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ABSTRACT

Accurate predictions of pressure drops in fluidized beds are of great importance in the
industry. Up to date no satisfactory correlation exists to predict the pressure drop in a
fluidized bed as the bed is traversing from one regime to another. In the present study
the powered addition correlation [1] is investigated for this particular application. It has
been found that this correlation is well suited for the investigated application.

INTRODUCTION

In the present study experiments have been performed in an experimental fluidized
bed reactor. The experimental tower has been equipped with a set of nine pressure
sensors located at different positions along the height of the tower. The tower has a
diameter of 0.072m and a height of 1.5m. A procedure providing a correlation for data
in the transition region between asymptotic solutions or limiting correlations have been
described by Churchill and Usagi [1]. This correlation can generally be expressed as
ys{x} = ys

o{x} + ys
∞{x}, where yo{x} and y∞{x} represents the asymptotic solutions

for large and small values of the independent variable x and s is the so called shifting
parameter. Changing the value of s shifts the correlation given by y{x} closer to or
away from the asymptotic solutions. This procedure has been proven to give good cor-
relations in a wide range of applications. The exact physical meaning of this shifting
parameter s, is still unknown and the present study is part of an ongoing investiga-
tion into the physical meaning and possible mathematical expression for the shifting
parameter. In the present study only one possible parameter influencing the shifting
parameter is investigated, namely different particle size distributions.

A series of different powders have been used to investigate the influence of a
particular parameters on the shifting parameter, s. Up to date no expression has been
stated for this shifting parameter to govern the transition from fixed to fluidized bed.
In the present study spherical glass particles have been used with different particle
size distributions. By keeping all the parameters constant except the particle size
distribution, the influence of the particle size distribution on the shifting parameter
could be investigated. Several different drag models were used to serve as a control



for investigating the shifting parameter. The results are given in the form of pressure
drop data versus superficial velocity data. Experimental data are presented with the
drag model correlations and the investigated values of the shifting parameter, s. Some
of the drag models that were used were the Syamlal O’Brien drag model [2] and the
extended Hill-Koch-Ladd drag correlation [3]. The results are evaluated and discussed.

PROPERTIES OF THE EXPERIMENTAL BEDS

At the point of minimum fluidization the total weight of the packed bed is supported by
the upward force created by the gas moving upward through the porous structure. As
the superficial velocity is increase from this point the pressure drop remains practically
the same [4]. The explanation for the slight increase of pressure drop with an increase
of superficial velocity may be attributed to wall effects, more specifically, slugging [5]. In
the present study the pressure drop in the fluidized regime will be assumed constant.
At this point of equilibrium (minimum fluidization velocity) the pressure-drop is given
by

∆p = (1 − ϵ)(ρp − ρf )Lg, (1)

with ρp the particle’s density, ρf the fluid density and L the bed height. In the present
study spherical glass particles were used with a density of 2485 kg/m3. The three
different size distribution that were used are 100 − 200µm, 400 − 600µm and 750 −
1000µm. The relevant parameters of the powders are given in Table 1.

Powder size distributions 100 − 200µm 400 − 600µm 750 − 1000µm

ϵ 0.39 0.37 0.36

(1 − ϵ)(ρp − ρf )g [N/m3] 14848 15334 15578

Table 1: Relevant parameters of the powders used in the present study.

All of the data is at the point of minimum fluidization except the 750 − 1000µm
powder. Because of a lack of experimental data in the fully fluidized regime data were
used when the bed was fluidized for the first time. The only practical effect of this
was that the porosity was lower than it would have been if the bed has been fluidized
before. By using the correct data this should pose no problem in the accuracy of what
the drag models predict.

POWERED ADDITION AND THE ASYMPTOTIC FUNCTIONS

In the work done by Chrurchill and Usagi [1] they proposed the use of a general em-
pirical equation for correlating behavior between two asymptotic solutions or limiting
correlations. In the present study the lower limiting condition will be the fixed bed
regime. Different drag models will be used to model this regime. The upper limiting
condition will be described by the constant pressure-drop given when the upward force
created by the upward moving gas is equal to the weight of the bed. It can be shown
that this constant pressure drop for the fluidized regime is given by (1−ϵ)(ρp −ρf )g, as
mentioned earlier. A problem arises for large values of the independent variable as a



constant value is not a upper bound [1]. Through numerous graphical representation
Churchill and Usagi [1] suggested equation (2) to give a linear relationship on a log-log
plot and can be written as

F (q) =
H(q)

H(∞) − H(q)
, (2)

where H(q) is the asymptotic function desired for large values of the independent
variable and H(∞) is the constant value to which the asymptote will tend to. Thus
using equation (2) a function can be determined for H(q) that would be a asymptotic
limiting condition for large values of the independent variable, q.

To determine this function H(q) the data points which the function should approx-
imate is used in equation (2). This data points are the pressure drop data in the
fluidized regime. It follows that (1 − ϵ)(ρp − ρf )g will be taken as the value of H(∞).

The 400 − 600µm powder will be used to serve as an example of how the function
H(q) is deduced. Using the data from Table 1 and the data acquired at the TUC
in Norway values of the function F (q) were determined. In Figure 1 (a) the positive
values of F (q) is given. It is clear from Figure 1 (a) that there is only three data points
while the fluidized region in Figure 1 (b) has at least six data points. The missing three
data points can be attributed to the prediction that (1 − ϵ)(ρp − ρf )g gives. For the
400 − 600µ m powder the theoretical prediction of equation (1) is lower than some of
the data points and as the log of a negative value does not exist the negative values
of F (q) can not be plotted in Figure 1. As only two data points are required to get a
linear approximation the remaining three data points are enough to produce a linear
approximation. In Figure 1 (b) an example of F (q) is given if the theoretical prediction
of equation (1) was higher than all of the data points. The result would have been
more data point and thus a more defined linear relationship.

With an approximate linear equation for F (q) on a log-log scale, a function for the
upper bound for large values of the independent variable, q, can now be determined.
The general function for H(q) can be expressed as

H(q) =
H(∞)

1

Fo

(
qo

q

)
m + 1

, (3)

with m being the gradient of the linear approximation of F (q) on a log-log scale and Fo

and qo any point on the approximated linear curve. For the 400 − 600µm powder the
upper bound for large values of q is given by

H(q) =
15334

1

24.19

(
0.199

q

)
11 + 1

, (4)

where the point (0.199, 24.19) were chosen as the arbitrary point on the linear approx-
imation of F (q). This function is not a good function for being representative of the
behavior of the fully fluidized bed at high values of q. After several graphical investiga-
tions a new adequate function was formulated. It can be expressed as

H(q) =
15334

1

Fo

(
0.1qo

q

)
m + 1

, (5)
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Figure 1: (a) Linear approximation to equation (3) on a log-log scaling. (b) Linear
approximation to equation (3) on a log-log scaling if the calculated value of equation
(1) was higher than all the data point values in the fully fluidized regime.

where the only difference to equation (3) is the addition of the factor in front of the
qo. The simple reasoning behind this factor lies in the characteristics of the investi-
gated powders. Because two out of the three investigated powders’ point of minimum
fluidization were above 0.1m/s the function H(q) was not adequate. If the minimum
fluidization velocity was below 0.1m/s the function would produce a result that would
give an accurate prediction in the fully fluidized regime (like the 100 − 200µm powder).
Thus by inserting the factor of 0.1 in equation (5) the equation is assured of giving
a usable function for all the powders investigated in the present study. It should be
noted that this function, equation (5), is completely empirical. It is only constructed to
produce a asymptotic function that would give the value of equation (1) for large val-
ues of q. This function is only created to be in accordance with the powered addition
procedure described by Churchill and Usagi [1].

The general applicability of this function should also still be investigated. In other
words, it should be tested for powders with different densities, different particle size dis-
tribution than the ones investigated in the present work and different particel shapes,
to name but a few. It should be bore in mind that for different powders the factor in
front of the qo in equation (5) might have to be addapted. The higher the superficial
velocity value at which the bed is fluidized the smaller factor is added in front of qo.
This might seem very empirical, but this is only an estimate to equation (1) and thus
keeps the whole theoretical basis of the equation that it is representing. Following the
procedure described by Churchill and Usagi [1] a total predictive model for fluidized
beds, traversing from a fixed to fluidized regime, can be expressed as

∆p

L
=

(
Drag model−s + H(q)−s)−

1

s , (6)

were any adequate drag model can be used. The negative powers of s is because the
data is a decreasing power of q.



Drag model investigation along with the shifting parameter, s.

Most drag model need some sort of definition of an average particle size. This is still
a source of on going research as it is no trivial task to estimate a good representative
particle size diameter. Sieving analysis was performed on the powders used in the
present study. This was done to establish the particles size distribution of the pow-
ders but also to determine an effective particle size. Several definitions exist for an
effective particle size in a powder with a particle size distribution. In the present study
the surface-volume mean diameter will be used [4] along with the minimum and max-
imum particle diameter of each powder. The surface-volume mean diameter can be
expressed as

dsv =
1∑

i xi/di
, (7)

with di the nominal diameter and xi the mass fraction of the total mass of the corre-
sponding nominal size particles. Thus

∑
i xi will be equal to 1.

For the 400 − 600µm powder a surface-volume mean diameter (d̄sv) of 482.9 were
calculated and the correlations of the different drag models using this value is given in
Figure 2 (b).

In Figure 2 (a) and (b) the minimum and maximum particle size diameters were
used respectfully. From these two figures it is clear to see that different models perform
better with different representative particle sizes. The Ergun equation [4] and the
modified Hill-Koch-Ladd drag correlation [3] performed better with large value of the
representative particle diameter. The Syamlal and O’Brien drag model [2] performed
very well with a low representative particle diameter.

Because of the accurate prediction of the Hill-Koch-Ladd drag correlation [3] with a
representative particle diameter equal to 400µm, it will be used to illustrate the useful-
ness of the powered addition principle [1]. In Figure 3 different correlations are given
with several values of the shifting parameter, s. It is clear to see that the higher the
value of s the more the powered addition correlation shifts towards the asymptotes. At
a value of 15 a satisfactory correlation is produced.
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Figure 2: The prediction of different drag models using (a) the minimum particle size
diameter (400µm), (b) the surface-volume mean diameter (482.9µm) and (c) the max-
imum particle size diameter (600µm). The experimental pressure drop data for the
400 − 600µm powder is given along side the predictions.
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Figure 3: The powered addition correlation for a fluidized bed traversing from fixed to
fluidized regime with the shifting parameter, s, equal to (a) 2, (b) 5, (c), 10 and (d) 15.



The accuracy of the fixed bed drag model thus plays a big role in the over all
accuracy of the powered addition correlation and the drag models are very dependent
on the representative particle diameter, as described earlier.

A similar analysis was done for the 100 − 200µm and 750 − 1000µm powders.
Only the best results are given in Figure 4. For the 100 − 200µm powder the Syamlal
and O’Brien drag model [2] was not a good representation of the data, even with
a representative particle diameter of 100µm. A possible explanation for this can be
found in Geldarts classification of particles [4]. The 100 − 200µm powder is on the
boundary between type A and type B particles whilst the 400 − 600µm powder is on
the boundary between type B and D powders. The 7500 − 1000µm powder is a type D
powder. Thus depending on the type of powder different drag models perform better.
In the cases depicted in Figure 4 a particle diameter and model were chosen that best
fitted the data. The reasoning was that a proper fitting in the fixed bed regime was
required to produce an accurate value for the shifting parameter in each case. Using
this best fitting models a value of 15 were found to give a suitable correlation in all the
investigated cases.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

q [m/s]

∆ 
p/

L 
[P

a/
m

]

 

 
Data
Equation (3)
The Ergun equation
Modified Hill−Koch−Ladd drag correlation
Syamlal & O Brien drag model
Powered addition correlation

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

q [m/s]

∆ 
p/

L 
[P

a/
m

]

 

 
Data
Equation (3)
The Ergun equation
Modified Hill−Koch−Ladd drag correlation
Syamlal & O Brien drag model
Powered addition correlation

(b)

Figure 4: (a) The correlation for the 100−200µm powder using a representative particle
diameter of 190µm and a s- value of 15, (b) the correlation for the 750−1000µm powder
using a representative particle diameter of 750µm and a s- value of 15.

It should be mentioned that in Figure 4 (b) a very crude linear approximation was
used for F (q) (refer to equation (2)). The reason for this crude approximation was
mainly due to the ossilations in the fluidized regime data for the 750−1000µm powder.
Never the less, this approximation still produced an adequte asyptotic function, H(q).

CONCLUSION

From the results obtained in the present work it appears that a value of 15 is adequate
for the shifting parameter, s, independent of the particle size distribution. It can be
concluded that the powered addition procedure [1] gives accurate correlations if the
drag model used gives an accurate correlation in the fixed bed regime. Different mod-
els are suitable for different types of powders. Thus depending on the type of powder



different representative particle diameter should also be used.
It is also apparent that the asymptotic function, H(q), gives stable accurate result

if the correct procedure is followed. Even with relatively large fluctuations in the fully
fluidized data H(q) still produces an accurate approximation to equation (1).

Further research into the physical meaning of the shifting parameter, s, is still
needed and can prove very usefully in accurate prediction of different phenomena
in a fluidized bed as illustrated in the present work

NOTATION

di nominal diameter
dsv surface-volume mean diameter
F (q) function suggested to be used to produce a linear relationship on a log-log scaling
Fo any point on the approximated linear curve
g gravitational acceleration
H asymptotic function for large values of the independent variable
m gradient of F (q) on a log-log scaling
p pressure
s shifting parameter
x independent variable
xi mass fraction
y canonical dependent variable

Greek letters
ϵ porosity
ρ density

Subscripts
p particle property
f fluid property
o limiting condition for small values of the independent variable
∞ limiting condition for large values of the independent variable

References

[1] S. W. Churchill and R. Usagi. A standardized procedure for the production of cor-
relations in the form of a common empirical equation. Ind. Eng. Chem., Fundam,
13(1):39–44, 1974.

[2] W. Rogers M. Syamlal and T. J. O’Brien. MFIX Documentation theory guide. U.S.
Department of energy, Office of fossil energy, Morgantown energy technology cen-
ter, Morgantown, West Virginia, December 1993.

[3] M. Syamlal S. Benyahia and T. J. O’Brien. Extension of the hill-koch-ladd drag
correlation over all ranges of reynolds numbers and solids volume fraction. Power
Technology, 162:166–174, 2006.

[4] D. Kunii and O. Levenspiel. Fluidization Engineering. Butterworth-Heinemann,
1991.

[5] G. Gibilaro Z. Chen and P. U. Foscolo. Fluid pressure loss in slugging fluidized
beds. Chemical Engineering Science, 52(1):55–62, 1997.


