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Much attention has been devoted to how playground swing amplitudes are built up by swinger 
techniques, i.e. body actions. However, very little attention has been given to the requirements that 
such swinger techniques place on the swinger himself. The purpose of this study was to find out 
whether different swinger techniques yield significantly different maximum torques, endurance and 
coordinative skills, and also to identify preferable techniques. We modeled the seated swinger as a 
rigid dumbbell and compared three different techniques. A series of computer simulations was run 
with each technique, testing performance with different body rotational speeds, delayed onset of body 
rotation, and different body mass distributions, as swing amplitudes were brought up towards °90 . 
One technique was found extremely sensitive to the timing of body actions, limiting swing amplitudes 
to °50  and °8  when body action was delayed by s03.0  and s3.0 , respectively. The two other more 
robust techniques reached °90  even with the largest of these delays, although more time (and 
endurance) was needed. However, these two methods also differed with respect to maximum torque 
and endurance, and none was preferable in both these aspects, being dependent on the swinger goals 
and abilities. 
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1.   Introduction 

 

The playground swing has a place in most people's childhood. It allows a swing that is initiated, 

maintained and controlled by the swinger, but doing it on the playground is one thing, understanding 

the physics involved is yet another. A little child is able to initiate the swing from standstill and reach 
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considerable heights without knowing any mechanical law. At the same time, the mechanics of swing 

initiation and amplitude build-up is intriguing enough to justify a whole series of scientific 

contributions over the last few decades, see e.g. McMullan (1972), Curry (1976), Case and Swanson 

(1990), Case (1996), Wirkus et al. (1998), Piccoli and Kulkarni (2005), Post et al. (2007),  and 

references therein.  

 Conservation of angular momentum about the point of suspension explains how it is possible 

get moving without a helping hand. When a still-standing swinger initiates body rotation, that angular 

momentum triggers a simultaneous (oppositely directed) rotation of the whole system’s center of mass 

about the suspension point. After swing initiation, a similar transfer of angular momentum occurs, 

allowing swing amplitudes to grow with the right back and forth body rotation of the swinger. Body 

rotations will generally also change the effective distance between the point of suspension and the 

system’s center of mass. This offers another important contributor to amplitude build-up. Put simply, 

for a single up and down swing, if the center of mass of the swinger is closer to the point of suspension 

when going up than when going down, the torque of gravity has a net increasing effect on the system 

energy. With the right rhythm, the swinger may exploit this effect in every period of the swing. This 

mechanism is usually referred to as parametric (Case, 1980), since the essence is a (repeated) change 

of the parameter value that represents the effective length of the pendulum. Still, with reasonable 

assumptions on the system and swinger motion, Case and Swanson (1990) showed that for smaller 

swing amplitudes ( °< 40 ), system dynamics is dominated by driving terms, also stemming from the 

swinger’s body rotation, rather than the parametric terms. This also applies when the swing is 

executed by body rotations in a standing position, as shown by Case (1996). In the standing position, 

crouching and standing up with the right rhythm provides a pure parametric technique for pumping the 

swing. Wirkus et al. (1998) ran computer simulations to compare this standing approach with a pure 

rotational approach for a seated swinger, modeling the swinger’s center of mass to be located on the 

line along the ropes of the swing. They concluded that seated pumping was better at low amplitudes, 

but that the standing technique was more effective at higher amplitudes.  

 Much attention has been devoted to the understanding of the influence of swinger techniques  
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on swing amplitudes. For the swinger, however, it is also of interest to know what kind of demands 

those different techniques place on the swinger. Do different techniques require substantially different 

abilities from the swinger, or are they essentially similar? Swingers surely differ in strength, endurance 

and coordinative skills, and, in particular with larger amplitudes, such factors might limit the choice of 

technique for some swingers.  

 In this work, we investigate whether different swinger techniques yield significantly different 

maximum torques, endurance and coordinative skills, and seek to identify whether any technique is 

preferable over others. 

 

 

2.   Methods  

 

We model the swinger as a rigid dumbbell with three point-masses 1m , 2m  and 3m , letting 2L  and 

3L  represent the lengths of legs and torso, respectively (Fig. 1). The ropes of the playground swing 

were taken to be massless and rigid with length 1L . A specified rotational motion of the dumbbell 

then corresponds to a certain swinger technique that will drive the system.   

 

2.1 Mathematical model 

 

The Lagrangian of the swing system illustrated in Figure 1 reads 
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where 1θ  and 2θ  are the angles indicated in Figure 1, 321 mmmM ++= , 2
11 MLI = , 

2
33

2
222 LmLmI +=  and 2233 LmLmN −= , a notation adopted from Case and Swanson (1990). 

From the Lagrangian, we may derive the swinger torque τ  in the standard way as  
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In a similar way, assuming zero friction at the point of suspension, the angular acceleration of 

the ropes may be found from 
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which allows the angular acceleration to be expressed as 
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Equations (3) and (5) are valid for any amplitude, and express how swinger torque and swing 

amplitude develop as a function of system parameters and swinger motion (through ( )t2θ  and 
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its derivatives). By choosing different functions for ( )t2θ , different swinger techniques may 

be analyzed for a chosen set of system parameters.  

 It should be noted that the swing control problem studied here is quite different from the one 

that involves another person pushing the swinger. In (5), the control is provided by the swinger alone 

through the known function ( )t2θ  and its time derivatives. When time derivatives of the controls 

enter the equations, it is usually referred to as impulsive control (Bressan, 1990) See, e.g., 

Bressan (2007) for a review of the fundamental theory and an application of the basic ideas to 

the playground swing. 

 

2.2 Swinger techniques and comparison 

 

The three swinger techniques studied herein, are based on swinger strategies suggested by Wirkus et 

al. (1998) and Case and Swanson (1990). A dumbbell modeling approach was used in both of these 

works. 

 Wirkus et al. (1998) let the swinger rotate (relative to the ropes) only at each top point of the 

swing, staying static elsewhere in the swing. With reference to Fig. 1, the technique might be 

explained as follows. Assume the swinger is in the maximum backward leaning position 

( max,22 θθ = ), moving upwards, i.e., 0,0, 121 >> θθθ &  and 02 =θ& . As the top point of the swing is 

reached ( 01 =θ& ), the torso is quickly lifted up to the ropes, giving 02 =θ . During the backswing 

( 01 <θ& ), body position relative to the ropes is kept unchanged ( 02 =θ , 02 =θ& ). As the other top 

point of the swing is reached ( 01 <θ , 01 =θ& ), the swinger quickly leans backwards, back to the 

position max,22 θθ = , and swings forward to repeat the motion pattern just described. Conservation of 

angular momentum then makes the amplitude grow with each period of the swing. In their work, 

Wirkus et al. (1998) used a simplified model, letting 32 LL =  and 32 mm = . This gives 0=N  and 

has the effect of excluding parametric terms from the dynamics, since the swinger’s center of mass 
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become positioned at 1m . In our analysis, we treat 0=N  to be only a special case, and investigate 

swinger demands for this technique (referred to as "W" in the following) with °= 40max,2θ .  

 Case and Swanson (1990) let the swinger move according to ( )tωθθ cosmax,22 = , with 

°= 40max,2θ  and  0ωω = , i.e., the natural frequency of the system. Small-angle approximations 

were introduced in the trigonometric expressions of the dynamic model, limiting their analysis to 

°< 401θ . Furthermore, no phase correction was included in the swinger motion scheme. This 

prohibits 1θ  amplitudes larger than about °40 , since the increasing pendulum period eventually 

brings the swinger (applying a constant ω ) out of resonance when such amplitudes are reached. Here, 

we avoid small-angle approximations and introduce a simple phase correction scheme to allow larger 

amplitudes to be reached.  The phase correction is made at each forward ( 01 >θ& ) bottom passing, 

updating ω  based on the recorded amplitude from the previous swing period. This recorded amplitude 

is used to calculate the time period T  that a corresponding passive pendulum would have if released 

from such amplitude. The approximate period T  may be found (Lima 2008) from 

 

    
( )

a
TT a

−
=

1
ln 1

0 ,      (6) 

 

where 
0

0
2
ω
π
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1θ=a , with max,1θ  being the maximum angular position reached 

during the swing in the previous period. This will provide the swinger with an ω  that is close enough 

to the optimal frequency for swing amplitudes to continue growing (as demonstrated by our numerical 

experiments). The Case and Swanson (1990) technique, without small-angle approximations and with 

phase correction included, will be referred to as “C1” in the following. As a rationale for our third and 

final technique, we note that during resonance with C1, body rotation ( 02 ≠θ& ) lasts for the entire up 

(down) swing, i.e., from the bottom (top) position all the way to the top (bottom) point of the swing. 

However, the parametric effect would be larger if body rotation between 02 =θ  and max,22 θθ ±=  
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was done quicker, both at the top and the bottom position. Consequently, the swinger should be 

waiting in an upright position for most of each upswing and waiting at max,22 θθ ±=  for most of each 

downswing. We let this strategy be our third technique, and will refer to it as "C2" in the following. 

For W and C2, we chose a basic swinger body rotation 4 times higher than for C1, and introduced a 

factor 1≥k  to further regulate the speed of body rotation. The three techniques may then be 

summarized as 
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 during each change of 2θ  from max,2θ  to 0 , and from 0  back to max,2θ , respectively. Note 

 that each phase of 2θ  change is followed by a phase of latency, when the swinger is 

 waiting for the next top-point of the swing. 
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 during each full cycle of 2θ  change, changing from max,2θ  to max,2θ−  and back. Note that 

 each such period is followed by a brief phase of latency, when the swinger waits (phase 

 adjustment) for the next bottom position before repeating the motion. Note also that 
T
πω 2

= , 

 i.e. a frequency that drops as the period T  grows. 
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 during each change of 2θ  from max,2θ  to 0 , from 0  to max,2θ− , from max,2θ−  to 0 , and, 

 finally, from  0  to max,2θ , respectively. Note  that each such phase of 2θ  change is followed 

 by a phase of latency, when the swinger is waiting for the next top-point or bottom position. 

 

The development of system configuration is found by solving (5) together with a 2θ&&  equation that 

follows from technique (W, C1 or C2) and phase of that technique. Swinger torque may then be found 

from (3). 

 Comparison of swinger demands, as dictated by each of these techniques, will particularly 

emphasize differences in maximum torque (force) required, the endurance needed, and the 

coordinative skills. For a chosen set of system parameter values, the maximum torque needed by the 

swinger with C1 will vary with amplitude, whereas with W and C2, it will also vary with the rotational 

speed of the body. The endurance needed will depend on how long time it takes to reach the desired 

amplitude (defined as °90  in the present study), while coordination requirements will be strongly 

related to how critical the timing of body actions is for the buildup of swing amplitudes. System 

parameter values will of course have an impact on the results, so we also include simulations with 

different values of N . Each swing session was initiated from rest by use of C1. After one period, the 

swinger continued with W, C1 or C2, according to the method of choice. When 0≠N , the body 

center of mass will be under the point of suspension for some non-null 1θ . We define the bottom 

position to be that for which the center of mass is at its lowest position, corresponding to a 1θ  close to 

°1  for the values of N  investigated here. 
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2.3 Numerical experiments 

 

In each numerical experiment (E i , 6,...,1,0=i ), all three techniques were simulated with the same set 

of parameter values. Between experiments, we changed one of k , d  and N  (see Tables I, II and III), 

where d  is a time parameter (given as % of 0T ) used to delay each onset of 2θ - change by a fixed 

time lag. For the system parameters, we chose a total mass kgM 61=  with Mmm 4.031 ==  and 

Mm 2.02 = . For the length parameters we used mL 5.21 =  and let mLL 4.032 == , which gave 

2
1 25.381 kgmI = , 2

2 86.5 kgmI =  and kgmNN a 88.4== . This value of N  is the same as used 

by Case and Swanson (1990) for an adult swinger. We used 0T  as found from a small-angle 

approximation as 
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1

1210 12 θ−−+= NLIII   (Case and Swanson, 

1990). With aNN = , we get sT 15.30 ≈ , which we keep fixed throughout. The parameter N  was 

changed by re-distributing mass between 2m  and 3m  only, leaving inertias, total mass and length 

parameters unchanged. Notice that C1 does not depend on k . 

 All simulations were carried out with scripts written in Matlab, solving the differential 

equations with the Runge-Kutta method of order 4 and 5, which is available in the built-in ‘ode45’. 

The solution was provided every milli-second. 

 

3.   Results and discussion  

 

In the reference experiment (E0), swing amplitudes grew linearly with time for W and C1, but 

exponentially for C2 (Figure 2). The final amplitude of °90  was reached by W in s271 , while C1 and 
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C2 were about twice as fast, needing only %55  and %46  of the time, respectively. The periodic 

maximum torque required with W (Figure 3, top) remained close to Nm150±  for the whole interval, 

with a slight asymmetry in positive and negative values as caused by the kinematic differences in body 

movements between the top points, i.e. for positive and negative 1θ . Both C1 and C2 displayed an 

exponential growth in their maximum torques (Figure 3, middle and bottom). C1 torques increased 

from Nm50±  to Nm100± , i.e. substantially lower than W, while C2 torques were higher than W, 

ranging from Nm150±  to Nm225± .  

 Increasing the speed of body rotation (E1 and E2) for W and C2 demanded much higher 

swinger torques. As k  was increased to 5.1  and 2 , W torques were amplified by factors of about 2 

and 3, respectively. For C2, the corresponding factors were approximately 2 and 4. However, the extra 

effort did not pay off much when measured in the time spent on reaching the final swing amplitude of 

°90 . Increasing k  to 5.1  and 2  reduced the total swing time for W and C2 with %6<  and %4< , 

respectively. Amplitudes evolved with time as in E0. 

 Delaying the onset of body rotation (E3 and E4) illustrated that C1 was extremely sensitive to 

the timing of body actions compared to the other two techniques. A delay of just %1  (of 0T ) 

deteriorated resonance substantially and caused amplitudes to reach only °50  (Figure 4, top). 

Maximum torque requirements became upwards limited to Nm60  (Figure 4, bottom). A further delay 

of %10  made C1 amplitudes only reach about °8 . Very little response was noticed for W and C2  

when timing was delayed by %1 . Total swing time increased by %4<  and maximum torque 

developed in essentially the same way as before. With %10  delay, total swing time for W and C2 

increased by approximately %65 . C2 now displayed a more linear growth of amplitudes but with a 

torque development as before (Figure 5). For W, the maximum torque developed much as before, but 

on the negative side ( 01 <θ ), demands grew slightly ( %20< ) since backward rotation now was 

initiated after the downswing had started. 

 Changing body mass distribution (E5 and E6) first and foremost affected torque requirements, 

leaving amplitude progress essentially unchanged for all three techniques, whether N  was halved or 
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set to zero. Swinger torques with W became more symmetric and fully symmetric, respectively, as N  

was changed to aNN 2
1=  and 0=N . This owed to the change in location of body center of mass, 

equaling the work required at the top point on either side. Otherwise W torques developed as before. 

As N  was halved (set to zero), C1 torques dropped by a factor of 6.0  ( 3.0 ), while C2 torques only 

changed noticeably with 0=N . Torques then diminished by a factor of 8.0 . 

 

 

4.   Conclusion  

 

It was investigated here in this work whether distinct swinger techniques require significantly different 

maximum torques, endurance and coordinative skills, and whether any preferable technique could be 

identified. A dumbbell modeling approach was chosen, as previously used also by Case and Swanson 

(1990) and Wirkus et al. (1998). One technique (C1) demanded considerably lower maximum torques 

than the others. It was also nearly as quick to build up swing amplitudes as the fastest technique (C2). 

However, it was extremely sensitive to the timing of body actions compared to the other two 

alternatives. 

 The model did not include air resistance and changes in swinger body configuration. In reality, 

the swinger holds on to the ropes with arms that bend and stretch to produce the torque that we 

compute with our model. Often, the knees also bend and stretch during the swing. These factors will 

generally differ somewhat between the techniques and mass distribution will be affected. However, the 

influence on system dynamics is expected to be small. Similarly, the chosen range of swinger body 

rotation ( max,2θ± ) is assumed to be realistic. Other choices would have affected the dynamics, but not 

the relative performances of the techniques. For example, halving max,2θ  increased the time to reach 

21
πθ =  for all three methods, but, C2 ( s289 ) was still faster than C1 ( s302 ), which in turn was 

faster than W ( s533 ). Likewise, air resistance will have an effect at larger amplitudes, but the effect 

is expected to be comparatively small and is assumed to affect all techniques in about the same way.  
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 Our findings imply that even if C1 performs well on maximum torque and buildup of swing 

amplitudes, it is a much more demanding technique than W and C2 if larger amplitudes (above °40  - 

°50 ) are strived for. This owes to the very strict timing requirements of body actions. With swing 

amplitudes being upwards bounded to °50  when body rotation is delayed by only 0.03 s ( %1≈  of 

0T ), it seems virtually impossible to reach higher amplitudes with this technique. The two alternative 

techniques, W and C2, are much more robust in this respect, since °90  amplitudes could be reached 

even with a delay ten times larger. The endurance requirements of C2 are substantially lower than for 

W. On the other hand, higher maximum torques are needed. What technique to choose, will therefore 

depend on the goal and abilities of the swinger. If the aim is to reach large amplitudes as quickly as 

possible, C2 is the method of choice if the resources are there. A swinger with less competitive 

attitude may keep smaller amplitudes going with any of the techniques, or combination of techniques.  

 In conclusion, different swinger techniques do place very different demands on the swinger. 

Of the three techniques studied, two methods (W and C2) were identified as preferable over the third 

alternative. Among these two, the choice should be done according to swinger goals and abilities. 
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Table I Parameter values while changing k , i.e. the speed of body rotation. 
 

Experiment k  d  (%) N  ( kgm ) 
E0 
E1 
E2 

1 
5.1  

2  

0  
0  
0  

aN  

aN  

aN  

 
 
 
 
 
Table II Parameter values while changing d , i.e. the delay of action (in % of 0T ). 

 
Experiment k  d  (%) N  ( kgm ) 

E3 
E4 

1 
1 

1 
10  

aN  

aN  

 
 
 
 
 
Table III Parameter values while changing N , i.e. the body mass distribution. 
 

Experiment k  d  (%) N  ( kgm ) 
E5 
E6 

1 
1 

0  
0  

aN2
1  

0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figurer... 
 
 
 
 
 
 

 
Figure 1 Playground swing with a stiff and mass-less rope, having length 1L  and an angular position 

1θ  with the vertical. The swinger is idealized as a rigid dumbbell with length 32 LL +  and an angular 

position 2θ  relative to the ropes. All mass is located in point-masses 1m , 2m  and 3m . Angles are 

defined positive in the directions shown. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 



 
Figure 2 Amplitudes of the swing as they grow with W (top), C1 (middle) and C2 (bottom) during E0 
( 1=k , 0=d , aNN = ). A linear growth is seen with W and C1 as opposed to the faster growth of 

C2. The corresponding torques are shown in Fig. 3.  
 
  



 

 

 



 
 
 
Figure 3 Torques required by the swinger with W (top), C1 (middle) and C2 (bottom) during E0 
( 1=k , 0=d , aNN = ). The corresponding amplitudes are shown in Fig. 2. Note the different time 

scales. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 



Figure 4 Amplitudes (top) and torques (bottom) required by the swinger with C1 during E3 ( 1=k , 
1=d , aNN = ). The amplitudes do not grow further than °50  when swinger body rotation is 

delayed by only %1  of 0T . 

 
 
 



 

 
 
Figure 5 Amplitudes (top) and torques (bottom) required by the swinger with C2 during E4 ( 1=k , 

10=d , aNN = ). The amplitudes now grow linearly only and much longer time is needed to reach  

°90 . 




