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Abstract. How rare is the event of observing more than a certain number of consecutive and
identical letters of any kind somewhere in a randomly generated word? No one can deny
that the use of generating functions is crucial for giving answers to questions like this. This
paper, however, gives an answer, essentially based on elementary linear algebra. The derived
formula is nevertheless simpler, has computational advantages and gives rise to a ‘nearest
integer’ representation with an improved analytical range, as compared to earlier results.

1. INTRODUCTION. Let a sequence of n letters (n ≥ 1), chosen with replacement
from a k letter alphabet (k ≥ 2), denote a word wn of length n. If wn contains a sub-
sequence of r identical and consecutive letters (r ≥ 1), we say that wn has a run of
length r . Now, let cn denote the number of words wn where the length of any run (of
any letter) is at most r . Then we may divide the cn words into groups according to
the longest run at the end of the word, called the longest last run. If the longest last
run consists of exactly m letters (1 ≤ m ≤ r ), there must be (k − 1)cn−m words in this
category because the first n − m letters may be organized in cn−m legal ways, while
there are k − 1 ways to choose the letter present in the longest last run. Thus we have
the recursion relation

cn = (k − 1)cn−1 + · · · + (k − 1)cn−r , for n > r. (1)

If n ≤ r , it is clear that cn = kn , constituting r initial conditions. The characteristic
equation related to (1) is

λr
= (k − 1)λr−1

+ · · · + (k − 1)λ+ (k − 1). (2)

Since the right hand side of (2) is a geometric series we also have

λr
= (k − 1) ·

λr
− 1

λ− 1
, where λ 6= 1. (3)

We observe that λ = 1 is not a solution to (2). Multiplying each side of (3) by λ− 1,
we get the equation

λr (λ− k)+ k − 1 = 0. (4)

Then we know except in the case λ = 1 that (4) will have the same solutions
λ1, . . . , λr as (2). If we define F(λ) = λr (λ − k) + k − 1, the fundamental theorem
of algebra ensures that F(λ) may be represented by the factorization

F(λ) = (λ− 1)(λ− λ1) · · · (λ− λr ). (5)
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Locating the roots of F(λ) and their multiplicity is crucial to construct the solution
of (1). To see that all the r + 1 roots of F(λ) are simple, we will argue by contra-
diction. Assume that F(λ) has a root λ = λi of multiplicity mi ≥ 2. Then the funda-
mental theorem of algebra allows us to write F(λ) = (λ− λi )

mi G(λ), where G(λ) is
a polynomial of degree r + 1 − mi , resulting in F ′(λi ) = 0. On the other hand, we
will also make use of the fact that F ′(λ) = λr−1((r + 1)λ− kr) is a polynomial of de-
gree r with r roots, counted with multiplicity. Since λ = 0 has multiplicity r − 1, then
λ = kr/(r + 1) must be simple. These constitute all the r roots of F ′(λ), and none of
them are solutions to (2). Then, by contradiction, we may conclude that all the r + 1
roots of F(λ) must be simple.

In [2], K.A. Suman proves that exactly one of the r (for r ≥ 2) simple solutions,
λr , of (2) lies outside the unit circle C = {z : |z| = 1}. By inspection, we see that
k − 1 < λr < k. The other r − 1 solutions λ1, . . . , λr−1 must lie in the open unit disc
U = {z : |z| < 1}. If there were solutions on C , then the requirement |λr (λ − k)| =
|λ− k| = k − 1 would only be satisfied if λ = 1.

In the special case r = 1, we have λ = k − 1, supplying the general solution
cn = B(k − 1)n . The initial condition c1 = k implies B = k/(k − 1), so that cn =

k(k − 1)n−1, for n ≥ 1. This result is intuitive since the first letter can be chosen in k
ways, but every consecutive letter can differ from the preceding one in k − 1 ways.

2. SOLVING THE RECURSION RELATION. Since we have r distinct and
simple solutions to (2), the general solution to (1) is given by

cn = a1λ
n
1 + a2λ

n
2 + · · · + arλ

n
r .

Using the initial conditions cn = kn when 1 ≤ n ≤ r , we get the system

a1λ1 + · · · + arλr = k
a1λ

2
1 + · · · + arλ

2
r = k2

...
...

...

a1λ
r
1 + · · · + arλ

r
r = kr .

(6)

The coefficient matrix A of (6), given by

A =


λ1 λ2 . . . λr

λ2
1 λ2

2 . . . λ2
r

...
...

...
...

λr
1 λr

2 . . . λr
r

 ,
is closely related to a Vandermonde matrix, which is a kind of matrix that rapidly
appears in the study of polynomial interpolations. In [3], H.S. Wilf treats a similar
but simpler case and is able to obtain a simple solution by inverting the correspond-
ing Vandermonde matrix. In [2] Suman makes use of generating functions and partial
fraction expansions to solve (6), but his solution doesn’t exhibit the same simplicity. In
the following, we will see what a solution based on straightforward Gauss elimination
can do.

Let T be the augmented matrix of the system (6). If {Ri }
r
i=1 denote the rows of T ,

we perform operations, replacing Ri with Ri − λ1 Ri−1 (for i = 2, . . . , r ), to get
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T ∼


λ1 λ2 . . . λr k
0 λ2(λ2 − λ1) . . . λr (λr − λ1) k(k − λ1)
...

...
...

...
...

0 λr−1
2 (λ2 − λ1) . . . λr−1

r (λr − λ1) kr−1(k − λ1)

 .
Proceeding in the same manner, replacing R j with λ2 · R j−1 ( j = 3, . . . , r) and so

on, we get

T ∼


λ1 λ2 . . . λr k
0 λ2(λ2 − λ1) . . . λr (λr − λ1) k(k − λ1)
...

. . .
...

...

0 0 . . . λr

r−1∏
j=1
(λr − λ j ) k

r−1∏
j=1
(k − λ j )

 ,

so that

ar =

k
r−1∏
j=1
(k − λ j )

λr

r−1∏
j=1
(λr − λ j )

.

Now it will not be necessary to find a1, . . . , ar−1 by back-substitution. We will
instead use symmetry, arguing that the Gaussian elimination process is valid even if
(ar , λr ) is interchanged with (ai , λi ), (for i = 1, . . . , r − 1). Hence we have

ai =

k ·
∏

1≤ j≤r, j 6=i
(k − λ j )

λi ·
∏

1≤ j≤r, j 6=i
(λi − λ j )

(for i = 1, . . . , r), (7)

resulting in

cn =

r∑
i=1

k ·
∏

1≤ j≤r, j 6=i
(k − λ j )

λi ·
∏

1≤ j≤r, j 6=i
(λi − λ j )

· λn
i . (8)

3. SIMPLIFICATIONS. The fact that the fractions of the solution (8) have much in
common with the factorization of F(λ) makes it possible to accomplish considerable
simplifications.

Theorem 1. Let cn be the number of n letter words generated from an alphabet of
k ≥ 2 letters with at most r ≥ 1 letters in any run. For each n ≥ 1 we have

cn =

r∑
i=1

k(λi − 1)

(k − 1)((r + 1)λi − kr)
· λn

i ,

where {λi }
r
i=1 are the solutions to (2).
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Proof. The numerator in the solution formula of ai , given in (7), can be written

k ·
∏

1≤ j≤r, j 6=i

(k − λ j ) =
k F(k)

(k − λi )(k − 1)
=

k

k − λi
, (9)

because F(k) = k − 1. The denominator of ai can be written

λi ·

∏
1≤ j≤r, j 6=i

(λi − λ j ) = lim
λ→λi

λi ·
F(λ)

(λ− 1)(λ− λi )
.

Applying L’Hôpital’s rule, we obtain

λi ·

∏
1≤ j≤r, j 6=i

(λi − λ j ) =
λr

i ((r + 1)λi − kr)

λi − 1
. (10)

Sutbstituting (9) and (10) into (7), generates

ai =
k

k − λi
·

λi − 1

λr
i ((r + 1)λi − kr)

=
k(λi − 1)

λr
i (k − λi )((r + 1)λi − kr)

.

Since λr
i (k − λi ) = k − 1 because of (4), we get

ai =
k(λi − 1)

(k − 1)((r + 1)λi − kr)
(for i = 1, . . . , r)

and finally

cn =

r∑
i=1

k(λi − 1)

(k − 1)((r + 1)λi − kr)
· λn

i . (11)

Substituting r = 1 and λr = k − 1 into (11), the correct solution cn = k(k − 1)n−1

is revealed.

In [2] Suman derived the solution,

c̃n =

r∑
i=1

ãiλ
n
i , (12)

where

ãi =
k(λr+2

i − 2λr+1
i + λr

i )

(k − 1)2(λr+1
i − (r + 1)λi + r)

.

Proving that c̃n = cn may seem a bit complicated at first look, but (2) and (4) are
adequate tools for reducing complexity. If we use the version k − 1 = λr

i (k − λi ) of
(4) in the denominator of ãi , we get

ãi =
kλr

i (λi − 1)2

(k − 1)2(λr+1
i − (r + 1)λi + r)

=
k(λi − 1)2

(k − 1)(k − λi )(λ
r+1
i − (r + 1)λi + r)

.
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Further on we find

λr+1
i − (r + 1)λi + r = (λi − 1)(λr

i + · · · + λi − r),

leading to

ãi =
k(λi − 1)

(k − 1)(k − λi )(λ
r
i + · · · + λi − r)

.

Since λr
i + λ

r−1
i + · · · + λi = λ

r
i + λ

r
i /(k − 1)− 1, because of (2) we obtain

ãi =
k(λi − 1)

(k − 1)(k − λi )(λ
r
i + λ

r
i /(k − 1)− 1− r)

.

Again, helped by (4), we find

ãi =
k(λi − 1)

(k − 1)(k − (1+ r)(k − λi ))
= ai ,

proving that c̃n = cn .
We observe that (11) is a considerably simpler solution than (12) because of the

lower degree polynomials involved. Simplicity, having its own value in mathematics,
also quite often will grant both numerical and analytical advantages.

In this case, we would consider it numerically unfavourable to apply a solution
formula where fractions may contain unnecessary large numbers. If for example k =
10 and r = 100, the denominator of ãr is approximately 8.1 · 10102, a huge number
compared to the corresponding denominator value of ar which is about 90. If we are
less modest when we choose the values of r and k, we can imagine how numbers will
increase according to the expansion factor λr

r (λr − 1).
The analytical advantages of (11) also become clear because, unlike the solution

(12), (11) makes it easy to deduce a nearest integer formula of cn which is valid for all
n ≥ 1 when k ≥ 5.

4. A ‘NEAREST INTEGER’ FORMULA. We have defined λr to be the dominat-
ing solution of (2), satisfying k − 1 < λr < k when r ≥ 2. Then we can rewrite (11)
to get

cn =

r−1∑
i=1

k(λi − 1)

(k − 1)((r + 1)λi − kr)
· λn

i +
k(λr − 1)

(k − 1)((r + 1)λr − kr)
· λn

r .

Since lim
n→∞

λn
i = 0 (i = 1, . . . , r − 1), there must exist an integer N , such that∣∣∣∣∣

r−1∑
i=1

ai · λ
n
i

∣∣∣∣∣ < 1

2
, (13)

when n ≥ N . Numerical computations done in [2] indicate that (13) should also hold
when n ≥ 1, but the author did not succeed in giving an analytical proof on the basis
of (12). With the simpler solution (11) at hand, we will prove (13) to be true when
k ≥ 5, r ≥ 2 and n ≥ 1.

If we let the notation [x] mean the ‘nearest integer’ to x , with the convention that
[m − 1/2] = m whenever m is a positive integer, we will be able to give a nice ‘nearest
integer’ formula of cn .
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Theorem 2. Let cn be the number of n letter words generated from an alphabet of
k ≥ 5 letters with at most r ≥ 1 letters in any run. For each n ≥ 1 we have

cn =

[
k(λr − 1)

(k − 1)((r + 1)λr − kr)
· λn

r

]
,

where λr is the unique solution to (2) satisfying k − 1 ≤ λr < k.

Proof. First consider

M(λ) =
λ− 1

λ− K
,

where λ ∈ U and K > 1 is real. Then M is a linear fractional (Möbius) transformation
(see for example [1, pp. 279–281]), transforming U onto an open circular disc. The fact
that M(1) = 0, M(0) = 1/K and M(−1) = 2/(K + 1) together with M(λ) = M(λ)
allow us to conclude that the image of U under M is the the open disc centered at
1/(K + 1) with a radius of 1/(K + 1). We have thus obtained∣∣∣∣ λ− 1

λ− K

∣∣∣∣ < 2

K + 1
,

when λ ∈ U . Now, with K = kr/(r + 1), (r ≥ 2), we get∣∣∣∣∣
r−1∑
i=1

k(λi − 1)

(k − 1)((r + 1)λi − kr)
· λn

i

∣∣∣∣∣ ≤
r−1∑
i=1

k

(k − 1)(r + 1)
·

2

1+ k · r
r+1

.

After a short calculation it becomes clear that the inequality

k

(k − 1)(r + 1)
·

2

1+ k · r
r+1

<
1

2(r − 1)

is satisfied when

k > 2−
5

2r
+

√(
2−

5

2r

)2

+ 1+
1

r
.

As both 2− 5/(2r) and
√
(2− 5/(2r))2 + 1+ 1/r turn out to be increasing functions

of r , we must require (when r →∞)

k > 2+
√

5.

This proves that ∣∣∣∣∣
r−1∑
i=1

k(λi − 1)

(k − 1)((r + 1)λi − kr)
· λn

i

∣∣∣∣∣ < 1

2

when n ≥ 1, r ≥ 2 and k ≥ 5. By including the case r = 1, the proof of the assertion
is complete.
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5. TOSSING DICE. Let Xn denote the length of the longest run in a randomly gener-
ated word of length n. Every letter in the alphabet of k letters has the same probability
1/k of occurring. The probability P(Xn ≥ r + 1), that the longest run will have a
length of at least r + 1, is then given by

P(Xn ≥ r + 1) = 1− cn/kn.

When k ≥ 5, we have proved

P(Xn ≥ r + 1) = 1−
1

kn

[
k(λr − 1)

(k − 1)((r + 1)λr − kr)
· λn

r

]
. (14)

If we toss a die one hundred times, what is the probability of getting a longest
run of at least length five? Applying formula (14), with r = 4, n = 100, k = 6 and
λr = 5.9961320107, we get P(Xn ≥ r + 1) ≈ 0.06. Table 1 supplies the probabilities
of a number of other combinations.

Table 1. The table values are the probabilities P(Xn ≥ r + 1).

r \ n 10 30 102 104 106 108

2 0.1813 0.4996 0.9107 1.0000 1.0000 1.0000

4 0.0040 0.0167 0.0601 0.9984 1.0000 1.0000

10 0 2.8 · 10−7 1.2 · 10−6 1.4 · 10−4 0.0137 0.7480

20 0 2.3 · 10−15 1.8 · 10−14 2.3 · 10−12 2.3 · 10−10 2.3 · 10−8

Looking for a nearly fair game, Table 1 gives the probability P(X30 ≥ 3) = 0.4996,
so in the long run it will not be a profitable to make a bet that the longest run, tossing
a die 30 times, will be at least of length three. Maple simulated 30 tosses ten million
times and gave 4997439 occurrences. The standard deviation of a binomial variable
with success probability p = 1/2 and n = 107 trials is

√
np(1− p) ≈ 1580. The ex-

pected number of occurrences with p = P(X30 ≥ 3) is 4996127. The difference be-
tween the expected and the observed values is therefore 1312, which is less than one
standard deviation.
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