,:),'b') 
hold on  
grid on 
plot(T,XX(1,:),'r'),title('Tank 1: Measured Level Vs Estimated Level Plot') 
legend('Level Est.','Level Meas.'),xlabel('Time [s]') 
if Option==1 
axis([0 1500 11.5 13]) 
else  
axis([0 1500 12.2 12.8])   
end 

  
subplot(224) 
plot(DeltaU_x(:,1)), grid on 
title('Tank 1: \DeltaU' ) 
xlabel('Time [s]'), ylabel('\DeltaU [V]') 

  
% Plotting all details of Tank 2 
figure(2)  

  
subplot(222), plot(T,U(:,2)), grid on  
title('Tank 2: Input Control signal to Pump') 
ylabel('Input [V]'),xlabel('Time [s]') 

  
subplot(221), plot(T,R(:,2),'r--',T,Y(:,2),'b-') 
grid on 
title('Tank 2: Output Level Vs Reference Plot'), ylabel('level [cm]') 
legend('Reference','Output Level'), xlabel('Time [s]') 
if Option==1 
    axis([0 1500 12.4 13]) 
else 
    axis([0 1500 12.7 13.5]) 
end 

  
subplot(223),plot(T,X_est(2,:),'b',T,XX(2,:),'r'), grid on 
title('Tank 2: Measured Level Vs Estimated Level Plot') 
legend('Level Est.','Level Meas.'),xlabel('Time [s]'),ylabel('level [cm]') 

  
subplot(224) 
plot(DeltaU_x(:,2)),grid on 
title('Tank 2: \DeltaU ') 
xlabel('Time [s]'), ylabel('\DeltaU [V]') 

  
figure (3) % tank 3 and 4 estimated level 
subplot(211),plot(T,X_est(3,:)),title('Tank 3: Estimated Level') 
grid on 
xlabel('Time [s]') 

  
subplot(212),plot(T,X_est(4,:)),title('Tank 4: Estimated Level') 
grid on 
xlabel('Time [s]') 
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Appendix 4: LQ Constrained (if else loop) 

MATLAB coding for LQ Optimal control with constrained (if else) for Quadruple tank system 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 10-March-2013 
%% MATLAB file to simulate quadruple tank system for minimum and Non-

minimum 
% phase with LQ Control with Integral action (Using Constrained Algorithm) 
% if else constraints 

  
clc 
clear all;close all 

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quadruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28;  
A2=32;  
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in cm 
a1=0.071;  
a2=0.057;  
a3=0.071; 
a4=0.057; 

  
kc=1; % Pump gain [V/cm] 
g=981; % Gravity [cm/s^2] 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nLQ Control (Constrained) of 4 tank system \n1 : Minimum Phase 

System ') 
fprintf('\n2 : Non - Minimum Phase System ') 
Option=input('\nYour Choice:'); 

  

  
if Option==1 % Minimum phase case  

     
%initial heights in cm for all four tank 
h1=12.4;  
h2=12.7;  
h3=1.80; 
h4=1.40; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 
y1=0.7; 
y2=0.6; 
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% Initial pump voltages in Volts 
u=[3;3]; 
Rw=10*[1,0;0,1]; 
Q=0.1*[100,0;0,1]; 

  
elseif Option==2% Non-minimum phase case  

     
%initial heights in cm for all four tank 
h1=12.6;  
h2=13;  
h3=4.8; 
h4=4.9; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 

  
% Initial pump voltages in Volts 
u=[3.15;3.15]; 

  
% LQ setting depending upon Min and NM phase 
Rw=[.1,0;0,.1]; 
Q=[.01,0;0,.001]; 
end 

  
% Calculating Time constants using T=A(sqrt(2h/g))/a, this formula obtained 
% from paper of (K.H.Johansson May 2000) 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 

  
% Model Development, This is the linear Model based on  
% xdot = Ax +Bu 
% y=Dx 
% the below model is Continues Time model 
A=[-1/T1, 0 , A3/(A1*T3), 0 
0 , -1/T2, 0 , A4/(A2*T4) 
0 , 0 , -1/T3 , 0 
0 , 0 , 0 , -1/T4]; 

  
B=[y1*k1/A1 ,0 
0 ,y2*k2/A2 
0 ,(1-y2)*k2/A3 
(1-y1)*k1/A4,0]; 

  
D=[kc, 0, 0, 0 
0, kc, 0, 0]; 

  
% Discretizing the model, Convert from continuous- to discrete-time model 
ts=0.1; 
[Ac,Bc,Dc]=c2dm(A,B,D,zeros(2),ts,'zoh'); 
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% Step length and time interval parameters 
h=1; t0=0; t1=1500; N=(t1-t0)/h; 

  
% Constraints limit for control signal U 
umax=5;umin=0; 
delumax=0.4;delumin=-0.4; 

  

  
[G1,G2]=dlqdu_pi(Ac,Bc,Dc,Q,Rw); % LQ-controller matrix 
r_init=[h1,h2]; % Nominal reference for output y=kc*[h10;h20] 

  
% Initial States 
x=[h1;h2;h3;h4]; 
x_est=x;x_old=x;xx_old=x_old; 
y_old=D*x_old; yy=y_old; yy_old=yy; 
u_old=u;uu_old=u_old; 
r=r_init; 

  
% Calculation of Kalman Gain 
G=eye(4); 
Q1=10*eye(4); 
R1=0.01*eye(2); 
[Ke,Pp,Pe,E]=dlqe(A,G,D,Q1,R1); % given the covariance of the noise,  
                                % kalman gain Ke can found 

  
% Generating a random set point (Reference Signal rk) 
% from a predefined m file made by David Di Ruscio 
rand('seed',0), randn('seed',0) 
ref=[h1*ones(N,1)+0.1*prbs1(N,400,400) ... 
h2*ones(N,1)+0.1*prbs1(N,400,400)];  

  
%Control Loop 
for i=1:N 
    y=D*x_est; 
    r=ref; 

  
    %Kalman filter Algorithm 
    xp=x_old; % set initial (apiroi) predicted state estimate 
    yp=D*xp;  % measurement update model 
    ep=y-yp;  % estimator error 
    xp=x_old+Ke*ep; % Corrected state estimate 
    x_est=[xp(1);xp(2);xp(3);xp(4)]; 

  
    if Option==1  
      du=G1*(x_est-x_old)+G2*(y_old-r(i,:)'); % finding delta U control 

signal 

  
      % Implementing constraints for delta U for first Input to Tank 1 
      if du(1,1)>delumax 
         du(1,1)=delumax; 
      elseif du(1,1)<delumin 
         du(1,1)=delumin; 
      end 

      
      %Implementing constraints for delta U for first Input to Tank 2 
      if du(2,1)>delumax 
         du(2,1)=delumax; 
      elseif du(2,1)<delumin 
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         du(2,1)=delumin; 
      end 

       
    u=u_old+du; % New Control signal 

  
    if u(1,1)>umax % implementing constraints for first Input signal U for 

tank1 
       u(1,1)=umax; 
    elseif u(1,1)<umin 
       u(1,1)=umin; 
    end 

     
    if u(2,1)>umax  % implementing constraints for first Input signal U for 

tank2 
       u(2,1)=umax; 
    elseif u(2,1)<umin 
       u(2,1)=umin; 
    end 

     
% Storing variables for next loop usage 
x_old=x_est;  
y_old=y;  
u_old=u;  

  
U(i,:)=u'; Y(i,:)=y'; R(i,:)=r(i,:);  
X_est(:,i)=x_est; XX(:,i)=x;DeltaU_x(i,:)=du'; 

  
% Non linear model simulation with estimated states or predicted state 
% estimate update, last step of kalman filter (step 4) 
f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x_est=x_est+h*f; 

  
% updation based on x measure value  
f(1)=(-a1*sqrt(2*g*x(1)) +a3*sqrt(2*g*x(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x(2)) +a4*sqrt(2*g*x(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x=x+h*f; 
end 

  

  

  
if Option==2 %Non-Minimal Phase 
du=G1*(x-x_old)+G2*(y_old-r(i,:)'); % finding delta U control signal 

  
     %Implementing constraints for delta U for first Input to Tank 1 
     if du(1,1)>delumax 
        du(1,1)=delumax; 
     elseif du(1,1)<delumin 
        du(1,1)=delumin; 
     end 

      
     %Implementing constraints for delta U for first Input to Tank 2 
     if du(2,1)>delumax 
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        du(2,1)=delumax; 
     elseif du(2,1)<delumin 
        du(2,1)=delumin; 
     end 

  
u=u_old+du; % New Control signal 

  
% implementing constraints for first Input signal U for tank  
    if u(1,1)>umax  
       u(1,1)=umax; 
    elseif u(1,1)<umin 
       u(1,1)=umin; 
    end 

     
% implementing constraints for first Input signal U for tank2     
    if u(2,1)>umax   
       u(2,1)=umax; 
    elseif u(2,1)<umin 
       u(2,1)=umin; 
    end 
% Storing variables for next loop usage 
x_old=x;y_old=y;u_old=u;uu_old=u; 

  
U(i,:)=u'; Y(i,:)=y'; R(i,:)=r(i,:);  
X_est(:,i)=x_est; XX(:,i)=x;DeltaU_x(i,:)=du'; 

  
%Non linear model simulation with estimated states 
f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x_est=x_est+h*f; 

  
%Non linear model simulation with measured states 
f(1)=(-a1*sqrt(2*g*x(1)) +a3*sqrt(2*g*x(3)) +y1*k1*u(1))/A1; 
f(2)=(-a2*sqrt(2*g*x(2)) +a4*sqrt(2*g*x(4)) +y2*k2*u(2))/A2; 
f(3)=(-a3*sqrt(2*g*x(3)) + (1-y2)*k2*u(2))/A3; 
f(4)=(-a4*sqrt(2*g*x(4)) + (1-y1)*k1*u(1))/A4; 
f=[f(1);f(2);f(3);f(4)]; 
x=x+h*f; 
end 
end 

  
T=1:t1; % Time stamp for plotting 

  
% Plotting the simulation results 

  
% Plotting all details of Tank 1 
figure(1)  
subplot(221), plot(T,R(:,1),'r--',T,Y(:,1),'b-')  
grid on 
title('Tank 1: Output Level Vs Reference Plot') 
if Option==1 
    axis([0 1500 12.2 12.6]) 
end  
ylabel('level [cm]'),legend('Reference','Output Level'), xlabel('Time [s]') 

  
subplot(222), plot(T,U(:,1)), grid on 
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title('Tank 1: Input Control signal with Constraints') 
ylabel('U [V]'),xlabel('Time [s]') 
legend('Umax:5 Umin:0') 

  
subplot(223),plot(T,X_est(1,:),'b') 
hold on ,grid on 
plot(T,XX(1,:),'r') 
title('Tank 1: Measured Level Vs Estimated Level Plot') 
if Option==1 
    axis([0 1500 11.2 13]) 
end  
ylabel('level [cm]') 
legend('Level Est.','Level Meas.'),xlabel('Time [s]') 

  
subplot(224) 
plot(DeltaU_x(:,1)), grid on 
title('Tank 1: \DeltaU with Constraints') 
xlabel('Time [s]'), ylabel('\DeltaU [V]') 
legend('\DeltaUmax:0.4 \DeltaUmin:-0.4') 

  
% Plotting all details of Tank 2 
figure(2) 
subplot(221), plot(T,R(:,2),'r--',T,Y(:,2),'b-') 
grid on 
title('Tank 2: Output Level Vs Reference Plot') 
ylabel('level [cm]'),legend('Reference','Output Level'), xlabel('Time [s]') 
if Option==1 
    axis([0 1000 12.4 13]) 
else 
    axis([0 1000 12.7 13.5]) 
end 

  
subplot(222), plot(T,U(:,2)), grid on 
title('Tank 2: Input Control signal with Constraints') 
ylabel('U [V]'),xlabel('Time [s]') 
legend('Umax:5 Umin:0') 

  
subplot(223),plot(T,X_est(2,:),'b',T,XX(2,:),'r') 
title('Tank 2: Measured Level Vs Estimated Level Plot') 
ylabel('level [cm]'), grid on 
legend('Level Est.','Level Meas.'),xlabel('Time [s]') 

  
subplot(224) 
plot(DeltaU_x(:,2)),grid on 
title('Tank 2: \DeltaU with Constraints') 
xlabel('Time [s]'), ylabel('\DeltaU [V]') 
legend('\DeltaUmax:0.4 \DeltaUmin:-0.4') 

  
% Plotting Tank 3 and Tank 4 Estimated level 
figure (3) 
subplot(211),plot(T,X_est(3,:)), legend('Level Est.') 
title('Tank 3: Estimated Level'), ylabel('Level [cm]') 
grid on 
xlabel('Time [s]') 
subplot(212),plot(T,X_est(4,:)), legend('Level Est.') 
title('Tank 4: Estimated Level'), ylabel('Level [cm]') 
grid on 
xlabel('Time [s]') 
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Appendix 5: Writing & Reading data from Excel 

File (Minimum Phase) 

MATLAB coding for LQ Optimal minimum phase system, writing and reading from excel file 

 

Writing to excel file:  

% for first program for LQ minimum phase 
xlswrite('C:\Users\Annamalai\Google Drive\Thesis\code\final\LQmin.xlsx',ref) 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',Y(:,1),'c1:c1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',Y(:,2),'d1:d1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',U(:,1),'e1:e1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',U(:,2),'f1:f1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',DeltaU(:,1),'g1:g1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',DeltaU(:,2),'h1:h1500') 

  
% for second program for constrained LQ using if else minimum phase 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',Y(:,1),'i1:i1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',Y(:,2),'j1:j1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',U(:,1),'k1:k1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',U(:,2),'l1:l1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',DeltaU(:,1),'m1:m1500') 
xlswrite('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx',DeltaU(:,2),'n1:n1500') 

 

Reading from excel file and plotting 

%% MATLAB file to plot and compare the various parameter for Consrained 
% and unconstrained LQ with minimum phase system 
 

clc 
close all 
t=1:1500; 

  
% Tank 1 , Output Level comparision 
ref_tank1=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','a1:a1500'); 
Y_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','c1:c1500'); 
Y_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','i1:i1500'); 

  
figure(1) 
plot(t,[ref_tank1,Y_tank1_Uncon,Y_tank1_conalgo]); 
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legend('Reference','Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 1 Comparision of Level for LQ with minimum Phase') 
grid on 

  
% Tank 2  , Output Level comparision 
ref_tank2=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','b1:b1500'); 
Y_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','d1:d1500'); 
Y_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','j1:j1500'); 

  
figure(2) 
plot(t,[ref_tank2,Y_tank2_Uncon,Y_tank2_conalgo]); 
legend('Reference','Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 2 Comparison of Level for LQ with minimum Phase') 
grid on 

  
% Tank 1 , Control signal comparison 
U_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','e1:e1500'); 
U_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','k1:k1500'); 
figure(3) 
plot(t,[U_tank1_Uncon,U_tank1_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 1 Comparision control signal U,  LQ with minimum Phase') 
grid on 

  
% Tank 2 , Control signal comparison 
U_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','f1:f1500'); 
U_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','l1:l1500'); 
figure(4) 
plot(t,[U_tank2_Uncon,U_tank2_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 2 Comparision control signal U,  LQ with minimum Phase') 
grid on 

  
% Tank 1 , change in Control (delta U)signal comparison 
delU_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','g1:g1500'); 
delU_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','m1:m1500'); 
figure(5) 
plot(t,[delU_tank1_Uncon,delU_tank1_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 1 Comparison of change in control signal (\Delta U),  LQ with 

minimum Phase') 
grid on 

  
% Tank 2 , change in Control (delta U)signal comparison 
delU_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','h1:h1500'); 
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delU_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQmin.xlsx','n1:n1500'); 
figure(6) 
plot(t,[delU_tank2_Uncon,delU_tank2_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 2 Comparison of change in control signal (\Delta U),  LQ with 

minimum Phase') 
grid on 

 

Appendix 6: Writing & Reading data from Excel 

File (Non-Minimum Phase) 

MATLAB coding for LQ Optimal non minimum phase system, reading from excel file and 

plotting.  

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

LQ  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 04-March-2013 
%% MATLAB file to plot and compare the various parameter for LQ with 
% non-minimum phase system 

  
clc 
close all 
t=1:1500; 

  
% Tank 1 , Output Level comparison 
ref_tank1=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','a1:a1500'); 
Y_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','c1:c1500'); 
Y_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','i1:i1500'); 

  
figure(1) 
plot(t,[ref_tank1,Y_tank1_Uncon,Y_tank1_conalgo]); 
legend('Reference','Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 1 Comparision of Level for LQ with non-minimum Phase') 
grid on 

  
% Tank 2  , Output Level comparison 
ref_tank2=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','b1:b1500'); 
Y_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','d1:d1500'); 
Y_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','j1:j1500'); 
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figure(2) 
plot(t,[ref_tank2,Y_tank2_Uncon,Y_tank2_conalgo]); 
legend('Reference','Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 2 Comparison of Level for LQ with non-minimum Phase') 
grid on 

  
% Tank 1 , Control signal comparison 
U_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','e1:e1500'); 
U_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','k1:k1500'); 
figure(3) 
plot(t,[U_tank1_Uncon,U_tank1_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 1 Comparision control signal U,  LQ with non-minimum Phase') 
grid on 

  
% Tank 2 , Control signal comparison 
U_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','f1:f1500'); 
U_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','l1:l1500'); 
figure(4) 
plot(t,[U_tank2_Uncon,U_tank2_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 2 Comparision control signal U,  LQ with non-minimum Phase') 
grid on 

  
% Tank 1 , change in Control (delta U)signal comparison 
delU_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','g1:g1500'); 
delU_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','m1:m1500'); 
figure(5) 
plot(t,[delU_tank1_Uncon,delU_tank1_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 1 Comparison of change in control signal (\Delta U),  LQ with 

non-minimum Phase') 
grid on 

  
% Tank 2 , change in Control (delta U)signal comparison 
delU_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','h1:h1500'); 
delU_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\LQnonmin.xlsx','n1:n1500'); 
figure(6) 
plot(t,[delU_tank2_Uncon,delU_tank2_conalgo]); 
legend('Unconstrained','Constrained (ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 2 Comparison of change in control signal (\Delta U),  LQ with 

non-minimum Phase') 
grid on 
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Appendix 7:  MPC constrained (Algorithm based) 

MATLAB code for MPC constrained (Algorithm based) with integral action 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 04-March-2013 
%% MATLAB file to simulate quadruple tank system for minimum and Non-

minimum 
% phase with MPC Control with Integral action (Using Constrained Algorithm) 
% quadprog constraints 

  
clear all; 
clc;close all; 

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quadruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28; 
A2=32; 
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in cm2 
a1=0.071; 
a2=0.057; 
a3=0.071; 
a4=0.057; 

  
kc=1; % volts/cm  
g=981;% cm/sec2 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nMPC (Constraints) Control of Four Tank system') 
fprintf('\n1 : Minimum Phase System  \n2 : Non - Minimum Phase System '); 
Option=input('\nYour Choice:'); 

  
if Option==1 % minimum phase chosen 

     
% initial heights in cm for all four tank 
h1=12.4; 
h2=12.7; 
h3=1.8; 
h4=1.40; 
x0=[h1;h2;h3;h4]; 

  
% Initial pump voltages in Volts 
u10=3; 
u20=3; 
u0=[u10;u20]; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
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% from how the valves are set prior to an experiment. Condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 
y1=0.70; 
y2=0.60; 

  
elseif Option==2 % Non-minimum phase 

  
% initial heights in cm for all four tank 
h1=12.6; 
h2=13; 
h3=4.8; 
h4=4.9; 
x0=[h1;h2;h3;h4]; 

  
% Initial pump voltages in Volts 
u10=3.15; 
u20=3.15; 
u0=[u10;u20]; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 
end  

  
% Calculating Time constants using T=A(sqrt(2h/g))/a, this formula obtained 
% from paper of (K.H.Johansson May 2000) 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 
TimeConstantOfFourTank=[T1 T2 T3 T4]; 

  
% Model Development, This is the linear Model based on  
% xdot = Ax +Bu 
% y=Dx 
% the below model is Continues Time model 
A=[-1/T1,0,A3/(A1*T3),0; 
    0,-1/T2,0,A4/(A2*T4); 
    0,0,-1/T3,0; 
    0,0,0,-1/T4]; 

  
B=[y1*k1/A1,0; 
   0,y2*k2/A2; 
   0,(1-y2)*k2/A3; 
   (1-y1)*k1/A4,0]; 

  
D=[kc,0,0,0; 
   0,kc,0,0]; 

  
% Discretizing the model, Convert from continuous- to discrete-time model 
ts=0.1;%sampling time in sec, either 0.1 or 1 used 
[A,B,D]=c2dm(A,B,D,zeros(2),ts,'zoh'); %  discretization 
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% Reading the size of the Discrete model, these size are used to create 
% augmented model 
n=size(A,1); % Reading the number of Rows, State variable 
r=size(B,2); % Reading the number of Columns, Inputs 
m=size(D,1); %Reading the number of Rows, Outputs 

  

  
%Augmented Model Development or Extended state space model in terms of 
%deviation variable 
At=[A zeros(n,m); D eye(m,m)]; 
Bt=[B;zeros(m,r)]; 
Dt=[D eye(m,m)]; 

  
L=8; %Prediction horizon 

  
%Weighting matrices 
Q=50*eye(m);   % Output Error weight matrix 
               % As per the size of output, 'm' is the size or number of  
               % inputs 

              
R=0.09*eye(r); % rate of change in control action weight matrix 
               % As per the size of input, 'r' is the size or the number of 
               % inputs 

               

  
% Calculating parameters need for MPC like HdL, OL and OLB (Toeplitz matrix  
% and Observability matrix) from a  predefined m file called ss2h  
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(m,r),L,0); % Note sending the extended 
                                            % state space model 
FL=[OLB HdL]; 

  
% Make extended weight matrix based on length of Prediction Horizon 
% This m file is made by David Di Ruscio 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 

  
% Variables need for Constrained MPC u(k,L) = S du(k,L) + c u(k-1) 
[S,c] = scmat(r,L);  
umax=5; 
umin=0; 
delumax=0.4; 
delumin=-0.4; 

  
% Varaibles need for Constrained MPC 
H=FL'*Qt*FL+Rt; 

  
% Simulation Horizon 
N=250; 

  
% Generating a random set point (Reference Signal rk) 
% from a predefined m file made by David Di Ruscio 
rand('seed',0); 
ref=[14*ones(N,1)+0.1*prbs1(N,70,70) 12*ones(N,1)+0.1*prbs1(N,70,70)]; 
% based on this reference signal, the initial height is also taken near to 
% it.  

  
% Calculation of Kalman Gain 
G=eye(4); 
Q1=10*eye(4); 



  

99 
 

R1=0.01*eye(2); 
[Ke, Pp,Pe,E]=dlqe(A,G,D,Q1,R1); % given the covariance of the noise,  
                                 % kalman gain Ke can found 

  

  
% Initial States 
r1=[14.2;12.3]; % initial height of tank 1 and tank 2 in cm 
Hd=D*inv(eye(4)-A)*B; 
us=inv(Hd)*r1; 
xs=inv(eye(4)-A)*B*us; % Initial height of all four tank 
x=xs;xold=x; 
x_est=xold; %For kalman filter initial estimated value to be old value 
u=us;uold=u; 
yold=D*x; 

  
%Control Loop 
for k=1:N-L 
    y=D*x_est; % Height of Tank 1 and tank 2 based on measured value of x               
               % this value is obtained to use in kalman filter estimation 
               % error and out value of height in tank 1 and tank 2. 

                
    % Kalman filter Algorithm 
    xp=xold; % set initial (apiroi) predicted state estimate 
    yp=D*xp; % measurement update model 
    ep=y-yp; % estimator error 
    xp=xold+Ke*ep; % Corrected state estimate 
    x_est=[xp(1);xp(2);xp(3);xp(4)]; 

  
    % Make the extended reference vector based on the number of prediction 
    % horizion 
    rf =ref(k+1:k+L,:); 
    ref_predhori=rf(1,:)'; 
    for i=2:L 
        ref_predhori=[ref_predhori;rf(i,:)']; 
    end 

        
    % Compute MPC control 
    xt=[x_est-xold;yold]; 
    pl=OL*At*xt; 
    f=FL'*Qt*(pl-ref_predhori); 

     
    % Constrained MPC Control Using quadprog along with input constraints 
    b=[umax*ones(L*r,1)-c*uold;-umin*ones(L*r,1)+c*uold];   
    a=[S;-S]; 
    %b=[delumax*ones(L*r,1);delumin*ones(L*r,1);umax*ones(L*r,1)-c*uold;-  

umin*ones(L*r,1)+c*uold];   
    %a=[eye(16);-eye(16);S;-S]; 
    duf=quadprog(H,f,a,b); 

          
    % Implementing constraints for delta U for first Input to Tank 1 
    if duf(1,1)>delumax 
    duf(1,1)=delumax; 
    elseif duf(1,1)<delumin 
    duf(1,1)=delumin; 
    end 

      
    % Implementing constraints for delta U for first Input to Tank 2 
    if duf(2,1)>delumax 
    duf(2,1)=delumax; 
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    elseif duf(2,1)<delumin 
    duf(2,1)=delumin; 
    end 

     

     
    u=u+duf(1:r);% Computing the new control signal for 2 tanks 
    uold=u; % transferring the current ctrl to old ctrl signal for next 

loop 

     
    % Storing variables for plotting 
    Y(k,:)=y'; U(k,:)=u';DeltaU(k,:)=duf(1:r)';X_est(:,k)=x_est;XX(:,k)=x; 

        
    % Storing the current values as old values for next loop 
    xold=x_est; 
    yold=y; 

     
    % Non linear model simulation with estimated states or predicited state 
    % estimate update , last step of kalman filter (step 4) 
    f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
    f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
    f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
    f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
    f=[f(1);f(2);f(3);f(4)]; 
    x_est=x_est+ts*f; 

  
    % updation based on x measure value  
    f1=((-a1*sqrt(2*g*x(1)))/A1)+(a3*(sqrt(2*g*x(3)))/A1)+((y1*k1*u(1))/A1); 
    f2=((-a2*sqrt(2*g*x(2)))/A2)+(a4*(sqrt(2*g*x(4)))/A2)+((y2*k2*u(2))/A2); 
    f3=((-a3*sqrt(2*g*x(3)))/A3)+(((1-y2)*k2*u(2))/A3); 
    f4=((-a4*sqrt(2*g*x(4)))/A4)+(((1-y1)*k1*u(1))/A4); 
    f=[f1;f2;f3;f4]; 
    x=x+ts*f; 
end 

  

  
t=1:N-L;  % Time stamp for plotting 

  
figure(1) % Plotting the result for tank 1 
plot(t,[Y(:,1) ref(1:N-L,1)]);grid on 
ylabel('y_k and r_k [cm]');xlabel('Discrete time [s]') 
title('MPC Constrained Simulation: Output level y_k and reference r_k for 

tank 1') 
legend('y_k','r_k') 

  
figure(2)% Plotting the result for tank 2 
plot(t,[Y(:,2) ref(1:N-L,2)]);grid on 
ylabel('y_k and r_k [cm]');xlabel('Discrete time[s]'); 
legend('y_k','r_k'); 
title('MPC Constrained Simulation: Output level y_k and reference r_k for 

tank 2') 

  
figure(3) % plotting Control Signals of U for both tanks 
subplot(211), plot(t,U(1:242,1)), grid on, ylabel('u1_k [V]') 
axis([0 250 -0.1 5.1]) 
legend('Umax: 5 and Umin: 0'); 
title('Tank 1: control input, u_k') 
subplot(212), plot(t,U(1:242,2)), grid on, ylabel('u2_k [V]') 
xlabel('Discrete time [s]') 
title('Tank 2: control input, u_k') 
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axis([0 250 -0.1 5.1]) 
legend('Umax: 5 and Umin: 0'); 

  

  
figure(4) % plotting Control Signals for delta U for both tanks 
subplot(211), plot(t,DeltaU(:,1)), grid on, ylabel('deltau1_k [V]') 
axis([0 250 -0.55 0.9]) 
legend('DeltaUmax: 0.4 and DeltaUmin: -0.4'); 
title('Tank 1: Delta U control signal ') 
subplot(212), plot(t,DeltaU(:,2)), grid on, ylabel('deltau2_k [V]') 
xlabel('Discrete time [s]') 
title('Tank 2: Delta U control signal ') 
axis([0 250 -0.55 0.9]) 
legend('DeltaUmax: 0.4 and DeltaUmin: -0.4'); 

  
figure(5) % Plot of Estimated and Measured levels 
subplot(221),plot(t,X_est(1,:),'b'),grid on, hold on 
plot(t,XX(1,:),'r'),title('Tank 1'), xlabel('Time[s]'),ylabel('Level [cm]') 
legend('Level Est.','Level Meas.') 
subplot(222),plot(t,X_est(2,:),'b',t,XX(2,:),'r'),title('Tank 2') 
grid on 
legend('Level Est.','Level Meas.'), xlabel('Time[s]'),ylabel('Level [cm]') 
subplot(223),plot(t,X_est(3,:)),title('Tank 3'), legend('Level Est.') 
grid on 
xlabel('Time [s]'),ylabel('Level [cm]') 
subplot(224),plot(t,X_est(4,:)),title('Tank 4'), legend('Level Est.') 
grid on 
xlabel('Time [s]'),ylabel('Level [cm]') 
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Appendix 8: MPC constrained (if else loop) 

MATLAB code for MPC constrained (if else loop) with integral action 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 04-March-2013 
%% MATLAB file to simulate quadruple tank system for minimum and Non-

minimum 
% phase with MPC Control with Integral action (Using Constrained Algorithm) 
% If-else constraints 

  
clear all; 
clc; close all; 

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quadruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28; 
A2=32; 
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in c 
a1=0.071; 
a2=0.057; 
a3=0.071; 
a4=0.057; 

  
kc=1;%volts/cm  
g=981;% cm/sec2 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nMPC (Constraints) Control of Four Tank system') 
fprintf('\n1 : Minimum Phase System  \n2 : Non - Minimum Phase System '); 
Option=input('\nYour Choice:'); 

  
if Option==1 % minimum phase 

  
%initial heights in cm for all four tank 
h1=12.4; 
h2=12.7; 
h3=1.8; 
h4=1.40; 
x0=[h1;h2;h3;h4]; 

  
% initial pump voltages in Volts 
u10=3; 
u20=3; 
u0=[u10;u20]; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
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% from how the valves are set prior to an experiment. Condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 
y1=0.70; 
y2=0.60; 

  
elseif Option==2 % Non-minimum phase 

     
% initial heights in cm for all four tank 
h1=12.6; 
h2=13; 
h3=4.8; 
h4=4.9; 
x0=[h1;h2;h3;h4]; 

  
% Initial pump voltages in Volts 
u10=3.15; 
u20=3.15; 
u0=[u10;u20]; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 
end  

  
% Calculating Time constants using T=A(sqrt(2h/g))/a, this formula obtained 
% from paper of (K.H.Johansson May 2000) 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 
TimeConstantOfFourTank=[T1 T2 T3 T4]; 

  
%Model Development, This is the linear Model based on  
%Hdot = Ac x +Bc u 
%y=Dc x 
%the below model is Continues Time model 

  
A=[-1/T1,0,A3/(A1*T3),0; 
    0,-1/T2,0,A4/(A2*T4); 
    0,0,-1/T3,0; 
    0,0,0,-1/T4]; 

  
B=[y1*k1/A1,0; 
    0,y2*k2/A2; 
    0,(1-y2)*k2/A3; 
    (1-y1)*k1/A4,0]; 

  
D=[kc,0,0,0; 
    0,kc,0,0]; 

  
% Discritizing the model, Convert from continuous- to discrete-time model 
ts=0.1;%sampling time in sec, either 0.1 or 1 used 
fprintf('\n The Discrete Model of the Non Linear Four tank Process') 
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[A,B,D]=c2dm(A,B,D,zeros(2),ts,'zoh'); %  discretization 

  
% Reading the size of the Discrete model, these size are used to create 
% augmented model,  
n=size(A,1); % Reading the number of Rows, State variable 
r=size(B,2); % Reading the number of Columns, Inputs 
m=size(D,1); %Reading the number of Rows, Outputs 

  

  
% Augmented Model Development or Extended state space model in terms of 
% deviation variable 
At=[A zeros(n,m); D eye(m,m)]; 
Bt=[B;zeros(m,r)]; 
Dt=[D eye(m,m)]; 

  
L=8; %Prediction horizon 

  
% Weighting matrices 
Q=100*eye(m); % Output Error weight matrix 
              % As per the size of output, 'm' is the size or number of  
              % inputs 

               
R=0.1*eye(r); % rate of change in control action weight matrix 
              % As per the size of input, 'r' is the size or the number of 
              % inputs 

  
% Calculation parameters need for MPC like HdL, OL and OLB (Toeplitz matrix  
% and Observability matrix) from a predefined m file called ss2h  
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(m,r),L,0); % Note sending the extended 
                                            %state space model 
FL=[OLB HdL]; 

  
% Make extended weight matrix based on length of Prediction Horizon 
% This m file is made by David Di Ruscio 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 

  
% limits for the maximum and minimum value of Control Signal U and delta U 
% Constraints of U (Control Signal) 
umax=5; 
umin=0; 
delumax=0.4; 
delumin=-0.4; 

  
% Computing variables need for Unconstrained MPC 
H=FL'*Qt*FL+Rt; 

  
% Simulation Horizon 
N=250; 

  
% Generating a random set point (Reference Signal rk) 
% from a predefined m file made by David Di Ruscio 
rand('seed',0); 
ref=[14*ones(N,1)+0.1*prbs1(N,70,70) 12*ones(N,1)+0.1*prbs1(N,70,70)]; 
% based on this reference signal, the initial height is also taken near to 
% it. 

  
%Parameters for Calculating Kalman gain 
G=eye(4); 
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Q1=10*eye(4); 
R1=0.01*eye(2); 
[Ke,Pp,Pe,E]=dlqe(A,G,D,Q1,R1); % given the covariance of the noise,  
                                % kalman gain Ke can found 

                                 
% Initial States 
r1=[14.2;12.3]; % initial height of tank 1 and tank 2 in cm 
Hd=D*inv(eye(4)-A)*B; 
us=inv(Hd)*r1; 
xs=inv(eye(4)-A)*B*us; % Initial height of all four tank 
x=xs;xold=x; 
u=us;uold=u; 
x_est=xold; %For kalman filter initial estimated value to be old value 
yold=D*x; 

  
%Control Loop 
for k=1:N-L 
    y=D*x_est; % Height of Tank 1 and tank 2 based on measured value of x               
               % this value is obtained to use in kalman filter estimation 
               % error and out value of height in tank 1 and tank 2. 
    % Kalman filter Algorithm 
    xp=xold; % set initial (apiroi) predicted state estimate 
    yp=D*xp; % measurement update model 
    ep=y-yp; % estimator error 
    xp=xold+Ke*ep; % Corrected state estimate 
    x_est=[xp(1);xp(2);xp(3);xp(4)]; 

  
    % Make the extended reference vector based on the number of prediction 
    % horizon 
    rf =ref(k+1:k+L,:);  
    ref_predhori=rf(1,:)'; 
    for i=2:L 
        ref_predhori=[ref_predhori;rf(i,:)']; 
    end 

  
    % Compute MPC control 
    xt=[x_est-xold;yold]; 
    pl=OL*At*xt; 
    f=FL'*Qt*(pl-ref_predhori); 

         
    % finding delta U 
    duf=-inv(H)*f; 

      
    % if-else for implementing constraints 
    % Implementing constraints for delta U for first Input to Tank 1 
    if duf(1,1)>delumax 
    duf(1,1)=delumax; 
    elseif duf(1,1)<delumin 
    duf(1,1)=delumin; 
    end 

      
    % Implementing constraints for delta U for first Input to Tank 2 
    if duf(2,1)>delumax 
    duf(2,1)=delumax; 
    elseif duf(2,1)<delumin 
    duf(2,1)=delumin; 
    end 

      
    u=u+duf(1:r); % Computing the new control signal for 2 tanks 
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    uold=u; % transferring the current ctrl to old ctrl signal for next 

loop 

      
    % Implementing Constraints using if else loop for U for tank 1 
    if u(1,1)>umax  
    u(1,1)=umax; 
    elseif u(1,1)<umin 
    u(1,1)=umin; 
    end 

     
    % implementing constraints for first Input signal U for tank2 
    if u(2,1)>umax   
    u(2,1)=umax; 
    elseif u(2,1)<umin 
    u(2,1)=umin; 
    end 

  
    % Storing variables for plotting 
    Y(k,:)=y'; U(k,:)=u';X(k,:)=x'; DeltaU(k,:)=duf(1:r)'; 

X_est(:,k)=x_est;XX(:,k)=x; 

     
   % Storing the current values as old values for next loop 
    xold=x_est; 
    yold=y; 

    

         
   % Non linear model simulation with estimated states or predicted state 
   % estimate update, last step of kalman filter (step 4) 
   f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
   f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
   f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
   f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
   f=[f(1);f(2);f(3);f(4)]; 
   x_est=x_est+ts*f; 

  
   % updation based on x measure value  
   f1=((-a1*sqrt(2*g*x(1)))/A1)+(a3*(sqrt(2*g*x(3)))/A1)+((y1*k1*u(1))/A1); 
   f2=((-a2*sqrt(2*g*x(2)))/A2)+(a4*(sqrt(2*g*x(4)))/A2)+((y2*k2*u(2))/A2); 
   f3=((-a3*sqrt(2*g*x(3)))/A3)+(((1-y2)*k2*u(2))/A3); 
   f4=((-a4*sqrt(2*g*x(4)))/A4)+(((1-y1)*k1*u(1))/A4); 
   f=[f1;f2;f3;f4]; 
   x=x+ts*f; 
end 

  

  
t=1:N-L;  % Time stamp for plotting 

  
figure(1) % Plotting the result for tank 1 
plot(t,[Y(:,1) ref(1:N-L,1)]);grid on 
ylabel('y_k and r_k [cm]');xlabel('Discrete time [s]') 
title('MPC Constrained Simulation: Output level y_k and reference r_k for 

tank 1') 
legend('y_k','r_k') 

  
figure(2)%Plotting the result for tank 2 
plot(t,[Y(:,2) ref(1:N-L,2)]);grid on 
ylabel('y_k and r_k [cm]');xlabel('Discrete time[s]'); 
legend('y_k','r_k'); 



  

107 
 

title('MPC Constrained Simulation: Output level y_k and reference r_k for 

tank 2') 

  
figure(3) % plotting Control Signals of U for both tanks 
subplot(211), plot(t,U(:,1)), grid on, ylabel('u1_k [V]') 
axis([0 200 -0.1 5.1]) 
legend('Umax: 5 and Umin: 0'); 
title('Tank 1: control input, u_k') 
subplot(212), plot(t,U(:,2)), grid on, ylabel('u2_k [V]') 
xlabel('Discrete time [s]') 
axis([0 200 -0.1 5.1]) 
title('Tank 2: control input, u_k') 
legend('Umax: 5 and Umin: 0'); 

  

  
figure(4) % plotting Control Signals for delta U for both tanks 
subplot(211), plot(t,DeltaU(:,1)), grid on, ylabel('deltau1_k [V]') 
axis([0 200 -0.55 0.9]) 
legend('DeltaUmax: 0.4 and DeltaUmin: -0.4'); 
title('Tank 1: Delta U control signal ') 
subplot(212), plot(t,DeltaU(:,2)), grid on, ylabel('deltau2_k [V]') 
xlabel('Discrete time [s]') 
axis([0 200 -0.55 0.9]) 
title('Tank 2: Delta U control signal ') 
legend('DeltaUmax: 0.4 and DeltaUmin: -0.4'); 

  

  

  
figure(5) % Plot of Estimated and Measured levels 
subplot(221),plot(t,X_est(1,:),'b'),grid on, hold on 
plot(t,XX(1,:),'r'),title('Tank 1'), xlabel('Time[s]'),ylabel('Level [cm]') 
legend('Level Est.','Level Meas.') 
subplot(222),plot(t,X_est(2,:),'b',t,XX(2,:),'r'),title('Tank 2') 
grid on 
legend('Level Est.','Level Meas.'), xlabel('Time[s]'),ylabel('Level [cm]') 
subplot(223),plot(t,X_est(3,:)),title('Tank 3'), legend('Level Est.') 
grid on 
xlabel('Time [s]'),ylabel('Level [cm]') 
subplot(224),plot(t,X_est(4,:)),title('Tank 4'), legend('Level Est.') 
grid on 
xlabel('Time [s]'),ylabel('Level [cm]') 
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Appendix 9: MPC unconstrained 

MATLAB code for MPC unconstrained with integral action 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 04-March-2013 
%% MATLAB file to simulate quadruple tank system for minimum and Non-

minimum 
% phase with MPC Control with Integral action (Using unconstrained 

Algorithm) 

  
clear all; 
clc;close all; 

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quadruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28; 
A2=32; 
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in cm2 
a1=0.071; 
a2=0.057; 
a3=0.071; 
a4=0.057; 

  
kc=1; % volts/cm  
g=981;% cm/sec2 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nMPC (Unconstrained)Control of Four Tank system') 
fprintf('\n1 : Minimum Phase System  \n2 : Non - Minimum Phase System '); 
Option=input('\nYour Choice:'); 

  
if Option==1 % minimum phase 

  
%initial heights in cm for all four tank 
h1=12.4; 
h2=12.7; 
h3=1.8; 
h4=1.40; 
x0=[h1;h2;h3;h4]; 

  
% initial pump voltages in Volts 
u10=3; 
u20=3; 
u0=[u10;u20]; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
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% from how the valves are set prior to an experiment. Condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 
y1=0.70; 
y2=0.60; 

  
elseif Option==2 % Non-minimum phase 

  
% initial heights in cm for all four tank 
h1=12.6; 
h2=13; 
h3=4.8; 
h4=4.9; 
x0=[h1;h2;h3;h4]; 

  
% Initial pump voltages in Volts 
u10=3.15; 
u20=3.15; 
u0=[u10;u20]; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. Condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 
end  

  
% Calculating Time constants using T=A(sqrt(2h/g))/a, this formula obtained 
% from paper of (K.H.Johansson May 2000) 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 
TimeConstantOfFourTank=[T1 T2 T3 T4]; 

  
% Model Development, This is the linear Model based on  
% xdot = Ac x +Bc u 
% y=Dc x 
% the below model is Continues Time model 
A=[-1/T1,0,A3/(A1*T3),0; 
    0,-1/T2,0,A4/(A2*T4); 
    0,0,-1/T3,0; 
    0,0,0,-1/T4]; 

  
B=[y1*k1/A1,0; 
    0,y2*k2/A2; 
    0,(1-y2)*k2/A3; 
    (1-y1)*k1/A4,0]; 

  
D=[kc,0,0,0; 
    0,kc,0,0]; 

  
%Discretizing the model, Convert from continuous- to discrete-time model 
ts=0.1;%sampling time in sec, either 0.1 or 1 used 
[A,B,D]=c2dm(A,B,D,zeros(2),ts,'zoh'); %  discretization 
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% Reading the size of the Discrete model, these size are used to create 
% augmented model 
n=size(A,1); % Reading the number of Rows, State variable 
r=size(B,2); % Reading the number of Columns, Inputs 
m=size(D,1); % Reading the number of Rows, Outputs 

  

  
% Augmented Model Development or Extended state space model in terms of 
% deviation variable 
At=[A zeros(n,m); D eye(m,m)]; 
Bt=[B;zeros(m,r)]; 
Dt=[D eye(m,m)]; 

  
L=8; %Prediction horizon 

  
% Weighting matrices 
Q=100*eye(m); % Output Error weight matrix 
              % As per the size of output, 'm' is the size or number of  
              % inputs 

                
R=0.1*eye(r); % rate of change in control action weight matrix 
              % As per the size of input, 'r' is the size or thr number of 
              % inputs 

  
% Calculation parameters need for MPC like HdL, OL and OLB (Toeplitz matrix  
% and Observability matrix) from a predefined m file called ss2h  
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(m,r),L,0); % Note sending the extended 
                                            % state space model 
FL=[OLB HdL]; 

  
% Make extended weight matrix based on length of Prediction Horizon 
% This m file is made by David Di Ruscio 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 

  
% Variables need for Unconstrained MPC 
H=FL'*Qt*FL+Rt; 

  
% Simulation Horizon 
N=250; 

  
% Generating a random set point (Reference Signal rk) 
% from a predefined m file made by David Di Ruscio 
rand('seed',0); 
ref=[14*ones(N,1)+0.1*prbs1(N,70,70) 12*ones(N,1)+0.1*prbs1(N,70,70)]; 
% based on this reference signal, the initial height is also taken near to 
% it. 

  
% Calculation of Kalman Gain 
G=eye(4); 
Q1=10*eye(4); 
R1=0.01*eye(2); 
[Ke, Pp,Pe,E]=dlqe(A,G,D,Q1,R1); % given the covariance of the noise,  
                                 % kalman gain Ke can found 

  
% Initial States 
r1=[14.2;12.3]; % initial height of tank 1 and tank 2 in cm 
Hd=D*inv(eye(4)-A)*B; 
us=inv(Hd)*r1; 
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xs=inv(eye(4)-A)*B*us;% Initial height of all four tank 
x=xs;xold=x; 
u=us;uold=u; 
x_est=xold; % For kalman filter initial estimated value to be old value 
yold=D*x; 

  

  
%Control Loop 
for k=1:N-L 
    y=D*x_est; % Height of Tank 1 and tank 2 based on measured value of x               
               % this value is obtained to use in kalman filter estimation 
               % error and out value of height in tank 1 and tank 2. 

     
    % Kalman filter Algorithm 
    xp=xold; % set initial (apiroi) predicted state estimate 
    yp=D*xp; % measurement update model 
    ep=y-yp; % estimator error 
    xp=xold+Ke*ep; % Corrected state estimate 
    x_est=[xp(1);xp(2);xp(3);xp(4)]; 

  

  
    % Make the extended reference vector, r_(k,L) 
    rf =ref(k+1:k+L,:); % reference signal based on prediction horizon 
    ref_predhori=rf(1,:)'; 
    for i=2:L 
        ref_predhori=[ref_predhori;rf(i,:)']; 
    end 

  
    % Compute MPC control 
    xt=[x_est-xold;yold]; 
    pl=OL*At*xt; 
    f=FL'*Qt*(pl-ref_predhori); 

     

    
    %Unconstrained MPC 
     duf=-inv(H)*f; 
     u=u+duf(1:r); % new control signal 
     uold=u; % transfering the current ctrl to old ctrl signal for next 

loop 

     
    % Storing variables for plotting 
    Y(k,:)=y'; U(k,:)=u';DeltaU(k,:)=duf(1:r)'; X_est(:,k)=x_est; XX(:,k)=x; 

     
    % Storing the current values as old values for next loop 
    xold=x_est; 
    yold=y; 

     
    % Non linear model simulation with estimated states or predicted state 
    % estimate update , last step of kalman filter (step 4) 
    f(1)=(-a1*sqrt(2*g*x_est(1)) +a3*sqrt(2*g*x_est(3)) +y1*k1*u(1))/A1; 
    f(2)=(-a2*sqrt(2*g*x_est(2)) +a4*sqrt(2*g*x_est(4)) +y2*k2*u(2))/A2; 
    f(3)=(-a3*sqrt(2*g*x_est(3)) + (1-y2)*k2*u(2))/A3; 
    f(4)=(-a4*sqrt(2*g*x_est(4)) + (1-y1)*k1*u(1))/A4; 
    f=[f(1);f(2);f(3);f(4)]; 
    x_est=x_est+ts*f; 

  
    % updation based on x measure value  
    f1=((-a1*sqrt(2*g*x(1)))/A1)+(a3*(sqrt(2*g*x(3)))/A1)+((y1*k1*u(1))/A1); 
    f2=((-a2*sqrt(2*g*x(2)))/A2)+(a4*(sqrt(2*g*x(4)))/A2)+((y2*k2*u(2))/A2); 
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    f3=((-a3*sqrt(2*g*x(3)))/A3)+(((1-y2)*k2*u(2))/A3); 
    f4=((-a4*sqrt(2*g*x(4)))/A4)+(((1-y1)*k1*u(1))/A4); 
    f=[f1;f2;f3;f4]; 
    x=x+ts*f; 
end 

  

  
t=1:N-L;  % Time stamp for plotting 

  
figure(1) % Plotting the result for tank 1 
plot(t,[Y(:,1) ref(1:N-L,1)]);grid on 
ylabel('y_k and r_k [cm]');xlabel('Discrete time [s]') 
title('MPC UnConstrained Simulation: Output level y_k and reference r_k for 

tank 1') 
legend('y_k','r_k') 

  
figure(2) % Plotting output for tank 2 
plot(t,[Y(:,2) ref(1:N-L,2)]);grid on 
ylabel('y_k and r_k [cm]');xlabel('Discrete time[s]'); 
legend('y_k','r_k'); 
title('MPC UnConstrained Simulation: Output level y_k and reference r_k for 

tank 2') 

  
figure(3) % plotting Control Signals of U for both tanks 
subplot(211), plot(t,U(1:242,1)), grid on, ylabel('u1_k [V]') 
axis([0 250 -5 8.2]) 
title('Tank 1: control input, u_k') 
subplot(212), plot(t,U(1:242,2)), grid on, ylabel('u2_k [V]') 
xlabel('Discrete time [s]') 
title('Tank 2: control input, u_k') 
axis([0 250 -5 8.2]) 

  

  
figure(4) % plotting Control Signals for delta U for both tanks 
subplot(211), plot(t,DeltaU(:,1)), grid on, ylabel('\Delta u1_k [V]') 
axis([0 250 -5 1.4]) 
title('Tank 1: \Delta U control signal ') 
subplot(212), plot(t,DeltaU(:,2)), grid on, ylabel('\Delta u2_k [V]') 
xlabel('Discrete time [s]') 
title('Tank 2: \Delta U control signal ') 
axis([0 250 -5 1.4]) 

  

  
figure(5) % Plot of Estimated and Measured levels 
subplot(221),plot(t,X_est(1,:),'b'),grid on, hold on 
plot(t,XX(1,:),'r'),title('Tank 1'), xlabel('Time[s]'),ylabel('Level [cm]') 
legend('Level Est.','Level Meas.') 
subplot(222),plot(t,X_est(2,:),'b',t,XX(2,:),'r'),title('Tank 2') 
grid on 
legend('Level Est.','Level Meas.'), xlabel('Time[s]'),ylabel('Level [cm]') 
subplot(223),plot(t,X_est(3,:)),title('Tank 3'), legend('Level Est.') 
grid on 
xlabel('Time [s]'),ylabel('Level [cm]') 
subplot(224),plot(t,X_est(4,:)),title('Tank 4'), legend('Level Est.') 
grid on 
xlabel('Time [s]'),ylabel('Level [cm]') 
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Appendix 10: Writing and Reading from Excel 

file for minimum phase, MPC 

MATLAB coding for MPC (Constrained and Unconstrained) controller with integral action for 

minimum phase system, reading from excel file and plotting.  

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 04-March-2013 
%% MATLAB file to plot and compare the various parameter for MPC with 
% minimum phase system 

  
clc 
close all 

  
% Tank 1 , Output Level comparision 
ref_tank1=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','a1:a242'); 
Y_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','c1:c242'); 
Y_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','i1:i242'); 
Y_tank1_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','o1:o242'); 
t=1:242; 
figure(1) 
plot(t,[ref_tank1,Y_tank1_Uncon,Y_tank1_conalgo,Y_tank1_conifelse]); 
legend('Reference','Unconstrained','Constrained 

(Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 1 Comparision of Level for MPC with minimum Phase') 
grid on 

  
% Tank 2  , Output Level comparision 
ref_tank2=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','b1:b242'); 
Y_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','d1:d242'); 
Y_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','j1:j242'); 
Y_tank2_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','p1:p242'); 
figure(2) 
plot(t,[ref_tank2,Y_tank2_Uncon,Y_tank2_conalgo,Y_tank2_conifelse]); 
legend('Reference','Unconstrained','Constrained 

(Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 2 Comparision of Level for MPC with minimum Phase') 
grid on 

  
% Tank 1 , Control signal comparision 
U_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','e1:e242'); 
U_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','k1:k242'); 
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U_tank1_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','q1:q242'); 
figure(3) 
plot(t,[U_tank1_Uncon,U_tank1_conalgo,U_tank1_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 1 Comparision control signal U,  MPC with minimum Phase') 
grid on 

  
% Tank 2 , Control signal comparison 
U_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','f1:f242'); 
U_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','l1:l242'); 
U_tank2_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','r1:r242'); 
figure(4) 
plot(t,[U_tank2_Uncon,U_tank2_conalgo,U_tank2_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 2 Comparision control signal U,  MPC with minimum Phase') 
grid on 

  
% Tank 1 , change in Control (delta U)signal comparison 
delU_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','g1:g242'); 
delU_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','m1:m242'); 
delU_tank1_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','s1:s242'); 
figure(5) 
plot(t,[delU_tank1_Uncon,delU_tank1_conalgo,delU_tank1_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 1 Comparision of chnage in control signal (\Delta U),  MPC with 

minimum Phase') 
grid on 

  
% Tank 2 , change in Control (delta U)signal comparison 
delU_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','h1:h242'); 
delU_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','n1:n242'); 
delU_tank2_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlymin.xlsx','t1:t242'); 
figure(6) 
plot(t,[delU_tank2_Uncon,delU_tank2_conalgo,delU_tank2_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 2 Comparision of chnage in control signal (\Delta U),  MPC with 

minimum Phase') 
grid on 
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Appendix 11: Writing and Reading from Excel 

file for non minimum phase, MPC 

MATLAB coding for MPC (Constrained and Unconstrained) controller with integral action for 

non minimum phase system, reading from excel file and plotting.  

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 04-March-2013 
%% MATLAB file to plot and compare the various parameter for MPC with 
% non non-minimum phase system 

  
clc 
close all 

  
% Tank 1 , Output Level comparison 
ref_tank1=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','a1:a242'); 
Y_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','c1:c242'); 
Y_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','i1:i242'); 
Y_tank1_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','o1:o242'); 
t=1:242; 
figure(1) 
plot(t,[ref_tank1,Y_tank1_Uncon,Y_tank1_conalgo,Y_tank1_conifelse]); 
legend('Reference','Unconstrained','Constrained 

(Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 1 Comparison of Level for MPC with non-minimum Phase') 
grid on 

  
% Tank 2  , Output Level comparison 
ref_tank2=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','b1:b242'); 
Y_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','d1:d242'); 
Y_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','j1:j242'); 
Y_tank2_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','p1:p242'); 
figure(2) 
plot(t,[ref_tank2,Y_tank2_Uncon,Y_tank2_conalgo,Y_tank2_conifelse]); 
legend('Reference','Unconstrained','Constrained 

(Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('Level [cm]') 
title('Tank 2 Comparison of Level for MPC with non-minimum Phase') 
grid on 

  
% Tank 1 , Control signal comparison 
U_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','e1:e242'); 
U_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','k1:k242'); 
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U_tank1_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','q1:q242'); 
figure(3) 
plot(t,[U_tank1_Uncon,U_tank1_conalgo,U_tank1_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 1 Comparision control signal U,  MPC with non-minimum Phase') 
grid on 

  
% Tank 2 , Control signal comparison 
U_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','f1:f242'); 
U_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','l1:l242'); 
U_tank2_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','r1:r242'); 
figure(4) 
plot(t,[U_tank2_Uncon,U_tank2_conalgo,U_tank2_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('U [V]') 
title('Tank 2 Comparision control signal U,  MPC with non-minimum Phase') 
grid on 

  
% Tank 1 , change in Control (delta U)signal comparison 
delU_tank1_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','g1:g242'); 
delU_tank1_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','m1:m242'); 
delU_tank1_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','s1:s242'); 
figure(5) 
plot(t,[delU_tank1_Uncon,delU_tank1_conalgo,delU_tank1_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 1 Comparison of change in control signal (\Delta U),  MPC with 

non-minimum Phase') 
grid on 

  
% Tank 2 , change in Control (delta U)signal comparison 
delU_tank2_Uncon=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','h1:h242'); 
delU_tank2_conalgo=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','n1:n242'); 
delU_tank2_conifelse=xlsread('C:\Users\Annamalai\Google 

Drive\Thesis\code\final\MPConlynonmin.xlsx','t1:t242'); 
figure(6) 
plot(t,[delU_tank2_Uncon,delU_tank2_conalgo,delU_tank2_conifelse]); 
legend('Unconstrained','Constrained (Algorthim)','Constrained(ifelse)') 
xlabel('Discrete time [s]'),ylabel('\Delta u [V]') 
title('Tank 2 Comparision of chnage in control signal (\Delta U),  MPC with 

non-minimum Phase') 
grid on 
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Appendix 12: PI Controller 

MATLAB code for PI controller for quadruple tank process 

% Course: System Control Engineering (Master of Science Degree) 
% Masters Thesis 2013: Discrete LQ Optimal Control with Integral Action Vs 

MPC  
% College: Telemark University College,Porsgunn, Norway  
% Writer: Ramanathan Annamalai (113824), Date: 05-04-2013 
%% MATLAB file to simulate quadruple tank system for minimum and Non-

minimum 
% phase with PI Control (Based on RGA Analysis) 

  

  

  
clear all; 
clc;close all; 

  
% Defining the common parameter to Minimum and non-minimum phase of  
% quaruple tank process based on K.H.Johansson May 2000 
% Cross sectional Area of all four tanks in cm2  
A1=28; 
A2=32; 
A3=28; 
A4=32; 

  
% Cross sectional Area of all four tank outlets in cm2 
a1=0.071; 
a2=0.057; 
a3=0.071; 
a4=0.057; 

  
kc=1; % volts/cm  
g=981;% cm/sec2 

  
% taking input from user for minimum or non minimum phase tank datas 
fprintf('\n\nPI (Constraints for U only) Control of Four Tank system') 
fprintf('\n1 : Minimum Phase System  \n2 : Non - Minimum Phase System '); 
Option=input('\nYour Choice:'); 
fprintf('\n1 : Constraints for U  \n2 : No Constraints '); % for 

constraints 
Option1=input('\nYour Choice:'); 

  
if Option==1 % minimum phase chosen 

     
%initial heights in cm for all four tank 
h1=12.4; 
h2=12.7; 
h3=1.8; 
h4=1.40; 

  
% pump constants in cm3/Vs 
k1=3.33; 
k2=3.35; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. condition is  
% 1<y1+y2<2.  (y1+y2=1.3) 



  

118 
 

y1=0.70; 
y2=0.60; 

  
%minimum phase PI parameters 
kp=[8 12]; Ti=[10 4]; 

  
u1_init=3; u2_init=3; 

  
elseif Option==2 % Non-minimum phase 

  
% initial heights in cm for all four tank 
h1=12.6; 
h2=13; 
h3=4.8; 
h4=4.9; 

  
% pump constants in cm3/Vs 
k1=3.14; 
k2=3.29; 

  
% flow constants, The parameter y1 and y2 is between 0 and 1 are determined 
% from how the valves are set prior to an experiment. condition is  
% 0<y1+y2<1.  (y1+y2=0.77) 
y1=0.43; 
y2=0.34; 

  

  

  
% non-minimum phase PI parameters 
kp=[15 -.12]; Ti=[100 250]; 

  
u1_init=3.15; u2_init=3.15; 
end 

  
% Calculating Time constants using T=A(sqrt(2h/g))/a, this formula obtained 
% from paper of (K.H.Johansson May 2000) 
T1=A1*(sqrt(2*h1/g))/a1; 
T2=A2*(sqrt(2*h2/g))/a2; 
T3=A3*(sqrt(2*h3/g))/a3; 
T4=A4*(sqrt(2*h4/g))/a4; 

  
% Model Development, This is the linear Model based on  
% xdot = Ax +Bu 
% y=Dx 
% the below model is Continues Time model 
A=[-1/T1,0,A3/(A1*T3),0; 
    0,-1/T2,0,A4/(A2*T4); 
    0,0,-1/T3,0; 
    0,0,0,-1/T4]; 

  
B=[y1*k1/A1,0; 
   0,y2*k2/A2; 
   0,(1-y2)*k2/A3; 
   (1-y1)*k1/A4,0]; 

  
D=[kc,0,0,0; 
   0,kc,0,0]; 

  



  

119 
 

% Discretizing the model, Convert from continuous- to discrete-time model 
ts=0.1;%sampling time in sec, either 0.1 or 1 used 
[A,B,D]=c2dm(A,B,D,zeros(2),ts,'zoh'); %  discretization 

  
N=2000; % Simulation Time 

  
r1=[h1;h2]; 

  

  
% initial states  
u_init=[u1_init;u2_init]; 
x_init=[h1;h2;h3;h4]; 
u_old=u_init; x_old=x_init; x=x_init; 
y_old=D*x_init; e_old=r1-y_old; 
t0=0; 
umax=5; 
umin=0; 

  
%Simulation with PI controller 
for k=1:N 
    % creating the reference signal tank 1 and tank 2 
    if k>=500&&k<1300; r1(1)=12.2; end 
    if k>=300 && k<1100; r1(2)=12.4; end 
    if k>=1100; r1(2)=12.8; end 
    if k>=1500 r1(1)=12.5; end 
    y=D*x;  % calculating the output 
    e=r1-y; % find the error 

  
    %for minimum phase process (u1,y1), (u2,y2) pairing based on RGA 

Analysis 
    if Option==1 
       u1=u_old(1)+kp(1)*(e(1)-e_old(1))+kp(1)*ts*e(1)/Ti(1); 
       u2=u_old(2)+kp(2)*(e(2)-e_old(2))+kp(2)*ts*e(2)/Ti(2); 
       u=[u1;u2]; 

  
    %for non-minimum phase process (u1,y2) and (u2,y1) based on RGA 

Analysis 
    elseif   Option==2 
             u2=u_old(1)+kp(1)*(e(1)-e_old(1))+kp(1)*ts*e(1)/Ti(1); 
             u1=u_old(2)+kp(2)*(e(2)-e_old(2))+kp(2)*ts*e(2)/Ti(2); 
             u=[u2;u1]; 
    end 

  
    if   Option1==1 
         %Implemting Constraints using ifelse loop for U for tank 1 
         if u(1,1)>umax  
         u(1,1)=umax; 
         elseif u(1,1)<umin 
         u(1,1)=umin; 
         end 

     
        % implemting constraints for second Input signal U for tank2 
        if u(2,1)>umax   
        u(2,1)=umax; 
        elseif u(2,1)<umin 
        u(2,1)=umin; 
        end 
    end      
    % Storing the current values as old values for next loop 
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    u_old=u; y_old=y; x_old=x; e_old=e; 

  
    % Storing variables for plotting 
    Y(k,:)=y'; U(k,:)=u'; R(k,:)=r1'; X(k,:)=x'; 

  
    % update the model 
    f(1)=(-a1*sqrt(2*g*x(1)) +a3*sqrt(2*g*x(3)) +y1*k1*u(1))/A1; 
    f(2)=(-a2*sqrt(2*g*x(2)) +a4*sqrt(2*g*x(4)) +y2*k2*u(2))/A2; 
    f(3)=(-a3*sqrt(2*g*x(3)) + (1-y2)*k2*u(2))/A3; 
    f(4)=(-a4*sqrt(2*g*x(4)) + (1-y1)*k1*u(1))/A4; 
    f=[f(1);f(2);f(3);f(4)]; 
    x=x+ts*f; t0=t0+ts;     
end  
t=1:N; 
figure(1) % Plot of Tank1 , U and Output 
subplot(211), plot(t,U(:,1)), grid, ylabel('u1_k [V]') 
title('Tank 1: control input, u_k'); 
xlabel('Discrete time [s]'), ylabel('Input [V]') 
if Option1==1 
   legend('Umax: 5 and Umin: 0'); 
end 
subplot(212),plot(t,[Y(:,1) R(:,1)]) 
title('Output level y_k and reference r_k for tank 1'), grid on  
legend('y_k','r_k'); 
xlabel('Time[s]'), ylabel('Tank Level [cm]')  
figure(2) % Plot of Tank level, U and Output 
subplot(211), plot(t,U(:,2)), grid, ylabel('u2_k [V]') 
xlabel('Discrete time [s]'), ylabel('Input [V]') 
if Option1==1 
   legend('Umax: 5 and Umin: 0'); 
end 
title('Tank 2: control input, u_k') 
subplot(212),plot(t,[Y(:,2) R(:,2)]) 
title('Output level y_k and reference r_k for tank 2'), grid on  
legend('y_k','r_k'); 
xlabel('Discrete time [s]'), ylabel('Tank Level [cm]') 

Appendix 13: RGA Analysis for PI controller 

MATLAB code for RGA Analysis for PI controller for quadruple tank system 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Masters Thesis - 2013, Telemark University College, Norway  
% Discrete LQ Optimal Control with Integral Action Vs MPC 
% Writer: Ramanathan Annamalai (113824), Date: 04-04-2013 
%************************************************************************* 
% MATLAB file for RGA analysis for PI Control of Four Tank system.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
clear all; clc; 
fprintf('\n\nRGA Analysis to decide input output pairs for PI Control of 

Four Tank system') 
fprintf('\n1 : Minimum Phase System  \n2 : Non - Minimum Phase System '); 
choice=input('\nYour Choice:'); 
if choice==1 
Hp=[2.6, 1.5; 1.4, 2.8]; % Minimum Phase 
elseif choice==2 

Hp=[1.5, 2.5; 2.5, 1.6]; % Non-Minimum Phase 
end 
Lambda=Hp.*(inv(Hp))' 


