GIS modellering og EUs vanndirektiv for akvifer

Hagadrag
Høgskolen i Sørøst-Norge
Avdeling for allmennvitenskapelige fag
Institutt for natur-, helse- og miljøfag
Postboks 235
3603 Kongsberg

http://www.usn.no

© 2016 Erika Marcela Delgado Solli

Denne avhandlingen representerer 60 studiepoeng
Sammendrag

Norge gjennomfører EUs vanndirektiv 2000/60/EF ved å utarbeide vannforskriften som trådte i kraft i 1.1.2007. I følge vannforskriften skal alle vannforekomstene i Norge ha minst "god" kjemisk og kvantitativ tilstand innen 2021. Dette reguleres ved å klassifisere og karakterisere miljøtilstanden til alle vannforekomstene.

I denne oppgaven er det utført en foreløpig akvifer karakterisering ved å kartlegge noen av de fysiske faktorene som er beskrevet i veileder 03.2013 utarbeide av NVE, denne veilederen beskriver hvordan grunnvannsforekomstene i Norge skal karakteriseres.

Akviferen Hagadrag er en viktig grunnvannkilderessurs for Bø kommune, det benyttes tre pumpebrønner for å forsyne Bø vassverk.

Data fra 2012 til 2014 ble innhentet ved feltarbeid og analysert ved modelleringsarbeid i ArcGIS, i tillegg ble data fra Bø vassverk og andres resultater fra tidligere undersøkelser benyttet.

Resultatene fra senkningsdata og strømningsmønster viser at pumpebrønn 4 har sitt eget strømningsområde og at pumpebrønn 2 og 3 har en interaksjon.

Strømningsmønstrene i akviferen viser at de ulike påvirkningene som denne er utsatt for, førte til at akviferen ble klassifisert som sårbart. Metoden ga ikke svar på i hvilken grad disse påvirkningene kan forringe grunnvannskvaliteten.
Abstract

Norway implements the EU Water Framework Directive 2000/60 / EC by preparing national regulations for water resources management which entered into force on 1.1.2007.

According to this directive, all water bodies in Norway must have at least "good" chemical and quantitative status by 2021. One step in this direction is by classifying and characterizing the environmental condition of all water bodies.

This master thesis work has developed a preliminary aquifer characterization by identifying some of the physical factors following the guideline 03.2013 develop by NVE. This guide explains how groundwater deposits in Norway can be characterized.

Hagadrag aquifer is an important groundwater source for the Bø municipality, this aquifer uses three pumping wells to supply water to the Bø purification plant.

Data from 2012 to 2014 were collected through fieldwork and analyzed by GIS modeling, in addition to the results of previous research and data from Bø water purification plant.

The results of flow patterns and drawdown data shows that well 4 has its own flow area and well 2 and 3 have an interaction.

Flow patterns in the aquifer Hagadrag shows that the various impacts that it is exposed to, leads to classifying the aquifer as vulnerable. The method did not provide answers to which extent the impacts can affect the quality of groundwater.
Innholdsfortegnelse

1 Innledning ..9
 1.1 Bakgrunn ..9
 1.1.1 Problemstilling og målsetning ...9
 1.2 Lovverk og grunnvann ...11
 1.2.1 Europaparlaments- og rådsdirektiv 2000/60/EF- EU’s Vanndirektiv11
 1.2.2 Europaparlaments- og rådsdirektiv 2006/118/EC-EU’s grunnvannsdirektiv12
 1.2.3 Veileder 03:2013 karakterisering av norske grunnvannsforekomster med
 forslag til påvirkninganalyse ...12
 1.2.4 Fysiske faktorer ..13
 1.2.4.1. Grunnvannsdyp ...13
 1.2.4.2. Hydraulisk vannledningsevne og strømningsforhold14
 1.2.5 Sårbarhet ...15
 1.3. Akviferbeskrivelse ..15
 1.3.1. Beliggenhet og aktiviteter ...15
 1.3.2. Akvifer Hagadrag og pumpebrønner ...16
 1.3.2.1. Pumpebrønn 2 og 3 ...18
 1.3.2.2. Pumpebrønn 4 ...18
 1.3.3 Akvifer avgrensning ...19
 1.3.3.1. Grenser og nedbørsfeltet i akvifer Hagadrag ..19
 1.3.4. Berggrunn ...21
 1.3.5. Kvartærgeologi ...22
 1.4. Bø elva målestasjon ..23
 1.4.1. Vannføring i Hagadrag ..24
 1.4.2. Vannforbruk og elvevannføring ...25
 1.4.3. Nedbør 2013/2015 ..26

2. Metode ..27
 2.1. Gis og Model Builder ...27
 2.1.1. Oppbygning av akvifer kart ...27
 2.2. Høydeverdier og koordinater til alle brønnene ...28
 2.3. Digital terreng model (DTM) ..28
2.3.1. Oppbygning av en DTM... 30
2.4. Ekvipotensiale linjer.. 31
2.5. Transmissivitet og Magasinkoeffisient....................................... 32
2.6. Grunnvannsreservoarer med fritt vannspeil (Theis formel)........... 33
2.7. Konstant strømning av en brønn i en fri akvifer (Hw).................. 34
2.7.1. Beregn senking i pumpebrønn ved stasjonær tilstand 34
2.8. Grunnvannsavstand.. 35
2.8.1. Høyde over havet til grunnvannstanden (Gh) i observasjonsbrønnene 36
2.8.2. Høyde over havet til grunnvannstanden i pumpebrønn 2 og 3 37
2.9. Oppbygning av modell i ArcGis som viser strømningsmønsteret for pumpebrønn 4 og observasjonsbrønnene............................... 38
2.10. Oppbygning av modell som viser strømningsmønsterene for alle pumpebrønnene og observasjonsbrønnene............................... 39
2.11. Bø elva ... 40
2.12. Grunnvannsdyp... 40

3. Resultater ... 41
3.1. Modell som viser strømningsmønsterene for pumpebrønn 4 og observasjonsbrønnene / 29.10.2012................................. 41
3.1.1. Kart over strømningsmønsterene ved pumpebrønn 4 og observasjonsbrønnene / 29.10.2012 .. 42
3.2. Modell som viser strømningsmønsterene for pumpebrønn 2, 3 og observasjonsbrønnene... 47
3.2.1. Kart over strømningsmønsterene i hele akviferen 49
3.2.1.1. Strømningsmønster den 17.06.2014 ... 50
3.2.1.2. Strømningsmønster den 05.10.2014 ... 52
3.3. Modellering i 3D .. 55
3.3.1. Høyden til grunnvannstanden rundt pumpebrønn 4 ved tre forskjellige nivåer ... 57
3.3.2. Grunnvannavstanden .. 58
3.3.3. Grunnvannsdyp... 59

4. Diskusjon ... 60
4.1. Karakterisering... 60
Forord

Målsettingen for oppgaven er å karakterisere akviferens sårbarhet i følge EUs grunnvannsdirektiv ved å identifisere senking og strømningsmønster ved intermittent drift av brønnene, og ved 3d visualisering av akviferen og brønner. Dette har vært gjennomført ved innhenting av data fra observasjoner og undersøkelser fra 2012 til 2014 i Hagadrag, Bø Kommune.

Det har vært veldig lærerikt innenfor det fagfeltet jeg er interessert i (Gis) og dette gjør at mastergraden min fra Spania blir godkjent i Norge. Det ble en lang prosess med ulike utfordringer, frustrasjoner og mye tid som ble brukt for å komme fram til det beste resultatet.

Jeg takker min datter Thea Elisabeth Delgado Solli som har vært inspirasjonskilde for å gjennomføre denne oppgaven. Jeg takker også til alle vennene mine som passet på min datter da jeg jobbet med denne oppgaven og til de som hjalp meg med korrekturlesning.

Porsgrunn, mai 2016
Erika Marcela Delgado Solli
1 Innledning

1.1 Bakgrunn

1.1.1 Problemstilling og målsetning

EUs grunnvannsdirektiv 2006/118/EC ble utviklet etter kravene i artikkel 17 av EUs vanndirektiv, som definerer strategier for å forebygge og kontrollere forurensning av grunnvann.

EUs grunnvannsdirektiv 2006/118/EC «On the protection of groundwater against pollution and deterioration» sier at grunnvann skal beskyttes mot forringelse og kjemikal forurensning siden alle økosystemer og menneskenes forsyning av vann er avhengig av grunnvann.

Norge har utarbeidet vannforskriften som trådte i kraft i 1.1.2007, og gjennomfører EUs vanndirektiv 2000/60/EF. Formålet med vannforskriften er å sikre at alle vannforekomstene i Norge skal ha minst "god" kjemisk og kvantitativ tilstand innen 2021. Tilstanden skal beskyttes mot forringelse, forbedres og gjenopprettes. Overflatevann og grunnvann har stor påvirkning på hverandre, når det sikres en god tilstand for en av disse, blir dette avgjørende for en god tilstand til den andre.

Vannforskriften (§17) sier at alle grunnvannsførekomster med større kapasitet enn 10 m³ per døgn eller som forsyner mer enn 50 personer med drikkevann, skal avgrenses og beskrives. Dette gjelder også grunnvannsførekomster av samme størrelse som er tiltenkt benyttet til samme formål i fremtiden. Kravene gjelder derfor for Bø kommune.
sin grunnvansforsyning på Hagadrag som forsyner mer enn 4000 mennesker med vann, og har et døgnforbruk på 2700 – 3600 m3.

I 2004 utførte Norge det første karakteriseringsarbeidet (Tvedten 2008), kun noen få grunnvansforekomster i landet ble karakterisert. Det vil si at det mangler mye informasjon ennå. Denne prosessen bør forbedres gjennom en hensiktsmessig karakterisering og dessuten en kontroll av de som allerede har blitt karakterisert og til de som skal karakteriseres. Fylkeskommunen er ansvarlig for gjennomføringen av det gjenstående karakteriseringsarbeidet.

Som en følge av vannforskriften fra 2007 har Norge laget en veileder 03.2013 som beskriver en metode for å karakterisere miljøtilstanden til grunnvansforekomster. Miljøtilstanden er delt i to deler, kvantitative og kjemisk tilstand (Iversen & Gunnarsdóttir 2013).

Det er tre pumpebrønner i akviferen Hagadrag, og ved intermittant drift av disse kan akviferen endre seg over tid.

Målsettingen for oppgaven er å karakterisere akviferens sårbarhet ved å identifisere senking og strømningsmønstre ved intermittant drift av brønnene, og ved 3d visualisering av akviferen og brønnene.
1.2 Lovverk og grunnvann

2.8.1 Europarlaments- og rådsdirektiv 2000/60/EF- EUs Vanndirektiv

Grunnvann er en fornybar ressurs som kan bruke tid på å bygge seg opp og fornyes, og derfor må det sikres at det er en god tilstand for grunnvannet. Det er viktig å planlegge langsiktig og å sette inn tiltak tidlig.

Medlemslandene skal gjennomføre nødvendige tiltak for å forebygge eller begrense tilførselen av forurensende stoffer til grunnvannet og forebygge forringelse av tilstanden til alle grunnvannsforekomster.

Grunnvannsforekomster er forbundet med overflatevann og jordøkosystemer, den økologiske kvaliteten til overflatevann og jordøkosystemer kan bli påvirket av den kvantitative og kjemiske tilstanden til grunnvannsforekomster. Derfor er det viktig at tiltak blir samordnet mellom dem.

EUs vanndirektiv krever at det skal foretas to beskrivelser av grunnvannsforekomsten. Den første beskrivelsen gjelder vurdering av bruken og i hvilken grad den står i fare for å ikke oppnå miljømålet. Beskrivelsen skal identifiseres grunnvannsforekomstens beliggenhet, grense og belastningen som grunnvannsforekomsten kan bli utsatt for. Arten av de overliggende lagene i nedbørfeltet som grunnvannet får tilført vann fra og hvilke økosystemer som er direkte avhengige av grunnvannsforekomsten må også være en del av beskrivelsen.

En grundigere beskrivelse må gjøres når det er definert at grunnvannsforekomsten er utsatt for forurensning. Den skal inneholde opplysninger om menneskelig påvirkning, detaljert informasjon om hydrogeologiske egenskaper, kjemiske, geologiske og pedologiske data (EUs vanndirektiv 2000).
1.2.2 Europaparlaments-og rådsdirektiv 2006/118/EC-EUs grunnvannsdirektiv

Artikkel 17 i EUs rammedirektiv for vann (direktiv 2000/60/EF) forutsetter at det skal utarbeides et eget datterdirektiv for grunnvann, og derfor ble EUs grunnvannsdirektiv utarbeidet i 2006.

Hovedmål til EUs grunnvannsdirektiv er at medlemslandene må beskytte grunnvannet mot forurensning og forringelse, dette gjøres ved at det etableres felles kvalitetsstandarder for nitrater og pesticider.

Det stilles krav om at en vesentlig og vedvarende stigende tendens av forurensende stoffer, skal identifiseres og reverseres. Det skal iverksettes tiltak for å forhindre og begrense forurensning fra punktkilder og diffuse kilder.

Norsk lovverk implementerte EUs grunnvannsdirektiv i høsten 2010 som en integrert del av den norske vannforskriften.

1.2.3 Veileder 03:2013 karakterisering av norske grunnvannsforekomster med forslag til påvirkninganalyse

Norge må rapportere tilstanden til grunnvannet til EU, dette gjøres ut fra karakterisering og overvåkning av grunnvannsforekomster. Denne veilederen ble laget som et forslag for å vurdere grunnvannsforekomstene sin sårbartighet og tilstand.

Sårbarheten er et uttrykk for hvor utsatt en grunnvannsforekomst vil være for å bli forringet av forurensningskilder på overflaten. Hvor raskt forurensningen når ned til grunnvannet vil avhenge av nedbørssforhold, jordens egenskaper, mektighet, størrelsen på akviferen og transporten i akviferen (Iversen & Gunnarsdóttir 2013).
Denne veilederen bruker en modell som heter DRASTIC som ikke kan brukes i denne oppgaven på grunn av manglende data. Noen av de fysiske faktorene ble analysert for å gi en foreløpig karakterisering av akviferen Hagadrag.

1.2.4 Fysiske faktorer

De neste faktorene er en del av de hydrogeologiske egenskapene og hydrologiske forholdene. De hydrogeologiske egenskapene omfatter magasintype, grunnvannsnivå, permeabilitet og grunnvannsstrømning. Disse tolkes ut fra geologisk avsetningstype og data fra hydrogeologiske undersøkelser (sonderboringer, brønner, seismikk).

Resultater fra prøvepumping og kornfordelingsanalyser er verdifulle datagrunnlag (Hilmo 2007).

Hydrologiske forhold omfatter hovedsakelig interaksjon med overflatevann og vurdering av grunnvannsdannelse. Denne interaksjonen med overflatevann er vurdert på grunnlag av overflatehydrologi (nivå i tilstøtende bekker, elver, vann) samt observasjoner i brønner (Hilmo 2007).

1.2.4.1. Grunnvannsdyp

Veileder 03:2013 definerer grunnvannsdyp for en åpen akvifer og for en lukket akvifer. For en lukket akvifer ligger grunnvannet under et tett lag, og vannet kan ikke gå gjennom dette. For en åpen akvifer er grunnvannsdypet den vertikale avstanden fra jordoverflaten til nivået hvor alle porene er fylt med vann, og trykket ved grunnvannets overflate er lik atmosfæretrykket.

Jo større er dybden til grunnvannet er, jo mindre sårbart er grunnvannet for å bli forurenset. I følge veilederen har norske grunnvannforekomster en lav grunnvannsdybde. Målingene av grunnvannsdyp fra målestasjon Hagadrag i Bø viser en median dybde på 5,6 meter og disse var tatt ut i fra av det landsomfattende mark- og grunnvannsnettet (LGN) (Iversen & Gunnarsdóttir 2013).
I 2008 gjorde NVE en grunnvankarakterisering i fire kommuner. NVE foreslo å bruke følgende akviferentykkkelser: Tynn akvifer 3 m (0-5 m), middels akvifer 15 m (5-25 m) og tykk akvifer 30m (>25 m) (Tvedten 2008).

Hagadrag ligger i Bø kommune og i følge undersøkelsen som ble nevt tidligere så er det akviferen Hagadrag en tynn akvifer siden grunnvannsstanden rundt de aktuelle brønnene er 2 – 3 m. Dette kom fram når vannavstanden ble målt direkte på feltet.

1.2.4.2. **Hydraulisk vannledningsevne og strømningsforhold**

Hydraulisk vannledningsevne defineres som akviferens evne til å transportere vann. Ut fra DRASTICs modell har mettet vannledningsevne fra breelv- og elveavsetninger en stor sårbarhet (Iversen & Gunnarsdóttir 2013).

Mettet vannledningsevne er en funksjon av kornstørrelsesfordelingen. Det er viktig med mange målinger for å få en representativ verdi.

Det finnes tidligere prøver for kornstørrelsesfordeling rundt pumpebrønn 4, men uten analyse.

Kornfordelingsanalyser rundt pumpebrønn 2 og 3 ble utført i to tidligere oppgaver (Halvorsen & Strømme 1989)og (Langeland & Moe 2003).

Strømningsforholdene er en viktig del av denne oppgaven, og disse vil vise hvordan akviferen blir påvirket av vannkilder og nedbør.
1.2.5 Sårbarhet

I følge rapporten skrevet av (Tvedten 2008) er sårbarheten vurdert ut fra type løsmasseoverdekning over akviferen og dybden til grunnvannsnivået. I tillegg bør det legges vekt på tykkelsen av selve akviferen.

Sårbarheten graderes i to forskjellige nivå:

1) Godt beskyttet. Lukket akvifer (beskyttet av minst 2 m tette lag for eksempel silt/leire), delvis lukket akvifer med over 10 m umettet sone eller åpen akvifer med over 20 m umettet sone.

2) Dårlig beskyttet. Åpen akvifer (uten tette lag over) og mindre enn 20 m umettet sone.

Når beskyttelsen er ukjent og det er liten umettet sone settes sårbarheten til 2. Typisk vil lavtliggende elveavsetninger uten overdekning og med høyt grunnvannsnivå få 2 i sårbarhet.

Åpne akvifere i breelavsetninger vil få 1 eller 2 i sårbarhet avhengig av tykkelsen av den umettede sonen, mens lukkede akviferer, for eksempel breelavsetninger dekt av bresjøsilt eller marin leire, som oftest vil få 1 i sårbarhet. Denne inndelingen er kun retningsgivende.

1.3 Akviferbeskrivelse

1.3.1 Beliggenhet og aktiviteter

Bø kommune ligger midt i Telemark, har et areal på 266 km² og omtrent 5700 innbyggere (www.bo.kommune.no, 2014). Vannforsyning til Bø kommune er akviferen Hagadrag, denne ligger i Bø og Seljord kommune, og grenser til Bøelva og Sejordsvatnet. Riksveien (Rv 36) går over akviferen, det er også to grustak i Herremo avtseningen, det gamle Verpe grustak og et som startet i 2013. Det er dyrket mark med gressproduksjon nordvest i akviferområdet, se kart 1-1.
1.3.2 Akvifer Hagadrag og pumpebrønner

En akvifer er definert som at løsavsetningene med grunnvann må kunne lede vann i store nok mengder til å forsyne en brønn (Fetter 1994 s. 95). De permeable massene har god vannledningsevne og består av sand, grus eller stein. Avsetningene stammer fra breelver eller er postglaciale avsetninger (Jansen 1980).

Denne akviferen oppfyller kravene fra vannforskriften § 17, siden Hagadrag forsyner mer enn 4000 innbyggere og vannforbruket er 2700 - 3600m3/d i hele Bø kommune.

I Hagadrag er det tre løsmassebrønner som blir pumpet hele året, og de ligger cirka 1.5 km fra Seljordsvatnet.

Alle brønnene er utstyrt med grunnvannspumper med kapasitet på 150 m3/t (42 l/s) som pumper mot høydebassenget på Kupanuten med ca 90 m løftehøyde. Driften på brønnene blir alternert og to av brønnene står kontinuerlig i drift (Kraft 2011).

Råvannskvaliteten er god, men med noe lav pH og høyt manganinhall. Det er brønn 2 som har problemer med høyt og økende manganinhall. Det er sannsynlig at årsaken er knyttet til indusert infiltrasjon i Herretjønn (bilde 1-1). Her er det mye organisk materiale og sannsynligvis oksygenfattige forhold som fører til utløsning av mangan fra underliggende sedimenter (Kraft 2011).
1.3.2.1. Pumpebrønn 2 og 3

Mellom pumpebrønn 3 og Bø elva finnes det et topplag på to til fem meter som inneholder finsand, silt og organisk materiale nærmere Herretjønn (Langeland & Moe 2003).

Pumpebrønn 2 ligger under et myrområde og avsetninger består av sand og grus under et finsandlag. I følge (Halvorsen & Stømme 1989) ligger pumpebrønn 2 i en esker også.

I reguleringsplanen for beskyttelse av Bø vassverk står det at pumpebrønn 3 er 30 m dyp, med filterplassering på 25 – 30 meter (Kraft 2011).

1.3.2.2. Pumpebrønn 4

Pumpebrønnen 4 er 23 m lang og har et lokk med diameter på 30 cm. Sensoren henger i cirka 11 m ned i brønnen. Brønnen har et filterrør med 0.1 mm avstand mellom hvert filter, som henger fra 7 til 22 m ned i brønnen. Pumpeuttaket skjer på mellom 18 og 19 m. Det er en sump i den nederste meteren på 22-23m.

Brønnen ligger på 120.17 moh målt fra brønnlokket og 117.45 moh fra rørtoppen. Datalogger henger på 106.05 moh. Bilde 1-2 viser et eksempel på en pumpebrønn i løsmasser.
1.3.3 Akvifer avgrensning

1.3.3.1. Grenser og nedbørsfeltet i akvifer Hagadrag

I følge EUs direktiv må alle grunnvannsforekomstene som brukes som drikkevannskilde karakteriseres. En viktig faktor for å karakterisere Hagadrag akviferen er å avgrense denne.

Forekomstenes beliggenhet og grenser er i hovedsak bestemt på grunnlag av tidligere utført hydrogeologisk og kvartærgeologisk kartlegging, samt data fra NGUs hydrogeologiske database (boringer, brønner, grunnvannskvalitet), grunnvannsundersøkelser og andre grunnundersøkelser. I tillegg er det gjennomført feltbefaring for vurdering av enkelte forekomster (Kraft 2007).
I denne oppgaven ble det brukt en akvifersavgrensning som tidligere har blitt utarbeidet ved Høgskolen i Telemark (Klempe 1994).

I en tidligere rapport (Gulbrandsen et al 2005) ble nedbørsfeltet avgrenset. Det ble laget et kart over nedbørsfelt med delnedbørsfelt og med sine respektive strømningsretninger. Bilde 1-3 viser syv delnedbørsfelt, hvor vannet strømmer i hele nedbørsområdet.

Bilde 1-3. Bildet til høyre viser plasseringen av akviferen i nedbørsområdet og bildet til venstre viser beliggenheten til akviferen i forhold til vannkildene. Bildene er hentet fra (Gulbrandsen et al 2005).

Kupatjønn er delt i to på grunn av en vannledning med fylling. Elva Hønseåa har utløp i Seljordsvatn men har også en naturlig dreneringsvei mot Bø elva, se forrige bilde 1-3 øverst til høyre.

1.3.4 Berggrunn

Bergartene som dominerer i Bø er gneis, granitt og amfibolitt og ble dannet i prekambrium for cirka 4.5 milliarder til 600 millioner år siden. Bergartene ligger åpent i terrenget og det er dekket med et tynt lag løssmasse (Dons & Jorde 1978).
Hagadrag området er dekket av en stor ensartet gneisgranitt. Granitten er omkring 1200 millioner år gammel (Arne Solli, Bergrunnkart i Telemark. NGU. E-post 05.09.2014). Bilde 1-4 er hentet fra berggrunnkart 1:250 000, se vedlegg 1

1.3.5 Kvartergeologi

Hagadrag ligger i glasifluviale avsetninger og deler av området ligger under maringrensen fra den siste istiden. Herremoen glassifluviale avsetning ligger i den østlige delen av akviferen Hagadrag og marin grensen der ligger på cirka 134 moh, topplaget i deltavsetningen består av stein, blokkrik grus og sand. (Jansen 1986, s. 60).
Avsetningene er dannet i kontakt med is og dette kan ses som dødisterreng og dødisgroper, en stor del av akviferen er sammensatt av breelavsetning og elveavsetning, en veldig liten del består av tynn morene og fjell. Kart 1-2 ble laget med kartgrunnlag fra en tidligere rapport (Klempe 2010).

Pumpebrønn 3 og 4 ligger på breelvaavsetninger og pumpebrønn 2 på elveavsetninger. Observasjonsbrønnene rundt pumpebrønn 4 og observasjonsbrønn 3.6 ligger på breelvaavsetninger. Flere av observasjonsbrønnene rundt pumpebrønn 2 og 3 ligger på elveavsetninger.

![Jordart i akvifer Hagadrag](image)

Kart 1-2. Denne figuren viser en stor del av breelavsetninger som kan ha gode egenskaper til løsmassebrønn i akviferen Hagadrag (Klempe 2010).

1.4 Bø elva målestasjon

Forholdet mellom akviferen Hagadrag og Bøelva er en toveiskommunikasjon, slik at grunnvannet både mates av og mater elver og innsjøer. Hvilke vei dette foregår er avhengig av grunnvannsnivået og vannføringen i vassdragene.

![Målestasjon Hagadrag](image1.png)

Bilde 1-6. Hagadrag målestasjon. Rød firkant viser skalaen ut i Bø elva.

1.4.1 Vannføring i Hagadrag

Figur 1-1 viser vannføringen i perioden fra mai 2012 til februar 2015. Verdiene i diagrammet for hver måned er gjennomsnittet av alle verdier i måneden.

I denne perioden var de maksimale vannføringsverdiene i mai 2013 (135,78 m³/s), mai 2014 (87,029 m³/s), april 2014 (65,10 m³/s) og 24 oktober 2014 (73,27 m³/s). De laveste vannføringsverdiene var i september 2012 (4,26 m³/s), oktober 2013 (7,9 m³/s), juli 2014 (10,4 m³/s) og oktober 2014 (4,47 m³/s).
1.4.2 Vannforbruk og elvevannføring

Vannforbruket i Bø i Telemark er høyt om sommeren grunnet plenvanning og Bø sommerland. Om vinteren, våren og høsten er vannforbruket normalt. Maksimalt vannforbruk er 3800 m3/d, det normale vannforbruket er 2700 m3/d.

På grunnlag av elvevannføringen og vannforbruket ble det bestemt hvilke perioder som skulle brukes for å lage ulike oversikter over strømningsmønster til grunnvannet. Det var ønskelig å lage strømningsmodeller for normalt vannforbruk og høyt vannforbruk ved normal og liten vannføring som vist i tabell 1-1.

Tabell 1-1. Perioder som ble brukt for å lage strømningsmønster i akvifer Hagadrag

<table>
<thead>
<tr>
<th>Høyt vannforbruk og normal vannføring</th>
<th>Normalt vannforbruk og liten vannføring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni 2014</td>
<td>Oktober 2012/Oktobre 2014</td>
</tr>
</tbody>
</table>

1.4.3 Nedbør 2013/2015

Det finnes en målestasjon i Bø kommune, 105 m.o.h. Stasjonen ble satt opp i januar 2005, den måler temperatur og nedbør. Observasjonsdata ble innhentet fra eklima.no sin nettside for perioden februar 2013 til februar 2015. Verdiene i diagrammet for hver måned er gjennomsnittet av alle verdiene i måneden.

Det mangler data for noen dager, men i denne oppgaven er det viktigst å ha en oversikt over når det var mye eller lite nedbør i løpet av de to siste årene. Det ble tatt hensyn til dette når det skulle velges representative perioder for å analysere strømningsforholdene i akviferen.

2. Metode

2.1. Gis og Model Builder

Det er mulig å endre produktet på enkel måte hvis det er satt opp noen bokser med faste parametre (lyseblå), bilde 2-1. Man kan kjøre hele prosessen igjen fra begynnelse til slutt eller bare en del av prosessen.

2.1.1 Oppbygning av akvifer kart

Først ble det laget et kart over akviferen Hagadrag. For å kunne lage dette, ble FKB data innhentet fra Kartverket. For å ha mer kontroll på hvilke prosedyrer eller funksjoner som ble brukt, ble det valgt å bruke Model Builder.

Bilde 2-1. Eksempel på oppbygningen av en model i Model Builder (Esri 2015).
Som nevnt tidligere ligger akviferen Hagadrag i Seljord og Bø kommune. Disse områdene ble fusjonert (merge), deretter ble det digitalisert et polygon av området og til slutt ble det brukt en funksjon som heter iterate features classes for clip av alle data. Se figur 2-1.

Figur 2-1. Prosedyrer i Modell Buider. Iterate Features og en clip funksjon velger de dataene man trenger for et bestemt område.

2.2. Høydeverdier og koordinater til alle brønnene

Koordinatene og høyder over havet ble lest inn med GPS utstyr fra Bø kommune, men det ble gjennomført en nivellering for de usikre høydene til punktene som ligger i tett skog.

Det ble laget en tabell med alle koordinater og høyder i Excel, denne tabellen ble fremstilt i ArcMap med Add XY funksjon og resultatet er et punkttema. Koordinatene er viktige for å kunne plassere brønnene i et kart og høydeverdiene legges inn i ArcGis som en Z verdi. Dette visualiseres i en 3d figur i ArcScene. Vedlegg 2.

2.3. Digital terreng model (DTM)

En digital terreng modell er et viktig verktøy i bruk av hydrologiske, geomorfologiske og biologiske aplicasjoner (Moore, Grayson & Ladson 1991 s.1).
En DTM gir en mulighet for å modellere, analysere og vise fenomener knyttet til topografi. Det er en digital representasjon av en del av jordoverflaten og dermed kan man se høydeforskjeller i terrengeoverflaten både på land og havbunnen.

Disse høydeforskjellene legges i modellen med en z verdi og i tillegg må det legges inn koordinater (x, y) for å kunne vise en tredimensjonal digital modell av terrenget.

For å bygge en DTM er det nødvendig å etablere et forhold mellom de topologiske dataelementene ved å interpolere, dette gir en tilnærmet overflate bilde. Det vil si at man kan finne verdier mellom punkter (ukjente steder) med kjente verdier. I denne oppgaven ble det brukt lineær interpolering.

Et TIN er et nettverk av sammenkoblede trekanter som representerer terrenget. Alle nodene som ligger i hjørnene av trianglene har en høydeverdi. Mellom punktene dannes det hellende flater som følger terrenget (Bernhardsen 2000).

Trianguleringen blir laget av forskjellige algoritmer, den mest vanlige er Delaunay som består av to ting: trekanter skal være omskrevet med en sirkel og det skal være tre punkter på denne sirkelen.
Etter triangulering kan det dukke opp noen konvekse hull som kan ordnes med å legge inn en soft clip, dette er en funksjon som man velger når det skal bygges opp en TIN. Datagrunnlaget for å lage en TIN består av punkter, linjer og flater. Fra z verdiene blir det generert punkter og fra knekkepunkt i linje segmenter (Esri 2015).

For å lage en TIN det er lurt å sjekke datagrunnlaget nøyaktig. Før TIN ble laget i denne oppgaven bruktes en funksjon som heter "Generalize" for å forbedre høyde linjer.

Hvis man vil endre eller stoppe trianguleringen kan man bruke Hard breaklines. Disse blir blant annet elver, innsjøer, kystlinjes, osv.

2.3.1 Oppbygning av en DTM

For å bygge en digital terrenngmodell (DTM) for akviferen ble verktøyet Model Builder også benyttet. Figur 2-2.

Med denne metoden ble det laget en DTM for markoverflate og en for bunnflate, figur 2-2.

Figur 2-2. Viser prosedyrene for måten en DTM ble bygd opp.
ArcScene ble brukt for å kunne visualisere terrengmodellen i 3D. I ArcScene må det
brukes TIN format (Triangulated Irregular Network). Deretter brukte vi Features to 3D
funksjon i ArcScene for å visualisere vannlinjer og veier i terrengmodellen (DTM) i 3D.

For å lage DTM bunnflate måtte det benyttes et berggrunnskart som kartgrunnlag.
Dette ble skannet og digitalisert (pers. med Harald Klempe, Høgskolen i Sørøst- Norge.
27. mai 2014). De skannede bildene ble georeferert til koordinatsystemet WGS 1984
UTM sone 32N.

Punkttema med alle brønnene ble fremstilt som 3D objekt i terrengmodellen ved å
bruke funksjonen "Extrude".

Modellen i figur 2-2 ble også brukt for å lage 3D bilder som viser høydene til
grunnvannavstanden på forskjellige filterdybder.

2.4. Ekvipotensiale linjer

Vannet beveger seg fra de punktene som har mer energi til de som har mindre energi.
Denne energien blir kalt hydraulisk potensial, og dette er vist ved høyden av vannsøylen
i det aktuelle punktet

Strømningslinjene er et resultat av hastighetsvektorene på et gitt tidspunkt og de
ekvipotensiale linjene er et geometrisk sted for punkter i rommet, som har samme
hydrauliske potensial. Dermed blir strømningsretningen laget vinkelrett på
ekvipotensiallinje ved å søke den maksimale gradient.

Strømningsnettet er en representasjon av strømningsretningen i et plan ved flylinjer og
ekvipotensiallinjer (Sanchez 2012).

Når vannet strømmer fra et lag til et annet lag med en annen hydraulisk konduktivitet,
vil retningen av strømning endres. Dette kalles refraksjon av strømningslinjer (Fetter
1994, s. 136).
2.5. **Transmissivitet og Magasinkoeffisient**

Transmissivitet (T) og magasinkoeffisient (S) er egenskaper som er relevant for evaluering av grunnvann. Transmissivitet (T) viser sammenhengen mellom hydraulisk ledningsevne og akviferens mektighet.

Formel 1

\[
T = bK \\
T = \text{transmissivitet (m}^2/\text{sek)} \\
b = \text{akvifer mektigheten (m)} \\
K = \text{hydrauliske konduktiviteten (m/sek)}
\]

Transmissivitet viser vannets vannføring gjennom en enhetsbredde av en akvifer gjennom hele mektigheten under en gradient på 1 (Fetter 1994, s. 100).

Magasinkoeffisient er volumet av vann som reduserer eller tilfører i lagring per enhet akviferoverflateareal ved å endre trykkhøyden med én meter. Magasinkoeffisient for en akvifer med fritt vannspeil er derfor lik effektiv porøsitet, og betegnes som spesifikk ytelse (Andersen & Haman 1970, s. 33).

Magasinkoeffisienten er fra 0.02 til 0.3 for en åpen akvifer, for en lukket akvifer er det vanlig å fa S verdier mindre enn 0.005 (Fetter 1994, s.102). S verdier for grus og sand sendimenter er det 0.05-0.015 for en åpen akvifer og 0.0001 for en lukket akvifer (Villanueva & Iglesias 1984, s. 29).

Den hydrauliske ledningsevne (K) viser spesifikk vannføring ved en gradient lik 1 (m/s).

Tette masser som silt og leire har lave K verdier, mens grovere og sorterte masser har høyere. Tabell 2-1 viser på de typiske K verdiene i løsmasser (Fetter 1994, s. 85).
2.6. Grunnvannsreservoarer med fritt vannspeil (Theis formel)

Dataene fra pumpeførsok og observerte pumpeperioder under ordinær drift ble plottet på et semilogaritmisk papir. Tidssenkningen ble plottet på den logaritmiske aksen og senkningsavstanden ble plottet på den lineære aksen. Gjennom de avsatte punktene trekkes en rett linje, hvis helning bestemmes som senkningen over en dekade (Δs) (Andersen & Haman, 1970, s. 31).

Formel 2

\[
T = \frac{0.183 \times Q}{\Delta s}
\]

T = transmissivitet (m²/sec)

Q = pumpekapasitet (m³/sec)

Δs = senkning over en dekade (m)

Formel 3

\[
S = \frac{1357t_o}{r^2}
\]

S = magasinkoeffisient (dimensjon løs)

t₀ = tidsverdien i skjæringspunktet for den rette linja og tidsaksen ved senkning lik null (min)

r = avstand mellom pumpebrønn og observasjonsbrønn (m)
2.7. **Konstant strømning av en brønn i en fri akvifer (Hw)**

Nivået på grunnvannsspeilet i bakken rundt brønnen blir senket når vannet pumpes ut av en brønn. Dette skaper en sone kalt senkingstrakt. Neste bilde viser en senkingstrakt i nærheten av en pumpebrønn med en pumpekapasitet (Qw) i en åpen akvifer, se bilde 7 (Bear 1979, s. 309).

![Bilde 2-3. Radial strømning til en brønn i en åpen akvifer (Bear 1979, s. 310).](image)

2.7.1 Beregn senking i pumpebrønn ved stasjonær tilstand

Formel 4

\[H_0^2 - h_w^2 = \frac{Q_w}{\pi K} \ln\left(\frac{R}{r_w}\right) \]

Formel 5

\[h_w = \sqrt{H_0^2 - \frac{Q_w}{\pi K} \ln\left(\frac{R}{r_w}\right)} \]

- \(H_0\) = høyde til grunnvannsavstand i observasjonsbrønn (m)
- \(h_w\) = høyde til grunnvannsavstand i pumpebrønn (m)
- \(Q_w\) = Pumpekapasitet i brønn (m\(^3\)/sek)
- \(K\) = hydrauliske konduktiviteten (m/sek)
- \(R\) = Avstand fra pumpebrønn til observasjonsbrønn
- \(r_w\) = radius av pumpebrønn (m)
2.8. Grunnvannavstand

For oppnå målet i dette prosjektet var det viktig å velge representative punkter rundt pumpebrønn 2, 3 og 4, ved bruk av flere observasjonsbrønner. I hver brønn er det en sensor for trykk og temperatur. Disse sensorene registrerer data kontinuerlig og kan leses av på en PC.

Sensoren eller datalogger registrerer trykk og temperatur med et tidsintervall, i dette tilfellet ble det registret hver time. For hele området ble det brukt en barometrisk logger, som ble hengt i en observasjonsbrønn. Dataene fra dataloggerne og barometer er lest inn og behandlet i Excel. Disse loggerne er Minidiver fra Schlumberger, bilde 2-4.

Bilde 2-4. Bildet til venstre viser en Minidiver som gir trykk og temperatur i hver piezometer, bildet til høyre viser en observasjonsbrønn med de tre piezometer og de er markert i forhold til filternivået.

Rundt pumpebrønn 2 ligger 4 observasjonsbrønner og rundt pumpebrønn 3 ligger 3 observasjonsbrønner. Alle observasjonsbrønnene ligger i forskjellige nivåer og i forskjellige avstander fra pumpebrønnene.

Rundt pumpebrønn 4 ligger 6 observasjonsbrønner med tre piezometer. Piezometrene er laget av polyetylen med 4 cm diameter og har 3 forskjellige filternivåer som er 5, 12 og 19 meter. Borsett fra 4.3 som har 3 filternivåer 5, 7 og 10 meter.
Vedlegg 3 viser informasjon om alle brønnene, dybde til loggerne og avstander fra observasjonsbrønnene til pumpebrønnene rundt dem.

2.8.1 Høyde over havet til grunnvannstanden i observasjonsbrønnene (G_h)

Høyden til grunnvannstanden for alle observasjonsbrønnene er beregnet med formel 6 og 7. Trykkdata ble registrert fra hver datalogg i hver piezometer og for hvert nivå. I de første utregningene ble det brukt informasjon fra piezometer ved filternivået på 5 meter.

Trykkdataene fra sensorer og barometer i observasjonsbrønnene er registrert hver time, men denne måtte interpoleres for å ha riktige høydeverdier for det samme tidspunktet.

Ut i fra interpolerte trykkverdier ble det regnet ut høyde over havet verdier (G_h) for hvert tidspunkt og for hver observasjonsbrønn.

Resultatet G_h ble anvendt til å bygge en modell i ArcGis som viser strømningsmønster i akviferen.

Formel 6

$$ p = T_d - T_b $$

- p = Hydrostatikk trykk
- T_d = trykk fra dataloggerne
- T_b = Atmosfæretrykk

Formel 7

$$ G_h = H_r - F_n - p $$

- G_h = høyde over havet til grunnvannstand (m)
- H_r = høyde over havet på toppen av rør i hver brønn (m)
- F_n = filternivået der henger sensor (m)
For å kontrollere resultatene fra den forrige metoden som beregnet grunnvannstanden, ble det målebånd metoden benyttet for å sammenligne.

Den 23.06.2014 ble det brukt et målebånd under feltarbeidet for å måle grunnvannstanden direkte i terrenget på et tidspunkt. Bilde 2-5 viser målebåndet som ble brukt.

![Bilde 2-5. Målebånd for å måle grunnvannstanden.](image)

2.8.2 Høyde over havet til grunnvannstanden i pumpebrønn 2 og 3

Det finnes ikke data for grunnvannavstanden for pumpebrønn 2 og 3. For å finne ut dette, måtte de hydrauliske parametre transmissivitet (T) og magasinkoeffisient (S) beregnes med ligninger fra kappitel 2.5. Dette måtte først gjøres for alle observasjonsbrønnene rundt disse to pumpebrønnene.

Dataene fra observasjonsbrønner ble plottet på et semilogaritmisk papir og etter å ha beregnet T og S for alle observasjonsbrønnene, ble det valgt en T og S verdier fra den observasjonsbrønnen som er nærmest pumpebrønnen, tabell 3-3.

Deretter ble formel 1 brukt for å beregne den hydrauliske konduktiviteten (K). Denne parameteren behøves i formel 5 som gir høyde over havet til grunnvannstanden i pumpebrønn 2 og 3. Formel 5 ble lagt inn i Excel.
2.9. Oppbygning av modell i ArcGis som viser strømningsmønsteret for pumpebrønn 4 og observasjonsbrønnene

For å kvalitetssikre beregningene ble det innhentet pumpedata fra vannverket i Bø kommune.

For å bygge en modell av strømningsmønsteret ble det valgt data fra den 29.10.2012. Da kunne vi se at vannet ble pumpet ut, dette viser en tydelig senkning og en stigning, se figur 3-1.

Data fra pumpebrønn 4 ble behandlet på en annen måte enn data fra observasjonsbrønnene. Først ble høyde over havet til grunnvannstanden i pumpebrønn 4 beregnet, som forklart i kapittel 3.1. Deretter ble \(G_h \) verdier for observasjonsbrønnene beregnet med formelene som ble forklart i kapitel 2.8.1

Høyde over havet verdiene (\(G_h \)) fra observasjonsbrønnene, høyder over havet til grunnvannstanden i pumpebrønn 4 og høydeverdiene til Bø elva ble samlet i en tabell for å lage et punkttema, se vedlegg 4.

Punkttema ble brukt for å lage en TIN som bruker en linear interpolering funksjon, deretter ble det laget en raster fra TIN og til slutt ble det laget ekvipotensiallinjer med Contours funksjon (Ekvidistanse 0.1 m, 0.2 m og 1 m) og disse linjene ble forbedret med Smooth funksjon (20 m og 50 m). Figur 2-3 viser prosedyrene i Modell Builder.

Ekvipotensiallinjer viser lik potensial i grunnvannstanden på de ulike tidspunktene på samme dato.
2.10. Oppbygning av modell som viser strømningsmønsterene for alle pumpebrønnene og observasjonsbrønnene

Strømningsmønsteret ble analysert i to perioder, tabell 1-1 viser de to periodene som ble valgt for å bygge strømningsmønstermodellene.

Høydene over havet til grunnvannstanden i pumpebrønn 2 og 3 ble beregnet ut fra formelen i kapittel 2.7 og høydene over havet til grunnvannstanden til pumpebrønn 4 ble beregnet ut fra fremgånsmåten som er beskrevet i kapitel 3.1.

Høydene over havet til grunnvannstanden til observasjonsbrønnene ble beregnet på samme måte som er forklart i kapitel 2.8.1.

Data fra observasjonsbrønn 2.3 (F1217) ble brukt for å velge tidspunktene som viser senkning, stigning eller jevn strømning, tabell 2-2 viser tidspunktene.

Tabell 2-2. Tidspunktene som ble valgt for å lage strømningsforholdskartene.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Klokkeslett</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.06.2014</td>
<td>15.55 / 22.55</td>
</tr>
<tr>
<td>05.10.2014</td>
<td>12.55 / 23.55</td>
</tr>
</tbody>
</table>
Siden det ikke var tilgjengelig data fra loggeren i observasjonsbrønn 4.3A på grunn av at den sviktet, så ble det innhentet data fra den nærmeste loggeren. Det vil si data logger i observasjonbrønn 4.3B (J9400).

Ekvipotensiallinjene for juni og oktober ble laget med 0,1 meter intervall og glattet for hver 20 meter.

2.11. Bø elva

Som nevnt i kappittel 1.4 kan Bø elva påvirke strømningsforholdene i de ulike periodene og derfor ble det bestemt å lage ekstra punkter i Bø elva. Som utgangspunkt ble det brukt data fra NVE sin målestasjon. Ut fra den så ble det laget to ekstra punkter mot sør i elva (B1/B2).

Vannstandshøydene for disse punktene ble beregnet med utgångspunkt ut i fra avstandsdatabase fra NVE sin målestasjon og de nye punktene. I tillegg ble avstanden mellom punktene kotehøyde benyttet.

2.12. Grunnvannsdyp

For å lage et kart som viser grunnvannsdybden i akviferen, ble 3D analyse i ArcMap 10.1 benyttet, det konverterer en TIN til et grid. I verktøyet romlig analyse ble "Raster Calculator" benyttet.

Det ble laget et grid for markooverflate og en for grunnvannsspeilet, disse trekkes fra hverandre med "Raster Calculator". Grunnvannsspeilets grid ble laget ut fra data innhentet den 17.06.2014 kl 15.55

For å kvalitetssikre beregningene ble det innhentet pumpedata fra vannverket i Bø kommune.
3. Resultater

Fигur 3-1 viser utviklingen av grunnvannstanden i pumpebrønn 4 i løpet av et døgn (29.10.2012). Med utgangspunkt i denne figuren ble det valgt 5 forskjellige tider. Før pumpebrønnen starter, midtveis etter senkning, når pumpebrønnen stopper, midtveis etter stigning, og på slutten av dagen.

![Diagram av pumpebrønn 4/ 29.10.2012](image.png)

I figur 3-1 er det to lange rette linjer fra pumpebrønnen startet (senking) og etter at den har stoppet (stigning), disse viser trolig filtertapet. Det vil si at trykket reduseres på grunn av motstand i filteret (pers. med Harald Klempe, Høgskolen i Sørøst- Norge. 19. januar 2015).

Det ble ikke beregnet filtertapverdi for stigningsdataene, men denne ble beregnet for senkningsdataene fra Kl 08.13 til 08.43, se tabell 3-1.
Resultatet av beregningene av høydeverdiene til grunnvannstanden i pumpebrønn 4 vises i tabell 3-2.

Tabell 3-1. Filtertapverdien

<table>
<thead>
<tr>
<th>Dato/Tid</th>
<th>Trykk</th>
<th>Filtertapverdien</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.10.2012/08.13</td>
<td>8,36</td>
<td>8,36-7,84=0,52</td>
</tr>
<tr>
<td>29.10.2012/08.43</td>
<td>7,84</td>
<td></td>
</tr>
</tbody>
</table>

Resultatet av beregningene av høydeverdiene til grunnvannstanden i pumpebrønn 4 vises i tabell 3-2.

Tabell 3-2. Høydeverdiene over havet til grunnvannstanden i pumpebrønn 4 i 29.10.2012.

<table>
<thead>
<tr>
<th>Dato/Tid</th>
<th>Trykk</th>
<th>Høyde Datalogg pumpebrønn 4</th>
<th>Høyde over havet til grunnvannstanden=Trykk +Høyde Datalogg pumpebrønn 4</th>
<th>Filtertapverdi</th>
<th>Høyde over havet total til grunnvannstanden=Høyde grunnvannstanden + filtertapverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.10.2012/08.13</td>
<td>8,36</td>
<td>106,05</td>
<td>114.41</td>
<td></td>
<td>114.41</td>
</tr>
<tr>
<td>29.10.2012/09.31</td>
<td>7,64</td>
<td>106.05</td>
<td>113.69</td>
<td>0.52</td>
<td>114.15</td>
</tr>
<tr>
<td>29.10.2012/12.14</td>
<td>7,38</td>
<td>106.05</td>
<td>113.43</td>
<td>0.52</td>
<td>113.95</td>
</tr>
<tr>
<td>29.10.2012/15.02</td>
<td>8,22</td>
<td>106.05</td>
<td>114.27</td>
<td></td>
<td>114.27</td>
</tr>
<tr>
<td>29.10.2012/23.46</td>
<td>8,36</td>
<td>106.05</td>
<td>114.41</td>
<td></td>
<td>114.41</td>
</tr>
</tbody>
</table>

Nedbørsdata den 29 oktober 2012 ble hentet fra eklima.no og fra den nærmeste målestand (Gvarv). Målestanden var 7,2mm.

3.1.1 Kart over strømningsmønsterene ved pumpebrønn 4 og observasjonsbrønnene /29.10.2012.

Den 29.10.2012 var det lite vannføring, lite nedbør og normalt vannforbruk.

Det har tidligere blitt beskrevet hvordan dataene ble brukt for å lage strømningsforholdsmodellen for pumpebrønn 4 og observasjonbrønnene. Se kapittel 2.9.

Det viktigste var å undersøke hvordan vannet strømmer under pumpetiden på en vanlig dag. Figur 3-1 viser utvikling av vannstanden til pumpebrønn 4 den dagen.
De neste kartene viser strømningsforholdene for det første nivået rundt pumpebrønn 4. Det ble laget en avgrensning for å gi et bedre TIN bilde.

Sekningen i pumpebrønn 4 er 0,46 meter i løpet av 4 timer, det vil si i pumpetiden.

Kart 3-1 viser strømningsforholdet når pumpingen ikke har startet fra brønn 4. På dette tidspunktet har vannivået i pumpebrønn 4 et lavere nivå enn det som vises i observasjonsbrønnene, utekst observasjonsbrønn 4.1A.

Kart 3-1 viser også et vannskille mot sør og sørvest, vannet drenerer nedover mot pumpebrønnen og mot Bø elva.

Under pumping har Bø elva en gradient inn mot observasjonsbrønn 4.1A, 4.2A og pumpebrønn 4, men lite gradient mot observasjonbrønn 4.3A.

Kart 3-2, kl 09.31 viser at grunvannet strømte i nesten den samme retningen som kl 08.13. Bortsett fra at det er en brattere gradient rundt pumpebrønn 4.

Kl 09.31 (under pumping) hadde grunnvannstanden i observasjonsbrønnene 4.2A, 4.3A og 4.4A høyere verdier enn den hadde kl 08.13 (før pumpingen startet). Dette viser et stort potensial fra disse observasjonsbrønnene mot pumpebrønn 4 under pumping.

Grunnvannstanden i observasjonsbrønnene 4.6A, 4.5A og 4.1A hadde lavere verdier enn den hadde kl 08.13. Dette viser at det under pumping blir lavere potensial rundt disse observasjonsbrønnene, på grunn av at vannet strømte raskere mot pumpebrønnen og at de er plasser langre fra pumpebrønnen.

Vannvået i Bø elva ble i liten grad påvirket under pumping. Kart 3-3 viser at vannet strømte fra Bø elva til akviferen mot alle observasjonsbrønnene og pumpebrønnen.

Etter kl 12.14 begynte pumpebrønnenen å fylles igjen og etter 3 timer har vannet steget omtrent en halv meter igjen, se kart 3-4.

I stingningsperioden på 11 timer (fra kl 12.14 til 23.46), ble grunnvannivået i observasjonsbrønn 4.6A og 4.5A neste ikke påvirket.

Det strømte mye vann mot observasjonsbrønn 4.1A fra Bø elva mot søroest og fra akviferen mot sørvest.

Det var ikke strømning fra Bø elva mot observasjonsbrønn 4.3A etter at pumpingen begynte.

Kart 3-1. Pumpebrønn 4 og observasjonsbrønnene. Strømningsforhold den 29.10.2012 Kl 08:13 før brønnen begynte å pumpe.

3.2. Modell som viser strømningsmønsterene for pumpebrønn 2, 3 og observasjonsbrønnene

Figur 3-2 viser utviklingen av grunnvanstanden i observasjonsbrønn 2.3 (F1217) den 17.06.2014. Pilene peker på perioden da det var senkning, det vil si fra kl 15.00 til 22.00.

![Figur 3-2. Grunnvannstand i observasjonsbrønn 2.3 (F1217)](image1)

Figur 3-2. Observasjonsbrønn 2.3 ligger ved Herretjønn.

Figur 3-3 og 3-4 viser plottene i en semilogaritmisk skala og ut i fra det ble T og S beregnet. Figurene viser også at $\Delta_s = 0.48$ i observasjonsbrønn 2.3 og $\Delta_s = 0.17$ i observasjonsbrønn 3.5.

![Figur 3-3. Theis graf til observasjonsbrønn 2.3 (F1217)](image2)
Resultatene av S verdiene viser en åpen akvifer med fritt vannspeil rundt pumpebrønn 2 og 3. Derfor ble ligningene i kapitel 2.6 benyttet. Ved å bruke T verdiene ble K beregnet, se formel 1.

Resultatene av K verdiene fra observasjonsbrønnene 2.3 og 3.5 ble brukt i formel 5 for å beregne høyden til grunnvannstanden i pumpebrønn 2 og 3. Se tabell 3-3 (røde verdier).

Verdiene av de hydrauliske konduktivitetene bekreftet at området rundt pumpebrønn 3 og pumpebrønn 2 består av sand og grus (Fetter 1994, s. 85).

Figur 3-4. Theis graf til observasjonsbrønn 3.5 (A3116)

![Graph](image)

Δs = 0.17

<table>
<thead>
<tr>
<th>Observasjonsbrønn</th>
<th>Logge</th>
<th>T=Transmissivitet (m²/sek)</th>
<th>S-Magasinkoeffisient</th>
<th>K=Hydrauliske konduktivitet (m/sek)</th>
<th>Mektighet (m)</th>
<th>Q (m³/sek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0.032</td>
</tr>
<tr>
<td>2.2 A4317</td>
<td>0.0084</td>
<td>0.4806</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 F1217</td>
<td>0.0122</td>
<td>0.1491</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 A3093</td>
<td>0.0115</td>
<td>0.0174</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 A2038</td>
<td>0.0079</td>
<td>0.3304</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>0.032</td>
</tr>
<tr>
<td>3.5 A3116</td>
<td>0.0338</td>
<td>0.0773</td>
<td>0.0012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 A4319</td>
<td>0.4833</td>
<td>2.7696</td>
<td>0.0179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 A1993</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metoden for å beregne høyde til grunnvannstanden i pumpebrønn 2 og 3 ble forklart i kapittel 2.8.2. Tabell 3-4 og 3-5 viser datagrunnlag, beregninger og resultater.

Tabell 3-4. Beregning av høyde over havet til grunnvannstanden i pumpebrønn 2

<table>
<thead>
<tr>
<th>Dato</th>
<th>Klokkeslett</th>
<th>H Observasjonsbrønn 1217 (2.3)</th>
<th>Qw (m³/sek)</th>
<th>K= Transmissivitet/ Mektighet</th>
<th>R (m)</th>
<th>Rw (m)</th>
<th>Høyde over havet til grunnvannstanden i pumpebrønn [h=H²+Qw²/π*K *ln (R/rw)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.02.2014</td>
<td>2.55</td>
<td>111,98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111,66</td>
</tr>
<tr>
<td>24.04.2014</td>
<td>0.55</td>
<td>111,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111,67</td>
</tr>
<tr>
<td>15.55</td>
<td></td>
<td>111,97</td>
<td>0,03194</td>
<td>0,00060894</td>
<td>10,5</td>
<td>0,15</td>
<td>111,65</td>
</tr>
<tr>
<td>17.06.2014</td>
<td>15.55</td>
<td>114,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114,66</td>
</tr>
<tr>
<td>22.55</td>
<td></td>
<td>114,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114,06</td>
</tr>
<tr>
<td>05.10.2014</td>
<td>12.55</td>
<td>115,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115,16</td>
</tr>
<tr>
<td></td>
<td>23.55</td>
<td>114,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114,55</td>
</tr>
</tbody>
</table>

Tabell 3-5. Beregning av høyde over havet til grunnvannstanden i pumpebrønn 3.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Klokkeslett</th>
<th>H Observasjonsbrønn A3116 (3.5)</th>
<th>Qw (m³/sek)</th>
<th>K= Transmissivitet/ Mektighet</th>
<th>R (m)</th>
<th>Rw (m)</th>
<th>Høyde over havet til grunnvannstanden i pumpebrønn [h=H²+Qw²/π*K *ln (R/rw)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.02.2014</td>
<td>2.55</td>
<td>109,614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109,38</td>
</tr>
<tr>
<td>24.04.2014</td>
<td>0.55</td>
<td>109,63</td>
<td>0,03194</td>
<td>0,0012</td>
<td>58,88</td>
<td>0,15</td>
<td>109,40</td>
</tr>
<tr>
<td>17.06.2014</td>
<td>15.55</td>
<td>109,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109,39</td>
</tr>
<tr>
<td>15.55</td>
<td></td>
<td>115,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115,10</td>
</tr>
<tr>
<td>22.55</td>
<td></td>
<td>115,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114,97</td>
</tr>
<tr>
<td>05.10.2014</td>
<td>12.55</td>
<td>114,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114,71</td>
</tr>
<tr>
<td></td>
<td>23.55</td>
<td>114,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114,56</td>
</tr>
</tbody>
</table>

3.2.1 Kart over strømningsmønsterene i hele akviferen

I dette kapittelet vises strømningsmønsterene i hele akviferen og når alle pumpebrønnene er i bruk i ulike perioder.

Det hydrauliske potensialet i observasjonsbrønn 4.3B er lavt og dette laget et bratt mønster rundt denne (kart 3-6). Datalogger 4.3A sviktet og derfor ble det brukt potensial fra 4.3B som var det nærmeste og følgende filternivået.
3.2.1.1. Strømningsmønster den 17.06.2014

Den 17.06.2014 var det normal vannføring og et høyt vannforbruk. Vannføringen var på 28.82 m³/s og det var lite nedbør. Figur 3-2 viser endringene i løpet av 30 timer i observasjonsbrønn 2.3. Den viser en tydelig senkning fra kl 16.00 til 23.00 på nesten 50 cm og en stigning etter kl 23.00 på nesten 50 cm.

Pumpebrønn 2 og 4 var de brønnene som var i drift i denne perioden, pumpebrønn 3 var ikke i drift. Pumpebrønn 2 var i bruk fra kl 07.06 til kl 10.59 og kl 17.25 til kl 23.55 den 17.06.2014. Pumpebrønn 4 var i bruk fra kl 07.06 den 17.06.2014 til kl 17.30 den 18.06.2014. Det vil si at pumpebrønn 4 var i bruk hele dagen.

Kart 3-6 viser strømningsmønsteret kl 15.55. Her er pumpebrønn 2 og 3 i ro, og pumpebrønn 4 er i bruk. Etter kl 15.55 begynte grunnvannstanden i alle brønnene å synke.

Det var et vannskille mot vest og sørvest fra observasjonsbrønn 4.6A i området rundt pumpebrønn 4. Det er en bratt gradient rundt pumpebrønn 4 på grunn av senkning.

Observasjonsbrønn 4.3B viser et lavere nivå på 113,92 m enn det som var i Bø elva. Det var nesten det samme vannivået som i pumpebrønn 4, grunnen til dette kan være at dataene til denne observasjonsbrønnen tilhører en datalogger som henger 12 m under bakken.

Kart 3-7 viser strømningsmønsteret kl 22.55, der grunnvannstanden i alle brønnene har sunket og viser derfor et lavere vannnivå enn det som vises på kart 3-6.
Det er senkning i området rundt pumpebrønn 3, borsett fra i observasjonsbrønn 3.6 når både pumpebrønn 2 og 4 er i bruk.

Rundt pumpebrønn 4 vannet strømte mot sør og sørvest mot Bø elva. Bø elva bidrar mot området rundt pumpebrønn mot sørøst.

Kart 3-6. Kartet over viser strømningsforholdet 17.06.2014 kl 15.55. Brønn 3 er ikke i drift, brønn 2 og 4 var i drift, men det var bare pumpebrønn 4 som var i bruk på dette tidspunktet.

3.2.1.2 Strømningsmønster den 05.10.2014

Den 5. oktober var det lite vannføring 4.7 m³/s, 0.2 mm nedbør og et normalt vannforbruk. Figur 3-5 viser senkning i observasjonsbrønn 2.3.

Figur 3-5. Høyde til grunnvannstanden i observasjonsbrønn 2.3 den 05.10.2014.
Pumpebrønn 2 og 4 var de brønnene som var i drift i denne perioden, men kl 12.55 var det ingen pumping.

Pumpebrønn 2 var i bruk fra 05.10.2014 kl 15.09 til 06.10.2014 kl 00.45. Pumpebrønn 4 var i bruk fra 05.10.2014 kl 05.07 til 05.10.2014 kl 09.28.

Kart 3-8 viser strømningsmønster den 05.10.2014 kl 12.55. Dette viser at det fortsatt er strømning i området rundt alle brønnene.

Kart 3-8. Kartet over viser strømningsmønsteret 05.10.2014 kl 12.55. Pumpebrønn 2 og 4 er i drift, pumpebrønn 3 er ikke i drift. Alle pumpebrønnene er i ro på dette tidspunktet (ingen pumping).

Fra Herretjønn strømte vannet mot observasjonsbrønn 2.2, 2.4 og Bø elva.
Fra området rundt pumpebrønn 3 strømte vannet mot området mellom pumpebrønn 2 og 3. Det strømte også vann fra Bø elva i retning øst og sørøst.

Kart 3-9 viser strømningsmønsteret kl 23.55, vannet strømte fra området rundt pumpebrønn 3 mot området mellom pumpebrønn 2 og 3. Herretjønn bidrar mot pumpebrønn 2 og Bø elva.

Bø elva bidrar retning øst mot området rundt pumpebrønn 4 i og sørøst. Vannstanden i pumpebrønn 4 ble ikke påvirket av at pumpebrønn 2 var i bruk.

[Diagram av strømningsmønster]

3.3. Modellering i 3D

Det ble bygget opp en DTM for markoverflate og en DTM for bunniflate. Begge DTM er i TIN format og vises et 3D bilde i ArcScene.

De neste bildene viser hvor pumpebrønnene og observasjonsbrønnene er plassert i DTM. Linjene som viser brønnene ble trukket nedover med funksjonen "Extrude" i layer properties. Bilde 3-1 viser hele akviferen og bilde 3-2 et mer detaljert område.

Bilde 3-1. 3D bilde av DTM over markoverflate og bunniflate. Både pumpebrønnene og observasjonsbrønnene ble trukket nedover med "extrude" funksjonen med bruk av verdien (-100).

Akviferen Hagadrag ligger på mellom 109 m.o.h til 130 m. o.h. Både pumpebrønnene og observasjonsbrønnene ligger på mellom 113 m.o.h til 122 m.o.h. Mot sør og nordøst blir terrenget høyere. Herretjønn ligger på oversiden av pumpebrønn 2.

Fra pumpebrønn 2 til pumpebrønn 4 blir terrenget høyere, det er en rygg som skiller disse to områdene.
Mellom pumpebrønn 4, observasjonsbrønnene 4.1, 4.2, 4.3 og observasjonsbrønnene 4.4, 4.5 og 4.6 kan man se en rygg som går fra til 135 m.o.h ned til 118 m.o.h, der ligger grustaket.

Bilde 3-2. 3D bilde viser hvor alle brønnene ligger. Pumpebrønnene vises med rød farge og observasjonsbrønnene med blå farge

Observasjonsbrønn 3.5 og 3.7 ligger i et lavere terreng enn det observasjonsbrønn 3.8 gjør.

Observasjonsbrønnene rundt pumpebrønn 2 ligger på nesten samme nivå, unntatt 2.4 som ligger litt lavere enn de andre.

DTM til bunnsflaten viser at den ligger fra 60 m.o.h til 135 m.o.h. De fleste brønnene ligger mellom 85 m.o.h til 93 m.o.h. Observasjonsbrønn 4.1, 4.2, 4.3, 4.6 og pumpebrønn 4 ligger mellom 93 m.o.h til 101 m.o.h.

Høydene ifølge GPS er ikke helt like de som vises på DTM markoverflate i TIN format.

Pumpebrønn 2 ligger på 118,258 m.o.h og i følge TIN ligger denne på 115,213 m.o.h. Pumpebrønn 3 ligger på 118,276 m.o.h og i følge TIN ligger denne på 119,303 m.o.h. Pumpebrønn 4 ligger på 117,45 og i følge TIN denne på 119.813 m.o.h.
3.3.1 Høyden til grunnvannstanden rundt pumpebrønn 4 ved tre forskjellige nivåer

Bilde 3-3 viser de forskjellige høydene til grunnvannstanden på ulike filterdyp. Dataene som ble benyttet er fra 17.06.2014 kl 15.55 og ved pumping fra pumpebrønn 4.

Det øverste bildet er høydene til grunnvannstanden i akviferen på 5 meters filterdyp. Dette viser en bratt gradient mot pumpebrønnen (lysblå farge). Mot nordvest rundt observasjonsbrønn 4.3 er det også en bratt gradient (mørke grønn), årsaken til dette var at det ble brukt data fra filterdyp på 12 meter.

Bildet i midten viser høydene til grunnvannspeilet ut ifra data på 12 meter filterdybde. Dette viser fortsatt en gradient mot pumpebrønnen men litt flater.

Det nederste bildet viser at grunnvannsnivået er på nesten det samme nivået som pumpebrønnen, untatt de observasjonsbrønnene som er langt unna.

Rundt observasjonsbrønn 4.3 er nivået høyere enn det som vises på bildet i midten, det vil si at vannet strømmer oppover.

Årsaken til dette kan være posisjonen i forhold til filteret i pumpebrønnen. På det øverste bildet vises en større gradient (sekningstrakt) og på det nederste bildet vises en horisontal strømning rett mot brønn (pers. med Harald Klempe, Høgskolen i Sørøst-Norge. 25. mai 2016).
3.3.2 Grunnvannstanden

Den 23.06.2014 ble det tatt grunnvannsmålinger direkte i feltet med et målebånd og sammenlignet med grunnvannstanden beregnet fra dataloggerne og barometeret. Tabell 3-6 viser resultatene.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Observasjonsbrønn</th>
<th>Logger Navn</th>
<th>Vannstand (Målebånd)</th>
<th>Vannstand (DataLogg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.06.2014</td>
<td>2.1</td>
<td>A3061</td>
<td>1.8</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>A4317</td>
<td>1.83</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>F1217</td>
<td>2.15</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>A2038</td>
<td>1.3</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>A3116</td>
<td>1.61</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>A4319</td>
<td>2.3</td>
<td>2.051</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>A1993</td>
<td>1.7</td>
<td>*</td>
</tr>
</tbody>
</table>

*Datalogger fungerte ikke.
I følge tabellen 3-6 er det litt forskjell på målingene og dette viser at beregningene forklart i kappitel 2.8.1 er riktige. Grunnen til at det er små avvik, er at målingene med målebånd kan være litt unøyaktige.

3.3.3 Grunnvannsdyp

Kart 3-10 viser at grunnvannsdybden i akviferen ligger på mellom 0 til 21 meter den 17.06.2014.

Det grønne området viser den høye ryggen som er rundt grustaket. Grunnvannsdybden i nærheten av observasjonsbrønnene ligger på mellom 0 til 5 meter. Det røde området viser at grunnvannsdypden er null. Siden det ikke er observasjonsbrønner i dette område kan resultatet være feil.

![Kart 3-10. Grunnvannsdyp i akviferen den 17.06.2014 kl 15.55](image-url)
4. Diskusjon

4.1. Karakterisering

Norge har mange grunnvannforekomster og et stort potensial for å forsette å pumpe grunnvann, derfor er det viktig å kunne karakterisere disse grunnvannforekomstene. Men for å lage en fullstendig karakterisering av en akvifer, er det nødvendig å samle inn mer informasjon fra flere fysiske og kjemiske faktorer som er nevnt tidligere.

Det finnes et faktark for hver vannforekomst i Norge (NVE 2014). I dette faktarket er det informasjon om miljøtilstand, risikovurdering, påvirkninger og andre faktorer.

En del av akviferen Hagadrag ligger i grunnvannforekomsten Øvre Bø, som er oppført på faktarket, se bilde 4-1. Denne grunnvannforekomsten er vurdert til at det er risiko for at miljømålet ikke nås innen 2021, men både den kvantitative og kjemiske tilstanden er god. Risikoen skyldes at den utsatt for ytre påvirkninger.

Påvirkningene som er nevnt i faktarket er de samme som de som er oppført på reguleringsplanen for beskyttelse av Bø vassverk (Kraft 2011). Veisalting på Rv 36, boligområde, campingplass, jordbruk, masseuttak og drikkevannforsyning med bruk av løsmassebrønner.

Bilde 4-1. Øvre Bø grunnvannforekomst (Faktark 2014).
Den kvantitative tilstanden inneholder en analyse av de fysiske faktorerne. I denne oppgaven ble noen av disse faktorerne analysert og resultatet bidro til å gi en vurdering av sårbarheten. Tidligere i oppgaven ble det nevnt at sårbarheten må defineres når en grunnvannforekomst skal karakteriseres.

En grovkartlegging utført av BGR & UNESCO antyder at norske grunnvannforekomster har kort avstand fra jordoverflaten til grunnvannet og har derfor generelt høy sårbarhet (Iversen & Gunnarsdóttir 2013).

En åpen akvifer er godt beskyttet hvis den har mer enn 20 meter umettet sone og en lukket akvifer er godt beskyttet hvis den har en 2 meter silt eller leire tetlag (Tvedten 2008). I løsmasser er det mektigheten, permeabilitet og jordas lagdeling som er bestemmende for sårbarheten (Gaut 2011). Et tidligere forprosjekt fra Jordforsk brukte jordmonnkart til sårbarhetskartlegging av grunnvann i løsmasser (Kværner 1996).

Flate avsetninger av sand/grus, hvor dypet til grunnvannsspeilet er mindre enn fem meter, er i denne sammenheng mest sårbare. Generelt vil de fleste grunnvannsforekomstene i Norge havne i denne kategorien. I veileder 03:2013 står det at gradering av sårbarhet for de ulike faktorene i DRASTIC er fra 1 til 10, (1=minst sårbare, 10 = mest sårbar). Tabell 2 i den samme veilederen viser at jordarter som torv, sand og grus er klassifisert som 8 (Iversen & Gunnarsdóttir 2004).

Akviferen Hagadrag er både åpen og lukket og i følge overnevnte kriterier så er akviferen såbar.

Mektigheten er 28 meter rundt pumpebrønn 3 og 20 meter rundt pumpebrønn 2, mellom disse to områdene er deler av området dekket av et lag med finsand, sand og grus (Halvorsen & Strømme 1989) og en del av området er dekket med torv og silt (Langeland & Moe 2003). Den sonen som er umettet er mindre enn 20 meter, i følge resultatene av målingene av grunnvannsavstanden.
Driftserfaringer fra Bø vassverk over en periode på 10 til mer enn 30 år for de ulike brønnene, viser at det er en naturlig beskyttelse som utgjør en fullgod hygienisk barriere. En sannsynlig årsak er elvebunnen har mer finstoff og langt lavere permeabilitet enn massene i grunnvannsmagasinet (Kraft 2011).

Vannet som har vært pumpet fra brønn 2 har hatt høye nivåer av mangan og dette er på grunn av at Herretjønn påvirker akviferen (Langeland & Moe 2003), noe som også er bekreftet i reguleringsplanen (Kraft 2011). Tjernet ligger veldig nærme pumpebrønn 2.

En studie fra NGU sier at mangannholdet er knyttet til det finstoffrike laget i avsetningen og at grunnvannet i slike lag vanligvis har lavere oksygeninnhold, dette gir en økt løselighet av både jern og mangan (Hilmo 2007). Pumpevannet fra brønn 4 inneholder ikke høye mangannivåer og dette kan være på grunn at vannet ikke strømmer fra Herretjønn mot pumpebrønn 2.

I det øverste laget er det en 3.5 meter tykk morene (till) fra sørøst mot nordvest rundt observasjonsbrønn 4.2, denne gjør denne delen av akviferen lukket. Sand- og gruslaget rundt observasjonsbrønn 4.3 mot nordøst i grustaket gjør akviferen åpen (pers. med Harald Klempe, Høgskolen i Sørøst- Norge. 02. mars 2016).

I følge klausuleringsvilkår fra 1979 kunne det ikke tas ut grus lavere enn 5 meter over grunnvannspeilet og ikke nærmere grunnvannsbrønnene enn 150 meter. En tidligere prosjektoppgave fant ut at det har vært utvinning av grus innenfor grensen på 150 meter (Gulbrandsen et al 2005).

I reguleringsplanen for Bø vassverk står det nå at uttak av sand/grus ikke skal gå dypere enn 3 m over grunnvannsnivå, det vil si ned til kote 118. Det kan tas ut masser ned til
kote 117 forutsatt fortløpende tilbakeføring av masser med > 20% finsand/silt til kote 118 (Kraft 2011).

Hvis pumpeperioden viser at senkningen er raskere i begynnelsen og deretter flater ut, så er det en lukket akvifer (Kruseman og de Ridder 1992, s. 33). Sekningsdiagrammene i juni og oktober viser dette. Når diagrammene sammenlignes med resultatene av S verdiene fra juni, så er området rundt pumpebrønn 2 en lukket akvifer med lekkasje S= 0.14 og området rundt pumpebrønn 3 en åpen akvifer S= 0.07.

S verdiene er ganske høye og dette kan være er et tvilsom resultat, se tabell 3-3. Dette skyldes sannsynligvis at det er en lukket akvifer med lekkasje og dette kan skje på grunn av at finsandlaget forsinker vanndrenering i området rundt pumpebrønn 3 (pers. med Harald Klempe, Høgskolen i Sørøst- Norge. 14. april 2016). En undersøkelse fant at lekkasjer i en akviferen kan påvirke magasinkoeffisienten (Li 2001).

Et pumpeforsøk i pumpebrønn 2 i 1989 viste en T=0,014, denne verdien er tilnærmet lik resultatet i denne oppgaven T= 0,012 (tabell 3-3). Den samme undersøkelsen ga lavere S verdier som tilsvarte en lukket akvifer for området rundt pumpebrønn 2 (Halvorsen & Strømme 1989). T og S verdiene i oppgaven ble beregnet med å bruke sekningsdata i Theis formel. Theis metoden har også blitt brukt i andre undersøkelser for å beregne disse parameterne (Bardsley 1991).

I 2003 ble det utført hydrogeologiske undersøkelser i området rundt pumpebrønn 3, Bø elva og Herretjønn. Resultatene av pumpeforsøk i pumpebrønn 3 ga en S= 0,046, K= 0,00048 og T= 0,017 med å bruke Theis formel. I følge denne undersøkelsen er området rundt pumpebrønn 3 en åpen akvifer med en tilnærme stasjonær tilstand (Langeland & Mo 2003).

I følge tabell 3-3 er resultatene av K verdiene lavere mot området rundt pumpebrønn 2 enn det er mot området rundt pumpebrønn 3. Mellom Bø elva, pumpebrønn 3 og Herretjønn ligger det et lag med torv og siltblanda sand som trolig senker K verdien (Langeland & Mo 2003).

Akviferens vannkilder er Herretjønn, Kupatjønn, Bø elva og Bjønndøla som bidrar til akviferen som Bø vassverk benytter. Vann som transporterer som overflateavrenning i bekker og elver kan infiltrere grunnen på et senere tidspunkt. Dette er spesielt aktuelt der elver krysser akviferen, eller ved oppsamling av vann i tjern og vann på akviferen. Hvis grunnvannspeilet ligger dypere enn elva eller tjernet, og disse har permeable sedimenter i bunnen, vil de kunne være en vannkilde for akviferen (Halvorsen 2012).

Herretjønn og Kupatjønn samler opp vann fra nedbørsfeltet og kan fungere som vannkilde for akviferen. Vannet fra fjellområdene rundt med mye avrenning samles opp og kan infiltrere akviferen nedstrøms (Halvorsen 2012). Dette støtter alle resultater som har vist at disse vannkildene har stor påvirkning på strømningsforholdene i akviferen.

4.2. Strømningsmønsteret i akviferen

Formålet med å lage en grunnvannsmodell var å se strømningsmønstre når brønnene er i bruk, dette gir et bilde av strømningsforholdene i akviferen.

Strømningsforholdene har vist at det skjer innmating fra Bø elva mot akviferen og denne infiltrasjonen er viktig ved behov for stort vannuttak. Brønnene til Bø vassverk trekker ca 0,8 * 106 m³/år. Dette er 2,5 prosent av 31,5 mill m³/år av Bø elvas sin vannføring og at det er mer enn nok vann i Bøelva til å dekke brønnens behov, selv ved lav vannføring (Halvorsen 2012).
I følge reguleringsplanen til Bø vassverk står det at hoveddelen av vannet sannsynligvis kommer fra Bø elva, men en betydelig andel kan komme fra Bjønndøla via innmating i grove eskermasser (Kraft 2011).

De to nye punktene som ble laget i Bø elva ga et bedre og større bilde av strømningsmønsterene rundt pumpebrønn 4. Dette viste at det er bidra fra Bø elva mot pumpebrønn 4, som er vist i kart 3-1.

Når grunnvannpotensialen i pumpebrønn 2 var på ca 115 m (Kart 3-8) er det gradient fra akviferen og ut mot Bø elva og ved 114 m (kart 3-9) så er lite gradient fra Bø elva mot pumpebrønn 2.

Når pumpebrønn 2 var i drift og det bare ble pumpet fra denne kombinert med liten vannføring, førte dette sannsynligvis til at grunnvannstanden i pumpebrønn 3 sank. Pumpebrønn 4 ble ikke påvirket når pumpebrønn 2 var i bruk, den forsatte å fylles (kart 3-9).

Når pumpebrønn 4 var i drift og det bare var pumping fra denne og ved normal vannføring i Bø elva, påvirket pumpingen fra denne ikke grunnvannstanden i de andre brønnene i (kart 3-6).

Ved normal vannføring og pumping fra brønn 2 og 4 samtidig, var det påvirkning av grunnvannstanden i pumpebrønn 3 (kart 3-7). Dette viser en interaksjon mellom pumpebrønn 2 og 3. Grunnvannstanden rundt en brønn senkes ved pumping og dette danner en sekningstrakt rundt denne. Hvis sekningstrakten strekker seg til andre...
nærliggende brønner, vil grunnvannstanden i disse brønnene også senkes (Waller 1982).

Observasjonsbrønn 4.3B viste et veldig lavt potensial fordi de er plassert dypere enn de andre observasjonsbrønnene, og dette førte til at det ble litt feil bilde av strømningsmønsteret.

Kart 3-11 viser hvordan strømningsmønster er plassert i følge påvirkingene i akvifer. I dette kartet ble det brukt strømningsmønster uten høyde potensialeverdier fra observasjonsbrønn 4.3B. Strømningretningene viser mindre gradient mot observasjonsbrønn 4.3 og at vannet strømmer mer mot nordvest mot Bø elva og nord mot området rundt pumpebrønn 2.

Riksveg 36 går langs akviferen og i følge strømningsretning, strømmer grunnvannet fra øst og nordøst mot akviferen. Det er usikkert i hvor stor grad veisalting påvirker grunnvannet. Langs riksveien ligger det dreneringsrør som skal drenere saltholdig vann forbi akviferen og ut i Bø elva (Halvorsen 2012).
I området rundt pumpebrønn 2 er det høye kontrasjonser av mangan og i følge strømningsmønsteret i dette området, ser det ikke ut til at vannet strømmer mot området rundt pumpebrønn 4. Det er derfor ikke høye kontrasjonser av mangan i dette området.

Observasjonsbrønnene settes ned i samme nivå som filteret på prøvebrønnen eller i et nivå med god hydraulisk kommunikasjon til pumpebrønnen (Gaut 2011). Det anbefales også at nye dataloggere i observasjonsbrønnene henger på samme nivå.
4.3. GIS Verktøy

GIS kan være et nyttig verktøy til bruk ved grunnvannsmodellering, det har vært brukt i de siste årene i mange land for analyse og tolkning av data. Denne oppgaven gir en ide om hvordan GIS kan brukes for å analysere de fysiske faktorene når det skal lages en grunnvannskarakterisering. Det har også vært veldig nyttig å bruke modell Builder for å lage kartene som viser strømningsmønster og ArcScene for å lage en 3D visualisering av akviferen og brønnene.

I veileder 03:2013 foreslås det at kommunen kan bruke modell DRASTIC for å karakterisere grunnvannforekomster, men det er ikke nevnt at man kan bruke GIS, som kan være et nyttig verktøy til dette. Det foreslås derfor å benytte "map algebra" funksjon i ArcMap, etter at all relevant informasjon av sårbarhetsindeks er samlet inn.

Denne funksjonen gir vekt verdier gjennom en algoritme som man bestemmer med teoretiske kriterier. Tilslutt lages det et kart som viser sårbarheten i hele akviferen eller grunnvannforekomsten. Dette gir et grunnlag for den beste plasseringen av nye pumpebrønner og hvilke gamle pumpebrønner som bør stenges. Sårbarheten til Paluxy akvifer Central Texas, USA ble vurdert ved hjelp av GIS og en modifisert DRASTIC metode (Fritch et al 2000).
5. Konklusjoner

Akviferen Hagadrag er en viktig grunnvannressurs for Bø kommune som er i risiko for ikke oppnå miljømålet i EUs vanndirektiv 2000/60/EF. I følge strømningsmønstrene og sekningsresultatene i denne oppgaven, kan de ulike påvirkninger rundt akviferen gjøre den sårbar. Avhengig av lagdelingen i de ulike områdene kan denne være beskyttet i noen områder og dette gjør at det var vanskelig å identifisere sårbarhetsgraden. Det er viktig å legge til grundigere undersøkelser av lagdelingen ved bruk av denne metoden.

Denne metoden oppnådde å identifisere at akviferen Hagadrag er både åpen og lukket i følge S verdiene. Disse verdiene ble påvirket av hvilken observasjonsbrønn senkningsdataene ble hentet fra.

Metoden for å beregne høydene til grunnvannstanden i pumpebrønn 2 og 3 ga et overestimert resultat. Resultatet hadde vært bedre hvis den maksimal utbredde av senkingsstrakta i formel 5 hadde vært benyttet. Dette kunne ha ført til lavere høyder i pumpebrønnene.

Model Builder, 3D analyse verktøy og 3D visualisering i GIS, har vært nyttige verktøy i denne oppgaven og anbefales ved fremtidige undersøkelser. Det hadde vært en fordel å lage 3D profiler for brønnene, dette hadde vist sekningstrakten rundt disse.

Endringen av restriksjonen for masseuttak i akviferen kan skape en ressurskonflikt, fordi dette kan føre til at akviferen kan bli mer sårbar og vannkvaliteten i Bø elva kan også bli påvirkt. En stor del av vannet som strømmer inn mot akviferen kommer fra Bø elva, derfor anbefales det å fortsette med en videre overvåkning av området.

Siden resultatene av denne undersøkelsen viser at strømningsmønsteret i akvifer Hagadrag ble påvirket ved intermittent drift av brønnene, er det nyttig å fortsette med undersøkelser for å se om dette endres over tid.
6. Referanser

Halvorsen, E. (2012). *Klorid kontaminasjon av grunnvann - numerisk modellering av vannverket på Bø i Telemark.* (Masteroppgave, Universitet for Miljø og Biovitenskap), Hente

Referanser internettsider

http://www.readcube.com/articles/10.1002%2Faic.690260304?r3_referer=wol
http://www.kartverket.no/
review=1&iEntityId=11572
http://www.nve.no/no/Nyhetsarkiv-/Grunnvannsituasjonen/Grunnvannsituasjon-3-august-2013/
kl 10:37
http://www.bo.kommune.no/ 2014
Oversikt over bilder, figurer og tabeller

Bilde 1-1. Plassering av pumpebrønnene 2, 3 og 4 (NGU 2014) ... 17
Bilde 1-2. Pumpebrønn i løsmasser (Brønnboring, 2014) ... 19
Bilde 1-4. Bildet til venstre viser strømningsnettverk i hele nedbørsområdet og bildene til høyre viser mer detaljert vanngiverne til akviferen. .. 21
Bilde 1-6. Hagadrag målestasjon. Rød firkant viser skalaen ut i Bø elva. 24

Bilde 2-1. Eksempel på oppbygningen av en model i Model Builder (Esri 2015) 27
Bilde 2-2. Viser noder og generte flater fra triangulering (Esri 2015) 29
Bilde 2-3. Radial strømning til en brønn i en åpen akvifer(Bear 1979, s. 310) 34
Bilde 2-4. Bildet til venstre viser en Minidiver som gir trykk og temperatur i hver piezometer, bildet til høyre viser en observasjonsbrønn med de tre piezometer og de er markert i forhold til filternivået .. 35
Bilde 2-5. Målebånd for å måle grunnvannstanden. .. 37

Bilde 3-1. 3D bilde av DTM over markoverflate og bunnflate. Både pumpebrønnene og observasjonsbrønnene ble trukket nedover med "extrude" funksjon med verdien (-100). .. 55
Bilde 3-2. 3D bilde viser hvor alle brønnene ligger. Pumpebrønnene vises med rød farge og observasjonsbrønnene med blå farge .. 56
Bilde 3-3. Høyde til grunnvannnavstanden i området rundt pumpebrønn 4 på tre forskjellige filterdybder. ... 58

Figur 1-1. Vannføring i Hagadrag. Kilde:NVE. ... 25
Figur 1-2. Nedbør 2013/2014 Bø målestasjon i Telemark. . Data for å lage figuren ble innhentet fra eklima.no .. 26
Figur 2-1. Prosedyrer i Modell Buider. Iterate Features og en clip funksjon velger de dataene man trenger for et bestemt område. ... 28
Figur 2-2. Viser prosedyrene for måten en DTM ble bygd opp. ... 30
Figur 2-3. Modell Builder for å lage DTM og ekvipotensjallinjer. ... 39

Figur 3-1. Utvikling av vannstanden i pumpebrønn 4 i løpet av et døgn (29.10.2012). Fire timer pumpetid. .. 41
Figur 3-2. Observasjonsbrønn 2.3 ligger ved Herretjønn. .. 47
Figur 3-3. Theis graf til observasjonsbrønn 2.3 (F1217) ... 47
Figur 3-4. Theis graf til observasjonsbrønn 3.5 (A3116) ... 48
Figur 3-5. Høyde i grunnvannspeil i observasjonsbrønn 2.3 den 05.10.2014. 52

Tabell 1-1. Periode som ble brukt for å lage strømningsmønster i akvifer Hagadrag ... 25

Tabell 2-1. Representativ K verdiene i løsmasser . Tabell hentet fra (Sæther 2008). 33
Tabell 2-2. Tidspunktene som ble valgt for å lage strømningsforholdskartene. 39

Tabell 3-1. Filtertapverdien ... 42
Tabell 3-2. Høydeverdiene over havet til grunnvannstanden i pumpebrønn 4 i 29.10.2012. ... 42
Tabell 3-3. Parametere for beregning av grunnvannspleishøyde til pumpebrønn 2 og 3. Data ble beregnet fra den 17.06.2014. .. 48
Tabell 3-4. Beregning av høyde over havet til grunnvannstanden i pumpebrønn 2 49
Tabell 3-5. Beregning av høyde over havet til grunnvannstanden i pumpebrønn 3. 49
Tabell 3-6. Grunnvannstanden den 23.06.2014 i observasjonsbrønnene mellom kl 3 og kl 4. ... 58

Kart 1-1. Kart viser hvor akvifer Hagadrag ligger i Norge og akviferen mer detaljert. (Data inhentet fra http://kartverket.no/). ... 16
Kart 1-2. Denne figuren viser en stor del av breelvavsetninger som kan ha gode egenskaper til løsmassebrønner i akviferen Hagadrag (Klempe 2010). 23
Kl 08:13 før brønnen begynte å pumpe... 44
Kl 09.31, når brønnen pumper. Pumpebrønn startet å pumpe kl 08.37.................. 45
Kl 12:14 når brønn 4 stoppet å pumpe. ... 45
Kl 15:02 etter at brønnen har begynt å fylles... 46
Kl 23:46 når det er ingen pumping... 46
Kart 3-6. Kartet over viser strømningsforholdet 17.06.2014 kl 15.55. Brønn 3 er ikke i
drift, brønn 2 og 4 var i drift, men det var bare pumpebrønn 4 som var i bruk på dette
tidspunktet... 51
Kart 3-7. Kartet over viser strømningsforholdet 17.06.2014 kl 22.55. Pumpebrønn 2 og 4
var i drift, det ble pumpet fra begge på dette tidspunktet. Brønn 3 er ikke i drift......... 52
Kart 3-8. Kartet over viser strømningsmønsteret 05.10.2014 kl 12.55. Pumpebrønn 2 og
4 er i drift, pumpebrønn 3 er ikke i drift. Alle pumpebrønnene er i ro på dette
tidspunktet (ingen pumping).. 53
Kart 3-9. Kartet over viser strømningsmønsteret 05.10.2014 kl 23.55.. Pumpebrønn 2 og
4 er i drift, pumpebrønn 3 er ikke i drift. Pumpebrønn 2 er i bruk på dette tidspunktet.
Pumpetiden i brønn 2 varte cirka ni timer etter kl 15.14... 54
Kart 3-10. Grunnvannsdyp i akviferen den 17.06.2014 kl 15.55............................... 59
Kart 3-11. Påvirkninger i akviferen Hagadrag og strømningsmønster den 17.06.2016 kl.
15.55. Det var bare pumpebrønn 4 som var i bruk .. 67
Vedlegg 1: Berggrunnkart Skien
Vedlegg 2: Koordinater

<table>
<thead>
<tr>
<th>ID</th>
<th>X</th>
<th>Y</th>
<th>Z (H.o.h)</th>
<th>Name</th>
<th>Logg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>492900</td>
<td>6588210.000</td>
<td>118.258</td>
<td>Bronn2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>492900.73</td>
<td>6588191.349</td>
<td>116.45</td>
<td>2.1</td>
<td>A3061</td>
</tr>
<tr>
<td>2</td>
<td>492898.183</td>
<td>6588206.631</td>
<td>116.53</td>
<td>2.2</td>
<td>A4317</td>
</tr>
<tr>
<td>3</td>
<td>492894.337</td>
<td>6588226.808</td>
<td>116.81</td>
<td>2.3</td>
<td>F1217</td>
</tr>
<tr>
<td>4</td>
<td>492913.519</td>
<td>6588215.341</td>
<td>115.9</td>
<td>2.4</td>
<td>A2038</td>
</tr>
<tr>
<td>5</td>
<td>492758</td>
<td>6588360.000</td>
<td>118.276</td>
<td>Bronn3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>492813.066</td>
<td>6588348.154</td>
<td>116.64</td>
<td>3.5</td>
<td>A3116</td>
</tr>
<tr>
<td>7</td>
<td>492707.21</td>
<td>6588386.827</td>
<td>117.45</td>
<td>3.6</td>
<td>A4319</td>
</tr>
<tr>
<td>8</td>
<td>492711.775</td>
<td>6588338.498</td>
<td>116.73</td>
<td>3.7</td>
<td>A1993</td>
</tr>
<tr>
<td>9</td>
<td>492984.473</td>
<td>6588054.498</td>
<td>117.45</td>
<td>Bronn 4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>492995.87</td>
<td>6588027.62</td>
<td>116.58</td>
<td>4.1A</td>
<td>A4384</td>
</tr>
<tr>
<td>11</td>
<td>492962.66</td>
<td>6588076.43</td>
<td>117.5</td>
<td>4.2A</td>
<td>A4358</td>
</tr>
<tr>
<td>12</td>
<td>492926.37</td>
<td>6588121.57</td>
<td>117.46</td>
<td>4.3A</td>
<td>J9695</td>
</tr>
<tr>
<td>13</td>
<td>493007.49</td>
<td>6588110.89</td>
<td>118.13</td>
<td>4.4A</td>
<td>J9587</td>
</tr>
<tr>
<td>14</td>
<td>493037.17</td>
<td>6588078.09</td>
<td>117.62</td>
<td>4.5A</td>
<td>A4362</td>
</tr>
<tr>
<td>15</td>
<td>493038.37</td>
<td>6588160.95</td>
<td>118.9</td>
<td>4.6A</td>
<td>A4332</td>
</tr>
<tr>
<td>16</td>
<td>492895</td>
<td>6588165</td>
<td>112.87</td>
<td>Bø Elva</td>
<td>Bø elva</td>
</tr>
</tbody>
</table>
Vedlegg 3: Informasjon om brønner og observasjonsbrønner.

<table>
<thead>
<tr>
<th>Pumpebrønn</th>
<th>Observasjonsbrønn</th>
<th>Nivået</th>
<th>Dypde Logg (m)</th>
<th>Avstand fra observasjonsbrønn til Brønn</th>
<th>Logger Navn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1</td>
<td>5.5</td>
<td></td>
<td></td>
<td>A4384</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.5</td>
<td></td>
<td></td>
<td>A2035</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.5</td>
<td></td>
<td></td>
<td>B2502</td>
</tr>
<tr>
<td>2A</td>
<td>1</td>
<td>5.5</td>
<td></td>
<td></td>
<td>A4358</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.5</td>
<td></td>
<td></td>
<td>L1285</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.5</td>
<td></td>
<td></td>
<td>B2746</td>
</tr>
<tr>
<td>3A</td>
<td>1</td>
<td>4.5</td>
<td></td>
<td></td>
<td>J9695</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.5</td>
<td></td>
<td></td>
<td>J9400</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.5</td>
<td></td>
<td></td>
<td>H7214</td>
</tr>
<tr>
<td>4A</td>
<td>1</td>
<td>5.5</td>
<td></td>
<td></td>
<td>J9587</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.5</td>
<td></td>
<td></td>
<td>H6890</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.5</td>
<td></td>
<td></td>
<td>B2705</td>
</tr>
<tr>
<td>5A</td>
<td>1</td>
<td>5.5</td>
<td></td>
<td></td>
<td>A4362</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.5</td>
<td></td>
<td></td>
<td>H7195</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.5</td>
<td></td>
<td></td>
<td>L1579</td>
</tr>
<tr>
<td>6A</td>
<td>1</td>
<td>5.5</td>
<td></td>
<td></td>
<td>A4332</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.5</td>
<td></td>
<td></td>
<td>H9095</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.5</td>
<td></td>
<td></td>
<td>B2490</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>7.01</td>
<td>58.88</td>
<td></td>
<td>A3116</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>6.99</td>
<td>53.82</td>
<td></td>
<td>A4319</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>7.48</td>
<td>55.38</td>
<td></td>
<td>A1993</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>16.29</td>
<td>26.66</td>
<td></td>
<td>A3061</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>8.15</td>
<td>11.5</td>
<td></td>
<td>A4317</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>4.90</td>
<td>10.5</td>
<td></td>
<td>F1217</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>7.52</td>
<td>13.8</td>
<td></td>
<td>A2038</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.18</td>
<td>30.93</td>
<td></td>
<td>K3894</td>
</tr>
</tbody>
</table>

Barometer satt i observasjonsbrønn 4.2A

<table>
<thead>
<tr>
<th>Koordinat X</th>
<th>Koordinat Y</th>
<th>Tid</th>
<th>Høyde (grunnvannsspeil)</th>
<th>Navn</th>
<th>Datalogg</th>
</tr>
</thead>
<tbody>
<tr>
<td>492984.47</td>
<td>6588054.5</td>
<td>8.13</td>
<td>114.41</td>
<td>Pumpebrønn</td>
<td>B4</td>
</tr>
<tr>
<td>492984.47</td>
<td>6588054.5</td>
<td>9.31</td>
<td>114.15</td>
<td>Pumpebrønn</td>
<td>B4</td>
</tr>
<tr>
<td>492984.47</td>
<td>6588054.5</td>
<td>12.14</td>
<td>113.95</td>
<td>Pumpebrønn</td>
<td>B4</td>
</tr>
<tr>
<td>492984.47</td>
<td>6588054.5</td>
<td>15.02</td>
<td>114.27</td>
<td>Pumpebrønn</td>
<td>B4</td>
</tr>
<tr>
<td>492984.47</td>
<td>6588054.5</td>
<td>23.46</td>
<td>114.41</td>
<td>Pumpebrønn</td>
<td>B4</td>
</tr>
<tr>
<td>492995.87</td>
<td>6588027.62</td>
<td>8.13</td>
<td>114.23</td>
<td></td>
<td>A4384</td>
</tr>
<tr>
<td>492995.87</td>
<td>6588027.62</td>
<td>9.31</td>
<td>114.15</td>
<td></td>
<td>A4384</td>
</tr>
<tr>
<td>492995.87</td>
<td>6588027.62</td>
<td>12.14</td>
<td>113.76</td>
<td></td>
<td>A4384</td>
</tr>
<tr>
<td>492995.87</td>
<td>6588027.62</td>
<td>15.02</td>
<td>113.97</td>
<td></td>
<td>A4384</td>
</tr>
<tr>
<td>492995.87</td>
<td>6588027.62</td>
<td>23.46</td>
<td>114.23</td>
<td></td>
<td>A4384</td>
</tr>
<tr>
<td>492962.66</td>
<td>6588076.43</td>
<td>8.13</td>
<td>114.85</td>
<td></td>
<td>A4358</td>
</tr>
<tr>
<td>492962.66</td>
<td>6588076.43</td>
<td>9.31</td>
<td>114.88</td>
<td></td>
<td>A4358</td>
</tr>
<tr>
<td>492962.66</td>
<td>6588076.43</td>
<td>12.14</td>
<td>114.53</td>
<td></td>
<td>A4358</td>
</tr>
<tr>
<td>492962.66</td>
<td>6588076.43</td>
<td>15.02</td>
<td>114.66</td>
<td></td>
<td>A4358</td>
</tr>
<tr>
<td>492962.66</td>
<td>6588076.43</td>
<td>23.46</td>
<td>114.85</td>
<td></td>
<td>A4358</td>
</tr>
<tr>
<td>492926.37</td>
<td>6588121.57</td>
<td>8.13</td>
<td>114.89</td>
<td></td>
<td>J9695</td>
</tr>
<tr>
<td>492926.37</td>
<td>6588121.57</td>
<td>9.31</td>
<td>114.93</td>
<td></td>
<td>J9695</td>
</tr>
<tr>
<td>492926.37</td>
<td>6588121.57</td>
<td>12.14</td>
<td>114.82</td>
<td></td>
<td>J9695</td>
</tr>
<tr>
<td>492926.37</td>
<td>6588121.57</td>
<td>15.02</td>
<td>114.83</td>
<td></td>
<td>J9695</td>
</tr>
<tr>
<td>492926.37</td>
<td>6588121.57</td>
<td>23.46</td>
<td>114.92</td>
<td></td>
<td>J9695</td>
</tr>
<tr>
<td>493007.49</td>
<td>6588110.89</td>
<td>8.13</td>
<td>115.49</td>
<td></td>
<td>J9587</td>
</tr>
<tr>
<td>493007.49</td>
<td>6588110.89</td>
<td>9.31</td>
<td>115.51</td>
<td></td>
<td>J9587</td>
</tr>
<tr>
<td>493007.49</td>
<td>6588110.89</td>
<td>12.14</td>
<td>115.43</td>
<td></td>
<td>J9587</td>
</tr>
<tr>
<td>493007.49</td>
<td>6588110.89</td>
<td>15.02</td>
<td>115.45</td>
<td></td>
<td>J9587</td>
</tr>
<tr>
<td>493007.49</td>
<td>6588110.89</td>
<td>23.46</td>
<td>115.5</td>
<td></td>
<td>J9587</td>
</tr>
<tr>
<td>493037.17</td>
<td>6588078.09</td>
<td>8.13</td>
<td>114.79</td>
<td></td>
<td>A4362</td>
</tr>
<tr>
<td>493037.17</td>
<td>6588078.09</td>
<td>9.31</td>
<td>114.78</td>
<td></td>
<td>A4362</td>
</tr>
<tr>
<td>493037.17</td>
<td>6588078.09</td>
<td>12.14</td>
<td>114.79</td>
<td></td>
<td>A4362</td>
</tr>
<tr>
<td>493037.17</td>
<td>6588078.09</td>
<td>15.02</td>
<td>114.79</td>
<td></td>
<td>A4362</td>
</tr>
<tr>
<td>493038.37</td>
<td>6588160.95</td>
<td>8.13</td>
<td>116.06</td>
<td></td>
<td>A4332</td>
</tr>
<tr>
<td>493038.37</td>
<td>6588160.95</td>
<td>9.31</td>
<td>116.05</td>
<td></td>
<td>A4332</td>
</tr>
<tr>
<td>493038.37</td>
<td>6588160.95</td>
<td>12.14</td>
<td>116.06</td>
<td></td>
<td>A4332</td>
</tr>
<tr>
<td>493038.37</td>
<td>6588160.95</td>
<td>15.02</td>
<td>116.06</td>
<td></td>
<td>A4332</td>
</tr>
<tr>
<td>493038.37</td>
<td>6588160.95</td>
<td>23.46</td>
<td>116.06</td>
<td></td>
<td>A4332</td>
</tr>
<tr>
<td>492895.00</td>
<td>6588165.00</td>
<td>8.13</td>
<td>114.91</td>
<td>Bø elva</td>
<td>BE</td>
</tr>
<tr>
<td>492895.00</td>
<td>6588165.00</td>
<td>9.31</td>
<td>114.91</td>
<td>Bø elva</td>
<td>BE</td>
</tr>
<tr>
<td>492895.00</td>
<td>6588165.00</td>
<td>12.14</td>
<td>114.92</td>
<td>Bø elva</td>
<td>BE</td>
</tr>
<tr>
<td>492895.00</td>
<td>6588165.00</td>
<td>15.02</td>
<td>114.92</td>
<td>Bø elva</td>
<td>BE</td>
</tr>
<tr>
<td>492895.00</td>
<td>6588165.00</td>
<td>23.46</td>
<td>114.93</td>
<td>Bø elva</td>
<td>BE</td>
</tr>
<tr>
<td>492971.30</td>
<td>6588043.19</td>
<td>8.13</td>
<td>114.90</td>
<td>Elva</td>
<td>B1</td>
</tr>
<tr>
<td>492971.30</td>
<td>6588043.19</td>
<td>9.31</td>
<td>114.90</td>
<td>Elva</td>
<td>B1</td>
</tr>
<tr>
<td>492971.30</td>
<td>6588043.19</td>
<td>12.14</td>
<td>114.91</td>
<td>Elva</td>
<td>B1</td>
</tr>
<tr>
<td>492971.30</td>
<td>6588043.19</td>
<td>15.02</td>
<td>114.91</td>
<td>Elva</td>
<td>B1</td>
</tr>
<tr>
<td>492971.30</td>
<td>6588043.19</td>
<td>23.46</td>
<td>114.92</td>
<td>Elva</td>
<td>B1</td>
</tr>
<tr>
<td>492920.10</td>
<td>6588117.01</td>
<td>8.13</td>
<td>114.90</td>
<td>Elva</td>
<td>B2</td>
</tr>
<tr>
<td>492920.10</td>
<td>6588117.01</td>
<td>9.31</td>
<td>114.90</td>
<td>Elva</td>
<td>B2</td>
</tr>
<tr>
<td>492920.10</td>
<td>6588117.01</td>
<td>12.14</td>
<td>114.91</td>
<td>Elva</td>
<td>B2</td>
</tr>
<tr>
<td>492920.10</td>
<td>6588117.01</td>
<td>15.02</td>
<td>114.91</td>
<td>Elva</td>
<td>B2</td>
</tr>
<tr>
<td>492920.10</td>
<td>6588117.01</td>
<td>23.46</td>
<td>114.92</td>
<td>Elva</td>
<td>B2</td>
</tr>
</tbody>
</table>
Vedlegg 5: Datagrunnlag for strømningsforholdene kart

<table>
<thead>
<tr>
<th>ID</th>
<th>K</th>
<th>X</th>
<th>Y</th>
<th>Hols</th>
<th>Zr</th>
<th>Name</th>
<th>Logg</th>
<th>Tid</th>
<th>Dato</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49290</td>
<td>688210.000</td>
<td>118.258</td>
<td>114.677</td>
<td>Bronn</td>
<td>B2</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49290</td>
<td>688210.000</td>
<td>118.205</td>
<td>114.609</td>
<td>Bronn</td>
<td>B2</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>49290</td>
<td>688210.000</td>
<td>118.258</td>
<td>114.067</td>
<td>Bronn</td>
<td>B2</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>49290</td>
<td>688210.000</td>
<td>118.258</td>
<td>114.498</td>
<td>Bronn</td>
<td>B2</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>49290</td>
<td>508191.35</td>
<td>116.45</td>
<td>115.313</td>
<td></td>
<td>A3061</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>49290</td>
<td>508191.35</td>
<td>116.45</td>
<td>115.308</td>
<td></td>
<td>A3061</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>49290</td>
<td>508191.35</td>
<td>116.45</td>
<td>115.716</td>
<td></td>
<td>A3061</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>49290</td>
<td>508191.35</td>
<td>116.45</td>
<td>115.142</td>
<td></td>
<td>A3061</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>49298</td>
<td>508206.63</td>
<td>118.53</td>
<td>114.648</td>
<td></td>
<td>A4117</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>49298</td>
<td>508206.63</td>
<td>118.53</td>
<td>114.541</td>
<td></td>
<td>A4117</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>49298</td>
<td>508206.63</td>
<td>118.53</td>
<td>114.032</td>
<td></td>
<td>A4117</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>49298</td>
<td>508206.63</td>
<td>118.53</td>
<td>114.215</td>
<td></td>
<td>A4117</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.958</td>
<td></td>
<td>F1217</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.978</td>
<td></td>
<td>F1217</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.378</td>
<td></td>
<td>F1217</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.867</td>
<td></td>
<td>F1217</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.735</td>
<td></td>
<td>A2038</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.721</td>
<td></td>
<td>A2038</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.558</td>
<td></td>
<td>A2038</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>49284</td>
<td>508256.81</td>
<td>118.81</td>
<td>114.529</td>
<td></td>
<td>A2038</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>49275</td>
<td>688160.000</td>
<td>118.276</td>
<td>115.093</td>
<td>Bronn</td>
<td>B3</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>49275</td>
<td>688160.000</td>
<td>118.276</td>
<td>115.101</td>
<td>Bronn</td>
<td>B3</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>49275</td>
<td>688160.000</td>
<td>118.276</td>
<td>114.978</td>
<td>Bronn</td>
<td>B3</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>49275</td>
<td>688160.000</td>
<td>118.276</td>
<td>114.978</td>
<td>Bronn</td>
<td>B3</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>49284</td>
<td>508345.15</td>
<td>116.64</td>
<td>115.311</td>
<td></td>
<td>A3116</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>49284</td>
<td>508345.15</td>
<td>116.64</td>
<td>115.319</td>
<td></td>
<td>A3116</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>49284</td>
<td>508345.15</td>
<td>116.64</td>
<td>115.319</td>
<td></td>
<td>A3116</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>49284</td>
<td>508345.15</td>
<td>116.64</td>
<td>115.319</td>
<td></td>
<td>A3116</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>49284</td>
<td>508345.15</td>
<td>116.64</td>
<td>115.319</td>
<td></td>
<td>A3116</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>49270</td>
<td>508365.83</td>
<td>117.45</td>
<td>115.505</td>
<td></td>
<td>A4119</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>49270</td>
<td>508365.83</td>
<td>117.45</td>
<td>115.508</td>
<td></td>
<td>A4119</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>49270</td>
<td>508365.83</td>
<td>117.45</td>
<td>115.508</td>
<td></td>
<td>A4119</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>49270</td>
<td>508365.83</td>
<td>117.45</td>
<td>115.506</td>
<td></td>
<td>A4119</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>49270</td>
<td>508365.83</td>
<td>117.45</td>
<td>115.504</td>
<td></td>
<td>A4119</td>
<td>8.35</td>
<td>17.06.2014</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>35</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>36</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>37</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>38</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>39</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>40</td>
<td>49271</td>
<td>508338.49</td>
<td>116.73</td>
<td>ND</td>
<td>3.7</td>
<td>A1993</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>