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1 Introduction

It is well known that many mathematical problems, originating in ”real

world”, may be modeled by an infinitesimal approach, resulting in some

kind of differential equation. The method of doing local considerations also

applies in the discrete case, such as random walks. In that case it is of-

ten called a one step analysis, and the result will be a recursion equation

instead of a differential equation. The aim of this article is first of all to

show how to solve a two-dimensional random walk problem on an arbitrary

rectangle with certain boundary conditions, using separation of variables and

discrete Fourier analysis. Second, my intention is to demonstrate how ordi-

nary Fourier analysis will solve the same problem if residue calculations are

applied. Finally, I pay special attention to a resulting formula, connecting

discrete and ordinary Fourier coefficients.

2 One-dimensional random walk

There are a lot of different aspects to one-dimensional random walk. Here

we will consider random walk on the non-negative numbers, starting at the

number m, 1 ≤ m ≤M − 1. A successful walk will end at position M , while

a walk that ends at position 0, is considered a failure. The walker moves

stepwise to the neighbouring integer on the right hand side with probability
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p > 0 and to the left with probability q = 1− p. Let u(m) be the probability

that the random walk reaches the target number M , given the initial position

m.
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Figure 1 Random walk on the integers

In textbooks, this problem is often solved, making use of the correspond-

ing recursion equation, appearing from a one-step analysis (se for example

[1])

u(m) = p · u(m+ 1) + q · u(m− 1)

Assuming solutions u(m) = rm, the characteristic equation pr2−r+q = 0

is generated. Combining the solutions r1 = 1 and r2 = q
p
, and taking the

boundary conditions u(0) = 0 og u(M) = 1 into consideration, we obtain the

solution

u(m) =


1−

(
q
p

)m
1−

(
q
p

)M when p 6= q

m
M

when p = q = 1
2

Another context to this problem is of course the ”gambler’s ruin”, a game

between two players, A and B, attempting to win the total amount of money,

say M dollars. Every time they play a partial game, they only risk one dollar

each. The initial fortune of player A is assumed to be m, so that player B

initially has a fortune M − m. Let u(m) be the probability that player A

ends up with all the money (and B is ruined). To make this situation fit into

the model, let p be the probability that A wins an arbitrary partial game.

2



B’s winning probability is therefore q = 1 − p. If, for instance, p = 0.45

(q = 0.55) and M = 1000, the formula implies that A’s initial fortune must

be at least m = 997 dollars to make A’s total winning probability exceed

50%. It is quite surprising to observe that the solution of a second degree

equation is nearly all we need to solve a relatively complicated probabilistic

problem of random walk.

In general I believe that teachers of mathematics should bear in mind that

probability theory historically originated from gambling problems, and that

there is reason to believe that gambling contexts still motivate students in a

powerful way.

3 Two-dimensional random walk

3.1 Describing the situation

We will now consider a random walk in the plane, within the rectangle [1,M−
1]× [1, N − 1], where M ≥ 2 and N ≥ 2 are integers, as shown in figure 2.
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Figure 2 Random walk in the plane
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We assume that the walk starts at an inner point (m,n). The walker

moves to the neighbouring points (m+1, n), (m−1, n), (m,n+1) og (m,n−1)

with probabilities p1, p2, p3 and p4, respectively. Assume that
∑

i pi = 1 and

0 < pi < 1, i = 1..4. Assume furthermore that the walk is successful when

ending at the upper horizontal part of the boundary (symbol ∆), and like-

wise the walk is considered a failure if some other boundary point (symbol

�) is visited first.

Let u(m,n) be the probability that the random walk is successful, starting

at (m,n). Then u will satisfy the following partial difference equation:

u(m,n) = p1 ·u(m+1, n)+p2 ·u(m−1, n)+p3 ·u(m,n+1)+p4 ·u(m,n−1) (1)

Obviously we have the boundary conditions:

u(0, n) = u(M,n) = 0, n = 1..N − 1

u(m, 0) = 0 and u(m,N) = 1, m = 1..M − 1

This problem is essentially solved in the symmetrical case by [2], but

without the aid of Fourier analysis. [3] uses matrix formalism to solve this

and other related problems. Random walks on other kinds of lattices than

square lattices have been treated by for example [4] and [5], using separation

of variables as an important tool.

3.2 Linear system of equations

One can easily realize that our problem in principle may be handled by solv-

ing a linear system of equations. We have (M−1)(N−1) unknowns, u(m,n)

(m = 1..M − 1 og n = 1..N − 1), and the same number of equations. The

standard argument that there exists a unique solution (see [6]) is that u(m,n)

becomes a weighed average of the u-values of the neighbouring points and

therefore cannot be smaller than all of them. We conclude that both maxi-

mum and minimum must be obtained at the boundary. An inhomogeneous

system (like this one) with the same number of unknowns and equations, has
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a unique solution if the corresponding homogeneous system is only solved

trivially by u(m,n) ≡ 0. If u(m,n) = 0 on the whole boundary, then conse-

quently u(m,n) = 0 for all inner points too. So the solution is unique. Since

the boundary values are either 0 or 1, the u(m,n)-values must lie between 0

and 1 inside the rectangle, which is required for probabilities. For the sim-

ple case M = N = 4 we get nine equations and nine unknowns. Assuming

p1 = p2 = p3 = p4 = 1
4
, we obtain the solutions in the Table 1.

n\m 1 2 3

3 3
7

59
112

3
7

2 3
16

1
4

3
16

1 1
14

11
112

1
14

Table 1 We observe expected symmetry in the solutions.

3.3 Separation of variables

In analogy to a standard partial differential equation approach, separation

of variables requires that solutions of (1) fulfil:

u(m,n) = F (m)G(n) (2)

In addition we want the three homogeneous boundary conditions u(0, n) =

u(M,n) = 0 og u(m, 0) = 0 to be satisfied.

Putting (2) into (1), we find

p1F (m+ 1) + p2F (m− 1)

F (m)
= 1− p3G(n+ 1) + p4G(n− 1)

G(n)
(3)

Since the left hand side of (3) only depends on m and the right hand side

only depends on n, and since F and G are independent, it follows that both

sides must be a common constant, called 2λ (practical reasons for the factor

2). Out of this we get two recursion relations

5



p1F (m+ 1)− 2λF (m) + p2F (m− 1) = 0 where F (0) = F (M) = 0 (4)

and

p3G(n) + (2λ− 1)G(n+ 1) + p4G(n− 1) = 0 where G(0) = 0 (5)

First we consider equation (4). Trivial solutions are avoided by demand-

ing complex solutions of the corresponding characteristic equation

p1α
2 − 2λα + p2 = 0

We solve and find

α1,2 =
λ± i

√
p1p2 − λ2

p1

where α1α2 =
p2

p1

and |λ| < √p1p2

giving

F (m) = Aαm1 +Bᾱm1

where α1 =
λ+i
√
p1p2−λ2

p1
.

F (0) = 0 gives B = −A and F (M) = 0 gives

αM1 − ᾱM1 = 0

or, by multiplying αM1 to each side,

α2M
1 =

(
p2

p1

)M
This leads to

α1 =
λ+ i

√
p1p2 − λ2

p1

=

√
p2

p1

(
cos

(
kπ

2M

)
+ i sin

(
kπ

2M

))
6



Now we can identify λ

λ = λk =
√
p1p2 cos

(
kπ

M

)
Consequently we have

F (m) = Fk(m) = A ·
(
p2

p1

)m
2 {

e
kπim
M − e−

kπim
M

}
= Ã

(
p2

p1

)m
2

sin

(
kπm

M

)
Applying this λk-expression in equation (5), we get a new corresponding

characteristic equation

p3β
2 + (2λk − 1)β + p4 = 0 (6)

We solve and find

β1,2(k) =
1− 2λk ±

√
(1− 2λk)2 − 4p3p4

2p3

where β1β2 =
p4

p3

Since |λk| <
√
p1p2 ≤ 1

2
, we have

(1− 2λk)
2 > (1− 2

√
p1p2)

2

Define f =
(
1− 2

√
p1p2

)2−4p3p4, p̄ = 1
2
(p3+p4) and s = |p̄−p3| = |p̄−p4|

Then we have 4p3p4 = 4(p̄− s)(p̄+ s) = 4p̄2 − 4s2 = 4p̄2 − (p3 − p4)
2. It

is now possible to rewrite f , such that

f = (1−2
√
p1p2)

2−4p̄2+(p3−p4)
2 = (1−2

√
p1p2−2p̄)(1−2

√
p1p2+2p̄)+(p3−p4)

2

If we keep in mind that 2p̄ = p3 + p4 = 1− p1− p2, we can rewrite f once

more to get

f = (1− 2
√
p1p2 − (1− p1 − p2))(1− 2

√
p1p2 + (1− p1 − p2)) + (p3 − p4)

2

Now it is easily seen that

f = (
√
p1 −

√
p2)

2{2− (
√
p1 +

√
p2)

2}+ (p3 − p4)
2
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which means that f ≥ 0.

This implies that the characteristic equation (6) has two separate and

real solutions, β1 and β2. Let β1 > β2. We find

G(n) = Cβn1 (k) +Dβn2 (k)

The condition G(0) = 0 gives us D = −C, so that

G(n) = C (βn1 (k)− βn2 (k))

Therefore, the relevant solutions of the partial difference equation, satis-

fying the three homogeneous boundary conditions, are given by

uk(m,n) = Bk (βn1 (k)− βn2 (k))

(
p2

p1

)m
2

sin

(
kπm

M

)
3.4 Discrete Fourier analysis

To satisfy the inhomogeneous boundary conditions u(m,N) = 1, m = 1 . . .M−
1, we have to make use of linear combinations of the uk-functions. In ordinary

Fourier analysis we would try an infinite series, but the fact that sin
(
kπm
M

)
is periodic in k, will make such an approach a detour, yet an interesting one

(see section 3.5). Therefore, let us first try

u(m,n) =
M−1∑
k=1

Bk (βn1 (k)− βn2 (k))

(
p2

p1

)m
2

sin

(
kπm

M

)
(7)

The conditions u(m,N) = 1, m = 1..M − 1, lead to

M−1∑
k=1

Bk

(
βN1 (k)− βN2 (k)

)
sin

(
kπm

M

)
=

(
p1

p2

)m
2

,m = 1, . . . ,M − 1

for appropriately chosen Bk. To those familiar with discrete Fourier trans-

forms, it is clear that the inhomogeneous conditions will be satisfied if we

choose Bk such that

Bk

(
βN1 (k)− βN2 (k)

)
= ck, k = 1, . . . ,M − 1 (8)
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where ck is closely related to the discrete Fourier transform of
(
p1
p2

)m
2

, ex-

tended as an odd function, m = −M + 1..M − 1. Then we get (see for

eksemple [7])

ck =
2

M

M−1∑
j=1

(
p1

p2

) j
2

sin

(
kπj

M

)
=

2

M
=

(
M−1∑
j=1

(
p1

p2

) j
2

e
kπj
M
i

)

We realize that this is a finite geometric series, giving

ck =
2

M
=


1−

((
p1
p2

) 1
2
e
kπi
M

)M
1−

(
p1
p2

) 1
2
e
kπi
M

 =
2

M

(
1−

(
p1
p2

)M
2

cos(kπ)

)(
p1
p2

) 1
2

sin
(
kπ
M

)
1− 2

(
p1
p2

) 1
2

cos
(
kπ
M

)
+ p1

p2

With the aid of (8) we therefore have

Bk =
2

M

(
1−

(
p1
p2

)M
2

cos(kπ)

)(
p1
p2

) 1
2

sin
(
kπ
M

)
(

1− 2
(
p1
p2

) 1
2

cos
(
kπ
M

)
+ p1

p2

)
(βN1 (k)− βN2 (k))

Choosing Bk according to this and with

β1,2(k) =
1− 2λk ±

√
(1− 2λk)2 − 4p3p4

2p3

where λk =
√
p1p2 cos

(
kπ

M

)
,

u(m,n) from (7) will solve the given random walk problem.

3.5 Ordinary Fourier analysis

As mentioned in the previous section, it should be possible, but certainly

no shortcut, to apply ordinary Fourier analysis to get the inhomogeneous

boundary condition satisfied. We then try

u(m,n) =
∞∑
k=0

uk(m,n) =
∞∑
k=1

uk(m,n)
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In this setting we give Bk the new name bk. The conditions u(m,N) = 1,

m = 1..M − 1, imply

∞∑
k=1

bk
(
βN1 (k)− βN2 (k)

)
sin

(
kπm

M

)
=

(
p1

p2

)m
2

,m = 1, . . . ,M − 1

Ordinary Fourier analysis, considering the odd extension of
(
p1
p2

)x
2

to the

interval [−M,M ], renders the following formula:

bk =

2

((
p1
p2

)M
2

+ 1− 2
(
p1
p2

)M
2

cos2
(
kπ
2

))
kπ(

1
4

ln2
(
p1
p2

)
M2 + k2π2

)
(βN1 − βN2 )

Choosing bk according to this will give the nice solution

u(m,n) =
∞∑
k=1

bk · (βn1 (k)− βn2 (k))

(
p2

p1

)m
2

sin

(
kπm

M

)
,m ∈ [−M,M ] (9)

3.6 Reaching the finite Fourier series from the infinite

Let us see how it is possible to deduce the finite Fourier series solution (7)

from the infinite series (9). We rewrite (9) as follows:

u(m,n) =
∞∑
k=1

k

a2 + b2k2
γ(k) (10)

where

γ(k) =

2π

((
p1
p2

)M
2

+ 1− 2
(
p1
p2

)M
2

cos2
(
kπ
2

))
(βn1 (k)− βn2 (k))

(
p2
p1

)m
2

sin
(
kπm
M

)
βN1 (k)− βN2 (k)

(11)

and

a =
1

2
ln

(
p1

p2

)
M, b = π (12)

It is easy to see that when k = 1..M − 1 and q = 0, 1, . . ., we have

γ(k) = γ(k + 2qM) = −γ(2M − k + 2qM) (13)
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It is also true that γ(rM) = 0 when r is a nonnegative integer. This is

why we get

u(m,n) =
M−1∑
k=1

γ(k)
∞∑
q=0

(
k + 2qM

a2 + b2(k + 2qM)2
− 2M − k + 2qM

a2 + b2(2M − k + 2qM)2

)
(14)

and furthermore

u(m,n) =
M−1∑
k=1

γ(k)
∞∑
q=0

2δ(q, k) (15)

where we define δ(q, k):

δ(q, k) =
(k −M)(b2k2 − 2b2Mk + a2 − 4b2q2M2 − 4b2qM2)

(a2 + b2(k + 2qM)2)(a2 + b2(2M − k + 2qM)2)
(16)

The fact that δ(0, k) = δ(−1, k), δ(1, k) = δ(−2, k), . . ., enables us to

express u(m,n) as the sum

u(m,n) =
M−1∑
k=1

γ(k)
∞∑

q=−∞

δ(q, k) (17)

The denominator of δ(q, k) has simple poles in q1,2 = − k
2M
± a

2Mb
i and

q3,4 = k
2M
− 1 ± a

2Mb
i, so by standard residue calculus (see for eksemple [8])

we have

∞∑
q=−∞

δ(q, k) = −π
4∑
i=1

Resq=qi (cot(πq)δ(q, k)) = −π
4∑
i=1

cot(πq) lim
q→qi

(q−qi)δ(q, k)

Using (16), we find (here I was assisted by Maple):

∞∑
q=−∞

δ(q, k) =

(
p1
p2

) 1
2

sin
(
kπ
M

)
πM

(
1− 2

(
p1
p2

) 1
2

cos
(
kπ
M

)
+ p1

p2

) (18)
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Combining this formula with (11) and (17), we find that the resulting

solution u(m,n) coincides with the one found by discrete Fourier analysis,

given by (7).

3.7 Comparing with Laplace’s differential equation

Laplace’s two-dimensional equation is given by

∂2u

∂x2
+
∂2u

∂y2
= 0 (19)

Let the two partial difference operators ∆1 og ∆2 be defined by

∆1u(m,n) = u(m+ 1, n)− u(m,n)

and

∆2u(m,n) = u(m,n+ 1)− u(m,n)

Then we will have

∆2
1u(m− 1, n) = u(m+ 1, n)− 2u(m,n) + u(m− 1, n)

and

∆2
2u(m,n− 1) = u(m,n+ 1)− 2u(m,n) + u(m,n− 1)

Laplace’s differential equation in discrete form is therefore given by

∆2
1u(m− 1, n) + ∆2

2u(m,n− 1) = 0

og equivalently

4u(m,n) = u(m+ 1, n) + u(m− 1, n) + u(m,n+ 1) + u(m,n− 1)

which is the symmetric recursion relation treated in this article.

Let us consider (19) with boundary conditions
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u(0, y) = u(M, y) = u(x, 0) = 0 og u(x,N) = 1

This becomes a standard Dirichlet problem with solution (see for example

[9])

u(x, y) =
∞∑
l=1

4 sin
(

(2l−1)πx
M

)
sinh

(
(2l−1)πy

M

)
(2l − 1)π sinh

(
(2l−1)πN

M

) (20)

If we compare u(x, y) from (20) to u(m,n), given in (9), with p1 = p2 =

p3 = p4 = 1
4

and k = 2l − 1, we observe several similarities:

u(m,n) =
∞∑
l=1

4

(2l − 1)π
· β

n
1 − βn2

βN1 − βN2
· sin

(
(2l − 1)πm

M

)
We have β1 = a+

√
a2 − 1 og β2 = a−

√
a2 − 1, where a = 2− cos r and

r = (2l−1)π
M

. Further on we remark that β1β2 = 1, so that

βn1 − βn2 = en ln(a+
√
a2−1) − en ln(a−

√
a2−1) = 2 sinh(n ln(a+

√
a2 − 1))

Consequently we have

βn1 − βn2
βN1 − βN2

=
sinh(n ln(a+

√
a2 − 1))

sinh(N ln(a+
√
a2 − 1))

If r = (2l−1)π
M

becomes small, we can make use of the Taylor expansion

ln(2− cos r +
√

(2− cos r)2 − 1) ∼ r, leading to

βn1 − βn2
βN1 − βN2

≈ sinh(nr)

sinh(Nr)
=

sinh( (2l−1)πn
M

)

sinh( (2l−1)πN
M

)

When l is getting big, we get small contributions to the series

u(m,n) =
∞∑
l=1

4

(2l − 1)π
· β

n
1 − βn2

βN1 − βN2
· sin

(
(2l − 1)πm

M

)
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because of the factor 4
(2l−1)π

being small. This implies that little harm

can be done, using the Taylor expansion even when r is big.

The numerical deviations between the discrete and the continuous case

turned out to be small even for relatively small M and N . The case M =

N = 10, is demonstrated in table 2 and table 3. Table 2 gives the prob-

abilities u(m,n), based on the discrete model while Table 3 similarly gives

u(x, y), based on the continuous model.

n\m 1 3 5 7 9

9 0.489 0.754 0.799 0.754 0.489

7 0.179 0.402 0.466 0.402 0.179

5 0.083 0.207 0.250 0.207 0.083

3 0.038 0.098 0.120 0.098 0.038

1 0.011 0.029 0.035 0.029 0.011

Table 2

y\x 1 3 5 7 9

9 0.489 0.759 0.802 0.759 0.489

7 0.175 0.403 0.468 0.403 0.175

5 0.082 0.206 0.250 0.206 0.082

3 0.038 0.097 0.119 0.097 0.038

1 0.011 0.029 0.035 0.029 0.011

Table 3

4 Fourier coefficients - a connecting formula

Let f be a function, continuous and piecewise smooth on [0,M ]. Assume in

addition f(0) = 0. A discrete Fourier representation of f(m) (m = 1 . . .M −
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1) is then given by

f(m) =
M−1∑
k=1

ck sin

(
kπm

M

)
, ck =

2

M

M−1∑
m=1

f(m) sin

(
kπm

M

)
In a similar manner we get

f(x) =
∞∑
k=1

bk sin

(
kπx

M

)
, bk =

2

M

∫ M

0

f(x) sin

(
kπx

M

)
dx

The special case x = m:

f(m) =
∞∑
k=1

bk sin

(
kπm

M

)
=

M−1∑
k=1

sin

(
kπm

M

)
·
∞∑
q=0

δ(q, k)

where δ(q, k) = bk+2qM − b2M−k+2qM .

Combining the two expressions of f(m) will now give us (because of linear

independence)

ck =
∞∑
q=0

δ(q, k)

If the intention is to make the right hand side more computable in the

sense of enabling us to apply residue calculus (as in section 3.6), we first

observe that bk = −b−k, so that, for nonnegative q, we get

δ(−q − 1, k) = b−2M+k−2qM − b−k−2qM = −b2M−k+2qM + bk+2qM = δ(q, k)

The alternative formula of ck is consequently given by

ck =
1

2

∞∑
q=−∞

δ(q, k) =
1

2

∞∑
q=−∞

bk+2qM − b2M−k+2qM
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