
Randi Toreskås Holta

Nase-Hoover simulations of aqueous mixtures of

small alcohols





Abstract

We have performed constant energy and constant temperature equilibrium molecular
dynamics simulations of modelliquids of water, methanol, and ethanol, and of the bi­
nary aqueous mixtures of the alcohols at mole fractions alcohol of 0.25, 0.50, and
0.75 at room temperature. The total number of molecules is 256 and the integration
timestep is 0.5fs.

The molecules are modelled with rigid, nonpolarizable effective site potentials. The
TIP4P model is applied for water, and the OPLS models for methanol and ethanol
(trans).

The thermostatically controlled simulations are performed within the Nose-Hoover
formalism, with separate temperature control of the translational and rotational de­
grees of freedom. Reservoir coupling in the mixtures is determined as a weighted av­
erage of the liquid values.

We present enthalpies of vaporization and excess configurational energies for the
mixtures. Further, we show all radial site-site correlation functions for the self- and
cross-interactions. We also present results for self-diffusion coefficients for the com­
ponents, and the velocity auto correlations functions,

The NVT simulations are investigated with respect to the possibility of reproducing
the canonical ensemble. We find that the simulations are not entirely within the prem­
ises of the canonical ensemble. We suggest that this is due to a toa weak coupling
(too large heat bath mass). The results are nevertheless found to be in good agreement
with experiments and published simulational studies.

The NVE simulations for the mixtures reproduce the desired temperature well.

The energy conservation is good and improves with decreasing water content.

Effects of using only trans-ethanol might be seen for the self-diffusion coefficients.

Structural results for both the model alcohols are found to be consistent with V­
chains. Upon addition of water, methyl-methyl coordination numbers for both alco­
hols decrease less than the hydroxyl coordination numbers.





Preface

Dear reader,
what you hold in your hands is a result of more than seven years of work. I might not
have the World Record in time consumption for completing a doetoral work, but it
surely was a looong time.

I started out in 1989 with a background in astrophysics. It took some time to adjust
from astronomical dimensions and states to the microscopic view of liquids, but I feel
fortunate to have had the opportunity to study both the largest objects and same of the
smallest,

The work has been performed at Telemark College's Department of Technology, un­
der the supervision of Professor Bjørn Kvamme. The program was developed and
tested on our CONVEX 200 supercomputer, and the production simulations were per­
formed with our DEC Alpha 4000/300 workstations. The data are presented graphi­
cally with MATLAB, and the document is created with DECwrite.

By far the most important achievements during these years have been the births of my
two children, Nils and Vigdis. Unfortunately, being both a mother and a dr. ing stu­
dent appear to be mutually exclusive - at least I have felt sa. It has been years of a
constant feeling of falling short. I can therefore not recommend my choice to my
fellow-females, even if ladmit that I most likely would have done the same things all
over again.

Thinking of my family, I look forward to spending a year off in Canada, entirely de­
voted to the welfare of these three people I care the most fOf.

Enjoy reading, I promise that this will be my one and only dr. ing. thesis !
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Chapter 1

Introduction

The topic of this work is computer sirnulation of three model Iiquids; water, metha­
nol, and ethanol, both as pure species and as binary aqueous solutions at various con­
centrations. The simulation method is molecular dynamics with temperature control
[1, 2]. The purpose of the simulations is twofold, the implementation and verification
of this particular simulation method, and the calculation of thermodynamical, struc­
tural, and dynamical equilibrium quantities for the model mixtures.

To be able to calculate the various quantities, we need a model. The model consists of
a mathematical description of the system together with simplifying assumptions re­
garding the physical nature of the real systems. We can therefore not claim to simu­
late the fluid itself, but only a model fluid who resembles the real fluid to same ex­
tent

1.1 Background

1.1.1 The liquids

Methanol, ethanol, and water are important in a wide variety of industrial and life
processes [3]. Their main use in industrial proeesses is as raw materials in chemical
synthesis, for instance the production of acetic acid and formaldehyde from methanol
and ethers from ethanol. They can also be used as motor fuels as an alternative to pe­
troleum based fuels. Methanol has technical applicability as absorbing agent in gas
scrubbers and as working fluid in refrigeration systems. Ethanol is also the next im­
portant solvent after water, and is used for instance in the cosmetic industry and for
drug production.

8
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Because of their importance, it is of general interest to understand and predict their
behaviour. Even for such commonplace systems as aqueous solutions of alcohols, the
mechanisms of solvation, and the internal structure, are not fully understood. Liquids
are in general difficult to study and to model because they have long range disorder
like a gas, and short range order like a solid. For the majority of molecular liquids, the
molecular shape can not be regarded as spherical, so their individual orientations will
be of importance. Orientations become even more important when the molecules pos­
sess dipole moments, ie. are polar. In addition to volumetric effects there will then
also be electrostatic influence of both short and long range.

Water, methanol, and ethanol all belong to a particularly interesting group of polar
molecules containing hydrogen and oxygen. For both alcohols and water, a common
feature is the Ol-l-group, giving raise to their hydrogen bonding ability. The hydrogen
bonding is 1110St pronounced in water, where it for example is responsible for the
well-known decrease in density upon freezing, and the large enthalpy of vaporization
[4]. The hydrogen bonding is also thought to be responsible for some anomalies of
the aqueous mixtures of lower alcohols. When small amounts of alcohol are mixed
with water, experimental results showa volume contraction, and an exothermic mix­
ing with negative excess enthalpy [5].

From a simulational point of view, the main interest has been the hydrogen bonding,
and how it influences the internal arrangement of molecules. The water liquid struc­
ture seem to be dominated by a hydrogen bonded network extending in all three di­
mensions [6~,-7, 8], while the molecules of liquid methanol and ethanol are believed to
associate in chains [9, 10, 11, 12]. Related questions are by what mechanism do the
alcohols solvate in water, and what is the effect of the (nearly) non-polar methyl
group in ethanol upon hydrogen bonding in the solution.

1.1.2 Getting information about matter

Within the area of statistical thermodynamics, a fundamental goal is to get informa­
tion of physical systems, both in order to prediet how their behaviour will be, and to
explain the causes of their (observed) behaviour. Broadly speaking, three different
fields of research collaborate in the establishment of such knowledge, see Figure 1.1:

• experimental measurements on real, macroscopic systems

• theoretical calculations where statistical mechanical theories are tested against or
applied to model systems

• computer simulations where in principle exact results for model systems can be
achieved
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Figure 1.1 We all want to get information of matter, but the approaches are different.

There is an intimate interplay between the three approaches. A particular model of the
physical system can for instance be evaluated by comparing the simulated results to
experimental values, or a new theory of matter can be compared to simulation results
for the same model. Also the interpretation of experimental results can improve with
insight gained from theoretical calculations or simulations.
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1.1.3 Microscopic vs. macroscopic view of matter

Fundamental to each of the three routes above is the microscopic view of matter as a
collection of individual partieIes which each contribute to the macroscopic observ­
ables. Bulk properties are then merely statistical averages of the molecular properties
[13, 14]. A well known example is the observable temperature, which is usually taken
as the average of the sum of the kinetic energies of the moleeules.

Whereas from a macroscopic point of view the state of a one-component system is
determined when, say, its pressure P and temperature Tare specified, the microscopic
specification needs values for individual molecular positions and velocities. A par­
ticular macroscopic state at given P and T can, however, be realized through a variety
of microscopic arrangements, thus making the nation of (thermo)dynamical equilib­
rium sensible. The bridge between these microscopic configurations and the macro­
scopic observables is provided by statistical mechanics together with a suitable model
for the forces acting between the molecules.

1.1.4 Computer simulations

Molecular simulations can be conducted within two different strategies [15]:

• Monte Carlo methods, which rely on a random procedure to generate microscopic
configurations

• molecular dynamics methods in which configurations are obtained by integrating
the equations of motion for all particles in the system

There are severaI different methods to chose from within each of the two categories.
Combinations of the basic ideas of the two approaches can also be favorable in some
situations.

The basic difference between Monte Carlo methods and molecular dynamics is the
stochastic vs. deterministic generation of configurations. A Monte Carlo simulation
yields a property average over different microscopic states, or an ensemble, alld a mo­
lecular dynamics simulation gives a dynamical average for the system over a finite
time. The former solves the problem within the framework of statistical mechanics,
while the second is a deterministic approach. T11e two simulation methods answer
then the same questions from different points of view, and the numerical values are
expected to be equal within the statistical precision.

The Mante Carlo methods are popular and relatively simple methods as compared to
molecular dynamics. The advantage of molecular dynamics is the ability to compute
time dependent quantities directly, since the motion of each particle is followed in
time. For both methods, the system under study must be limited to a manageable
number of moleeules, and the molecular interactions must be specified.
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1.1.5 Mo/ecu/ar mode/s

Chapter 1 Introduction

Even if we aim at detennining properties for the real 1iquids, the molecular interac­
tions are not known in detail, and are also so complex that we need simp1ified mod­
e1s. The simp1ifying assumptions reduce the computing time, but we must stress that
the results are only strictly valid for the hypothetical modelliquid.

A common set of assumptions/approximations is [15]

• C1assical mechanics applies.

• The molecules are rigid bodies with fixed geometries.

• Forces between molecules act between spherical1y symmetric interaction sites re­
siding in the moleeules. Not all atoms are represented by sites, and the sites need
not coincide with the centre of mass of an atom. This is known as the site-site ap­
proximation.

• Only interactions between pair of sites are considered, which is the pairwise addi­
tive assumption.

trans-ethanol

gauche-ethanol Figure 1.2
Representation of ethanol moleeule. The
moleeule has four sites; CH3, CH2, O,
and H, each described by parameters E,

ø and q (see text). Geometry of moleeule
is defined through bond lenghts and
bond angles.

Within the site approximation, single atoms or groups of atoms in the molecule are
regarded as sites of interaction and assigned separate potential parameters. The poten­
tial energy between two sites a and b in different molecules can be described by a
Lennard-Jones potential for the short ranged part, and by a Coulombian part for the
long ranged electrostatic interactions arising from the dipoles:

(1.1)

where rab is the distance between the two sites a and b. Eab is the strength of the at-
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traction between two sites, and øab is the smallest distance the two sites can approach
without repelling each other. qa and qb are fractional charges assigned to account for
the dipole moment, and kc is the Coulomb constant. The molecule as a whole is of
course electrostatically neutral. This simple and schematic representation of the mole­
cule can be remarkably powerful.

Usually the model parameters are adjusted to reproduce a few physical data. It is then
not guaranteed that other properties follow correctly. Further, the parameters are only
valid for a limited temperature range. The reliability of the results, whether a simula­
tion or a theoretical calculation, then rely heavily on the accuracy of the interaction
model.

1.2 Mo/ecu/ar dynamics - choice of surroundings

1.2.1 Iso/sted system versus closed system

Normally, molecular dynamics simulations are performed for isolated systems, that is
the system can not exchange neither energy nor mass with its surroundings. Accord­
ing to the 1st law of thermodynamics, the total energy E, number of particles N, and
volurne V of the system must be constant. This simulation corresponds closely, but
not exactly [16], to the microcanonical or NVE ensemble of statistical mechanics.

The total energy is a constant of the motion, that is, its valne does not change with
time, for the NVE system, but the distribution of energies among the different degrees
of freedom is undetermined. A particular problem is the system ternperature, which is
not exactly known until a simulation is finished. This is impractical because experi­
ments are normally conducted at fixed temperatures. (The same argument also goes
for the system pressure. We will however not be concemed with pressures.)

To fix the temperature, one can use a closed system, see Figure 1.3. This is a system
that has a constant number of particles, but can interact with a thermal reservoir in the
surroundings by exchange of energy. If the thermal reservoir is assigned a tempera­
ture, this must also be the temperature of the system when thermal equilibrium is
achieved.

Looking at the system and the reservoir together as an isolated system, the total en­
ergy of the two will still be a constant of the motion, but the total energy of the closed
system is allowed to fluetuate. The contact between system and reservoir is main­
tained through the entire simulation, with energy flowing back and forth between the
two of them. The closed system has its analogy in statistical mechanics with the ca­
nonical ensemble.
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Figure 1.3 a) Isolated system of N particles with constant energy E, and volume V, and
b) closed system (dashed lines) of N partieies in contact with a thermal
reservoir at constant temperature T, volume V. The heat bath is imaginary.

The interaction between the molecular system and the thermal reservoir is purely
mathematical, but formulated according to the 1st law of thermodynamics. It appears
as an additional force term in the equations of motion for the molecules. It average
system temperature is toa high, the force slows down the velocities of all molecules.
It temperature is toa low, all molecules are accelerated. The numerical cost to be paid
is small: only one extra equation has to be integrated per timestep, and there are no
expensive subcalculations.

The extended system dynamics is due to Nese [l, 17], but the mathematical formula­
tion was shortly after its publication developed further by Hoover [2]. We will use his
form, which has become known as the Nese-Hoover dynarnics. This formulation per­
mits the use of several thermal reservoirs [18] - which we will make use of.

The method is also extended to include control of pressure [17]. The Nose dynamics
or Nose-Hoover dynamics is applied in non-equilibrium [19, 20] as well as in equilib­
rium simulations. Applications are also found in investigation of reactive dynamics
[21] and in intracrystalline diffusion [22]. Also in quantum mechanical simulations
[23] the method is used to keep electrons in their ground state. The proposal of the
Nose dynamics gave raise to a large activity within the field of thermostatted simula­
tion, and a series of extensions have been proposed. A sumrnary is found in Nose
1991 [24].
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1.2.2 A central question - canonical simulation?

Since the publication in 1984 the Nase and Nase-Hoover dynamics have been exten­
sively studied from a theoretical point of view. The central question has been whether
the extended system simulation corresponds to the canonical ensemble. Not only must
property averages be reproduced, but their fluctuations must be within the canonical
ensemble. It was proven by Nose [1] that if the system and its surroundings is ergo­
dic, the simulation will generate distributions (of properties) in the canonical ensem­
ble. The problem is that ergodicity can in general not be proven easily - if at all! It is
not sufficient that the system is chaotic - or 'complicated' as aur relatively large sys­
tem of Lennard-Jones and electrostatically interacting particies. Several extensions
have been proposed, but until a very recent proposal by Hoover and Holian [25],
none of them have been equally simple to implement as the Nose-Hoover thermostat.

1.3 Description of aur work

We will show results from both constant energy and constant temperature molecular
dynamics simulations of water, methanol and ethanol as pure liquids and as binary
mixtures of water and alcohol at mole fractions 0.25 0.50 and 0.75. The simulations
are performed at 298K (water and methanol) and 293K (water and ethanol) at experi­
mental densities. These temperatures are selected since experimental and simulated
results occur most often at these temperatures.

We present thermodynamical data for the liquids/mixtures. The structure is repre­
sented with site-site radial correlation functions for all mixtures. We have also calcu­
lated the self-diffusion coefficient for both components of the mixtures.

We are restricted to the assumptions summarized in Subsection 1.1.5 above, and the
molecular interactions are described with the site-site potentials TIP4P, Jorgensen et
al. 1983 [26] for water and OPLS, Jorgensen, 1986 [27] for methanol and ethanol.
These three- and four-site (ethanoi) model potentials are attractive because they are
simple to implement, and because the overall agreement with experimental results is
good [26]. Simulated as a four-site molecule, ethanol can have twa conformers, see
Figure 1.2, of approximately equal abundance, [27]. Keeping within the rigid body
approximation, we have deliberately ignored the presence of conformal equilibrium,
and modelled the ethanol molecule as trans ethanol.

The total system size is taken to be 256 molecules in all the simulations, and the
molecules are confined to a cubic box under periodic boundary conditions. The forces
are cut at half box length, and the long-range part of the electrostatic forces is handled
with the Ewald summation technique.
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Code development and testing have been the most time eonsuming part of this work.
Whenever possible, separate routines are borrowed with a varying degree of adjust­
ment, mainly from Allen and Tildesley [15] and from Haile [28]. Example programs
are usually written for the atomie case, and they have to be extended to several sites.
The eode is not included, but is available upon request.

With the thermostatted simulations, aur system of moleeules is in thermal eontaet
with two reservoirs, One thermostat seleets the translational degrees of freedom for
all moleeules and maintains the average value at the predefined value, the other con­
trols the temperature of the rotational degrees of freedom. Separate thermostatting of
different degrees of freedom is used to assure a proper thermalization of all degrees of
freedom, particularly for mixtures. The use of multiple thermostats was suggested by
Nase in 1986 [18], to our knowledge multiple thennostatting has not been applied
elsewhere,

Sinee we have implemented the eode ourselves, and also use a multiple thermostat, it
is necessary to verify the simulations carefully. Therefore we perform a thorough
verification of the program by monitoring severai quantities, and by comparing our
results to published simulational studies, preferably for the same models. Verification
of the use of separate translational and rotational thermostatting is done from com­
parison between NVE and NVT simulations. Mixtures of methanol and water have
been studied by several authors (references appear in Chapter 5), though mainly with
Monte Carlo methods and mainly dilute mixtures. There exist published data from
simulation of TIP4P-water and OPLS-methanol, which are suited for verification of
our simulations together with the existing experimental data. However, the combina­
tion of model forces and state conditions are several, and the quantities to calculate
are legio. Not all of our calculated quantities appear elsewhere, as for instance the full
combination of site-site correlation functions and their corresponding coordination
numbers,

To our knowledge, there has not been published any molecular dynamics study of any
kind of the mixtures of water/ethanol. Also the Mante Carlo and theoretical studies
published does not cover the whole range of concentrations. For ethanol and its aque­
ous mixtures we only know of a handful of published simulation studies [29,30, 31,
32]. These are all for very dilute mixtures.

We believe that the lack of published results is due to the computer consuming nature
of these simulations, but a crucial ingredient is also the selection of areliable poten­
tial model. Computing power is increasing almost daily, and the trend today in sev­
eral fields of research and industry is that simulations substitute for experiments.
Simulations are also a supplement to experiments as they can contribute to an under­
standing of observed phenomena by suggesting explanations,
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1.4 Outline of thesis
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The thesis is organized as follows: In Chapter 2 we summarize the basic principles of
molecular dynamics (Section 2.1), and state what kind of information a molecular dy­
namics simulation can provide (Section 2.2). We present some highlights from the
history of thermostatted simulations (Section 2.3), and describe the Nase and Nose­
Hoover thermostats (Section 2.4). The mathematical formulation for multiple tem­
perature control within the Nose-Hoover framework is set up (Section 2.4) and the
parameters are interpreted and discussed (Section 2.5). We discuss the possibility of
having a canonical simulation, and the dependence upon heat bath characteristics. Fi­
nally (Section 2.6) the constants of the motion are discussed.

Chapter 3 starts with a brief outline of the program and the integration algorithm
(Sections 3.1 and 3.2). Then we describe some of the technical details of the simula­
tion (Sections 3.3 and 3.4), and which quantities we calculate (Section 3.5). Addi­
tiona1 quantities calculated to verify the simu1ation are described in Section 3.6.

Chapter 4 describes the molecular mode1s for water (Section 4.3) and for the a1cohols
(Section 4.4).We discuss briefly the app1icability of pure liquid models in mixtures
(Section 4.5) and conclude this chapter with a brief summary of polarizable and flex­
ible models (Section 4.6).

In chapter 5 we present results from the simulations of water and methanol, and chap­
ter 6 presentsthe results for water and ethanol. These chapters start with analysis and
discussion ofsimple thermodynamic quantities (Sections 5.2 and 6.1), then we pre­
sent results for the verification of the simulations (Sections 5.3 and 6.2), before we
move on to the presentation and discussion of structure (Sections 5.4 and 6.3). Finally
the results for self diffusion and the velocity auto correlation functions are presented
(Sections 5.5 and 6.4).

Severai figures and tables related to the discussions in chapter 5 and 6 appear in ap­
pendices (Appendix C -water/methanol and Appendix D -waterlethanoi).

We conclude our work in Chapter 7, and Chapter 8 provides some ideas for future
work.

1.4. 1 A note about greek fetters

Unfortunately, DECwrite represents greek letters with different fonts in plain text and
in the equation editor. Also there has been no possibility of having bold greek letters
symbolizing vectors. On the very few occasions where we need greek lettered vec­
tors, theyare symbolized with an arrow. We hope this will not lead to misunderstand­
ing.
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Mo/ecu/ar dynamics

This chapter summarizes the general principles of molecular dynamics simulations,
with particular emphasis on constant temperature simulations. Our starting point is
however with a summary of the basic ideas of constant energy simulations. This is
still the most frequently used method and also give a natural reference for discussions
on the method of constant temperature simulation. Then, in Section 2.3 we briefly de­
scribe and compare four methods of temperature control, of which the Nase-Hoover
thermostat is ane. These are not the only possible choices, but they have all been of
major importance during the last ane or two decades and can illustrate the progress of
temperature controlled simulations. In Section 2.4 both the Nase and the Nose­
Hoover equations of motion are presented. In Section 2.5 we will discuss the ability
of the Nase-Hoover thermostat to generate canonical distributions. This question is
closely connected to the choice of heat bath characteristics. Finally, we discuss the
constants of the motion.

The treatment wiII be restricted to classical simulations of Iiquid equilibrium mixtures
of polyatomic mixtures. By classical is meant that the motion is govemed by Newto­
nian or similar mechanics.

We distinguish between four kinds of systems. By system we mean the simulated
portion of matter consisting of N molecules, either regarded as a mechanical system
or as a statistical mechanical ensemble. By extended system we mean the system as
defined above and its thermal reservoirs taken together. The physical or model sys­
tem is a macroscopic amount of matter that interacts according to model forces. Fi­
nally, real system is the specific kind of bulk matter that we try to assign property
values.

18
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2. 1 Mathematical madel

2. 1.1 Statistical mechanics and classical mechanics

19

When we do measurements on a physical system, the measured quantities are results
of time-averaged action (influence) of all or a large portion of the molecules. The
contribution from each molecule is a result of its individual position and momentum
at a time. As these can vary widely from ane moment to the next, all properties will in
principle fluctuate around their mean values. For macroscopic systems the fluctua­
tions are not measurable.

A physical system withj internal degrees of freedom can at every instant be regarded
as a point in a 2/-dimensional phase space where the particle positions q=(Ql,Q2, ...,qj)
and momenta P=(Pl,P2,...,Pj) constitute the coordinate axes [13, 14]. The physical sys­
tem can move through a series of macroscopic states, where each macroscopic state
can be realized by a variety of microscopic different arrangements of particle posi­
tions and momenta. Each point in phase space is a unique solution of Hamiltons equa­
tions. When the system evolves in time, the point representing the state moves in
phase space, thus generating a phase trajectory. If the system is at equilibrium or is
restricted in any other way, the allowed configurations and momenta are confined to
parts of thephase space, and sa is also the trajectory. For an infinite time, the trajec­
tory formed will pass through all accessible points in phase space. Knowing the phase
trajectory-nearly all information of the system is accessible through relations from
classical thermodynamics or statistical mechanics.

[p]

Figure 2.1

Part of a phase space trajectory of
a system. q are positions of all'
partieies, and p are their
conjugated momenta.

[q]

In statistical mechanics the trajectory is represented as ensembles, a number of repli­
cas of the system corresponding to the same macroscopic observables, but with dif­
ferent microscopic arrangements. If we aim at calculating trajectory averages, we
must either have a mechanical model that can be integrated to give the individual mo­
tion of the constituent molecules, or we must have some theory that enables us to cal-
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culate trajectory averages directly. The latter is the main subject of statistical me­
chanical theories. We relay on the first approach. The mathematical model is pro­
vided through equations of motion together with a model for the forces that cause
the motion to change. If we can integrate this model, the system can be followed
for as lang as we wish.

The equality of results from either of the two approaches is postulated through the
ergodic hypothesis, which states t11at given enough time the time average of a
property will equal the ensemble average. Then simulations at, say constant en­
ergy, number of particles, and volume will provide results corresponding to the
microcanonical ensemble.

In a macroscopically sized system, the number of particles is of the order of Avo­
gadro's number. To keep track of the individual motions of such an amount of
matter is not manageable with the computers of today. The system size must there­
fore be reduced drastically. But then one also reduces the dimensionality of the
phase space and the number of available configurations that can generate the cho­
sen macroscopic state. It is not within reach to follow the system for a macro­
scopic portion of time either, and we must be satisfied with a time interval of the
order of nanoseconds. We have then arrived at the manageable task of simulating a
tiny portion of a (model) system for a limited period of time.

The central questions to ask at this point are, how well does the simulated phase
trajectory of the small model system compare to the phase trajectory of the full
model system, and how well does the small portion of the calculated trajectory
compare to the full trajectory of the small system? And, finally, how well does the
model system resemble a real system?

The cost to be paid for looking at a small system is that the fluctuations of proper­
ties will be large: they decrease as Nn with increasing moleeule number N [28].
Also the trajectory averages can be systematically displaced. The trajectory being
of finite length, cause a danger of not collecting a representative sample of the
available microscopic states. Normally, a system size of more than --100 mole­
cules is regarded [33] as sufficient for determination of thennodynamic averages
and structure. Casulleras and Guardia, 1992 [34] show however that an increase of
system size varying from 125 to 512 molecules yield a systematic increase in the
self-diffusion coefficient for liquid methanol. They also find the dielectric constant
to be dependent of system size. Their study confirms that system size does not in­
fluenee significantly UPOll structure,
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2. 1.2 Equations of motion

From the advent of molecular dynamics simulations in the fifties (Alder and Wain­
wright, 1957 [35]), calculations for isolated systems have been the standard ap­
proach. Then, to have no mass or energy transfer across system boundaries, mole­
cule number N, volume Vand total energy E must be constant. They are the
macroscopic fixed quantities defining the state of the system in close relation to
the statistical mechanical microcanonical ensemble, or the Nvfi-ensemble. A
simulation for which these conditions apply is called an NVE-simulation. If we
look at molecules composed of different atoms or group of atoms as constituting a
rigid body, the equations of centre-of-mass motion for a classical system of N
molecules follow from Newtons 2. law as

and

dr. P,
l_

dI - mi

dPi = F~ntemal
dt l

(2.1)

(2.2)

where i=1,2, ..,N. ri is centre-of mass position of ith molecule, Pi is linear momen-
f . h . le. and m.i Flntemal. h f f . h . hturn orzt partic e, an mi 1tS masse i 1St e sum o rorces actmg upon t elt

molecule from all molecules j =/::. i. The equations are thus coupled through the
forces, and the equations has to be integrated with time t for each molecule simul­
taneously. Since the system is isolated, no external forces act upon the system.

For molecules having anisotrope force-fields, one must also integrate the motion
with respeet to orientation in space, given by

(2.3)

where Li is angular momentum, ;;i and 7 i are the angular velocity of mole­
cule i and the total torque on moleeule i from the rest of the moleeules. Since the
moment of inertia of a molecule, li relative to a space fixed frame of reference will
change as the body rotates, the rotation must be performed relative to axes fixed in
the body. Through a standard coordinate transformation [36], Equation (2.3) be-
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d-;.b
I. ·~ + -;~ x (I. · -;~) = -;. (2.4)

l dt l l l l

where rob is angular velocity relative to the body-fixed axes and li is the inertia
tensor of moleeule i. If the body-fixed axes are principal axes, the off-diagonal
elements of the inertia tensor vanish, and the differential equations for the compo­
nents of the angular velocity are Euler's equations. The centre of mass of the
molecules is taken as the origin of the body axes.

IliåJ~i + (I3i- 12i)w~iOJ~i = 7:li

12iåJ~i + (I1i- 13i)wjiw~i = 7:2i

13iåJ~i + (12i- Ili)0J~iw1i == T:3i

(2.5)

where subscripts 1, 2, and 3 refer to the principal axes. The orientation is further
described by integrating the Euler angles (<\>, 8, \jf) [36, 37]

e. = ros]. cos Al. + OJs2' sin ,Jo.•
l l 'Yl l 'Yl (2.6)

where rofi are are space fixed angular velocity of molecule i relative the ~-axis.

Angular velocities in the space-fixed frame of reference are converted from the
body-fixed variables through

--+S _ AT. --+b
Wi - i OJi

where ATis the transpose of the rotation matrix [15]

(2.7)

A=
cos øcos 1/J - sin rp cos Osin 1/J

- cos øsin 1jJ - sin rp cos ()cos 1/J
sin ø sinO

sin rpcos 1jJ + cos rp cos ()sin 1/J
- sin rp sin () + cos 1/J cos ()cos 1/J

- cos ()sin ()

sinO sin 1/J
sinOcos1jJ

cose

(2.8)
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It is also possible to treat the subunits of polyatomic matter as individual objects,
each obeying a separate equation of motion. The molecular geometry then enter as
constraint forces that keep the moleeule together. This constraint dynamics is par­
ticularly useful when the molecular model is flexible [15].

The average energy E of an isolated system of N rigid molecules subject to transla­
tions and rotations is given by the system Hamiltonian ..H as

(2.9)

The first term is the kinetie energy due to the translational motion, the second term
is the kinetie energy due to the rotational motion, while U (r) is the potential
(configurational) energy in the system. Since the system is isolated, the total en­
ergy must be conserved in time according to 1st law of thermodynamics. If the
model includes intemal rotation or vibration, these energies must of course be in­
cludedin Equation (2.9) to have a constant of the motion.

Raving the mathematical model defined and the internal forces specified, the
equations can be solved numerically by some finite-difference scherne, and the
system trajectory be calculated for discrete times. A route to solution is described
in Chapter 3, while model potentials are described in Chapter 4.

2.2 .Information from MD simulations

For N molecules with three translational and three rotational degrees of freedom,
6N equations must be solved simultaneously. For each time t we get positions and
orientations along with linear and angular velocities for each molecule. This infor­
mation enables us to calculate quantities from the following categories, which
does not constitute an exhaustive list:

• Simple thermodynamic properties, as temperature which is calculated directly
from the velocities via the equipartition principle. Another example is pressure
where the correction to ideal gas is calculated from the molecular virial, which
is position and orientation dependent. The property values are obtained as time
averages.

• Thermodynamic response functions, quantities defined through derivatives of
simple thermodynamic properties, are obtainable from the fluctuations. Exam­
ples of such properties are isometric heat capacity which is calculated from
RMS f1uctuations in total energy, or isothermal compressibility which is calcu-
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lated from fluctuation ill volume. They can also be calculated by repeated
simulations at systematically varied conditions.

• Entropie properties, Helmholtz or Gibbs free energies and entropy, are not de­
fined as time-averages over a phase trajectory. They can be obtained as rela­
tive properties from several repeated simulations at different conditions (i.e.
different total energy, temperature or chemical potential)

• Loeal density expressed as pair-correlation functions of positions and orienta­
tions.

• Time-correlation functions of thermodynamic quantities give information of
transport properties. Examples are viscosity from pressure and self-diffusion
from velocities.

• Time-space correlation funetions where for example the time-development of
local structure can be followed.

in Chapter 3 we give a closer description of the quantities we calculate. More ex­
tensive descriptions are found in [15, 28].

2.3 The development of thermostatted simulations

Assignment of initial velocities and positions fix the intemal energy, which is kept
constant throughout the simulation. With constant energy simulations, redistribu­
tion of the initial energy during the equilibration phase will normally produee a
system temperature beyond aur control, unless we choose very careful the initial
configuration. The system temperature will in fact not be known until the simula­
tion is finished. Choosing entropy Sand volume V as independent variables for the
total energy, the total derivative of E(S, V) is

(2.10)

(2.11)

where the first gradient is identified with the temperature

T == (~~)
v

Even if E is constant, the gradient will vary when the entropy S in the system vary
and the relative distribution of contributions vary. The gradient is unknown (not
defined) at start.
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This is of course a drawback of the method if one wishes to compare simulation
results with experiments or theory. Experiments are normally conducted at fixed
temperatures and pressures, and not at fixed total energy as is the case in a NVE­
simulation, The need for a constant temperature is also obvious in the study of so­
lutions where both solvent and solute should be studied at the same temperature
(and pressure). This extends also to simulations of phase transitions, where both
phases must be kept at the same temperature. Lately ah initio calculations [23]
have also introduced the need for a method to keep the electrons in their ground
states. When performing non-equilibrium molecular dynamics it can also be desir­
able to keep the temperature at a constant value or to maintain a temperature gradi­
ent.

Also several derived properties are most easily determined from isothermal simu­
lations. Examples are entropic properties as determined through thermodynamic
integration or the isothermal compressibility.

Thus a number of reasons for opening up the systems to thermal interactions with
the surroundings exists. It is however appropriate to mention here that if only
thermodynamical and structural quantities are of interest, the Monte Carlo method
at constant temperature offers a simpler alternative to molecular dynamics simula­
tion.

2.3. 1..:Ve/ocity sea/ing

As a first step towards temperature control one can simply rescale the velocities
[38]. All molecular velocities are multiplied with the same factor to yield a kinetic
energy consistent with the required temperature. The scaling factor ex is evaluated
from the ratio of desired average velocities to actual average velocity.

a=
3NkBT

I:Pt / mi
i

(2.12)

N is number of molecules, T is desired temperature, Pi is actual momenturn of
molecule i, and mi is its mass. kB is the Boltzmann constant. Energy is now added
or removed until equilibrium states with the desired temperature are produced. The
'microscopic' effect will be an acceleration or retardation of the molecules. The
objection against this approach is that the simulation is no longer that of an iso­
lated system because of this additionlremoval of energy. But the surroundings are
not taken formally account of since this energy is transferred to/from nowhere.
Consequently the Hamiltonian is not a constant of the motion but will have dis-
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continuous points whenever the velocities are adjusted. The connection (see Equa­
tion 2.9) between the Hamiltonian and the internal energy of the system is no
longer valid. When rescaling is used only during equilibration, that is, when no
averages are calculated or no structural sampling is done, this is of no importance.
It is however crucial to the (formal) validity of simulation results if velocity
rescaling is used during the production period to maintain the temperature at a
constant value, or when applied in simulations of systems away from equilibrium.
Because of its simplicity the method has been extensively used, with the rescaling
taking place at various intervals ranging from each timestep to as seldom as possi­
ble [24].

2.3.2 Stochastie method

In 1980 Andersen [39] proposed a deterministic method to maintain constant pres­
sure in the NPH-ensemble (ie. constant molecule number N, pressure P and
enthalpy H) by allowing the volume to fluctuate. This is done by letting the system
interact with an extemal system. This interaction can be thought of as an exchange
of energy in the form of work exerted by an imagined "piston" , able to mave in all
directions. The coordinates and momenta of the system is controlled by the devia­
tion of the internal pressure from the extemal value, which enters the equations of
motion as a feedback to all the particles simultaneously, Andersen also suggested
the possibility of adding ane or more degrees of freedom to the system to intro­
duee energy fluctuations, but was not able to find such a method for the NVT­
ensemble. Instead, heproposed astochastic temperature control where the parti­
eles were allowed to collide with a source or sink of energy in a random fashion,
thereby altering the kinetie energy of the individual particle. After each stochastie
collision, the particle is given a new velocity chosen at random from a Maxwell
distribution at a predefined temperature. The total energy of the system is then not
conserved. Andersens work is mainly important to the work presented here, since
he was the first to introduee the idea of an extended system.

2.3.3 Gaussian dynamics

Within the area of non-equilibrium molecular dynamics (NEMD) there was also a
growing demand for a way to control temperature based upon theoretical princi­
ples. Evans, 1983 [40] and Hoover et al., 1982 [41] independently introduced a
damping force into the equations of motion. The underlying idea is Gauss' princi­
ple of least constraint [42, 43], which states that a system subject to constraints in
either coordinates or velocities will follow trajectories which deviates as little as
possible from the Newtonian trajectories. In the case of constraints involving ve-
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locities (nonholonomic constraints), the constraints act as driving forces that can
perform work on the system. Gauss principle is one way of assuring that any force
that would mave the system off the constant kinetic energy hypersurface in phase
space is compensated by a constraint force that project the system back onto the
hypersurface again. For the constant temperature dynamics the constraint is that
the system kinetic energy should equal a predefined energy

PI fE-- -kBT = O (2.13)
. Zm, 2
l l

where f is the degrees of freedom of the system. The time derivative of this con­
straint together with Gauss' principle give the equations of motion for isokinetie
molecular dynamics [44]

dqi _ Pi
dI - mi

dPi _ aUi
{F - aqi - ~Pi

~= - (~:~ . ~~) / (~~) dU=--/ fkBT
dt

(2.14)

This constraint force is proportional to the velocities, and to a friction coefficient,
~, in the form of a Lagrange multiplier. The constraint force is therefore aften in­
terpreted as a friction force, but unlike the macroscopic apprehension of friction,
the Gaussian friction can take on both positive and negative values. It can be
shown [24, 44] that the isokinetie thennostat is canonical in the coordinates pro­
videdf --+ f - l, but not in the momenta [17]. Woodcock's method of velocity
scaling has been established as an approximate solution to Equation (2.14), pro­
vided that the scaling takes place each timestep [24]. The total energy is, however,
not conserved by this method either. The method finds its major application with
nonequilibrium problems.

2.3.4 Extended system dynamics

In the early eighties, Nase, 1984 [1] also was working with a method for equilib­
rium molecular dynamics simulation in the canonical ensemble. Probably inspired
by Andersens [39] work, he looked for a method to open up the system to thermal
interactions with the surroundings, He added an extra degree of freedom, a dimen­
sional parameter s, to the system under study. Associated with s is a 'potential en­
ergy' defined to produce property averages equal to those of the canonical ensem­
ble. The potential energy, Ep,res-1ns, represents the energy of an extemal heat
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reservoir, and s is its coordinate. s is coupled to the molecular momenta, and the
system now interacts with its surroundings in a formal manner.

Thermal reservoir
at temperature Text

Isolated
system

-,
;-. - - .. -.- - - -.- -;.. :
: e e. I

I • • I æ
I. • I

~EI •••~
~.. e.
~ e •• :

: •• • NV~

Figure 2.2 Closed system at fixed number of pa.rticles N, volume V, and temperature
Tin contact with a thermal reservoir at temperature Text" If system
temperature T deviates from reservoir temperatu re by an amount ~T,
energy is transferred between reservoir and system. The reservoir is not
physicalJy placed in contact with system, but its effect is as if it was. Note
also that the reservoir has no effect on volume or on the number of
partieies. The system and the thermal reservoir together, the extended
system, does not communicate with the rest of the Universe.

The fundamental idea is that the N molecules of the system can exchange energy
by heat with the thermal reservoirs through modifications of the momenta. The
temperature in the system is then kept at a specified value. The interaction apply to
all molecules simultaneously, and at the same rate. This rate of exchange of en­
ergy between system and reservoir is proportional to the difference between actual
temperature and the preset temperature of the reservoir, and will therefore be a
time dependent function with both positive and negative values, Because of ther­
mal fluctuations, the total energy of the system is then allowed to fluctuate. In­
stead, the energy of the extended system has become a constant of the motion re­
flecting that the extended system is now an isolated system, see Figure 2.2.

In equilibrium simulations it is of great value to correlate the results with statisti­
cal mechanics, Since a system that is able to exchange energy with its surround­
ings at constant N, V, and T, is represented by the canonical ensemble, we hope
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that the states generated during simulation are consistent with the canonical distri­
bution. The extended system will then find its analogy in the microcanonical en­
semble.

It has been shown [24] that provided the system is ergodic, the Nose mechanics
will generate trajectories which are canonical both in eoordinate and momentum.
Much effort has been put into the investigation of the ergodie nature of systems
simulated with Nose's equations of motion, and this important topie will be treated
in Section 2.5.2.

The original Nose equations can be east in two different formulations. Starting
from the Hamiltonian of the extended system Nose first arrived at the equations of
motion in virtual variables, Equation (2.16). But these equations are eumbersome
when it eomes to ealeulating dynamieal quantities. s is a fluetuating parameter,
and equal time intervals in virtual time will in general give unequal time intervals
in real time. Dynamieal variables will appear as funetions of virtual time, and will
thus not have any direet physieal interpretation. Averages of thermodynamical
properties and structure will however be unaffeeted. By interpreting s as a time
scaling variable, Nase [1] transformed the equations of motion to real variables,
Equation (2.18). These transformations are however not eanonieal, and the equa­
tions can. therefore not be obtained directly from a Hamiltonian. The equations in
real variables are still dependent on both sand its eonjugated momentum ps.
Hoover [2] reformulated the equations of motions by noting a redundaney of the
parameters. He thus obtained a set of equations free of the time scaling variable s,
which immediately beeame known as the Nase-Hoover equations, Equation (2.24
). A constant of the motion is still present. Hoover' s formulation also has the ad­
vantage of permitting interaetion with multiple thermostats, since the scaled time,
which must be different for different thermostats, not appear direetly. This is of
importanee to us, as we wish to do simulations on binary mixtures with two kinds
of motion; translation and rotation. In the following section, we will take a eloser
look upon the mathematical formulation.

2.4 Mathematical formulation of the Nase-Hoover
thermostats

2.4. 1 Nose equations in virtual and real variables

We look at a system consisting of one or several eomponents with a total of N
rigid moleeules, having three translational and three rotational degrees of freedom.
The system is in eontact with one thermal reservoir
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Other degrees of freedom might easily be included, or the system might consist of
atoms or be confined to only two dimensions,

Following Nose [17], but including the rotation explicitly, a Hamiltonian in virtual
variables (starred) for this extended system is postulated to be

3N ( *)2 3N * 1-1 * * 2
11 * * * * * * ~ Pi ,",PWf" i PQ)i U( * *) (Ps) k T * (2 15)JT(q ,p ,qw'PQ)'S ,Ps) = L..J *2+ L-J *2 + q ,qQ) + 2Q +g B lns .

i=1 2m/ s ) i=l 2(s)

where the coordinates q and qro represent centre of mass position and molecular
orientation in space respectively. p and Pro are their conjugated momenta. mi is
mass of moleeule i, and li is a component of the inertia tensor of the moleeule.
g=f+ 1, where f is the degrees of freedom in the system (6N for the system defined
above). If other quantities besides total energy is conserved, g is reduced. The heat
reservoir at temperature T, is represented by ane degree of freedom, the dimen­
sionless parameter s*. The phase space is then extended by 2 dimensions to in­
clude the heat bath coordinate s* and its conjugated momentum p; . The appear­
ance of s* in the denominator of the molecular kinetie energy represents the
interaction between the lleat bath and the molecular motion. U is the potential en­
ergy of the system, depending upon the centre of mass positions and orientations.
Associatedwith each s* is a potential energy as given by the last term, and also a
kinetie energy given by the fourth term in Equation (2.15). The constant Q in the
kinetie energy is interpreted as the inertia or mass of the heat bath. In the limit of
infinite mass, the interaction between system and surroundings is infinitely weak,
and the heat bath is decoupled from the molecular momenta.

Areasonable value for s* will be unity. The particular logarithmic form of the po­
tential energy of the heat bath was shown by Nose [17] to be necessary to generate
a canonical distribution of states. Later Jellinek, 1988 [45] and Jellinek and Berry,
1988 [46] have proved that there exist an infinity of choices for the dynamics.
Since this potential energy has 110 unique reference state, the numerical value of
.fl has no physical meaning. The time average of the three first terms of (2.15) is
however the internal energy of the system.
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By the Hamiltonian formalism, the equations of motion in virtual variables be­
come [17]:

(2.16)

(2.17)

Because of the scaled time in the virtual variable formulation, these equations are
impractical for use in simulation when dynamical variables are calculated, since
these must be rescaled [47]. To obtain equations in real time with real momenta,
the transformations [17]

t= fdt* / s"

Pi = pi / s" , Pen = P*wi / s" , Ps = p; / s"

have to be performed. The real time equations of motions thus reads
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dqi _ Pi
di - mi

dqwi _ PWi
(Jt-T

l

dp, aU Pi ds
di =-aqi S dt

dPWi su PWi ds
(Jt =-aqwi- S dt

ds _ Pss2
dt-Q

dps = l (~t + {!4Jwt_gk T) _ Ps ds
dt s LJm. 2.....J-I. B S dt

i=l l i=l l
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The presenee of the extra force term in the third (and fourth) of Equations (2.18)
marks the difference between the Nase mechanics and the Newtonian mechanics.
As the equations of motion are not invariant during the transformation, these real
variable equations are not canonica1. Consequently there is no Hamiltonian corre­
sponding to the real variable equations. Changing variables in the virtual variable
Hamiltonian yield however an energy

(2.19)

which is a constant of the motion. Now g is reduced by one relative to the virtual
variable formulation, The actual value of g is necessary for the dynamics in both
virtual and real variables to generate canonical distribution of states [17]. Note that
in applying the Hamiltonian formalism to Equation (2.19) the Equations (2.18) is
not reproduced, but a set of equations for which the coupling between system and
reservoir is vanishing.

Jellinek and Berry, 1989 [48] has clarified some delicate points of the Nose­
formulation. Despite the similarity of the scaling of phase space and time in Equa­
tion (2.17), they are completely independent. Thus s is not to be regarded as nei­
ther a time-scaling nor a mass-scaling parameter, but ' ..o, the only role of s is as a
source or sink of energy for the physical system; its coupling to the physical sys­
tem regulates all the flow of energy.'



Chapter 2 Molecular dynamics 33

The dynamics generated by (2.16) and (2.18) are said [2] to traverse the same tra­
jectories but at different rates. Then the time-averages calculated over the trajecto­
ries are not equal. To have equivalent time-averages, ie. to generated the same en­
semble, one must have different Harniltonians and hence different trajectories.
This is reflected in the different values of g in the virtual and real variable formu­
lations [48].

2.4.2 The Nose-Hoover equations for one thermostat

Still the system dynamics described by Equations (2.18) is dependent on both the
heat bath variable and its momentum. Hoover [2] noticed that one of these were
redundant. By differentiating the fifth of Equations (2.18) with respect to t, one get

(2.20)

where Ps = (Q / s2) (ds / dt). Rearranged and inserted into the last of equations (2.18
), thisyield

{
2 () 2} (3N 2 3N 2 )Q .L~- L ds = l "Pi + "PWi - gk T

s2 d~ s3 dt s .?-'mi .?-' l. B
l=] l=] l

Then identifying a new variable

'Yl = .!ds
./ S dt

and its time derivative

d 2 ()21] 1d s 1 ds
dt = s d~- --;2 dt

(2.21)

(2.22)

(2.23)

enables the replacement of the two variables s and P, by ane variable 11. The equa­
tions to be solved for the extended system are then the Nose-Hoover equations [24
], with the rotational motion explicitly included
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(2.24)

We note the similarity with the Gaussian method described in Equations (2.14).
Pill act as an extemal force to the system, just as Pi~ does, but 11 has a thermody­
namically defined origin. Because of this similarity, 11 is sometimes interpreted as
a friction coefficient. Just as ~, 11 is time dependent and can take on both positive
and negative values. But the relation between 11 and molecular velocities is
through an integral, making this in the language of control theory an integral con­
trol. The particular form of 11 not arising from a constraint, imply that we must ex­
pect fluctuations in system kinetie .energy - and in temperature - contrary to the
.constant kinetie energy in the Gaussian (isokinetie) method.

For a system in thermal equilibrium 11 represents the transfer of energy back and
forth between system and surroundings, and is thus expected to be fluctuating
around zero. The kinetie energy of the heat bath is the kinetie energy of one degree
of freedom, and should by the equipartition principle be of the order of lhkBT.

The extended system energy corresponding to Equations (2.24) is [24]

(2.25)

and is still a constant of the motion since all contributions to energy are included.
If the energy is the only constant of the motion, g=j=6N for translation and rota­
tion of N rigid moleeules, as with the real variable Nase formulation.
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2.4.3 The Nase-Hoover equations for multiple control

35

Our particular interest is in binary mixtures of translating and rotating molecules,
sa what we want is a model that can handle the different kinds of motion individu­
ally. As pointed out by Nose [1] and later investigated by others [47,49,50], that
to produee canonical trajectories, the thermostat mass Q must have values appro­
priate for the actual motion and molecule to be controlled, The value assigned to Q
should not disturb the natural progress of the different degrees of freedom with
time. For the moment, let us be content with the statement [18] that it is not guar­
anteed that ane and the same thermostat can control different motions satisfacto­
rily since their characteristic timescales might be different. We then want to have
the possibility of applying more than ane thermostat to the system.

One could naively try to extend Equation (2.15) by introducing one extra (or
more) parameters s. and define interactions between the heat baths and the respec­
tive motion in the Jsame manner as with one heat bath only. Then every s in the
followingequations are replaced by an Sj' and an additional summation over j is
performed, It would look nice up to the point where the equations are transformed
to real time varlables. Since the thermostats oscillate at different frequencies, they
scale time differently. Equation (2.17) then inevitably introduces multiple times­
cales, andwe will have a set of equations where rotation and translation evolves
accordingto different times. Either the Hamiltonian or the transformations or both
are not applicable. So we are forced to look at equations (2.24) and postulate by
analogy [18] that there exists a certain arrangement that aur system evolve accord­
ing to

(2.26)

where qi and Pi now are tile coordinates of each degree of freedom of a molecule i
including all kinds of motion. Mij is an inertia of the molecule i corresponding to
ane particular motion or kind of moleeule affected by heat reservoir j, while Qj is
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the inertia of the jth heat reservoir. gj is the number of degrees of freedom within
the system affected by heat bathj. A constant of the motion still exists

The proof that this dynamics generates canonical distributions provided the system
is ergodic, is included in Appendix A.

Not only can the different thermostats control specific categories of motion, such
as translation, rotation or vibration, but also the motion in ane specific coordinate
direction can be thermostatted. It is also possible, at the east of linear momentum
conservation [24], to control different species separately. In the case of non­
equilibrium simulations, the heat baths can be used to maintain a thermal gradient
or to absorb dissipative heat created in fluid flow.

As a particular example, for a system in contact with two thermal reservoirs ane
thermostatting the translational motion, labelied 1, the other the rotational motion,
labelled 2, the Nase-Hoover equations of motion reads

(2.28)

qil and p il are the coordinates and conjugated momenta of the translational degrees
of freedom of molecule i that are controlled by thermostat 1, and qro,i2 and Pro,i2

are orientations and momenta of moleeule i, controlied by thermostat 2. g. is the
total number of degrees of freedom affected by thermostat j, which for this spe-
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cific example of N translating and rotating molecules is 3N for each thermostat.
Each reservoir can in principle have different temperatures Ij, but for a system in
thermal equilibrium, they must all be equal. The motion ot heat bath j is deter­
mined from the difference between the instantaneous values of the kinetic energy
associated by the involved degrees of freedom and the preset value. As index 1
represents translation, mi is molecular mass and li is molecular inertia. But because
of the coupling in the forces in the equations of motion, the direct control of trans­
lation will indirectly influence the angular momenta Pro,i2 and the molecular orien­
tations Q(fJ,i2' and vice versa.

These mathematical thermostats are selective as distinct from commonplace heat
baths. Firstly, they can identify one specific kind of motion to act upon, and sec­
ondly, they can act on distance thus having a closer resemblance to an extemal
force field, and finally, they act upon all involved molecules simultaneously.

The total energy of this particular extended system is given by

gl 2 g2 2 2 2 jt
e "Pil ~()),i2 U ~1 2 " ' ,
,,(q, p, «Jm, Pw'1]1,1]2) = {;j2m

i
+ tJT + (q, «Jm) + f~i2Q/fJJ + f;:/lBTJ o 1]/! )dt

(2.29)

Taking the time derivative of 8 and substituting the equations of motion, Equa­
tions (2..26), show that 8 is a conserved quantity.

2.5 Ergodie motion and the choice of Q

2.5. 1 Ergodie motion

By ergodicity we mean that the phase space trajectory passes arbitrarily close to
all points in available phase space over a sufficiently lang time. This is a relaxa­
tion of the original definition due to Boltzmann where the trajectory should pass
through all configurations [28], and is thus more correctly referred to as quasl...
ergodie motion. We will nevertheless use the tenn ergodic in place of quasi­
ergodic. Then the ergodic hypothesis states that if a system is ergodic the ensem­
ble average of a quantity A equals the time average over the trajectory for the same
quantity

(A (q,p) ) = A(q,p) (2.30)
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Ergodic motion will be chaotic, but the converse is not true in general, as trajecto­
ries can be chaotic but recurrent. A recurrent trajectory will cross itself at some
point and then the sequence of configurations will repeat. The trajectory will be
confined to only a region of available phase space [51]. Available phase space for
a microcanonical system at a given state is the hypersurface of points for which
the Hamiltonian is constant.

An ergodie system is expected to be independent of initial equilibrium conditions,
as ergodicity implies that wherever the system 'enters' a trajectory, all of phase
space will be filled. The particular initial conditions then will only be ane of the
points on the trajectory, which also could have been passed through given other
initial conditions. Ergodicity does however not imply that a system will evolve
from nonequilibrium to equilibrium. When the initial conditions not corresponds
to an equilibrium state, sufficient time must of course be provided to let the system
relax to equilibrium, which is quite a different matter.

2.5.2 Ergodicity of Nase-Hoover equations?

The necessary and sufficient conditions for the Nase or Nase-Hoover dynamics to
generate canonical distributions, are that the number of degrees of freedom are set
equal to' g=3N+1 (Nose virtual), g=3N (Nose real and Nese-Hoover) to satisfy
the Liouville theorem [17], and that the trajectory is ergodie [48]. We emphasize
the difference between the dynamics and its implementation in a molecular dy­
namics simulation with periodic boundaries. Under periodic boundaries condition,
total linear momenturn is conserved, and g must be reduced by 3. Cho et al. [52]
have shown that an additional criterion for the generated trajectories to be ergodie,
is that total linear momentum must be zero at start, see Section 2.6.2.

The Nase and Nose-Hoover thermostats have for a lang time been known not to
generate ergodie motion for all systems. The one-dimensional harmonic oscillator
(ODHO) is a well-known example, and has been thoroughly studied by severai
authors (see below). The ODHO is well suited for studies like this because it has
analytical solution and because it has physical significance as an approximation to
severaI systems. Despite being integrable and periodic, the dynamics of an isolated
ODHO is still ergodie [28]. Then it is also expected that the thermostatted ODHO
should be ergodie.

The major outcome of these studies has been severai extensions, of which same
will be mentioned briefly below, to the Nase or Nose-Hoover formalisms which

1 For rotation of N nonlinear moleeules, 3N extra degrees of freedom must be added
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seem to make the dynamic 'chaotic enough' to allow for a statistical mechanical
description. In addition to the new computational schernes also deeper understand­
ing of the Nase thennostat has been furnished.

Kusnezov et al., 1990 [53, 54] noted that the coordinates are too correlated with
the momenta in the Nase dynamics. They used the Nase-Hoover equations as a
starting point and introduced an additional friction coefficient (but no extra heat
bath) to modify the velocities besides the modification of accelerations. With a
nonlinear coupling of the friction coefficients in the equations of motion, they
managed to get ergodie dynamics for severai simple potentials including the
ODHO-potential. They also investigated temperature dependenee of the Nose­
Hoover scheme, and found clearly non-ergodic behaviour at low temperatures for
an antisymmetric well potential, while ergodicity seemed to be present for the
same system at higher temperatures.

Winkler, 1990 [55] applied the virtual variable formalism of Nase, but made the
equations more nonlinear by scaling the variables by 1/s2 in (2.17), and showed
that this was enough to make the ODHO ergodie.

Martyna, Klein, and Tuckerman, 1992 [56] have applied a different approach to
,disturb' the extended system. They proposed the Nose-Hoover chain method,
where a chain of M thermostats is coupled to the system. The idea is that each
thermostatis controlied by another thermostat so as to drive their fluctuations to
be Gaussian distributed. The method seem to produee ergodie dynamics and has
been used.with success in protein simulations [57].

One might be ternpted to say that non-ergodicity is only present for simple sys­
tems with very few degrees of freedom. A usual assumption [59] is indeed that the
complexity of many-body problems, like the one we study, will produee ergodie
trajectories. The picture is however not that simple. Posch et al., 1986 [58] found
no evidence for a two-dimensional system of two soft disks to be nonergodie with
the Nase thermostat, while Cha and Joannopoulos, 1992 [47] proved analytically
that a system of hard spheres is nonergodie within the Nose-formalism, regardless
of system size. Nase, 1993 [59] found that a system of N ODHO was ergodie if
their frequencies were different, as they will be in a physical system. Recent stud­
ies of condensed LJ-systems [47,49,50,60] have also shown a dependency upon
Q for the generation of ergodie dynamics.

From the above brief summary of studies on ergodicity, it seems that not only the
number of particles present but also the potential they are subject to can prevent
ergodie behaviour. Also the actual mathematical coupling between system and res­
ervoir can prevent ergodicity. Finally, the state of the system and parameters de­
scribing the system influence on ergodicity.
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Then we conclude with the following assumptions: The Nose-Hoover equations
does not automatically guarantee ergodie dynamics. But the pair potential we use
(see Sections 4.2 - 4.4) effectively redistribute energies among the molecules sa
that a representative sampling of phase space is achieved, and our system is large
enough not to prevent ergodisity. Also the thermodynamical state has sufficiently
high temperature (liquid) so that the potential is not approximated by a harmonic
oscillator. The only free parameter left to vary is the heat bath mass, and there ex­
ist a range of values of Q within which the Nese-Hoover equations can produce
ergodic dynamies. Qhas been subject to a handful of thorough studies [47,49,50]
where the goal has been to study the influence of its numerical value. The conclu­
sions have been somewhat diverging. The effects of and limitations upon Q will be
the subject of the next section.

2.5.3 Thermostat mass Q

The parameter Q is usually interpreted as the thermostat mass, and controls the
speed of the thermostat response. A massive thermostat is to be regarded as a
weak regulator, and vice versa. In the limit of infinite mass Q, the system will de­
couple from the reservoir, and the motion will be that of a microcanonical ensem­
ble with the system and the surroundings evolving separately [2]. If Q on the other
hand is small, the temperature control will be intense, and the kinetic enery flue­
tuations will, in the limit of zero mass, be completely suppressed as with the
Gaussian isokinetie method [24]. For increasing Q, the fluctuations in kinetic en­
ergy, or temperature, will also increase in amplitude, but the average is constant
and equal to the reservoir temperature. This is a logical consequence of slow ther­
mostatting; the system has time to deviate more from the required equilibrium
temperature. In the thennodynamic limit, all t1uctuations will be immeasurable
small independent of Q.

Nase [24] has obtained some useful expressions for Q in the small and large mass
limits. For small values of Q,

2

Q "" 2gkBT(2~) (2.31)

where g is number of degrees of freedom, kB is Boltzmanns constant, T is the heat
bath temperature and 't is the period of oscillation of the s-parameter. For large Q,

Q "" 2g2k~T(.I-) 2 (2.32)
Cv 2:rc

where C; is the heat capacity of the system.
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Nose's original recommendation [1] for the choice of Q, was to use a value consis­
tent with a timescale of the system in order to have ergodic motion. The argument
was that if Q is toa small, the decoupling of reservoir and system would give in­
complete sampling of phase space, and if Q is toa large the phase space will be
ineffectively sampled. This has been confirmed by several authors [47,49,50], but
doubt still exists to whether it is possible to have ergodic motion also when Q
takes on extreme values. According to Cho and Joannopoulos.Ivvz [47] this is
possible if we allow for very lang simulations. They analysed a Iiquid Lennard­
Jones system with the virtual variable formulation, Equation (2.16), and found that
in case of Q small, the timestep had to be very small to integrate the equations of
motion properly. Consequently the total simulation time had to be very lang to get
a proper sample of the trajectory. In case of large Q, when the thermostat variable
changes slowly, a long simulation must be performed to include enough heat bath
oscillations. In either case they interpreted their results as consistent with the ca­
nonical ensemble, but recommended nevertheless a thermostat period close to a
characteristic frequency of the system to obtain a fast convergence to the canonical
distributions.

At the same time Bylander and K1einman [50] arrived at the opposite conclusion
regardingsmall Q. They simulated liquid Na and found from calculations of spe­
cific heat.that the fluctuations in energy were noncanonica1. They interpreted their
results as it was unlikely that small Qwould ever give the canonical distribution.

Also Di Tolla and Ronchetti, 1993 [49] found that for large Q, the convergence to
canonical distribution would eventually occur, but for small Q increasing the
length of a simulation would not improve the results.

The solution to the divergence seem to be that even for small Q the system can be
in equilibrium in the sense that averages are constant, but the extended system is
not in equilibrium [50].

We have perhaps not seen the last contribution to this debate, but by now it is
fairly well established that 1) even for large and complex systems the ergodicity
for a Nese-Hoover simulation is not guaranteed, so 2) to have fast convergence to
canonical distributions, Q has to be within a specific range of values but 3) even if
the distributions are higWy noncanonical, the statie averages can be reasonable.

All studies agree however in the recommendation of applying a value close to a
characteristic frequency of the system (or of the degree of freedom ane wishes to
control). Also the very recent study of Holian et al. [60] arrive at this conclusion.

This is sensible with respect to the analysis of harmonic motion where the rate of
energy transfer from an applied force to a forced oscillator is a maximum at reso­
nance, and resonanee occurs when the frequency of the applied force is equal to
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the natural frequency for the undamped oscillator. This extends to a variety of
physical situations where resonance is seen to occur whenever a system is subject
to an external action that varies periodically with time.

If Q is too small, the thermostat frequency will show up as a slow modulation (en­
velope) of the temperature fluctuations, while the atomic frequencies will be pre­
sent as fluctuations of the s-parameter, If, on the other hand, Q is too large, there
will be a sinusoidal modulation due to the oscillations of s of the (faster) fluctua­
tions of the temperature, while the atomic frequencies are not transmitted to the
evolution of s, consistent with a microcanonical simulation. This is discussed, and
also nicely illustrated in [50] and [60J.

Upon closing this chapter, we want to mention the very recent suggestion by
Hoover and Holian, 1996 [25], where they propose to control not only the kinetic
temperature but also its fluctuations. This method is seen to exhibit ergodicity for
the ODHO, and is also expected to be applicable to equilibrium many-body simu­
lation.

2.5.4 Demonstrating ergodie motion

There is no general and conclusive a priori test of ergodicity [53, 58]. Calculation
of Lyapunov exponents is one strategy [58]. The Lyapunov exponents are meas­
ures on how fast aperturbed trajectory will diverge from its parent trajectory, and
thus a measure of chaos. It is however not clear what the exact numerical value of
the exponent must be to assure ergodicity. Plots of trajectories in phase space have
also been used, but as also chaotic trajectories can give space filling trajectories,
this is not a proof of ergodicity [53]. Perhaps this method is better for demonstrat­
ing the converse. These methods is usually applied for systems with few degrees
offreedom.

For practical use, we must resort to indicative tests. In tlle canonical ensemble, en­
ergies are distributed according to [13J

(2.33)

for velocity, configurational energy and reservoir kinetic energy, respectively. Cal­
culated distributions for the simulated system can be compared to these theoretical
results. Also one can compare trajectory averages to known canonical ensemble
variables, as produced in a Monte Carlo simulation.
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Also independence of numerical results upon initial values can be used as an indi­
cation of ergodicity [53].

It is further possible to analyse the degree of mixing by calculating cross- or auto­
correlations of dynamical quantities. If such correlations vanish on a short
timescale, ie. memory of previous configurations is lost quickly, the system has
the mixing property, and ergodicity is guaranteed [28, 49].

Also the higher moments of kinetie energy and of reservoir kinetie energy can be
calculated and compared to the analytical momenta [47]. The equations are given
in Section 3.6.3, eqs, (3.39) and (3.40) page 73.

2.6 Constants of the motion

A particular choice of statistical mechanical ensemble imply that there can be
same constants of the motion in addition to independent variables keeping the
state fixed. The simulation method used for realizing this choice can however fail
to conserve the correct quantities, or can restrict the sampling of the phase space
by conserving too many quantities. Errors in the code can also destroy conserva­
tion. To be confident that aur simulated results corresponds to the chosen ensem­
ble, it is necessary to identify and examine these quantities. A conserved quantity
will reduce the number of degrees of freedom of the system, sa particularly for di­
lute mixtures where one species can be represented by a small number of particles,
it is important that the correct number of degrees of freedom for the simulated sys­
tem are implemented in the computer program. And, finally, an integral of the mo­
tion having a non-constant value must be taken as evidence of truncation errors or
programming errors in the code.

From mechanics we know three independent kinds of integrals of the motion: the
energy, the components of the linear momentum, and of the angular momentum.
We will examine how these quantities behave in a NVT-simulation with ane or
more Nose-Hoover thermostats. An important remark: the simulation should not
conserve any additional variables since we then put restrictions on available phase
space and consequently will have a different ensemble.

2.6. 1 Conservation of extended system energy

In the microcanonical ensemble, the Hamiltonian is a conserved quantity. It is fur­
ther identified with the time-dependent system energy. The canonical ensemble
puts no restriction on system energy; it is allowed to fluctuate around an equilib­
rium value. But since the system together with its thermal surroundings constitute
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an isolated system, the sum of their respective energies must be constant. This has
the important consequence that in a molecular dynamics simulation with Nose­
Hoover thermostats, the total energy of the extended system given by Equation
(2.29) must be strictly constant (within an acceptable limit of numerical accuracy).

2.6.2 Conservation of linear momentum

In the microcanonical ensemble neither linear nor angular momenturn is con­
served. This is not so obvious. If we introduee the microcanonical ensemble as a
representation of the time development of an isolated system, it is clear that both
linear and angular momentum, in addition to the energy, must be conserved. The
isolated system has no knowledge of its surroundings, and can not be influenced
by any external forces or torques. To be consistent with an isolated system, the
microcanonical distribution function should then have been defined as [13]

(2.34)

Where Eo' Pa and Lo are constant values of energy, linear momentum, and angular
momentum. The linear and angular momenta are however excluded from the defi­
nition of the microcanonical ensemble realizing that any change in translational or
rotational velocity of the whole system also will change its energy. Thus energy is
the important quantity, and the microcanonical ensemble is then defined in the
usual way

p = constant X d(E- Eo) (2.35)

This is justified by the fact that no isolated system can exist without being con­
fined between walls [51]. With idealized reflecting walls, momentum conservation
is destroyed, whereas energy is still conserved. Even with interacting walls, mo­
menturn will not be conserved while energy is conserved, if we take the walls to
be part of the isolated system.

Since the canonical ensemble can be regarded as a subsystem of the
microcanonical ensemble, the same assumption must also be valid in this ensem­
ble. This becomes clear if we look at a microcanonical ensemble of N identical
particles and one different. Let the one particle be a canonical ensemble and the N
particles be the thermal reservoir. If the total momentum of this system of one par­
ticle has to remain constant, we can easily imagine situations where thermal equi­
librium between the system and its reservoir never will be achieved.
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(2.36)

The usual procedure of molecular dynamics simulation with periodic boundary
conditions (see Subsection 3.3.3 and Figure 3.3, page 60) does however conserve
linear momentum, regardless of ensemble. The system is confined between walls
that reflects an incoming molecule from the opposite wall, so a translational in­
variance is imposed on the system. Therefore, all components of the total linear
momentum will be conserved during simulations in the directions where these
boundaries are applied. For an NVE simulation this means that the ensemble gen­
erated is not exactly the microcanonical, and is often called an molecular dynam­
ics ensemble, or a NVEp-ensemble [61, 62, 63]. For an isothermal simulation with
one or more Nese-Hoover thermostats, the picture is a bit more complicated.

The time rate of change of total momentum in each coordinate directiorr' is equal
to the total applied force in that direction

li" pS = g + 11dt.L..J l l
i

where i enumerates mo1ecu1es, 11 is interna1 forces due to interactions between
molecules and F; is an extemal force field. W11en there is no extemal force field,
and if Newton's 3rd law is valid, the linear momentum becomes a constant of the
motion [36]. But if the particles interact with a thermal reservoir, this can be re­
garded as .an external force, and the conservation of momentum depends upon the
specific fonn of the interaction between the system and the reservoir and the initial
state of the system.

For the Nose-Hoover multiple thermostat, integration of the total force give [24]

d J gj J J gj J gj

dt2:2:~ = l'ir 2: r]jl;A =-2: r]jDt (2.37)
] l ] l ] l

since the sum of internal forces once again vanish with central forces. If j=l the
above equation can be integrated by separation of variables to yield

(2.38)

where Pa is total momentum at t=O. Then linear momentum is not conserved un­
less it is zero at the beginning [24, 62, 52]. But since the integral in the exponent is
fluctuating around its initial value in an equilibrium simulation, p is expected to
fluctuate around Po for a heat bath initial energy chosen equal to zero.

2 Since conservation of total momentum is conservation of both magnitude and direction, must the magnitude in each
direction be conserved.
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If j> l, the integration above can still be performed for different thermostats cou­
pling to different coordinate directions, or for the same thermostat coupling to dif­
ferent kinds of molecules for the same kind of motion. In the latter case control of
translational and rotational degrees of freedom can be performed separately, as
translation and rotation confirm to independent conservation laws. But if ane tries
to thermostat translational motion for different species separately, ane quickly gets
into trouble with the integration of Equation (2.37), ie with two speeies [24]

(2.39)

The multiple thermostat is now not seen to conserve total linear momentum, re­
gardless of initial values chosen. The only solution of the integration of the forces
that can give a conserved linear momentum is when each species separately has an
initial state of zero momentum. This is equivalent to state that each speeies is a
thermodynamic subsystem where thermodynamic and mechanical equilibrium
110ld separately, and that particles of different speeies does not interact. Then we
obviously no langer have a mixture.

For a discussion of consequences of linear momentum conservation in the virtual
variable formalism, see Cha et al., 1993 [52]

It is perhaps worth a moment of afterthought, that the simulation can never gener­
ate the canonical ensemble since the conservation of linear momentum will restrict
the phase space trajectory to a hypersurface of smaller dimensionality.

2.6.3 Non-conservation of total angular momentum.

Much of the discussion above also hold for the components of total angular mo­
mentum. By exactly the same arguments as used for linear momentum, it can be
shown [24] that the total angular momentum with the Nose-Hoover thermostats
also is conserved only if its starting value is zero. Angular momentum can how­
ever never be conserved in a MD .simulation with periodic boundary conditions,
because when leaving and re-entering the box, a particle changes position and
thereby also its contribution to the total angular momentum. Averaged over a lang
time, there will be approximately the same number of particles entering and Ieav­
ing at the same edge, and the total angular momentum is expected to fluctuate
around zero [28]. The molecular dynamics ensemble is therefore consistent with
the corresponding statistical mechanics ensemble with respect to angular momen­
turn.
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Simulation details

In this chapter we describe accurately how the molecular dynamics simulation is per­
formed, which quantities we have calculated, and how this is done. Westart with a
brief outline of program strueture, deseribe the central algorithms, and the start-up
procedure for the mixture simulations. Then we move on to the calculation of forces.
The remaining part of the ehapter is dedieated to the computation of properties, and to
how the reliability of the simulation is investigated. We have focused upon equilib­
rium liquid state verifieation, and methods to investigate the ergodie behaviour of the
system.

A summary of the most important parameters is given in Table B.3.

3. 1 Program outline

The main philosophy underlying the code is that it should be readable and easy to ex­
tend and maintain. Our goal has been to device a program that, firstly, eould serve our
own purposes as defined previously, and, secondly, could be used at our institution
for solving related problems. This is refleeted through the extended use of subrou­
tines, where the eriterion for creating a subroutine is the logical relationship between
a set of statements. As the use is limited to aur in-house computers, we have also
taken full advantage of the ability to perform struetured programming permitted by
RISC FORTRAN.

Most of the data analysis are done within the program to avoid the large amount of
output - but of course at the cost of same computer time. This also minimizes the

47
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number of additional analysis-programs. An important exception is the output of
translational velocity components needed to compute the velocity auto correlation
function, and the accumulated centre of mass positions used formean square dis­
placement calculations. ff inquired they are saved to disk at regular intervals, and ana­
lysed after program completion. Figure 3.1 showa flow chart for the program, while
Figure 3.2 show an account of input requirements and output generation,

Calculate forces and torques

Integrate motion a.nd reservoirs

calculate g(r), simulation aver­
ages and standard deviations

Figure 3.1 Simple flow chart of progra.m

The program has been tested for a few different cases: pure speeies simulation, binary
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mixture simulation, constant temperature or constant energy (with or without veloc­
itYscaling). In a NVT simulation the number of thermostats can vary from one to four
by different choices of parameters.

INPUT

for each speeies

• moment of inerti a, mass, number
of sites

• potential parameters and partial
eharges, foree-eutoff

• site-names

• loeal coordinates of molecular sites

• initial moleeular orientations
(Euler angles) and site-centre of
mass lengths

for both speeies

• total number of moleeules, and
number molecules of one species

• number of unit cells in fcc-Iattice

• temperature

• density

• simulation length

• timestep

• equilibration period

• output-frequency, sampling fre-
quency,segmentlength

• input and output file names

• number and type of thermostats

• thermostat relaxation parameters

OUTPUT

at regular intervals

• temperatures, pressure, translational
order parameter

• potential energy, kinetic energy, ex­
tended system energy, reservoir po­
tential energy, reservoir kinetic en­
ergy, irreversible work

• energy transfer rate, heat bath pa­
rameters

• moments of kinetie energy and reser­
voir kinetic energy

• translational and angular total mo­
mentum

• translational velocities and uncor­
rected positions

• kinetie energies in coordinate direc­
tions

at the end

e radial site-site correlations

• linear velocity distributions

• averages and standard deviations of
properties

SUBSEQlJENT ANALYSIS

• velocity auto correlation function

• mean square displacement

• energy fluctuations

• site-coordination numbers

Figure 3.2 Overview of input requirements and output generation of molecular dynamics
program.
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3.2 Algorithms for integration of equations of motion

The heart of a molecular dynamics simulation is the integration of the equations of
motion, and the standard route for the solution of these ordinary differential equations
are the finite difference. approach. Nearly all simulators use either a predictor­
corrector type algorithm or a Stormer type algorithm [15].

In the predictor-corrector method, new positions, velocities and accelerations are pre­
dicted from old values of derivatives at step t+h (where t is time and h is timestep) by
a Taylor expansions about t of the position and its derivatives. Then the equations of
motion are used to calculate the forces at time t+h, and the new accelerations are used
to correct the predicted values. The correction step can be applied, at the expense of
computing time, several times to refine the final values. The order of the method and
hence the degree of energy conservation can be increased by increasing the number of
derivatives. The accuracy of the computed trajectories relies on the accuracy of the
predicted values. But as molecular interactions in a liquid can be greatly altered from
one timestep to another, higher order predictor-corrector integrators does not neces­
sarily lead to an improvement.

The Stormer method, as adopted by Verlet, 1967 [64] is a direct solution of the equa­
tions of motion, also through a Taylor expansion of position about to The integrator
bears a similarity to the predictor-corrector algorithm, but without the corrector [65].
The new positions are calculated from the accelerations at the previous timestep. Sev­
eral modifications to the basic scheme devised by Verlet have been proposed (see ref­
erences in [15, 28]). Beside having lower memory requirements, the Verlet methods
lead generally to better energy conservation than predictor-corrector methods at long
timesteps [15,28].

The Verlet algorithm is stable and time-reversible, but both integrators do suffer from
instability, caused by the stiffness of the differential equations, when the timestep ex­
ceeds same value. A typical upper bound of timestep is -5fs, but varies with the sys­
tem under study.

On some occasions Runge-Kutta methods have also been used as integrators. They
suffer however from the inconvenience that forces has to be calculated severai times
per timestep; and force-calculation contributes -95% to the total computing time in a
standard molecular dynamics calculation. Recently there have been made some at­
tempts to improve upon the speed of Runge-Kutta algorithms [66, 67]. Implicit
Runge-Kutta methods seem to be stable for larger timesteps than the traditionally
used methods, In combination with parallel computers they can offer an alternative to
the standard strategies.
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3.2.1 Algorithm of transJationaJ motion

To integrate the thermostatted equations of motion, Equation (2.28), we use an algo­
rithm due to Toxvaerd [68]. We have extended it to handle several heat baths. This
algorithm is based on the Verlet leap-frog algorithm [15], where the velocities are up­
dated at mid-steps to generate the on-step positions. Inclusion of the friction term at
time t and rewriting to avoid the velocity at time t, the finite difference version of the
first of Equations (2.28) reads

(3.1)

where j identifies the heat bath in action, i runs over all moleeules affected by heat
bath j, and over all direetions. vi is molecular velocity, mi is mass of moleeule and 11·
is friction parameter for heat bath j. h is the timestep and.t; is the total force on parti:
cle i exerted by all other moleeules. A precise definition ofh is found below. The po­
sitions are then found from the mid-step velocity

(3.2)

To calculate all energy contributions at the same time, we also need values for the
velocities at time t,

(3.3)

These velocities do not enter the integration. Finally, the thermostats are updated

(3.4)

where Qj is thermostat inertia, gj is degrees of freedom connected to the specific ther-
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mostat, and i counts the molecules affected by the thermostat. To be able to calculate
total energy of extended system, the heat bath parameter is integrated through

(3.5)

The Nose-Hoover equations are by nature time-reversible. But time-symmetry is bro­
ken in Equations (3.1) and (3.4), and some irreversible work is introduced by the ther­
mostat. The equations does not break time-symmetry because of their form, but be­
cause of the presenee of the time-dependent energy transfer rate. If we at a time t

suddenly reverse the signs of all velocities and timesteps, the new incremented (dec­
remented) velocity will depend on a l}j that has not previously influenced the motion,
and the velocity will thus be slightly different from the positive direction value.
Hence the trajectories in the reversed direction will depart from the trajectories in the
original direction.

3.2.2 Algorithm of rotational motion

The differential equations for rotational motion cannot be solved directly from the
formulation in Equation (2.5), page 22. The sine-term i the denominator of Equation
(2.6) introduces a singularity at angles O and Te. Normally, the rotational motion is
therefore integrated with the aid of quatemions [69]. The quatemions are four scalar
parameters, regarded as constituting avector Q , defined for each moleeule in terms
of its Euler angles (<)),'11,8) [37].

qo cos!øcos~(Ø + 1jJ)

ql sin!øcos!(lj>- 1p)

q2 = sin !ø sin ~(cP- 1jJ)

q3 = cos!ø sin~(ep + 'ljJ)

(3.6)

Once used to define the quaternions, the Euler angles need not appear again during
the integration, and the orientation of the body is completely described by the quater­
nions. Equation (3.6) combined with Equations (2.5), (2.6) and (2.7) then yield tIle
equations of motion for each moleeule in terms of quatemions:
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(3.7)

where (O~ is rotational frequency with respect to the ~-ax:is in the body fixed coordi­
nate system [15]. The rotation matrix in quatemions is [15]

A=
q3 + qy- q~- q~

(qlq2- qOq3)

2(qlq3 + qOQ2)

2(qlq2 + qOQ3)

q5- qy + q~- q~

2(q2q3- QOQl)

2(qlq3- QOQ2)

2(Q2q3 + QOQl)

q5- qy- q~ + q~

(3.8)

The quatemions can be integrated with a leap-frog-like scheme [15], where the posi­
tions and velocities are calculated at different times. But since the quaternion deriva­
tives depend on both angular velocity, and upon the quaternions themselves calcu­
lated at the same timestep, this implies that Q has to be calculated at both mid-step
and full-step. Fineham, 1992 [70] developed an implicit integration scheme that made
the mid-step calculation of Q redundant, and also the energy drift as compared to the
older explicit algorithm is claimed to be reduced. In this algorithm, the integration of
the rotation is accomplished by first updating the components of the space fixed an­
gular momentum, li

(3.9)

where i as usual runs over all molecules affected by heat bath j, and over all direc­
tions, and ti is the torque on moleeule i created by all the other moleeules. Then the
half-step angular momentum is calculated for use in next timestep

(3.10)
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The body fixed angular velocities are calculated through the rotation matrix, Equation
(3.8), and the time derivatives of the quatemions at time t follow from Equation (3.7).
Based on an initial guess of full timestep quatemions, qyi(t+h) = qyi(t) + h(dqldt),
the full timestep value is found by iteration of

(3.11)

where )'=0,1,2,3 numbers the quatemion components. The iteration is repeated until
the relative accuracy is better than 10-7

. For the first few hundred steps with an equi­
molar mixture of water and ethanol, the number of iterations needed varies between 2
and 5, with 3 occurring clearly most frequent. Implicit integration thus increase the
computing time by only a minor amount.

The final values are normalized by the criterion appearing in Equation (3.6). Then the
thermostat parameter for rotation is updated in an expression similar to Equation (3.4)

(3.12)

where I is the inertia tensor for the moleeule, Qj is the heat bath mass (not to be con­
fused with the quatemion parameter Q). co? is the body fixed angular velocity'', and
i running only over moleeules, not directions. gj is the number of degrees of freedom
connected to heat bathj, and kB is Boltzmann' s constant. Text is the temperature of the
heat baths. Since we are restricted to equilibrium simulations, the temperatures are
equal for all reservoirs. By a proper choice of rotational axis, all the off-diagonal ele­
ments of the inertia tensor are zero in the body-fixed frarne.

The heat bath coordinate Sj is updated as in the translational case according to

lnsjCt+h) = lnsp)+~(1]jCt+h)+1]jCt») (3.13)

For the particular case of two thennostats, one applied to the translational motion of
all molecules regardless of speeies, and one applied to the rotational motion of all
moleeules, the index j will take on the value 1, or the label trans, with the transla­
tional equations of motion, and the value 2, or the label rot, with the rotational equa­
tions of motion. In this case index i runs over the total number of molecules for both
translation and rotation.

3 The arrow appears as a vector symbol because the equation editor does not permit boldfaec greek letters.
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We use the implicit integration scherne for all species, not limited to water only. For a
full description of the algorithm, we refer to Fincham [70].

3.3 Initial and boundary conditions

3.3. 1 Starting configuration

All simulations are started according to the same procedure. The system is confined
to a cubic fixed volume - a box without walls, where the molecules are arranged in a
face centred cubic -lattice (fcc-Iattice), The orientations of the molecular axes have a
45 degree slant in altemating directions [15].

To build a mixture lattice, two separate fcc-lattices of pure species A and B (alcohol
and water) are construeted, each at the same, final mixture density. An amount of nB
molecular positions are randomly pieked from speeies A lattiee and then speeies B
moleeules is inserted at those positions. Finally all the moleeules are renumbered to
let speeies A oceupy the first nA elements and speeies B oeeupy the last nB elements
of all arrays of position, veloeity, and so on. We then have a random (erystal) mixture
of two speeies prior to the simulation, This is of course a very brutal mixing method.
A typieal coneem is that bigger molecules inserted into the lattiee of smaller mole­
eules would .. partieipate in large repulsive overlap situations that could accelerate
molecules beyond our solar system. We have not seen signs of such events, so more
sophisticated.methods, as bringing one box of each species in eontact and letting them
diffuse into one another, or adding one moleeule at a time, then reshape the box and
equilibrate, seem unneeessary eomplicated.

Translational and rotational velocities are assigned randomly to the molecules from a
Gaussian distribution consistent with the preset temperature. The translational veloci­
ties are modified to give a total linear momentum of zero. As total angular momen­
turn is not eonserved in the simulation, there are no modifications of the angular ve­
locities.

During the first 25000 steps, the system is allowed to relax from the unrealistie crys­
tallattiee to a liquid state by the means of simple veloeity sealing at eaeh timestep.
Then we switch from NVE simulation to NVT simulation by invoking the thermostat
and, of course, stop the veloeity sealing.

The initial values for energy transfer rate between system and reservoirs, 11·, are set
equal to zero, and the potential energies of the heat baths are also zero, with i=l. The
zero-values are preserved through the equilibration period, and initialize the reservoir
equations at timestep 25001.
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3.3.2 System size

We have used a simulation box with a total of 256 molecules for all compositions.
Ensembles of more than -100 molecules is normally recommended for prediction of
thermodynamie quantities to be elose to the thermodynamic limit [28].

Cassuleras and Guardia, 1992 [34] have performed simulations for liquid methanol
with varying number of moleeules. They found no notieeable differenees in thermo­
dynamic averages and structure for systems of 125 to 512. For velocity auto correla­
tion function they found minor differences, but the self-diffusion as calculated from
mean square displacement showed a systematic increase with increasing system size,
This indicates that even a system of 512 particles is far from the thermodynamie
limit. Our self-diffusion results for mixtures is thus expected to carry a substantially
amount of systematie error due to the limited number of particles.

We should also keep in mind that for a 25% mole fraction, we only simulate 64 mole­
eules of the actual species. This results in increased uncertainty with deereasing mole­
fraction in the quantities calculated for separate components at constant time-step and
simulation length. This should particularly be remembered when we present correla­
tion functions and self-diffusion coefficients at decreasing mole fraction.

The limiting factor on the system size is computer resources. As time consumption in
the calculations is proportional to N2

, this is of course a severe Iimitation, A reduction
in computer time can be aehieved by using neighbour lists [15].

The box lengths corresponding to 256 molecules of water is - 20Å, for methanol
-26Å, and for ethanol-29Å. See Table B.3 for a list of all values.

3.3.3 Periodic boundary conditions

To define physical surroundings that can represent the bulk material, we use periodic
boundaries [15, 28]. For a cubic simulation box, periodic boundaries are realized by
copying the simulation box in all directions infinitely. Details of all these molecules
need of course not be stored physically, as each and every one can be described by a
translation of the corresponding simulation box molecule by the appropriate number
of box lengths whenever needed.

Strictly speaking, the system is not isolated between timesteps as molecules can leave
al1d enter the box. A molecule that leaves the box will appear at the opposite edge
(see Figure 3.3, page 60) the next time-step, carrying all its characteristics exeept for
the position relative to a fixed frame of reference. The total linear momentum is thus
conserved. The total angular momentum is not, as the distance vector changes when
the moleeule leaves and re-enters the box. This contradicts the well known result
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from classical mechanics that a system of particles has constant angular momentum if
no extemal torque act on the system.

Note however that the velocity scaling applied during the equilibration phase does not
conserve linear momentum in themixtures because of different molecular masses.
The degrees of freedom for translation are then 3N. Also extra momentum must be
removed before invoking the thermostats to ensure that the thennostatted simulation
conserves linear momentum.

3.3.4 Time step and simuJation Jength

The production runs have been performed with a timestep of 0.5fs. This is a very
small timestep for a classical MD-simulation of rigid molecules, and accordingly the
total simulation time also had to be small. With a total number of steps of 160000, a
simulation of 256 4-site molecules with Ewald summation took -10 days on our DEC
Alpha 3000/400 stations, The production phase of each simulation only covered
67.5ps.

A small timestep does not necessarily mean an improvement of energy conservation
because the round off errors become important at small timesteps [28]. We have not
selected the timestep from analysis of algorithm performance, but rather the time step
selected us once the thermostat masses were fixed. This will be clarified in the para­
graph following this,

3.3.5 The tnermostets and their characteristics

Due to non-conservation of linear momentum it is not recommended to control each
component in a mixture separately [24]. Separate thermostatting of different degrees
of freedom does however not destroy linear momentum conservation, and sa we have
applied one heat bath to control the translational motion of both components, and an­
other heat bath to control the rotational motion.

We then need values for the heat bath masses Qtrans and Qrot' or as we prefer, the re­
Iaxation parameters 'ttrans and 't rot for the two reservoirs,

From a trial and error procedure, we have estimated the reIaxation parameters for
thennostatting the pure liquids at room temperature. They are given in Table 3.1 be­
Iow.
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Table 3.1
Relaxation para.meters for the heat reservoirs in the NVT simulations

'ttrans[10..
15

5] ..15 ]'t rot[10 S

water 25 20

methanol 25 23

ethanol 50 50

The starting point for each liquid was estimates of the the rotational frequencies and
of the mean free paths, then we varied the relaxation parameters above and below
these values. The criterion for acceptance of a value was very simple, and was in­
spired by the results of Di Tolla and Ronchetti, 1993 [49]: Do we find, by inspection
by eye, any suspicious oscillations in the time development of either of the s­
parameters or of the temperatures, then the trial value is rejected.

If we accept that the optimum value for a relaxation parameter is equal to a character­
istic frequency of the system studied, we must conclude that each mixture has its spe­
cific best value of the relaxation parameters. To perform a trial and error procedure
for each and every mixture is very laborious, sa instead we have applied a weighted
average of the thermostat relaxation parameters for the pure liquids

mix - 1 +.,..2 d .,..mix - .,..1 + 2
7:trans - Xlitrans X 2 It trans an It rot - X 1It rot X 27:rot (3.14)

Sa finally retuming to the timestep as promised above: We have found the optimum
relaxation times as presented in Table 3.1 to be approximately 20-50fs. As oscilla­
tions should be integrated with at least 100 points per oscillation to avoid stiff differ­
ential equations, this constraints the timestep to be at most O.5fs.

We expect that averages of simple thermodynamic quantities are relatively insensitive
to the heat bath mass [50], whereas properties derived from the fluctuations are highly
sensitive to the heat bath characteristics. Studies on solid Lennard-Jones systems [49]
show that the thermostat inertia must be within a factor of ......±5 of the characteristic
frequencies of the system to avoid influence of thermostat oscillations on the fluctua­
tions of properties. We do not use the fluctuations to calculate derivative properties.
As far as we know, it is not clear how heat bath parameters affect entropic properties.
Nase [24] expects that the presence of a thermostat will have little effect upon single
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particle dynamics. This is confirmed by the simulations of Pierleoni and Ryckaert,
1992 [71]. Collective dynamics is on the other hand likely to be affected [24].

3.4 Force and torque ea/eu/atians

3.4. 1 Short range forces

In the pairwise additive approximation, the force Fid between two sites a and b on
different molecules i and j are found from b

(3.15)

where ri . is distance between the two sites and U is the potential of site ia felt by i;
give~ in~quation (4.1). Due to syrnmetry, Fid b = -Fj ia' which.means that only ?alf of
the site-site forces need to be calcu1ated. The total fOrce on site ia due to all sites on
all other molecules is

(3.16)

With a Lennard-Jones (12-6) potential plus a Coulomb term as given in Equation (4.1
) the x-component, say, of the total force on site ia to enter the program is

(3.17)

(3.18)

The A, B, and C are short for the parameters and constants given in Equation (4.1).
x. . is x-component of distance between the two sites.

Valb

Likewise, the total torque t; in x-direction for moleeule i caused by the forces acting
upon the sites of moleeule i, is

q = ~~ (AyF't- AzFt)
where ~y and & are distance in y and z-direction, respective, between the site ia and
the centre of mass of molecule i. The remaining components are found through a
positive rotation of (x,y,z).
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The virial W is calculated from the site forces as

w =_1."""""""" dUiaib riajb '. rU (3.19)
3~~~~ b·· r· l

i j>i a b 'aJb la b

where r ij is distance between centre of mass positions of the molecules i and}.

The force calculation is very thoroughly described in [15], and we have followed the
guidelines provided there.

3.4.2 Force cut-off

In principle both the Lennard-Jones and the Coulomb forces range to infinity, but
only the Coulomb forces are significant beyond -2.50'. We therefore calculate the
forces on one molecule as the sum of forces, both Lennard-Jones and Coulomb, from
all molecules having their centre of mass within half a boxlength of the present mole­
cule (Figure 3.3).
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Figure 3.3 Figure above show periodic boundary conditions (PBC) and minimum image
(MI) convention of a two-dimensional simulation box . Cut-off around central
molecule (black circle) shown. Moleeule k is real, but outside cut-off of
molecule i, Molecule i interacts with closest copy of k, which is the
imaginary, minimum image molecule, k'. All images are found by linear
transformations with the boxlength L in all directions. Notice molecule leaving
and re-entering the box.
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lf the sphere thus generated extends outside the simulation box, the periodic bounda­
ries comes into effect through the minimum image convention [15]. A larger cut-off
is not consistent with the minimum image convention, as a moleeule could interact
with several images of another moleeule, as well as images of itself, simultaneously.

The cut-off introduces a discontinuity in the force field which lead to a dis continuity
in the momentum of particle i when particle jenters or Ieaves the sphere. This show
up as small f1uctuations in the total energy of the system [28].

3.4..3 Lang-range contributions to the forces

Application of a potential cut-off means that only a portion of the contributions to the
physical properties is accounted for. We therefore add the Lennard-Jones contribution
from the far-lying molecules directly to the energy and pressure by Equations (3.30)
and (3.31) below. These are constant contributions calculated once and for all at the
beginning of each simulation. For configurational energy this correction amounts to
less than -O.IJ/g, so we are relative confident that the forces and hence the velocities
are not seriously affected by the cut-off in the Lennard-Jones interactions.

Simple cut-off in the electrostatic forces is not advisable, at Ieast for systems of less
than -1000 molecules [72]. These forces are of longer range than the Lennard-Jones
forces, and aspherical cut-off can lead to increase in total energy [73, 74]. There are
several methods [15,73] to include the lang-range electrostatic forces into the force­
sum. We have applied the Ewald summation technique, originally devised to calcu­
late lattiee sums for ions in a crystal [75, 76]. Despite its time-consumption, we chose
to use the Ewald method, mainly because we deal with highly polar species. The stan­
dard method is extensively described elsewhere, see for example [15, 77].

The underlying philosophy is to replace the original electrostatic potential by a charge
density _e-

r2
with the same total charge q. The potential at each site is now of short

range. Then a new potential for a Iattice of point charges and a Gaussian charge distri­
bution of opposite sign is subtracted, The result is a total potential with two main con­
tributors, which is treated mathematically different. The damped interactions is calcu­
lated in r-space, while the cancelling distribution is calculated in k-space. The total
potential between two sites ia andjb with fractional charges qi

a
and qjb is given by [79

]

(3.20)
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where the first term is the r-space contribution, the second term is the k-space sum­
mation, and the final two terms are self contribution. c is the Coulomb constant
1/4rcEo' L is length of simulation box, K is a convergenee parameter. k = 2rcn/L is a
reciprocallattice vector, and r

iaib
is distance between sites. erf and erfe is the error

function and the complementary error function [78].

The final equations [79, 80] for the contributions to the forces are given below for the
l;-direction. The real-space contribution is given by

(3.21)

The k-space contribution is given by

(3.22)

and the self-term is given by

We lise a lattice parameter K of 5.01L, where L is the boxlength, and a total of 111
k-vectors. A variation of these parameters was not included in our study. The imple­
mentation of the k-space summation is performed with trigonometric functions.

During the last 5-10 years a number of faster performing implementations and alter­
natives to the Ewald sum have been proposed, mainly due to the time consumption
involved in the calculation [81-86]. Discussions on possible effects of the use of the
Ewald technique indicate that Ewald summation might influence on dynamical prop­
erties to give a lower diffusion constant than various cut-off methods [87]. On the
other hand there is indication that Ewald summation give higher diffusion coefficients
than the nearest image method [88]..
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3.5 Ca/eu/atian ofproperties

63

3.5. 1 Statistical analysis and sampling proeedures

One of the main purposes of molecular dynamics simulation is to calculate mean val­
ues for properties. Rigorous conclusions from the simulations can however only be
drawn within tlle statistical uncertainties of the properties in consideration. The error
in a calculated property is caused by a combination of systematie error and statistical
error.

Systematie errors displace the simulation average from the true trajectory average.
As in laboratory experiments, systematic errors are caused by method or extemal in­
fluence. In a computer simulation truncation of finite difference equations, truncation
in force-calculation, periodic boundary conditions, the finite number of molecules
used, the sampling method, and hidden errors in the code can act as examples. Sys­
tematic errors does not improve with extended simulation. To reveal the presence, but
not necessarily identify the sources, of any systematic errors, the following strategies
are useful [28]:

For one particular problem

• run the same eode on different computers with different compilers

• use the same algorithm, but different code

• use different algorithms for the same problem

• eompare results from different simulation techniques

We have performed the first test by running our eode at different optimization levels
at Alpha 3000/400, and by running the same problem at CONVEX 220 at lowest opti­
mization level. The results are shown in Table 3.2. The last three tests are performed
by eomparison with other published results from Monte Carlo or molecular dynamies
simulations. As all details of a simulation seldom are reported, tbis approach can only
give indications. Comparisons are discussed along with the presentation of our results
in Chapter 5 and 6.

The representation of bulk material by a small number of particles introduces a sys­
tematic error that can be investigated if we increase the molecule number. Extrapola­
tion of values from runs with increased moleeule numbers will give the thermody­
namic limit.

Statistical errors are the distribution of individual observations around the mean
value and refleet the natural fluctuations of the observations. They are usually quanti­
fied as the variance or the standard deviation of the property. Thermodynamic equi-
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librium properties are randomly drawn from a Gaussian distribution; the randomness
are caused by the chaotic nature of the phase-space trajectory, Adjacent points on the
phase space trajectory are however not uncorrelated, Each property has a definite cor­
relation time within which their values depend on previous values. Such serial corre­
lations can introduee systematie errors into the computed averages, unless special
care is taken. Areliable calculation of averages can be done with one of the following
methods [15, 28]:

• stratified systematic sampling

• stratified random sampling

• coarse-grained sampling

We have calculated the averages of thermodynamic properties with coarse-graining,
while the statie structure is sampled with stratified systematie sampling.

To start with, we define the full phase-space trajectory as the trajectory our system
traces out within a macroscopic time. The computed phase-space trajectory consists
of a finite number of points where we follow the system, so this sample is only a very
small portion of the full trajectory. We want to approximate the averages of the com­
puted trajectory to the full trajectory averages, and also to have a measure of the vari­
ance in the mean of the calculated trajectory with respect to the full trajectory mean.

In coarse-graining this is accomplished by dividing the computed trajectory into M
segments each consisting of n observations. The values in each segment jare aver­
aged according to

(3.24)

(3.25)

where n is the number of observations in each segment, xk is the observed value and
J1.t is the time increment. Then the expectation value <x> and its standard deviation ø
is calculated from

1
M

(x) = M'2:]j
j=l

and

(3.26)
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where the quadratic is expanded and recast for use within the program with the aid of
Equations (3.24) and (3.25).

The calculation of standard deviations are done within the program, based on accu­
mulated values. The calculated average will be within the trajectory average for 95%
of the values if we assign an uneertainty of 2a. Normally, we report the value corre­
sponding to la.

We stress once more that the above strategy relies on the faet that the segment dura­
tion must be larger than the correlation length for the property. Correlation Iength
vary with property, sa ideally one should calculate time-correlation funetions for each
property and be prepared to apply different segment lengths. We have calculated ve­
locity auto correlation function, and use this correlation length to estimate both the
systematie sampling of the static structure and the segment length of the coarse­
grained sampling. From figures of the velocity auto correlation functions, see Figures
5.35, 5.36, page 137, and 6.31, 6.32, page 180, we see that correlations die after
-0.6·10-3n8. With a step length of 0.5fs, we should have segment lengths of about
1200 timesteps, with a total number of segments of 112 for 135000 steps of produc­
tion. We have used a segment length of 300, which brings us to only 0.15·10-3ns,

where some correlation still exists. We 11ave not evaluated the possible influence of
this.

Even if the standard deviations are small, and the systematic errors are controlled, the
distribution of observations around the mean can be wrong. A quantitative measure of
this is the computation of X2 [28], which measures how well the actual distribution is
correlated with the theoretical distribution. A qualitative measure is to accumulate
values and compare to the theoretical distribution in a plot. We have done so for the
internal energy and the linear velocities, diseussed in Sections 5.3 and 6.2.

3.5.2 The simple thermodynamic quantities

Mixture pressures P, temperatures T, configurational energies E.e: kinetic energies e;
and constants of the motion (i.e. internal energy U with the NVh simulations and ex­
tended system energy Etot with the NVT simulations) were calculated each step and
accumulated over segments of 300 steps in the production phase. Simulation averages
and standard deviations were calculated at the end of each simulation.

In addition, time development of the above properties to be used in graphical repre­
sentation were saved to disk as instantaneous values each 100 step. We also saved the
translational and rotational temperatures of each component, and the total reservoir
potential and kinetic energies, see Equation (2.29), at the same intervals.
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Same of the properties were not averaged (coarse grained) during program execution,
but were averaged after the simulation. These averages are based on the instantaneous
output values (systematic sampling) with few (3-5) significant numbers. It will be
evident from the respective tables to which properties this has been applied. Due to
the different sampling method, the standard deviations reported are larger.

The temperatures are calculated from the kinetic energies of each component accord­
ing to the law of equipartition of energies

and

Ttrans = Lmivr / gtranl'B
i

Trot = L1wr / grot'B
i

(3.27)

(3.28)

(3.29)

where gtrans =3(N-l) and grot =3N are the translational and rotational degrees of free­
dom for each component. g trans and g rot differ because there is no constant of the mo­
tion associated with the rotation. The mixture averages are then found as weighted av­
erages of the contributions from each component.

The pressure is calculated from the virial W, Equation (3.19), page 60, as

NkBT W
P = ---y-+ V+PLR

where N is number of moleeules, V is the volume of the simulation box, T is the cal­
culated temperature. The first term is thus the ideal gas contribution, and PLR is the
Lennard-Jones contribution from the molecules lying outside the cut-off sphere, given
as [28]

PLR _ - 2np JOO duU(r) 2 16 np" 6
k T - 3k T r-d-g(r)r dr -- 3--3 L-JEabOabp B B re r kBTrc ab

(3.30)

where the radial pair correlation function g(r) is assumed to take the value 1 and "u is
the total site-site potential. p is the number density, T is calculated temperature, re is
potential cut-off radius, and tab and O"ab are Lennard-Jones parameters for the sites a
and b.
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The lang range contribution to configuration energy is included as [28]
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(3.31)

3.5.3 Structural quantities

The normalized radial site-site correlation functions gab(rab) are calculated from

~Nk(rab,Ar)
_k___ (3.32)

gab(rab) = 4
3npV(r,L1r)Sn

Nk is an array that accumulates neighbouring sites blying within a shell of width Sr
centred at a distanee rab from site Q. The total number of sites is divided by the num­
ber that would have been found in an ideal gas, by the number of steps 5, and the
number of sites n contributing to Nk. In the long distance limit, gab(rab) will approach
unity.

The calculation is based on samples every 150th step, with a radial resolution of 0.05
Å. The structure is then sampled from 900 configurations. This number is fixed, sa
the statistical accuracy will vary with composition for various site-site correlations.
The errors in peak heights are believed to be quite large, especially at short distances
where the shells contain few moleeules. A full analysis of standard deviations in g(r)
is time-consuming, and is thus not performed. We have however applied Gaussian
statisties to oxygen-oxygen self correlation function for water, gOD' for ane position
near first maximum and another at long distance. The results are shown in Table 5.8.
The standard deviations are found to be small. .

Calculation of site-coordination number, nab, that is, the average number of nearest
neighbouring sites of type b surrounding the central site a, is found by a Simpson in­
tegration of the site-site correlation functions out to the first minimum of each gab(r).

(3.33)

Ph is number density of sites b in system.
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3.5.4 Dynamical properties

The velocity auto correlation function 'P(t) is computed after the simulation is fin­
ished from all centre of mass velocities saved to disk at every 100th timestep, The
output of all molecular velocities act only to improve the statistical precision since
this is a single-particle correlation. The correlations are integrated up to 500 points,
which means 50000 timesteps, or a delay time of 25ps. The storing requirements for
the output is very large, but we wanted to have the possibility to do same variations in
the final calculations.

The velocity auto correlation function 'P(t) is defined as [28]

(3.34)

where vi(tO) is the velocity of moleeule i at time origin to. The calculation of \}I is
done according to (but for each component separately)

(3.35)

(3.36)

where M is number of available time origins, and N is the number of molecules. M is
given by M=L-tde1a!tJ.t, where L is number of stored velocities, In aur calculations we
have 1350 stored velocities at intervals of 100 steps, and we have used a delay time of
50000 steps, which give us 850 origos.

The self-diffusion D of each component can either be calculated from the velocity
auto correlation functions through the Green-Kubo relations [15, 28] or from the
modified Einstein-relation [15, 28]

1 . d( N [ ]2)D = - hm - " r.(t)- r.(O)6N t~oo dt ~ l l
z=1

based on accumulated positions for each speeies separately. We calculate the mean­
square-displacement, represented by the brackets, for a delay of 5000 time steps (usu­
ally 500 positions). The positions are taken every 100th timestep. We have not calcu­
lated the statistical accuracy of the presented dynamical properties, but we discuss a
probable estimate for the self-diffusion coefficients in Subsection 5.5.1.
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3.6 Verification of the simulations
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We can never guarantee that aur eode is free of errors, nor that the results meets with
the theoretical restrietions. There are however several ways to gain increased eonfi­
dence in the validity of the output. We have been coneemed with elimination of eode
errors (of coursel), verification of liquid equilibrium, and investigation of the ergodic
behaviour of the system. In what follows, we will describe the methods and various
tests we have applied to assess the reliability of the results. It has not been possible to
verify eaeh and every aspect of the simulation, but we have seleeted what we believe
are the most important and the most interesting, balanced against the complexity in
performanee.

3.6. 1 Code errors

We have compiled the eode with three different compilers, the f77 compiler at DEC
Alpha 3000/400, the fe compiler at Convex 220 and tlle Convex Application Com­
piler. The last compiler performs interprocedural analysis that tracks the flow of data
and control between procedures. It is thus capable of, for instance, detecting errors
that arise between different procedures, or inconsistencies in common blocks.

A system run under the same conditions at the Alpha and Convex computers would
not generate identical trajectories as the organization of operations is different. Henee
the accumulation of round-off errors is also different. We have compared the same
eode at twodifferent computers and at two different levels of optimization at the
same computer. Any differences in mean values will provide us with an insight to
round-off errors. Table 3.2 give results for mixture temperature T, mixture pressure P,
and mixture potential energy Ep for a equimolar mixture of water and ethanol.

Table 3.2
NVT-results for a water-ethanol mixture of 128 molecules of each, run for a total of
50000 steps at steplength 1fs and with properties averaged for the last 35000 steps.
Sta.ndard deviation ø for each property is reported in parenthesis. All simulations are
double precision. Ethanol potential slightly different from the OPLS-model applied in
Chapter 6.

Computer Compiler <T> [K] <p> [MPa] <U> [J/g]

Convex 200 No optimization 292.7 (0.4) 81.5 (1.8) -1287.0 (0.5)

DEC Alpha No optimization 292.7 (0.4) 81.9 (1.9) -1281.6 (0.5)
Optimization 293.8 (0.4) 79.2 (1.9) -1291.5 (0.6)
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The deviations relative the non-optimized DEC Alpha simulation are largest for the
pressure by nearly 3%, while the deviation in potential energy is less than 1%. We
notice however that the deviation in potential energy is well outside ± 20'. Haile [28]
present an analysis of a l-dimensional Lennard-Jones system of 100 atoms simulated
for 10000 and 20000 step, and our findings are of the same order as his. As we have
simulated twice as lang and also use a more complicated potential, we find our results
to be satisfying, and conclude that the deviations are of numerical nature.

Different mean values show that the system follow different trajectories for different
computers or compilers. From inspection of the time development of potential energy
we find (not presented) that within 1500 timestep the differences has grown larger
than the fourth digit for different computers. The same difference does not show up
until15000 timesteps for different compilers for the same computer.

From this brief investigation we also notice that the differences are larger with differ­
ent optimization levels than with different computers. Note that the non-optimized
and the optimized simulations with DEC Alpha stations yield different temperatures,
which may in part be responsible for the differences in pressure and configurational
energy.

All Dur production runs are performed with DEC Alpha stations at the highest optimi­
zation level.

We have rewritten central parts of the codeto detect errors, and we have run our pro­
gram for simple, atomic ane component systems. The mixture simulation has been
tested out for various compositions of water in water, and alcohol in alcohol. The re­
sults are the same as with ane component.

As total energy of the extended system, Equation (2.29), and the Hamiltonian of the
isolated system are strictly eonstant in an ideal simulation, monitoring these constants
of the motion is a powerful check of eode errors. To have a constant total energy,
fluctuations in all contributions to total energy must cancel. Errors tend to show up
quickly as a divergenee. Same minor departures from ideality must be tolerated
though, as the finite difference equations only are correct to a definite order in h. We
are satisfied with an aecuracy in the constants of motion to the fourth digit. The role
of truncation can be evaluated by decreasing the timestep, then the accuracy should
improve.

For each simulation we inspect the constant of the motion and estimate the drift as
difference between lowest and highest va1ues, normally appearing at the beginning
and end of simulation, respectively.
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3.6.2 Equilibrium liquid state and stability, general requirements

To have thermodynamical equilibrium, the system should be mechanically and ther­
mal stable. That is, all thermodynamic properties of the system should tluctuate
around stable mean values, and the 1st law of thermodynamics should be satisfied. It
is also important that the system is in the intended state (liquid).

For all simulations we have therefore controlied the performance of the following
quantities:

• The translational order parameter p given by [15]

N
pek) = kL cos (k· ri) (3.37)

i=l

where N is the number of molecules, ri is the position of the ith molecule, and k is
a reciprocal vector of the initial lattice. We start from a solid lattiee where p has
the value unitY, but in the liquid state we expect r to tluctuate around zero with an
amplitude of lIN.

• Energy conservation, the values of the constants of the motion defined in Equation
(2.9) for the NVE simulations and in Equation (2.29) for the NVT simulations
should be not onIy stable but also showing no tluctuations (see Subsection 3.6.1).

• Stability of time development of pressure and temperature,

• The velocity distribution initially taken from the Maxwell distribution should not
depart from this. The x-component of linear velocity is sampled every 150th step,
and the distribution is compared to the theoretical at the end of simulation.

(3.38)

where mi is mass of molecule i, vix is velocity of molecule i in the x-direction and
T is calculated temperature.

• The kinetie and rotational energies should be equally partitioned among all coordi­
nate directions, and we save the square of rotational and translational velocities
every 150th step,

• The total linear momentum is conserved in molecular dynamics simulations, the
angular momentum is not. A sum over all components of linear and angular mo­
menta is performed each 150th step, and saved to disk.
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These and other tests are thoroughly discussed in [28].
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3.6.3 Particular requirements for the extended system simulations

For the thermostatted simulations it is particularly interesting to see whether the simu­
lations compare to the canonical ensemble. As discussed previously in Section 2.5,
this is not guaranteed in advance. Also the extended system must satisfy the 1st law
of thermodynamics, and there should be thermal equilibrium between the system and
the reservoirs. We have thus looked at some quantities specific to the thermostatted
simulation where the theoretical outcome is known.

• The reservoir parameters Strans and Srot are initialized to 1 at the beginning of the
thermostatted simulation. Their average should not depart from this value, though
they naturally will fluctuate, The parameters are saved to disk every 100th step,
and coarse grain averages and standard deviations are calculated within the pro­
gram.

• To have thermodynamical equilibrium between the system and the reservoirs, the
rates of energy transfer lltrans and "rot must fluctuate around zero. If not, there will
be a net energy flux across the system boundaries. We therefore monitor tlle time­
development of l1trans and Tl ror Not only should their mean values be close to zero
separately, but the sum of their averages should also be closer to zero than the in­
dividual ones. Coarse grain averages and standard deviations are reported, and in­
stantaneous values are saved to disk every 100th step

• From the equipartition principle, the kinetie energy of a thermostat should be pro­
portional to lhkBT. The potential energies of the reservoirs should ideally fluctuate
around an average of zero.

• The running averages of the higher moments of translational, rotational, reservoir
translational alld reservoir rotational energies. The first moment is simply the
mean. If taken about the mean, the second is the variance, the third moment repre­
sents skewness, and the fourth is kurtosis which measures the degree of peaked­
ness [89]. Also the fifth moment is included. In a canonical simulation they are
expected to approach the values given below [47]:
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gj
(~) = 'ikBT

(KJ> = ~(kBT)2

(Kl> = gj(kBT) 3

(Kj> = ~ [3;i + 6](kBT)4

(Kl> = gj[5gj + 12](kBT) 5
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(3.39)

j specify the particular energy as listed above. gj is the corresponding number of
degrees of freedom, see Subsection 2.5.2. It takes the value unitYfor the reservoir
energies. The simulational m'th moment is calculated from expansion of

(3.40)

• Finally we analyse the distribution of simulation box energies (internal energies).
In a canonical simulation the internal energy should be consistent with a Gaussian
distribution.

(3.41)

Ergodicity in connection with the Nose-Hoover thermostat was diseussed in Section
2.5. To have reliable averages, the simulation of both the system and its sorroundings
must sample a representative part of phase space. But even if the mean values are sta­
ble and give exellent values, the fluctuations around the mean can be highly non­
canonica1. The outcome of the two final tests above signals the canonical behaviour
of the system.
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Mo/ecu/ar models

Today the most uncertain aspect of a computer simulation is related to the. models of
molecular interactions. Even with the most stable algorithm and an ergodie system,
the computed results will not be closer to the real world than the potential model per­
mits. Much effort has therefore been put into the task of constructing reliable models.
So far no single empirical model of a realliquid is capable of reproducing all experi­
mentally measured properties at all thermodynamical states of interest. With quantum
mechanical calculations it is in. principle possible to calculate energies accurate, but
such ah initio calculations are computational expensive. We will not deal with that
subject here.

An important consideration is the computational effort for a mode1, which means that
a model must be simplified relative to reality. To make reasonable simplifications for
the fluid, one must have an idea of the physical origin of the interactions. We will
therefore briefly review the nature of molecular interactions and discuss same general
considerations for the empirical models within the context of molecular simulations.
Then we describe the particular models that we have chosen. A further complication
is introduced when pure liquid models are combined in mixtures, so we conclude with
a discussion of the applicability of pure speeies models in mixtures.

A description of the experimental results and proposed models from the literature for
the structure of the bulk liquids and the aqueous mixtures of methanol and ethanol are
deferred until Subsections 5.4.1,6.3.1, and 6.3.2.

74
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4. 1 Mo/ecu/ar interactions
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Molecular interactions are mainly of electrostatic and quantum mechanical origin.
Magnetie interactions are usually negligible. The electrostatic interactions between
the electron distributions of two molecules i andJsufficiently distant apart, are usu­
ally approximated with a series expansion in r ij- ,where rr is their distance. This
multipole expansion [90] increase the refinement of the foice via single charge-,
dipole-, quadrupole-, octopole-interactions, and so on. The extension and anisotropic
distribution of the charge cloud is thereby taken into account. For a neutral molecule,
say water, the first non-vanishing term is the dipole, but since water is non-linear and
consists of unlike atoms, it also has a quadrupolar term which can contribute signifi­
cantly.

Whether a moleeule has a permanent dipole or not, it can always have an induced di­
pole (more generally an induced multipole) caused by the response of the electron
distribution to the electrostatic field from the surroundings. The modification of the
interactions caused by tlle changed electron distributions is termed induction interac­
tion. The ratio between permanent dipole interactions and induced dipole interactions
scales as r;.3 . Induced dipole-induced dipole interactions is the leading induced mul­
tipole interaction tenn, and is of the order of r:/ .Induction forces between molecu1es
are attractive for all orientations.

The dispersive interactions (London forces) are of quantum mechanical origin. They
can however.be viewed semi-classical as a result of fluctuating charge densities in the
moleeule caused by the electronic motion, which then creates instantaneous multi­
poles. In contrast with induction interactions, which are created by the surroundings,
tlle dispersion interactions have their origin in the moleeule itself. Dispersion interac­
tions also scales with -: to the first order (higher-order dispersion interactions is pos­
sible) and are attractive for all orientations.

Of interest to us are also overlap interactions, interactions between molecules coming
sa close that the Pauli exclusion principle becomes important. Overlap interaction is
usually repulsive, but in some cases, as for instance when a proton donor like hydro­
gen and a proton acceptor like oxygen come close, it can be attractive and a bonding
can occur, Because of the orientation of the quantum mechanical orbitals, these forces
are directional dependent. There is no general theory [90]ø

In close connection to molecular interactions is the concept of polarizability. This is a
measure of the extent to which multipoles are created or changed upon interactions
from the surroundings. The polarizability of a molecule must therefore change with
changing surroundings or state conditions. Polarizabilties are in general different for
different directions in the molecule.
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A detailed mathematical treatment of intermolecular forces is given by Gray and
Gubbins [90].

4.2 Modelling the interactions

Polar molecules consists of atoms with different electronegativities. This causes a dis­
placement of the electron distribution towards the more electronegative atom, impos­
ing a permanent dipole moment upon the molecule. The molecule as a whole is how­
ever electrostatically neutral. Molecular liquids have anisotropic short range
repulsion. Polar liquids also have a long ranged dipolar interaction.

The various kinds of (anisotropic) forces acting between polar molecules, combined
with the close packing of molecules in a liquid, makes it difficult to construct general
theoretical models for polar fluids. For the same reason, it is also difficult to repro­
duce all the observed effects by a simple empirical potential.

The basic principles for c1assical founded models, are

• the assumption of pairwise additive interactions,

• and the idea of subdividing the molecules into interaction centres, or sites.

The sites are not necessarily coincident with the atornic centres of mass, between
which central forces act. The pairwise additivity for interactions between molecules
is thus extended to apply to parts of molecules via the site-site approximation.

a)

a b
• •

rah

b)

Figure 4.1
Site-site approximation of two-atomic
moleeule.
a) Charge distribution
b) Site-representation, a and b
located a distance r b apart, and
characterized by 'scfme' parameters ,
see text.

The total potential U between the molecules can be expanded in a sum involving an
increasing number of molecules U =L Ujj + L Ujj k + 00.' where the first term adds up
all pair interactions as if each pair was alone, the second term corrects for the mutual
infiuence of all possible combinations of three isolated molecules, and so on [90].
The evaluation of the sum gets quickly very laborious, so the sum is usually truncated
after the first term, leaving out the triplet and higher order interactions. Multipole in­
teractions (electrostatic) are pairwise additive. The presenee of a third moleeule can
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however have important influence on the charge distributions of the two molecules,
and result in different interaction between the pair.

The assumption of pairwise additivity is to some extent compensated by the replace­
ment of the pair potential with an effective potential, where the effects of the sur­
roundings are taken into account in an average way. The molecule is thus to be re­
garded as non-polarizable.

j

a) Pair interactions
k

b) Triplet interactions

Figure 4.2 IIlustration of triplet forces. Presenee of molecule k pulls electron cloud of
molecule i and influence on orientation of moleeule j. At the same time i and k
are influenced by new orientation of j ....

A common starting point for an effective site-site potential Vi . is the choice of a
Lennard-Jones (12-6) potential [91] for each site in combination~ith a Coulomb po­
tential if the site has a partial charge.

(4.1)

ø. . and E.. are the Lennard-Jones parameters characterizing the repulsive core and
th~bdepth ~1bthe attractive potential weU, respectively. ricJ is the distance between to
sites a and b on to different molecules i andj. qi and qj ~re the fractional charges of
the sites a and b. 1141CEois the Coulomb constantin the riletric system.
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As the Lennard Jones form consists of a combination of a repulsive core (r- i 2
) and an

attractive part (r-6
) , effects of both dispersive and induction interactions are included

to the first order, along with overlap forces.

For a potential of this kind, one has three unknown parameters for each site. As de­
fined above, these are the electrostatic charge q, the contact distance ø between two
sites, and tlle strength E of the potential. In addition, a geometry for the molecule is
also needed. A common strategy is to take the measured gas phase geometry repre­
sented by bond angles and bond lengths. The potential parameters are adjusted in an
optimalization procedure, aiming to reproduce experimental values for some thermo­
dynamic properties for the real, pure, liquid. Often the geometry or part of it is also
adjusted from its gas phase values simultaneously, Then one has a model that can re­
produce some of the features of the real fluid within a given accuracy, within a speci­
fied temperature range or density range, and for a subset of its properties. The model
for the single molecule will necessarily be different from a real monomer since ef­
fects of higher order interactions are included only on average. As the calculation of
site-site distances is computational expensive, the models with the least number of
sites is in general preferred.

The use of an effective potential can have important consequences. As the effect of
the surrounding molecules only is included on average, the short range structure is af­
fected. Also the directional dependence on the polarizability is averaged. Studies on
atomic liquids show that three-body interactions can have large effects on calculated
pressure and surface tension. For polar molecules it is suggested that also higher order
(three- and four-body) terms are significant [90, 92]. Also the potential usually is ad­
justed for a specific state of the pure species, and must be used with care at other den-
sities and in mixtures where the surroundings are different. Another defect is that
bonding charge density aften is neglected. This can have consequences for the lang
range and multipole interactions, and can lead to wrong predietion of dimer structure
[90].

In addition to the non-polarizable approximation also a rigid model where molecular
bonds and angles are not subject to change is often assumed. Also the thermal vibra­
tions of the molecules are usually not included. The bond vibrations are faster than
the translational or rotational motion and must be integrated on a shorter timescale.
This leads to a complication and increase in computer time. Also the vibrations are of
quantum mechanical nature and might thus not be correctly integrated within a classi­
cal framework [93].
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4.3 Models for water

4.3. 1 Physica/ properties
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Because of its puzzling properties and its importance in terrestrial life and activities,
water has for the last 20 years or more, been the subject of intense research with the
aid of theoretical, experimental and simulational techniques. Of vital importance to
simulation and theoretical calculations is the model of the interactions, and numerous
potentials has been suggested. Sa far no model has been found to capture all the fea­
tures of liquid water.

Among some of its observed features, liquid water has a large specific heat, indicat­
ing that a great number of hydrogen bonds have to be broken when heated. Also
water has high melting and boiling temperatures compared to other hydrides [94].
Other unusual properties are the expansion upon freezing, the existence of a maxi­
mum density at 4°C at atmospherie pressure, and the melting of ice with increasing
pressure.

For a gas phase monomer, the intramolecular O-H bond length is O.9575Å, and the
HOR angle is 104.51° [95]. Of the molecular features of water is its high, compared
to its size, dipole moment J.l=1.85D and a polarizability of 1.46Å3

, both gas phase
values [96]. Water also possesses quadrupole and octopole moments [90]. The non­
vanishing moments indicate a directional preference for bonding. The polarizability
imply that the pairwise additivity assumption might be substantially in error, since in­
teractions between a pair of water molecules can not be seen isolated from their vary­
ing neighbours.

The polarity of water due to the covalent bond between oxygen and hydrogen, along
with the nonshielded proton, provides for a intermolecular O - H e • • O bond; the
hydrogen bond". A neighbouring proton bonds to ane of the lone-pairs of electrons on
an oxygen atom. It is the ability of forming hydrogen bonds that is regarded as the
main cause for the deviations of the behaviour of liquid water from that of a normal
liquid. Not surprisingly, the hydrogen bonds have been/are particularly focused upon
in simulations studies.

4.3.2 Mo/ecu/ar models for /iquid water

An important class of empirical models originate from the site-site Lennard-Jones
plus electrostatic potential model as described above. The most commonly used mod-

4 Hydrogen bonds are mainly found to act between hydrogen and the elements oxygen, nitrogen and fluorine, but can
also exist between other elements that differ in electronegativity.
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els within this strategy, are the ST2 [97, 98], SPC [99] and the various TIPS [100,
101, 26] potentials. They are all rigid and non-polarizable. See Beveridge et al. 1983
[102] for a more detailed summary of potentials.

The ST2-potential is based on a potential of Ben-Naim and Stillinger, 1972 [103],
which was one of the early attempts to model water interactions. Their idea was to
use Lennard-Jones parameters for neon, which resembles water with respect to mass
and electronic configuration. Water was then regarded as an atom with the hydrogen
electrons filling the outer shell completely. Their model was refined by Rahman and
'Stillinger, 1973 [97]. The electrostatic interactions are modelled by four tetrahedrally
arranged charge sites, with the fractional charges of ±O.23e. This model yields rea­
sonable values for a broad range of properties, but give toa much structure in the cor­
relation functions.

In the early 80'ies, Jorgensen [100] introduced the Transferable Intermolecular Poten­
tial Functions (TIPS), model potentials for water and organic liquids. His idea was to
find parametric representations for atoms or group of atoms which could be used to
construet model potentials for other species, hence the ,transferability, . An important
constraint was that the potential should have as few sites as possible, which resulted
in the first three site version TIPS for liquid water. This potential yielded reasonable
thermodynamic variabIes, but was not able to reproduce any structure behind the 1.
maximum in the oxygen-oxygen correlation function.

The Simple Point Charge (SPC) model of Berendsen and coworkers [99] had a better
adjustment of parameters than the original TIPS, and gave energy in closer accor­
dance with experimental va1ues, and also a small second peak in 00 radial distribu­
tion function.

To get the 2. maximum in 00 radial distribution function, Jorgensen had to include a
fourth site representing the charge on oxygen located at the bisector of the HOH angle
towards the hydrogen atoms. This site takes into consideration the increased electron
density at the OH-bonds, and is an exception to the usual omission of bond densities
(see page 78) with rigid and non-polarizable models. The four site model TIP2 [101]
was later improved, and the final version TIP4P [26] is a frequently used site-site
model. The effective dipolemoment is 2.18D [104]. It gives excellent energetic results
at room temperature, and a predicted structure in agreement with experiments, though
the height of 1st maximum is too large [105]. The least satisfactory values are with
the the seIf-diffusion coefficient which comes out -50% toa high, and the dielectric
constant -30% toa low [106]. This deviation from experimental values is also found
with the spe model, which has been refined (SPCÆ) [107] to yield values in closer
accord with experiments. The above models also have in common that the hydrogen
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atoms have no Lennard-Jones interactions. For a comparison of various TIP models,
the ST2 and SPC models, see [26].

The TIP4P parameters for geometry and potential are summarized in Tables B.l and
B.2.

4.4 Models for methanol and ethanol

4.4. 1 Physical properties

The geometrical description of methanol and ethanol monomers in the gas phase is
summarized in Table 4.1 below.

Table 4.1
Gas phase geometry [95] for methanol a.nd ethanol.

Angles Bond lengths

methanol.

ethanol

H
I

H-C - O
I \

H H

lea =1.4246Å
<COR = 108.53° IOH =0.9451Å

<COR = 105° IOH = O.971~
<CCO = 107.8° lea = 1.431~

lee =1.512A

The dipole moments of methanol and ethanol are 2.87D and 1.66D respectively [96].
(However Gray and Gubbins [90] quote the values 1.70D and 1.44D, while Hand­
book [78J report 1.70D and 1.69D). Theirpolarizabilities are 3.3Å3 and 5.11Å3

.

The polarity resides mainly with the hydroxyl group. The CH3 group of methanol will
probably have a lack of electrons due to the neighbouring oxygen, but the CH 3 group
in ethanol is probably toa far from the oxygen to have a fractional charge of any sig-



82 Chapter 4 Molecular models

nificance. Sa ethanol is the simplest alcohol that have both a polar end and a nonpolar
end.

The hydroxyl groups permits hydrogen bonding. Looking at the molecules ane would
expect one proton donor bond, and two proton acceptor bonds with the oxygen lone
pairs. However, in the majority of situations they bond to only two neighbours, and
the reason to this is most likely to be found with the physical hindranee from the
methyl and ethyl groups.

The most interesting thermodynamical features of these alcohols, are related to their
aqueous mixtures. A significant volume contraction upon addition of small amounts
to water is observed. Also followed by a minimum in free energy, and a negative ex­
cess enthalpy. See Franks and Ives, 1966 [5] and Franks and Desnoyers, 1985 [108]
for summaries.

H CH3
CH3

I I

I

er &H
H~H a)

H H
b)

Figure 4.3 Methanol a) and etha.nol b) viewed along the C-O bond. Ca.rbon beneath
paper pla.ne. Staggered and eclipsed conformations of methyl group in
methanol. Anti (or trans) a.nd gauche conformers of ethanol.

Both methanol and ethanol have different stable conformers. In methanol the CH3
group can rotate as shown in Figure 4.3 a), and the hydrogen atoms can be found in
either a trans or a cis conformation. Ethanol can also have an intemal rotation of the
methyl group around the C-O bond, and the CH3-group can be found either far from
(trans) or close to (gauche) the hydroxyl group at an angle of 60°. (See Figure 4.3 b))
The relative amount of each conformer in the liquid phase is estimated [27] to be
about 50-50, with the trans conformation slightly more preferred. This result comes
however from MC-simulations of the pure liquid at room temperature.

4.4.2 Models for methanol-methanol and ethanol-ethanol interactions.

Of the rigid and non-polarizable models for methanol and ethanol, Jorgensens TIPS
[100,109,110] and OPLS [27,111] models have been dominant with liquid simula-
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tions. But also the methanol models Hl and H2 of Haughney et al. [112] have been
applied.

The underlying philosophy of the OPLS (Optimized Potentials for Liquid Simula­
tions) are much the same as for the TIP4P. The CH3 and CH2 groups are each re­
garded as one site, and the carbon-hydrogens are not included separately [109]. This
imply that the model can not recognize the different conformers of methanol, and of
ethanol only the rotation of CH3 around the C-O bond is distinguishable. Parameters
for the CH3 and CH2 sites are as for alkyl group values for hydrocarbons [111]. The
OPLS parameters for geometry and potential are summarized in Tables B.l and B.2.

The OPLS for ethanol is parametrized from simulations where both trans and gauche
conformers are included. We have chosen to simulate only the trans conformer. A re­
sult of this is that the moleeule does not have the opportunity to 'flip over' to the
other conformation and retain the hydroxyl-hydrogen position. Instead the whole
molecule must be rotated, and free space must be found for the hydroxyl-hydrogen. It
is possible that we will have some unfavourable configurations relative to a simula­
tion with both conformers included.

4.5 Made/ting interactions between unlike mo/ecu/es

The potentials described above are adjusted for interactions between identical mole­
eules. As emphasized above, the surroundings of the respective molecules are taken
into the parameters of the effective potentials. But a single ethanol moleeule alone in
a container of water, will feel a different infiuence from the surroundings than in a
container of ethanol. Nevertheless the ethanol-water interaction is modelled with a
combinations of their parameters as if the polarizability was unaffected by the pres­
ence of the other component, This can for instance have effects upon the calculated
mixture volumes. The volumes of model mixtures can not be expected to be equal to
the stable volurnes of the real mixtures when the effective potentials of the pure liquid
models are transferred to the mixtures without modifications to reflect the different
surroundings.

Aseeond simplification is the use of Lorentz-Berthelot combining rules [122, 123]
for Lennard-Jones interactions between unlike moleeules.

l

(fiJb =H(fia + ah) and EiJb = (EiaEjSi
(4.2)

Tanaka and Gubbins, 1992 [113] have investigated the effects of changing the com-
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bining rules upon excess enthalpy of mixing for mixtures of TIP4P-water and OPLS­
methanol. They find that if the energy parameters for the Lennard-Jones interactions
between unlike molecules are multiplied by a factor of 1.1, the results are in better
agreement with experiment. The effects of modified combination rules on other prop­
erties are not examined so far.

4.6 Flexible and polarizable models

Along with the increase in computer power, there has also been a growth of more
complicated, ie. computationally expensive, potentials introducing flexibility and po­
larizability. Flexibility is introduced by addition of an intramolecular potential to al­
low for intramolecular motion and distortion by neighbouring moleeules. The results
from the simulations with flexible models are not conclusive. Guårdia and Padro,
1990 [114] find that molecular motion is enhanced when a flexible model of water is
applied. Wallquist and Teleman, 1991 [115] find a reduction in self-diffusion for
water with introduction of flexibility. Wallquist and Teleman find however the struc­
ture and potential energy to be relatively unaffected by the introduction of flexibility.
Both three site (Pålinkås et al., 1987 [116]) and six site (Hawlicka et al., 1989 [117])
flexible model of methanol have been proposed. The results are in good agreement
with experiments, and the increase from three sites to six sites does not seem to make
large differences in the calculated quantities, except for the self-diffusion. Results
from simulations of ionic aqueous solutions with a flexible water model does not clar­
ify the role of flexibility [93] e

Recently the inclusion of molecular polarizability has been a subject of great interest.
Allowing for the distortion of electron clouds instead of simply using an enhanced di­
pole moment as is done in non-polarizable models, requires a smaller timestep. The
potentials are in general quantum mechanically based. The greatest differences seem
to be within calculation of dynamical properties, and structural and energetic proper­
ties are well reproduced. Wallquist et al. 1990 [118] find a lower self-diffusion with a
polarizable model for water than experimental. Wallquist and Beme 1993 [119] com­
pare two rigid models for water, ane of the pairwise additive form, and one polariz­
able. They find overall agreement with experiment with both models, but the polariz­
able model exhibit a raster dynamics. Also Caldwell and Coldmann, 1995 [120] find
self diffusion constants from polarizable models for water and methanol to be slightly
larger than experiment,

van BeIle et al. 1992 [121], compare spe and a polarizable model derived from the
spe model (PSPC). They find no significant differences with thermodynamic and
statie structure, but a substantially lower self-diffusion (agreeing with experiment)
and a faster reorientation than with the non-polarizable model.
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The addition of polarizability will be even more important in mixtures, as the rigid
non-polarizable potentials are parametrized for the pure speeies and the resulting ef­
fective potential will not represent the surroundings in a mixture correct.



Chapter5

Mixtures of water and methanol ­

results and analysis

The main purpose of this part of the work is to verify the method and our algorithm
by comparison to systems where both experimental and simulated data exists, prefer­
ably for the same model potentials. The foeus of previous work has mainly been on
excess quantities and hydrogen-bonding structure, and for bulk water and bulk metha­
nal, there exist a wealth of experimental and simulation data. For mixtures there are
less experimental data, but still a number of computational studies. These are how­
ever with few exeeptions Monte Carlo simulations of dilute mixtures,

To judge whether any discrepancies anse from algorithm or method, we have per­
formed both NVE and NVT simulations for all mixtures.

Below we present and diseuss aur results for some thermodynamical properties, all
the site-site correlation functions (Section 5.4), and the self-diffusion coefficients
from simulation of mixtures of water and methanol, and of the pure liquids. A sepa­
rate seetion (Section 5.3) deals with the verification of equilibrium, and the discussion
of whether the results from the NVT simulations are within the prernises of the ca­
nonical ensemble. The ehapter coneludes with a summary of our findings.

Same of the results are presented in Appendix C.

5. 1 Simulation conditions

Pure water, pure methanol, and binary mixtures of the two components with methanol
mole fractions 0.25, 0.5 and 0.75 are simulated with NVE and NVT molecular dy-

86
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namics at or near 25°C. We have selected this temperature because comparable re­
sults in Iiterature are most frequent at this temperature. A description of the technical
details of the simulations was given in Chapter 3. In Table B.3 we summarize the
most important parameters and conditions.

All simulations start from a crystallattice. This lattiee melts quickly (see Figure 5.2,
page 95) due to the high temperature. During equilibration, the temperature is forced
to stay at 298.15K through velocity scaling each timestep. After 25000 steps the ve­
locity scaling is tumed off, and the simulation proceeds either with multiple Nose­
Hoover thermostatting, or unthermostatted as an isolated system. The production
phases of both the NVT and the NVE simulations then have identical starting con­
figurations. We emphasize that the only difference between our NVE and NVT algo­
rithms is that in the NVE simulation the thermostats are never switched on. Any dif­
ferences in properties for the two kinds of simulations must therefore be due to
different propagation in phase space.

As molecular models we lise the TIP4P model [26] for water and the OPLS model
[27] for rnethanol. They are expressed as a Lennard-Jones part plus a Coulomb term,
see Section 4.2,

(4.1)

where i and jdenotes different moleeules, and a and bare sites on the molecules i and
j respectively. In Table B.1 we list the geometry and physical data for water and
methanol, and in Table B.2 we list the potential parameters. All Lennard-Jones inter­
actions between unlike sites a and b on two molecules i and j are calculated with
Lorentz-Berthelot combining roles [122], Equation (4.2) page 83. Jorgensen and co­
workers have traditionally described the Lennard-Janes terms with A and C parame­
ters containing both information of the potential well and the repulsive part of the po­
tential. They also have used a geometric mean for interactions between different sites.
Their parameters can however be expressed as (J' and E [27]. The OPLS parameters
are reported in this form, and so we have chosen to express also the TIP4P model in
terms of ø and E, The application of Lorentz-Berthelot combination rules then yields
slightly different potentials than the original potentials; particularly the repulsive dis­
tance between unlike sites is slightly larger with Lorentz-Berthelot combining rules
than with a geometric mean. This will not affect pure water, since the water moleeule
has only ane Lennard-Jones site.

The relaxation parameters will be different for each mixture, since we use a weighted
average of the pure speeies values listed in Table 3.1, page 58.
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5.2 Thermodynamical properties

Table 5.1 present calculated thermodynamical data from both the NVE and NVT
simulations. The averages are coarse grain averages calculated during program execu­
tion. The average of 300 consecutive points enters as one contribution to the total
simulation average, and the standard deviations are then calculated from the coarse
grain averages. See reference [28] and Subsection 3.5.1.

Temperaturer From Table 5.1 we see that the Nv'Tcsimulations preserve average
temperature within O.2K of preset value (although systematically too low). But also
the mixture NYE-simulations are close (within -2K) to predefined value. This must
be due to the lang equilibration period, where the temperature is fareed to stay at pre­
set value through velocity scaling, and to the short timestep,

The pure liquid NVE-simulations give the poorest agreement with temperature, par­
ticularly the pure water simulation, which give a temperature of lIK higher than the
preset value. One contribution to this disagreement is seen within the first few hun­
dred steps of the microeanonical production phase where average temperature in­
creases by - 7K, see Figure C.l. This is followed by a slow drift of another -6K
through the rest of the production periode The jump/drift seem to be slightly more
pronounced in the rotational temperature, Figure C.2. The same jump - also of - 7K ­
is seen for the pure methanol simulation, but the temperatures show no drift during
the production periode This is consistent with the results for energy conservation, Fig­
ure C.5 and Table 5.4. The NVE simulations of pure water show a small positive drift
in total energy, while the drift in total energy for pure methanol is practically zero.

It is also of interest to verify if the energy is equally distributed between the two com­
ponents and their respective degrees of freedom. Tables C.l and C.2 show transla­
tional and rotational temperatures of the two components. We see that the NVE simu­
lations equilibrate the different degrees of freedom within 1.6K of mixture
temperature, while the NVT-simulations showa difference of 1.1K at most. The ma­
jority of the NVT simulations, however, Sl10W no significant differences. We then
conclude that it is appropriate to regard the systems to be in internal thermal equilib­
rium. The standard deviations give an indiceron of the magnitude of the temperature
fluctuations. They are seen to decrease as N 2 with increasing number of particles for
both kind of simulations. The fluctuations from NVT simulations are slightly higher
than with the NYE simulations.
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Table 5.1
Mixture temperatures Tmix' pressures P, and potential energies Ep from simulations.
Numbers in italics are standard deviation 10". Experimental densitles from [124],
except for density for xm=O.75 which is extrapolated to 25°C from values at 15°C and
20°C from Perry [125]. Jorg is Mante Carlo sirnulations of TIP4P-water [26] and
OPLS-methanol [27], and Ferr is molecular dynamics simulations of Ferrario et al.
[126] for mixtures of TIP4P-water and H1-methanol.
exp is calculated from 'from experimental enthalpy of vaporization, see [26, 27].

89

Xm
p [g/cm 3] 1) T . [Kl P [MPa] -Ep [J/g] -Ep [kJ/mol]rmx

0.0 NVE 0.997 309.01 (0.27) 231.8 (2.4) 2271.58 (0.39) 40.93
NVT 0.997 297.93 (0.07) 226.7 (2.3) 2305.08 (0.81) 41.54
exp 0.997 41.51

Jorg 0.999 298 42.13

0.25 NVE 0.937 300.38 (0.26) 85.2 (2.0) 1903.57 (0.30) 40.96
NVT 0.937 297.95 (0.08) 93.1 (1.9) 1906.57 (0.65) 41.03
exp 0.937

Ferr 0.938 298.2 41.1

0.50 NVE' 0.882 296.72 (0.25) 70.2 (1.7) 1589.93 (0.24) 39.76
NVT 0.882 297.98 (0.08) 57.4 (1.5) 1588.10 (0.63) 39.72
exp 0.882 298

Ferr 0.882 298.3 39.8

0.75 NVE 0.833 299.80 (0.25) 55.3 (1.3) 1334.57 (0.22) 38.05
NVT .... , 0.833 298.01 (0.08) 52.8 (1.3) 1337.48 (0.48) 38.13
exp 0.833 298

Ferr 0.831 298.3 37.8

1.00 NVE 0.786 305.59 (0.26) 50.3 (1.1) 1117.83 (0.20) 35.77
NVT 0.786 298.05 (0.09) 55.1 (1.1) 1127.43 (0.41) 36.08
exp 0.786 35.47

Jorg 0.759 298 35.94
Ferr 0.786 298.2 35.1

Pressure: The pressures are stable and positive for all simulations, indicating that the
systems are in mechanical equilibrium. Figure 5.1 showa typical progress of pres­
sure. There is agreement between the r~VE and the NVT simulations, The specified
thermodynamic states corresponds to atmospherie pressures, sa our calculated pres­
sures are too high, defining the mixtures as compressed liquids. Particularly the pure
water simulations yield very high pressures.

The pressures for the mixtures and pure methanol are in the same range as the results
of Ferrario et al. [126], who lise TIP4P for water and Hl [127] for methanol. They
report values of 60 - 90 MPa from NVT simulations of mixtures with methanol mole
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fractions 0.25, 0.50, 0.75, and 1.0. Their pure water simulation is however in the NPT
ensemble, and therefore yield a far lower pressure than aur. Fineham [70] has per­
fonned simulations of spe water with different algorithms and timesteps. His calcu­
lated pressures are in the range 36 - 50 MPa for thermostatted simulations.

The elevated pressures are easily explained for pure methanol, where we see that
model density is more than 3% lower than experimental density (Table 5.1), which is
the density we use. We are thus not alarmed by these values since small density vari­
ations in a condensed state will give large pressure variations [102]. A disagreement
between model and experimental densities might also explain the pressures for the
mixtures. Using TIP4P/OPLS in a NPT Monte Carlo simulation, Freitas [124] found
mixture densities at 298K and latm pressure to be lower than experimental densities.
Remember that potential parameters for the mixtures are found from Lorentz­
Berthelot combining rules, and not from an optimization procedure, and also that ef­
fects of higher order interactions for mixtures are not included in the effective poten­
tials, see Sections 4.2 and 4.5.

But the above explanation does not hold for the pure water results, where model and
experimental densities are very close. The source might be found in the calculational
procedure. The pressures ·are calculated from the molecular virial (see Subsection
3.4.1 and [15]). The virial derivation is not valid for systems with periodic boundaries
because there is no extemal field to preserve the N-body shape [28]. To have a con­
sistent expression, the pressure can be derived from the momenturn flux. The numeri­
cal averages should nevertheless be valid, except that the statistical precision is lower.
See Erpenbeck and Wood [129] for a thorough analysis.

Note also that the long range electrostatic contribution to the pressure is omitted due
to a large increase in computing time. Only the long range Lennard-Jones contribu­
tion, Equation (3.30), is added. This amounts to -20MPa for pure water and is de­
creasing from -60MPa to -15MPa with increasing methanol content. We believe that
inclusion of the electrostatic contribution beyond cutoff would stabilize the sample
further by lowering the pressure. This applies of course to all compositions, but the
effect of not including this contribution will probably be more pronounced for pure
water than for pure methanol, as the former has a larger dipole moment. An estimate
of this contribution can easily be made by calculating the k-space contribution for the
last few hundred steps of a simulation. Our eode showed however up to be extremely
inefficient for this purpose..
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The high pressures will not affect any of the calculated data, as the pressures are not
used in further calculations. (Effects arising from disagreement between model and
experimental densities will of course be present also in the other quantities.)
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Figure 5.1 Instantaneous pressure, P, in a NVT simulation of pure methanol.

Enthalpy: The connection between enthalpy of vaporization and configurational en­
ergy is readily found from the definition of enthalpy

AHvap = LiUvap + Li (PV) vap

= (Ep(g) + Ekin(g) + PV(g)) - (Ep(f) + Ekin(f) + PVC!))

(5.1)

where E is configurational energy and Ekin consists of translational and rotational en­
ergies. ei) and (l) is saturated vapour and saturated liquid. P is pressure and V is vol­
urne. Then, making the following assumptions,

• the pressure is low and the liquid state can be approximated by saturated liquid at
the same temperature, implying Ep(l) -- Ep(calc) and PV(I) is small

• the saturated vapour can be regarded as an ideal gas, PV(g) = RT and Ep(g) =
Ep(id) =O (reference state)

• total kinetic energy is equal for saturated vapour and saturated liquid,
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an estimate of Mrap at 298K can be found from [27,131]

AH
vap(298K)

=-Ep +RT (5.2)

where E is ealculated eonfigurational energy (Table 5.1) and R is the gas constant.
For more aeeurate values, the enthalpy differenee between saturated vapor and ideal
gas must be subtracted, For pure methanol this amounts to 0.54 J/mol [27].

For NVT simulations of pure water and pure methanol Equation (5.2) gives respec­
tively 44.02kJ/mol and 38 .56kJ/mol, to be eompared (Table 5.2) to experimental val­
ues of 44.04kJ/kg [96] and 37.43kJ/mol [96]. The ealculated values agree very well
with experiments considering the above simplifieations, but we want to stress that
they are only valid under the assumption that the ealeulated high pressures are results
of the ealeulational proeedure and not aetual properties of the (model) liquid state .

Table5.2

Calculated enthalpy of vaporization, !1Hvap at temperature 298K compared to
experimental results [96] and Monte Carlo simulations of TIP4P-water [26] and
OPLS-methanol [27] . xm is methanol mole fractions.

Xm=O.O xm=O.25 xm=O.50 xm=O.75 xm=1.0
vap

44.02 43.51 42.2 40.61 38.56!1H (ca le)

vap
44.04 37.43!1H (exp)

Jorgensen 44.60 37.87

The excess enthalpies for the mixtures can further be found from [130]

(5.3)

where the enthalpies can be replaeed with eonfigurational energies Ep if the assump­
tion of small PV-terms is valid. The exeess potential energies of mixtures are shown
in Table 5.3 along with experimental values [132, 133] for excess enthalpies. The ex­
perimental enthalpy values are interpolated to 298.15K, and to the proper composi­
tion. Dur NVT ealeulations yield a minimum at 0.5, but figure C.3 suggests that a
maximum deviation oceurs in the range 0.25 - 0.50. An intermediate simulation
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would have been very interesting, as experimental results [132] show a minimum in
HE near xm=O.3. Also shown is Freitas' [124] results from Monte Carlo simulations of
TIP4P/OPLS.

Table 5.3
Calculated excess potential energies ER for the mixtures compared to experimental
values for excess enthalpies rf of Westmeier [132], of Lama and Lu [133] (*), and
Mante Carlo values for TIP4P/OPLS from [124]. xm is methanol mole fraction. All
values at 298K.

xm=O.25 xm=O.50 xm=O.75

Ep{calc), [kJ/mol] -0.85 -0.91 -0.68

HE(exp ), [kJ/mol] -0.85 -0.79 -0.55

HE(exp )*, [kJ/mol] -0.85 -0.79 -0.58

HE(MC), [kJ/mol] -0.6 -0.4 -0.5

Configurational energy: From the simulations with xm= 0.5 and 0.75, where tem­
peratures are almost equal in the NVT and NVE simulations, we see from Table 5.1
that the resulting potential energies agree well. We also note that the standard devia­
tions of the NVT results are twice the values from the NVE simulations, Segment av­
erages are less stable with the NVT algorithm than with the NVE algorithm.

Configurational energies are not measured in experiments, but one can assign values
from enthalpies of vaporization by inverting Equation (5.1). A commonly quoted
value for pure water at 298K is 41.51kJ/mol [26], while for pure methanol we can use
35.47kJ/mol (calculated from data in [27]). Our pure water configurational energies,
E , equals the 'experimental' value, while our pure methanol value is slightly higher.
This is of course consistent with the results presented in Table 5.2 above.

It is also natural to compare to Jorgensen and coworkers [26, 27] Monte Carlo values.
From Table 5.1 we find that our configurational energy for pure TIP4P-water is
slightly lower than calculated by reference 27, and our configurational energy for
OPLS-methanol is nearly equal. Note that no correction to computed quantities be­
yond cutoff is included in [26], while only Lennard-Jones correction is included in
[27]. We apply an Ewald sum for the lang range electrostatic forces, as diseussed in
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Subseetion 3.4.3. For pure water we find a Le_nnard-Jones eorrection beyond eutoff of
-21 J/g, or -0.38 kl/mol. This makes however the diserepancy between our results and
the reported results of [26] even larger..

We are only aware of the work of Freitas [124] on methanol-water mixtures using
TIP4P and OPLS potential. He does not report potential energies, only excess enthal­
pies as referred in Table 5.3 above. Ferrario et al. [126] have used a combination of
TIP4P and H1[127]. The Hl model for methanol is not unlike OPLS for methanol,
both being rigid models with the same molecular geometry. Potential parameters are
very close, with Lennard-Jones parameters of cr(CH3)=3.86IÅ, cr(O)=3.083Å,
eIkB(CH3)=91.15K, eIkB(O)=87,,94K, and partial eharges 0.297 on methyl site and ­
0.728 on oxygen site. The elose resemblanee of the models explains why aur configu­
rational energies are very elose to their values (se Table 5.1).

5.3 Theoretical analysis

We have also analysed a few variables that are of importanee to the judgment of eode
perfonnanee and reliability of results.

We foeus upon

• verification of liquid state equilibrium

• conservation of total energy and total linear momentum

• monitoring the heat bath parameters

• canonical sampling with the NVT simulation

The baekground is described in Subsections 3.6.2 and 3.6.3. Application of other tests
are described in [28, 15]..

Translational order is measured with the order parameter p. All mixtures for both
NVE and NVT simulations beeome disordered within the first 1000 steps. An exam­
ple is shown in Figure 5.2 below. The quiek melting compared to the long equilibra­
tion time for the energy, which at least takes 5000-10000 steps (Figure C.5), show
that the melting alone is a poor indicator of thermodynamic equilibrium for this sys­
tem. The order parameter oscillates about zero with amplitude less than ±O.06, which
agrees nieely with the expected amplitude of order N-v2[64].
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Figure 5.2 Translational order parameter p (dimensionless) for the first 30000 steps of a
NVE simulation of methanol and water, xm=O.75. Every 100th steps are
plotted.

Drift in total energy: In an NVT simulation, the simulation box and the heat reser­
voirs together constitute an isolated system. The total energy of this extended system
must then be constant, just like the system (box) energy for an NVE simulation.
When added, fluctuations in all contributions to the energy must cancel exactly, re­
gardless of simulation methodIsee Subsection 2.6.1). Due to the numerical integra­
tion, a perfect cancellation is not possible to achieve. The calculated energy is thus
seen to have small fluctuations. Also a small drift during the course of the simulation
is aften observed.

All our simulations do show a positive drift. Values of drift in total energy are esti­
mated from the difference between minimum value within the first -five thousand
steps of production period and maximum of the last -five thousand steps. This should
provide us with a rough estimate of maximum drift, see Table 5.4 below. The esti­
mate is sufficient for our purposes, since we do not aim at making conclusive state­
ments about algorithm performance. The sudden disappearance of the fluctuations in
switching from velocity scaling to NVE or NVT simulations is demonstrated in Fig­
ures C.4 and C.5, respectively. On the scale of the plots, the fluctuations in the pro­
duction phase are not visible. Figure C.6 showa close-up of the xm=O.5 mixture total
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energy, where both the drift and the remaining fluctuations are illustrated,

Table5.4
Energy drift pr. step during production phase of simulation, dE and dEext for the NVE
simulations and NVT simulations respectively. Total number of steps is 135000. The
drift is only a rough estimate of difference between maximum and minimum values.

Xm A E [J/(g step)] AEext [J/(g step)]
NVE NVT

0.0 1.7.10-4 9.3.10-5

0.25 1.9.10-5 4.1.10-5

0.50 1.7.10-5 7.4.10-6

0.75 1.0.10-5 5.9.10-6

1.00 6.0.10-6 6.0,10-6

From Figures C.4 and C.5, and Table 5.4 we see that tlle choice between NVE or
NVT simulation does not influence significantly upon energy conservation. It seem
however clear that conservation improves gradually with increasing methanol con­
tent, with pure water having the largest drift. Poorer energy conservation for water
might be due to the energy jump at the cut-off [128]: a moleeule leaving the cut-off
sphere and entering as a minimum image, see Figure 3.3 page 60, will have a differ­
ent orientation relative to the central moleeule. Then the energy will be different, and
this energy difference is not accounted for. Since water has the largest fractional
charges, the ignoranee of this energy will have the largest effect. For a dipolar system
the energy jump is estimated to be of the order of ~2/(2L3), where Il is the dipole mo­
ment and L is the boxlength [128].

From Figures C.4 and C.5, we note that fiuctuations are indeed present during the
first 0.0125ns. These are caused by the initial velocity scaling procedure, which of
course does not conserve the total energy, since energy is added or removed from/to
nowhere. We also note that fluctuations in the equilibration period increase with in­
creasing water content - ie. with decreasing system masse Looking at these fluctua­
tions, we would recommend the pure water system to be equilibrated for another five
or ten thousand steps due to the slightly unstable progression. The mixtures with 25%
and 50% methanol reach stability just within the equilibration period, while the two
mixtures with 75% and 100% methanol stabilize very quickly.
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Figure 5.3 show the contributions to extended system energy for pure water.
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Figure 5.3 Contributions to energy, Ei' for pure water NVT simulation at 298K. Reservoir
energy is displaced 'from zero by -31 kJ/g at start and increases to -45kJ/g
by the end of simulation, averages over first and last 5000 steps respectively.
By comparison, potential energy increases only by -5kJ/g between the same
intervals. Kinetic energies of reservoirs not shown as they would appear as a
horizontalline at zero energy, but is included in extended system energy
Eext. Eres is sum of potential energies of both reservoirs.

Velocity distribution: Figures C.? - C.IO show that the initial velocity distribution is
maintained during the production periode The calculated distribution gets smoother
with increasing number of particles. Only selected NVT results are displayed, as re­
sults for the remaining part of the mixtures, and for the NVE simulations, do not re­
veal any surprises.

Conservation of linear momentum: Upper panel of Figure 5.4 below showa typical
progress of linear momentum for an NVT simulation. Figure C.l l show the corre­
sponding NVE result. Further, in Tables C.3 - C.4 the average linear momenta per
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mass, Pr,' for all coordinate directions ~ are tabulated. Pl; is defined as

k n

mwLvW,i + mm L Vm,j
i=l j=k+l

Pt; = krnw + (n- k)mm

(5.4)

where mw is mass of water molecule and mm is mass of methanol molecule. k is num­
ber of water molecules and n is total number of molecules, vw,i and vm.i are molecular
linear velocities.
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Figure 5.4 X-component of linear mornenturn pr. mass, Pjm (top) and translational
energy 2Kjm from NVT simulation of an equimolar mixture of water and
methanol. m is system mass.

For all mixtures, regardless of ensemble, Pr, is of the same order of magnitude, and
always less than -IO-12m/s. This is to be compared to the component velocity of, say,
water of vrms -400m/s found from the Maxwell distribution at the same temperature.
The standard deviations are large, refiecting the drift in P'(o The fluctuations are very
small. During the 135000 steps of production period, the drift in linear momenturn is
within a factor of 100 from the initial values. We are in the regime of rounding errors,
and we must conclude that the linear momenta are conserved as expected. Note that
during the equilibration period where velocity scaling is applied at each step, extra
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(5.5)

momentum must also be removed. Linear momentum is not conserved automatically
when velocity scaling is applied to mixtures because of different masses of the com­
ponents (cf. Subsection 3.3.3, page 56).

Conservation of angular momentum: As expected, total angular momentum is not
conserved. This is because of the use of periodic boundary conditions, as discussed in
Subsection 2.6.3. The effect is clearly seen in Figure C.12, where angular momentum
per mass in x-direction, L; given by

k n

Iw,~EåJw,i + Im,~ E (J)mj
i=l j=k+l

kmw + (n- k)mm

is plotted for the entire simulation. Iw,~ is t;-component of moment of inertia of water
and ro . is angular velocity of water moleeule i. Subscript m denotes methanol. Ly is

W,l ~

stable around a mean value near zero, but oscillates with large amplitudes. The situ-
ation is similar for the NVT simulations (not shown). Averages and standard devia­
tions for all components can be found in Tables C.5 and C.6. The averages can be
compared to individual angular momenta of -lO-8m2/s (pure methanol). (Calculated
from kBT/lx="'Lrojrox' provided the components are mutually independent.)

Equipartition of energy: Tables C.3 and C.4, and Tables C.S and C.6 show that
translational and rotational energy are equally distributed among the three coordinate
directions for both the NVE and the NVT simulations. Translational and rotational
energy are also almost equal for the same mixture and simulation method. This is al­
ready seen from the temperatures, Tables C.l and C.2. Inconsistencies between val­
ues from NVT and NVE simulations for the same mixtures are probably due to differ­
ent mixture temperatures, as diseussed previously. Examples of progress of kinetie
energies are found in bottom panels of Figures 5.4 and C.II - C.12.

Distribution of internal energies: Figure 5.5 below and Figures C.13 - C.16, show
probability distributions for instantaneous internal energy from the NVT simulations.
The distributions are based upon output data at each 100th step during production pe­
riod (4 significant figures). For all compositions the energy distributions resemble the
shapes of the theoretical, but are systematically toa broad, and they do not reach the
maximum probability density. There also seem to be a slight skewness in the distribu­
tions for the mixtures with 0.25 and 0.50 mole fraction methanol. The NVT simula­
tions overestimate the fluctuations and hence the system does not follow a canonical
path. Distributions based upon parts of the simulation reveal no significant differ­
ences with the full simulation distribution. We believe that the calculated distributions
are results of a slightly toa high heat bath parameter Q. This is also in accordance
with the findings of Di Tolla and Ronchetti [49]. Too high Q will result in toa weak -
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or infrequent - temperature control, which means that temperature are not corrected
until it has departed too far from the predefined value. At the opposite end of the
scale - Q approaching zero - the fluctuations will be suppressed due to instantaneous
control.
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Figure 5..5 Distribution P(U) of interna.I energy (box energy) in NVT-simulation. Mole
fraction methanol is 0.75. Dashed line is canonical distribution at 298.15K.

Moments of kinetie energies: Figs. C.l? - C.2I show 1st to 5th moments of system
translational energies, Equation (3.40) page 73, and the moments of system rotational
energy are displayed in figs. C.22 - C.26. All moments are divided by the theoretical
values for fiuctuations in the canonical ensemble, Equation (3.39). The moments are
running averages based on instantaneous values of energy sampled every 150th step.

All figures show that the moments approach a stable value, but the approach is slow.
Except for the 1st moment, none of the higher moments have reached their expected
values by the end of the simulation. Values are typically of the order of 0.01, 10, 10,
and 100, for 2nd, 3rd, 4th, and 5th moment respectively. Note however that the effect
of using runningaverages is that any sudden changes are smoothed, and any large
starting values are preserved in the averages. The slow approach towards unity might
therefore in part be due to the averaging method.
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Regarding the moments of reservoir kinetic energies, Figures C.27 - C.28 show that
they also seem to stabilize during the last third of the production periode However, for
the 2nd - 5th moments, their limiting values seem to be zero (of the order of 10-3,

10-4, 10-5, 10-6 respectively), and not unity as expected. The exception is the first mo­
ment, which agrees roughly with the theoretical value of O.3866J/g for the same mix­
ture. The same trend for moments of reservoir kineticenergies to fall below theoreti­
ca! value is also found by Cho and Joannopoulos, 1992 [47].

As only one degree of freedom is connected with each reservoir, the approach to ca­
nonical distribution should necessarily take longer time than with the system kinetic
energies [47].

Friction parameter 11: The friction parameters lltrans and ll rot oscillate with large
amplitudes about a value close to zero. Figure 5.6 (next page) provides an example
for the equimolar mixture of water and methanol. Table 5.5 below show the average
values for all simulations.

Table 5.5
Coarse grain averages of translational and rotational friction parameters from the
NVT simulations. Standa.rd deviations in parenthesis. xm is metha.nol mole fraction,

x =0 xm=O.25 xm=O.5 xm=O.75 xm=1.0m

-1] -9.8 (17.7) -6.1 (18.3) -1.1 (17.8) -5.0 (18.5) 3.1 (18.7)ntrans[ns ..

11 rot[ns-1] 12.1 (14.5) 6.5 (17.8) 2.2 (19.7) 4.2 (20.1) -2.9 (20.9)

Ideally, the averages shown in Table 5.5 should each amount to zero, since in a state
of equilibrium there is no preferred direction of energy transfer. We note that except
for pure methanol, the translational degrees of freedom need extra energy - on the av­
erage - while the rotational degrees of freedom need to bee calmed down. The frie­
tion parameters for water show the largest deviation from zero, while the equimolar
mixture parameters are closest to expected value.

We also note that the sum of translational and rotational friction parameters are al­
ways closer to zero than the individual contributions.
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Figure 5.6 Friction parameters Tltrans and "rot for entire simulation of a equimolar rnixture
of water and methanol. instantaneous values each 100th step shown.

The sum of the kinetie energies of the reservoirs, see Equation (2.29), should amount
to 2/(6N) of the system kinetie energy. 111 Table 5.7 the calculated reservoir kinetie
(translational plus rotational) energy are compared to theoretical values. We see that
we underestimate the reservoir kinetie energy by -15% for all mixtures.
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Reservoir energies and s-variables: Figure 5.7 below show the development of the
separate s-variables during the entire simulation. Figure C.29 show the sum of the s­
variables. Notice the nearly symmetric ebbing and flowing of the translational and ro­
tational degrees of freedom, This rolling behaviour imply that time scaling changes,
and the translation and rotation develops according to two different timescales, which
is conceptually somewhat difficult. We can not prediet the continuation of the curves
for larger times. Even if Srot for the pure water rotational heat bath seem to diverge at
the end of the simulation, it might as well have been decreasing again with a contin­
ued simulation.

The sum of s-parameters is shown to illustrate the overall stability of the two heat
baths. We are however not convinced that only one reservoir WOILld have resulted in
the same stability.

Table 5.6
Coarse-grain ave rages of s-parameter for translationa.1 and rotational reservoirs.
Same values for both water and methanol.

x =0 xm=O.25 xm=O.5 xm=O.75 xm=1.0m

Strans 0.877 (0.008) 0.827(0.006) 0.919(0.004) 0.940(0.006) 1.269(0.009)

Srot 1.311(0.014) 1.267(0.009) 1.085(0.005) 1.101(0.007) 0.865(0.007)

Table 5.6 above showaverage translational and rotational s-parameters. We tind that
the sum of the averages are closer to the expected value of unity than each individual,
just as we found for the friction parameter. This is also seen from Figures C.29 and
5.7.

As we have chosen an initial value of unitYfor both s-variables, the starting energy of
each heat bath must be zero. For a system of thermal equilibrium, the reservoirs
should act as mediums to transfer energy through, and their potential energies are ex­
pected to be constant on the average. We do however see that particularly for the pure
water the potential energy departs from its starting value of zero, Table 5.7.
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Figure 5.7 Heat bath variables Strans and Srot for all mixtures, ra.nging from pure water on
top to pure methanol in the bottom panel. Lower curve is for translational
except for bottom panel. Curves in the two lowest panels cross at
0.055-0.065 and 0.065 0.075 respective. Different amplitude of fluctuations is
caused by different heat bath masses, see Table 3.1.
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Table5.7
Average potential and kinetie energy of the heat reservoirs, a.nd average tra.nsferred
energy pr. step. Standard deviations in parenthesis. Averages are based on output
values with 4 significant digits taken each 100th step.

Xm Reservoir pot. energy Transt, energy pr step Reservoir kln, energy
[J/g] [J/g] [J/g]

average expected mean expected mean expected

O 33.0 (29.2) O -0.0028 (0.45) O 0.47 (0.56) 0.41

0.25 6.5 (20.1) O -0.0013 (0.35) O 0.38 (0.45) 0.32

0.50 -3.4 (17.8) O -0.0009 (0.30) O 0.33 (0.38) 0.28

0.75 3.1 (14.8) O 0.0024 (0.26) O 0.29 (0.33) 0.25

1.0 12.8 (13.7) O 0.0007 (0.22) O 0.25 (0.30) 0.21

5.4 Structural properties of methanol/water mixtures.

Below we present site-site radial correlation functions as defined in Subsection 3.5.3
for the self-correlations in the pure liquids and mixtures, and the cross-correlations in
the mixtures. We have also calculated the site-coordination numbers by integrating all
correlation functions to their respective first minima. The distance to first minimum is
seen to vary only slightly with composition, but we have nevertheless used each indi­
vidual minimum as upper integration limit. The coordination numbers appear in Ta­
bles 5.9-5.11.

Coordination number only provide an upper limit to the number of hydrogen bonds.
To perform a hydrogen bond analysis, criteria upon bonding energies or/and bond an­
gles and distances must be satisfied. We have not performed such an analysis, and are
therefore prevented from drawing decisive conclusions about the hydrogen-bonding
structure,

The calculated positions and heights of 1st and 2nd maxima, and of 1st minimum are
given in Tables C.7 - C.9.

We have estimated [15] the standard deviation in the sampled values of oxygen­
oxygen correlations between water molecules near 1st maximum and at one point in
the ideal gas region. The results are divided by the same normalizing factor as g(r),
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and give 0' .....0.1 units, for all mixtures, Table 5.8, except for the 0.50 mixture where
ø =0.04. If these values are independent (the sampling frequency is 150 steps), we
will find 99% of the values within ±0.25 units of the plotted peaks. In the ideal gas
region we find a uncertainty of less than ±0.1. A full calculation of variance for all
distances and all correlations is impractical because of computing time.

The accuracy in the radial direction is limited by the bin widths of 0.05Å from the
sampling procedure.

Table5.8
Error in 9

0 0
near 1.peak (2.80A) and at long distance (7A) from pure water

simultaion. There is no difference between NVT a.nd NVE simulation in absolute
error.

Xm Abs err 10'

r=2.8Å r=7.0Å

0.0 0.1 0.04

0.25 0.1 0.04

0.50 0.04 0.008

0.75 0.1 0.02

We show results from the NVT-simulations only, as these simulations yield nearly
the same temperatures for all mixtures (see Table 5.1). Differences in correlation
functions with the two simulation methods are however minor and relates only to
peak heights. Radial positions of maxima!minima are unaltered. Figure 5.8 below
show a comparison between gHIlr) from NVE and NVT simulations for the equimo­
lar mixture of methanol and water. This correlation showed the largest difference
with simulation method. The difference in peak height is 0.15, which is of the same
order as the standard deviation calculated near 1st peak of oxygen-oxygen correla­
tions for water (Table 5.8). Figure C.31 provides another example for cross correla­
tions between the methyl-group and the hydrogen on water. Note that this time the
NVE simulation gives the largest peak height.
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Figure 5.8 Radial self-correlation function 9HH(r) for water in a equimolar mixture of
water and metha.nol. NVE-simulation (--) and NVT-simulation (- - - -).

Correlationswith electrostatic M-site on water is not shown. This site yields same
pair-correlations as the oxygen Lennard-Jones site, except for the expected radial dis­
placement of rOM due to position of auxiliary site, see Figure C.31.

5.4. 1 Brief review of present status on structure.

Before we look at the structural data, we will briefly review some of the main features
of the Ioeal structure of liquid water, methanoI, and their mixtures. We restrict the
summary to pressures near 1 atm and temperatures near room temperature. For a thor­
ough historical review on structural models, see Franks 1972 [4]. A more recent re­
view on hydrogen-bonding liquids is given by Ladanyi and Skaf, 1993 [134].

The general view, supported by simulations during the last 20 years [97, 135, 136,
137, 138, 139, 140]5, is that bulk water consists of an infinite and random, three di­
mensional network [8] of hydrogen bonded moleeules. The hydrogen-bonds are
nearly linear [6]. Locally, the water molecules are arranged in a nearly tetrahedral

5 This is not at all an exhaustive list!
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structure, which is not stable but restruetures on a picosecond timescale [142]. Each
water moleeule is observed to have an average of about 4.5 nearest neighbours [143],
which is more than the maximum number of linear hydrogen bonds a water moleeule
can be engaged in. The fifth neighbour is explained by the existence of a bifurcated
H-bond [144], where a proton is simultaneously shared between two oxygen atoms in
the network. Not quite obvious from Figure 5.9 below, this allows a closer packing of
water molecules. The bifurcated hydrogen-bond is not a hydrogen-bond within the
traditional definition, but is more probably to be regarded as a transient state [141].
The presenee of these weaker, bifurcated H-bonds is proposed to act as catalysts for
the restructuring of the network [142].

a) b)

Figure 5.9 a) Tetrahedral arrangement of water molecules. Only oxygen atoms shown
except for hydrogen bonds of central moleeule. Length of linear bond is
1.8SÅ.
b) Bi'furcated hydrogen bond of length 2.3Å in tetra.hedral arranqement,
After Giquere [144].
Lines [oininq oxygen atoms does not represent bonds.

Recently, from analysis of density data, arguments for a mixture model have been
proposed by Vedamuthu et al. 1994 [145]. Water is then regarded as a dynamical
equilibrium mixture of (several) dense and bulky bonding forms, Curiously, mixture
models have been abandoned for nearly 20 years. Neither network nor mixture mod­
els seem to be contradicted by experiments. See however Narten and Levy 1969 [146]
for a discussion of validation of models from experimental results.

From hydrogen bond analysis, based upon both experiments [9, 10, 12] and simula­
tions [109, 112, 116, 148, 149, 150], a methanol molecule is found to participate on
the average in nearly two hydrogen bonds. The fraction of non-bonded molecules are
low. From simulational studies of methanol with the OPLS [148] and TIPS [112]
models is found that only -2-4% of the molecules are non-bonded, and that less than
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10% of the moleeules are engaged in 3 bonds. The average number of hydrogen
bonds pr. moleeule from these simulations (1.7 - 1.9) is eonsistent with experiments
(1.7-1.8 [12,9]). This leads to believe that pure methanol eonsist of branched, winding
chains of assorted lengths [116, 147], se Figure 5.10 below. Average numbers of 10
[12] and 15.5 [148] chain molecules have been suggested. The two-bonding state is
suggested to be relatively stable, and severai times langer lived than one-bonding and
three-bonding [148]. Structural order between ehains are found to be small [12, 112].
In the two-bonding state a moleeule has ane acceptor bond and ane donor bond, the
second aeceptor is less available due to steric hindranee of the methyl group. The pre­
ferred direction of the aeceptor bond is between the lone pair directions of the oxygen
atom [116].

® CH3-group
O O-atom
• H-atom

_ Intram. bond
... . H-bond

Figure 5.10 2-dimensional view of fragment of hydrogen bonded chain in bulk methanol.
After Jorgensen,1981 [109].

Now turning to mixtures of water and rnethanol. Aqueous solutions of lower alcohol
exhibits large negative excess properties [132, 133], with minimum occurring in the
mole fraction range 0.1-0.3. A traditional explanation of excess properties in the mix­
tures has been as a result of entropy loss through enhancement of water structure near
a solvated methanol moleeule; the mechanism often termed hydrophobic solvation.
The rnain foeus has thus been on weak solutions of methanol in water, but also dilute
solutions of water in methanol have been investigated. The tools have been simula­
tions (main1y MC) [126, 151, 152, 153, 154, 155, 156, 113] and theory [158]. A few
studies over the whole eoncentration range also exist [124, 131, 113]. Not until the
recent neutron diffraction experiments of Soper and Finney 1993 [157], has there
been any experimental results for mixture structure available.
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Alcohols are interesting because the molecules have both an hydrophobic part (the or­
ganic group) and a hydrophilic part (the hydroxyl group). The central questions that
have been asked, are

• how is the water-water and alcohol-alcohol interactions affected in mutual solu-
tions

• in which way does water and alcohol interaet when one is added to the other

The discussions on mixture structure have been based on results from simulation on
model systems". For weak methanol solutions, simulations predict formation of clath­
rate like water spheres around the hydrophobic end. The observed inerease in inten­
sity of pair correlation functions has unisonly been interpreted as promotion of water
structure. Soper and Finney [157] do confirm the existenee of 'a loose hydrogen
bonded cage around the methanol molecule' , but tind however no evidence of en­
hanced structure in their neutron diffraction study of O.l mole fraction methanol solu­
tion. The water molecules are found to be oriented tangential to a sphere circumscrib­
ing the methylgroup [152, 161].

Vaisman and Berkowitz 1992 [159] also question the traditional interpretation of in­
creased peak heights, and points out that the pair correlation funetion is not an ade­
quate measure of relative order at different eoncentrations. Locally, the solvent water
moleeules try to maintain their pure liquid structure, and sa the loeal eoneentration
decreases slower than overall eoneentration thus giving raise to an apparently in­
crease in intensity.

Hydrogen-bond statistics from simulation of systems of 128 to 256 moleeules [126,
156] show that in water-rich mixtures the number of two-bonded methanol decrease
in favour of three-bonded methanol (cross-linked chains), while in methanol-rieh
mixtures the number of four-bonded water deerease in favour of three-bonded. Both
water and methanol have a reduced aceeptor character in the methanol-rich solution
in comparison with the water rich solution, due to the larger size of the methanol
moleeules.

6 But see Franks 1966 [5] for a review on ideas and concepts from 'pre-simulation era'.
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5.4.2 Water sett-corretetions

111

From Figures 5.14 -5.16, we see that the water - water correlations are characterized
by

• an increase in height of g(r) with increasing methanol content

• no significant change of the position of 1st maximum upon changes in the compo­
sition

• slightly more structure at lang range for mole fraction methanol of 0.75

Positions and heights of maxima and minima appear in Table C.7, while coordination
numbers are given in Table 5.9.

Oxygen-oxvgen correlations:
Figure 5.14 show the oxygen-oxygen correlations. The calculated 1st maximum at
2.8Å agree very well with the neutron diffraction data (2.875Å) of Soper and Phillips
[143]. The second maximum at 4.55Å is clearly reproduced. With a methanol mole
fraction of 0.75, the 1st minimum is deepened and the 2nd maximum is shifted to a
distanee of 5.15Å. The 2nd maximum give information of the 0-0-0 angle, and
an increase in distance from 4.55Å to 5.15Å can be interpreted as an increase in this
average angle from 1070 to 137°. This can be taken as evidence of reduction in the
thetrahedral structure of water in methanol-rich solutions, and is consistent with the
loss of ane acceptor-bond leaving the remaining bond situated in between the two
lone-pair directions [126, 156]. We also notice that this 2nd peak is sharper for the
mixture with highest methanol concentration, meaning that there is less variation in
orientations.

Also a weak 3rd maximum at 6.5-7Å is present. This third maximum gets more pro­
nounced with increasing methanol content, indicating more long range structure.

Integration of the first peak to 1st minimum at 3.5Å (see Table C.7) give a coordina­
tion number of 5.1 for pure water, in agreement with experimental valne of .....4.5
within 3.3Å [143]. The coordination number decreases almost linearly with increas­
ing number of methanol molecules (Table 5.9).
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Figure 5.11 Approximate oxygen-oxygen distances between neighbouring molecules in a
tetra.hedral orientation. a and b both contribute to 1st peak of Figure 5.14.
Figure after [7, 161].

Oxvgen-hydrogen correlations:
Figure 5.15 show the two peaks of the oxygen-hydrogen correlation. The first peak at
1.85Å, in perfect agreement with experiment [143], is due to the hydrogen bond with
oxygen as a proton acceptor. The second peak at 3..25Å is due to hydrogens of nearest
neighbour oxygens, see Figure 5.12. Note that the 2nd peak has approximately the
same height and shape for the two highest mole fractions of methanol, indicating that
nearest neighbours are significantly affected in methanol-rich solutions. While pure
water is flat beyond 2nd maximum, meaning that a moleeule has no influence on the
orientation of its 2nd nearest neighbours, the 0.75 mixture showa broad 2nd mini­
mum at distanee 4-5 Å followed by a shoulder and a 3rd maximum. Certain orienta­
tions must be less probable.

Integration of the first peak out to 1st minimum give a coordination number of 2.0
(Table 5.9), decreasing linearly with increasing methanol concentration.

• d=3.2Å

-h········__O~
/:~

o Oxygen atom

e Hydrogen atom

Hydrogen-bond

Figure 5.12 Approximate oxygen-hydrogen distances between neighbouring molecules
in a tetrahedral orientation. c contribute to the 1st peak of Figure 5.15, and d
to the second peak. Figure a.fter [7, 161].
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Hydrogen-hydrogen correlations:
Figure 5.16 show the hydrogen-hydrogen 1st peak at 2.45Å and the 2nd peak at 3.8Å,
both peaks referring to hydrogen bonded neighbouring water moleeules, see Figure
5.13. As with the oxygen-hydrogen correlations, the intensity of the first peak in­
creases substantially more than the 2nd peak with increasing methanol content. Note
the 'irregularity' for the 0.5 mole fraction mixture. Onceagain the 0.75 mixture is
found to develop a deeper 2nd mininlum than the rest of the mixtures.

Integration of the first peaks give a coordination number of 5.3 for pure water, in
agreement with experiments [143]. Note from Table 5.9, the "oo and nHH follow each
other closely; for each water moleeule in first coordination shell, there is one oxygen
site and ane close hydrogen site.

.--0
I

• o Oxygen atom

tit Hydrogen atom

Hydrogen-bond

Figure 5..13 Approximate hydrogen-hydrogen distances between neighbouring molecules
in a tetrahedral orientation. e contribute to the 1st peak of Figure 5.16, and f
to the second peak. Figure after [7, 161].

Comparison with experiments:
Pure water structure have been investigated in several diffraction experiment, see for
instance [6, 143, 146, 9, 7]. We have chosen to compare to the neutron diffraction re­
sults of Soper and Phillips, 1986, 1994 [143, 160]. There is overall agreement be­
tween aur results and the data of [143], both regarding peak positions and peak
heights. The only major difference is with peak heights of gOR' where the difference
in peak intensity of the tVJO peaks (cf. Table C.7) is less than the experimental inten­
sities [143].

According to the experimental results of [160], the peak heights of oxygen-oxygen
correlation is however reduced from 3.1 to 2.3. This difference is believed [160] to be
due to the uncertainty in the experiments. A comparison between those data and our
results is shown in Figure 5.17. The experimental peak position is at 2.82Å, which
agrees closely with the peak in our data at 2.8Å. The experimental results of the
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oxygen-hydrogen correlation, Figure 5.18, show that the experimental first peak is
markedly lower than aur, while the second peak is equal to our within statistical un­
certainty. The experimental height of the 1st peak is reduced from 1.385 [143J to 1.02
[160]. The experimental distance between the two peaks is slightly larger than OUf.

The two peaks are positioned at 1.78Å and 3.30Å, while our peaks are at 1.85Å and
3.25Å. The best agreement is found with the hydrogen-hydrogen correlations, Figure
5.19, where the peaks are at exactly same positions, and also peak heights agree
within statistical uncertainty.

For methanol-water solutions, we have not been able to find any experimental data
on structure for mixtures at the selected compositions; we are in faet not aware of any
sueh experimental study exeept for the above mentioned work of Soper and Finney
[157, 161].

Comparison with simulations:
Numerous simulations of pure water have been performed with various potential
functions, As a cheek upon reliability of simulation, we can compare to Jorgensens et
al. 's [26] Mante Carlo results for TIP4P. It turns out that our calculated pair correla­
tion functions show exactly the same features as their. Also peak heights agree, par­
ticularly the heights of gOH' which disagreed slightly with experiment. Integrations of
first peaks is reported to give 5.1 for oxygen-oxygen, and 3.9 for oxygen-hydrogen.
The oxygen-oxygen peak height of -3 agree with the results of [104].
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Figure 5.14 Radial correlation function g(r) for 0w - 0w in water-methanol mixture
sampled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table 8.3.
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Figure 5.15 Radial correlation function g(r) for 0w - Hw in water-methanol rnixture
sampled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table B.3.
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Figure 5.16 Radial correlation function g(r) for Hw - Hw in water-methanol rnixture
sampled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table B.3.
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Figure 5.17 NVT-simuation of pure water (solid line) compared to data of [160] (dashed
line) for oxygen-oxygen correlations. Statistical uncertainty near 1st peak is
reported to be less than 0.2.
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Figure 5..18 NVT-simuation of pure water (solid line) compared to data of [160] (dashed
line) for oxygen-hydrogen correlations. 8tatistical uncertainty near 1st peak is
reported to be less than 0.15.
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Figure 5.19 NVT-sirnulation of pure water (solid line) compared to data of [160] (dashed
line) for hydrogen-hydrogen correlations. 8tatistical uncertainty near 1st peak
is reported 0.1 approx.
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5.4.3 Self-correlations for methanol

The self-correlations for methanol are shown in Figures 5.22 - 5.27 . They are charac­
terized by

• height of 1st maximum decrease with decreasing methanol content, except the
methyl-methyl correlations, which are insensitive to composition

• positions of 1st peaks are unaltered with changing composition

As an aid to interpret the results we have calculated same distances in a straight V­
chain polymer of methanol. The distances are given in Figures 5.20 and 5.21.

1.43

0.89

1.43

1

I I

. 5

o
····M·.. .' ,". - . ' ; " -
.:. - ' ..-- ~----U

6
2 4

0.90 1.76 2.66

Figure 5.20 Intrachain distances in Angstrøm in bulk methanol. Also shown is
Lennard-Jones radius of methyl-group. Over-simplified view approximate to
scale, to assist in visualising the pair--eorrelation functions.

Methyl-methyl correlations:
Figure 5.22 show the methyl-methyl self corre1ations. This site-site correlation func­
tion of pure methanol showa broad unsymmetric maximum at 4.1Å and a 2nd maxi­
mum at 8.0Å with an intervening minimum at 5.85Å. The 1st peak is sharpened
slightly with decreasing methanol content shifting the minimum toa higher separa­
tions. The position of 1st maximum is unaltered with changing composition. The sec­
ond maximum is flattened and shifted towards lower separation. Both differences are
small, and might be within statistical uncertainty.
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With linear H-bonds and a planar chain, we see from Figure 5.21 that the closest in­
trachain nearest neighbour is at 4.6Å. (Could be both smaller and larger with winding
chain or bent H-bond.) This configuration could be contributing to the right-hand
side of 1st maximum. An interchain distance of 3.8Å (repulsive diameter of site) is
also possible, and wil1 then contribute to the left-hand side [27]. The minimum ap­
pearing at 5 -7Å, seem to preclude to some extent the intrachain next nearest neigh­
bour at 5.3Å. The sharpening of first peak with decreased methanol content could be
caused by a decrease in chain length.

Integration of first peak to 1st minimum yields a coordination number of nearly 12,
decreasing - not linearly - with decreasing methanol content.

Methyl- oxvgen correlations:
Pure methanol show (Figure 5.23) a sharp 1st maximum at 3.6Å due to intrachain
nearest neighbours (see Figure 5.21) and a broad minimum at 6.45Å. Also a small
minimum at 4.5Å grows to a shoulder for the two lowest methanol mole fractions,
coincident with a decrease in intensity of 1st maximum, The shoulder is probably due
to interchain contributions. Figure 5.21 showa possible arrangement with an inter­
chain methyl-oxygen distance about 4.9Å. With the advantage of a 3-dimensional
space, this distance could be lowered to about 4Å upon rotation of the neighbouring
chain. Another possibility is that the nearest neighbours in a chain are substituted by
water moleeules. Then intrachain contributions to 1st peak is reduced, while the con­
tributions from 2nd nearest neighbours are retained. Integration out to the minimum
at 6.45Å yield a coordination number of 15.3 for pure methanol. If we use only the
sharp peak,we find 4.9 nearest neighbours. The almost equal peak heights at the two
lowest concentrations might be due to inaccurate sampling, but the difference in
shoulder heights is significant.

Methyl- hydrogen correlations:
The methyl-group and the hydroxyl-hydrogen are both represented as positively
charged sites, and have obviously no 'wish' of being close. The two distinet peaks at
2.9Å and 4.2Å, see Figure 5.24, must therefore be a consequence of a bonding of
higher priority, namely the hydrogen-bond. From the simplified model in Figure 5.21
, we find an intrachain methyl-hydrogen distance of 2.7Å to the nearest chain neigh­
bour, and a distance of 4.2Å to the next nearest chain neighbour. The first, low peak
decreases clearly with decreasing methanol content, while the second minimum de­
velops into a shoulder. The shoulder can be explained with interchain contributions.
The reduction, and ultimately disappearing , of the first peak is consistent with re­
placement of methanol with water, both at high methanol concentration, and at low
concentration where water is believed to build a cage around individual molecules.
Integration of first peale to 3.3Å give a coordination nun1be~ ~f}.~,_wpiie_e~t~n~ir!g
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the integration to 4.8Å to include also the second peak: yields 6.0 (both are pure
methanol).

Oxygen - oxvgen correlations:
The oxygen-oxygen correlations are shown in Figure 5.25. A sharp peak at 2.8Å due
to the hydrogen-bond to the nearest neighbour, and a 2nd maximum at 4.95Å with a
deep minimum at 3.45Å lying between are found. The 2nd maximum is at least in
part due to next nearest chain neighbours. The minimum is shifted towards lower
separation withdecreasing methanol content and the 2nd maximum is broadened to­
wards smaller separations. These distances (-4-5.5Å) are not consistent with the sim­
ple straight chain of Figure 5.21, but could originate from either interchain arrange­
ment or intrachain branching/ring formation. Area under 1st peak is reduced from 2.0
in pure methanol to 0.5 in the most aqueous mixture. The reduction is consistent with
nearest chain neighbours being replaced by water. A sort of chain must exist, since
2nd peak increase.

The seIf correIation for oxygen on methanoI provide a control. The 1st peak is situ­
ated at a distance of 2.8Å, just as the oxygen-oxygen distance for seIf correlations of
water. We notice that the peak heights are lower, bllt the heights for pure water and
for pure methanol are roughly comparable. The 1st minima are also found at the same
distances, though the depth is much larger with methanol than with water. The only
difference between coordination numbers should then be number density, which is
smaller by a factor of -2.25with methanol due to a larger simulation box, Table B.3.
We therefore expect the coordination number for pure methanol to be a factor of 2.25
smaller than for pure water. From integration we find 2.0, which must be regarded as
a sensible result from the discussion above.

Oxygen..hydrogen correlations:
These correlations, Figure 5.26, are characterized by a sharp peak at 1.9Å due to the
hydrogen-bond, followed by a deep minimum at 2.65Å and a small 2nd maximum at
3.45Å due to intrachain contributions from hydrogen on the accepting neighbour (see
Figure 5.21). The 1st minimum retains its depth with varying concentration, but the
minimum near 4Å disappears with decreasing methanol concentration. The coordina­
tion number to 1st minimum is 1.0 for pure methanol, and decrease to 0.2 for the 0.25
mixture. Once again nearest neighbours are seen to disappear, while correlations be­
yond nearest neighbours increase.

Hydrogen-hydrogen correlations:
The self correlations for hydrogen on methanol showa 1st maximum at 2.5Å, which
are the hydrogens on the nearest intrachain neighbours, followed by a deep minimum
at 3.4Å. For pure methanol there is no second maximum, but there might be a weak
maximum just above 5Å for the most water rich mixture. The minimum gets shal-
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lower with decreasing methanol content. Integration to 1st minimum give a coordina­
tion number of 2.3, decreasing to 0.6 in the most water-rich mixture. A coordination
number of 2.3 is larger than the expected 2-bondedness in the simple V-chain and
also larger than the experimental value of 1.8, and might be a signal of 3-bondedness.

l O
----- -- -----~-

---r~

Q~\9Å
~.8J\ ~

<f 9- 5.3Å

--~~ ----~-
# ~---.~- ;;;;----~- o -- oU 4.1 0

o 4.6A
3.5Å 6 2.7A ~

Figure 5.21 Some of the site-site distances with a planar non-branched rnethanol chain.
Please imagine the effect of winding and branching upon the distances.

Comparison with experiments:
X-ray diffraction data of Narten and Habenschuss, 1984 [9], find that each hydroxyl
group has on the average 1.8 hydroxyl neighbours at a distance of 2.8Å. They inter­
pret their results as being caused by a chain structure, already suggested by Zacharia­
sen [10] in 1934. Vahvaselka et al., 1995 [12] find the same distance and 1.7 hy­
droxyl neighbours. They find the closest possible C-C distance to be 3.5Å.
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Comparison with simulations:
Due to the complexity of the moleeules, all six different pair-correlation functions are
not experimentally interpreted, and there is not any experimental results for mixtures
at aur selected compositions either. We must therefore resort to comparison with
simulations.

For pure methanol we look at the MC-results of Jorgensen [27]. He finds the two
maxima of goo at 2.75Å and 4.70Å, ~d the inte~ration of the first peak to 3.4Å yield
2.0. The maxima of gOR are at 1.82A and 3.30A. The first peak of gOR integrate to
0.97 out to 2.6Å. The maximum of gHH is at 2.35Å, and integration to 3.25 yield 2.1.
All extrema appear at a slightly closer distance than aur, but the agreement is good in
view of the different simulation method and smaller system size of [27].

Wu et al. 1992 [131] use the older TIPS parameters [100] in their MC-simulation of
dilute solution and equimolar rnixtures of water and methanol. They also observe an
increase in water-water and water-methanol pair-correlation functions and a corre­
sponding decrease in methanol-methanol pair-correlation functions.

Haughney et al. [126] use TIP4P in rnixture with model Hl. This model is found to
give results similar to the OPLS model [147]. They have focused on hydrogen­
bonding analysis, but the structural features they report are in agreement with our,

Tanaka and Gubbins [113] report Sec for xm =0.1, 0.3,0.7. A slight increase in peak
height and a shift of second maximum towards longer distances as methanol content
increase, are observed.
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Figure 5.22 Radia.l correlation function g(r) for Cm ~ Cm in water-rnethanol mixture
sa.mpled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table B.3.
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Figure 5.23 Radia.l correlation function g(r) for Cm - Om in water-methanol mixture
sa.mpled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table B.3.
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Figure 5.24 Radial correlation function g(r) for Cm - Hm in water-methanol mixture
sampled with NVT simulation. xm is methanol mole fraetion. 8imulation
conditions as given in table B.3.

3.5

3

2.5

g(r) 2

1.5

0.5

-- xm = 1.0
- - - - xm == 0.75
....... x

m
=0.5

- . - . - x
m

= 0.25

1098765432
OL.....------I-------I...---'--L-..--'------'-------'----....&.....---'--------'-------'
o

Figure 5.25 Radial correlation function g(r) for Om - Om in water-methanol mixture
sampled with NVT simulation. xm is methanol mole ·fraction. 8imulation
conditions as given in table B.3.
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Figure 5.26 Radial correlation function g(r) for Om - Hm in water-metha.nol rnixture
sampled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table 8.3.
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Figure 5.27 Radial correlation function g(r) for Hm - Hm in water-methanol mixture
sa.mpled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table B.3.
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5.4.4 Cross-corre/ations for water and methanol.

The cross-correlations are presented in Figures 5.28 - 5.33, and they are character­
ized by

• increased peak height with increasing water content

• position of 1st maximum unchanged with composition

• only small variation with concentration beyond 1st maximum

Oxygen-methyl cross-correlations:
Figure 5.28 showa clear peak at 3.6Å followed by a broad minimum at 5.0-5.25Å.
Position of 1st peak is consistent with water replacing methanol in chain. A very
weak 2nd maximum, growing with increasing methanol molar ratio, at 5.35-5.5 Å
can be seen. Coordination number increase from 3.3 to 6.9 with increasing methanol
content.

Oxygen-oxygen(methanol) cross-correlations .."
Figure 5.29 show a sharp 1st peakat 2.75Å and a broad 2nd peak at 5.25 Å. Both 1st
and 2nd minima can be seen, and also a weak 3rd maximum. Coordination number
increase from 0.7 to 2.6 with increasing methanolmole fraction. Compared to the
oxygen-oxygen self correlations for both methanol and water, we see that the cross
correlations are less sensitive to .increasing methanol content beyond 1st maximum,
In other words, the cross correlations for 2nd neighbours are less affected than the
self-correlations.

Oxygen-hvdrogen(methanol) cross-correlations:
Figure 5.30 showa 1st maximum at 1.9Å followed by a minimum at 2.6Å and a 2nd
maximum at 3.4Å. The curve showing much of the same features as the correspond­
ing self correlations for water at the same concentrations. First peak is due to water
accepting a methanol proton. It integrates to one at the highest concentration of
methanol, in agreement with the results of [156] for methanol mole fraction 0.9. The
2nd peak is due to H-atoms on the accepting neighbour. Coordination number in­
crease from 0.3 to 1.0 with increasing methanol content.

H..ydrogen-ox_vgen(methanol) cross-correlations:
Figure 5.32 show that the hydrogen-oxygen correlations are very similar to the 0w­
Hm correlations described above, except for the first peak being a little higher in the
former. Peaks appear at 1.8Å and 3.25Å, first peak integrating to 0.7 in the methanol
richest solution. 1st peak must be due to water donating a proton to neighbouring
methanol, while 2nd peak arises form the other hydrogen bonded methanol mole­
cules.
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Hydrogen-methyl cross-correlations:
This correlation, see Figure 5.31, showa clear similarity with the self-correlation for
hydrogen-methyl at the same molar ratios up to -4.5Å. An unsymmetric peak at 4.1Å
is followed by a broad and shallow minimum near 5.6Å. A shoulder at 2.8Å develops
to a small peak with increasing methanol concentration. The small 1st peak is due to
water donating a proton to the hydroxyl group of methanol, while the large
unsymmetric peak can be interpreted as water encageing the methyl-group. The
steepness on the right side of the 2nd peak mean that little variation in position are
found, while there are same randomness on the other side. Coordination numbers in­
crease from 4.4 to 9.2 with increasing methanol concentration.

Hydrogen-hydrogen{methanol) cross-correlations:
A 1st peak at 2.45Å is followed by a minimum at 3.2Å. For the two methanol richest
mixtures, a tiny maximum can be envisaged below 4Å. As for the two hydrogen­
hydrogen self-correlations, the broadening of the 1st peak is symmetrical on both
sides of the peak. Nearest neighbour interactions are however also here similar to the
corresponding self-correlations, but the orientation of the other hydrogen can not be
correlated, because of the missing 2nd peak. The coordination number increases from
0.6 to 2.0 with increasing concentration.

Comparison .with experiments:
Soper and Finney, 1993, [157] have performed neutron diffraction experiments on 1:9
molar ratiornixtures in order to verify whether water generates a cage around the
methyl group. They find a carbon-to-water(oxygen) distance of 3.7Å with approxi­
mately 10 neighbouring water molecules spherical arranged around the methanol
molecule. The C-Ow distance is a little longer than our results for the 0.25 mixture.
There seem to be no enhancement of water structure accompanying the addition of
methanol.

Comparison with simulations:
Freitas [124] has calculated cross-correlations for TIP4P-water and OPLS-methanol
at various mole fractions. His displayed pair-correlations for 0W-OM' 0w-HM' HW-OM,
and 0w-Me at xm = 0.25, 0.5, and 0.75, all agree very well with aur result. So do also
his calculated oxygen-oxygen coordination numbers.

Jorgensen and Madura [152] have simulated 'infinitely diluted' methanol in water.
With the exception of peak heights, the shape and position of extrema of their dis­
played solute-solvent pair distribution functions are in agreement with aur.
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Figure 5.28 Radial cross-correlation function g(r) for 0w - Cm in water-methanol mixture
sa.mpled with NVT simulation. xm is methanol mole fraetion. Simulation
conditions as given in table B.3.
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Figure 5.29 Radial cross-correlation function g(r) for 0w - Om in water-methanol mixture
sampled with NVT simulation. xm is methanol mole fraetion. 8imulation
conditions as given in table 8.3.
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5.4.5 Site-site coordination numbers.
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The site-site coordination numbers presented below show the average number of
neighbouring sites of a particular kind within the first coordination shell. To make
conclusions about the number of H-bonds, one has to analyse the configurations with
respect to criteria upon geometry (distance and angle) or require the energy to be be­
low a specific value. Our site coordination numbers involving hydrogen and oxygen
sites are therefore not measures of hydrogen bonds, since these arise from integration
of first peak only.

Note also that site-coordination numbers between unlike sites on the same kind of
molecules are a factor of two lower than the molecular coordination number. For co­
ordination numbers between equal sites on the same kind of moleeules, the site coor­
dination will equal the molecular coordination. This applies regardless of composi­
tion.

From experiments, the coordination numbers of water is reported as -4.5 (Ow-Ow)
and -1.8 (Ow-Hw) [143] at room temperature. For methanol, the coordination number
(Om-Om) is reported to be 1.7 [12] and 1.8 [9]. Our corresponding site coordination
numbers for the pure liquids, see Tables 5.9 and 5.10, are all a little larger than the
experimental values.

From Mante Carlo simulations of mixtures of TIP4P-water and OPLS-methanol,
Freitas [124J .report the site-coordination numbers for oxygen-oxygen self- and cross­
correlations. For water he finds 4.95, 3.49, 2.44, and 1.22, for methanol 0.46, 0.88,
1.37, and 2.07, and for water-methanol he finds 0.81, 1.59, and 2.51. All values are in
very good agreement with aur results, see Tables 5.9,5.10, and 5.11.

From molecular dynamics simulations of flexible, three-site model mixtures, Pålinkås
and Baka [155] find coordination numbers for 0w-O, Om-O, and C-O at xm=O.25 to
be 3.81,2.75, and 9.80. If we add our site-site coordination numbers, Tables 5.9, 5.10
, and 5.11, we get 4.3, 2.6, and 11.4, respectively.

The maximum number of hydrogen bonds per moleeule is expected to occur near this
concentration [124, 155].

Ferrario et al. [126] have calculated coordination numbers for 0m-Ow and C-Ow for
dilute solutions xm=O.125 and 0.875 of TIP4P=vJater and Hl-methanol. They find that
the methyl group is surrounded by -16 water molecules .and that the hydroxyl group
has 2.6 water neighbours in the water-rich solution, while water oxygen is surrounded
by 3 methanol oxygen and 8 methyl groups in methanol-rich solution. Their results,
though at other compositions, fit nicely in at top and bottom of Table 5.11.
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Table5.9
Site coordination numbers for water-water correlations integrated to respective
minima.

Xm "00 "OH "HH

0.0 5.1 2.0 5.3

0.25 3.6 1.5 3.8

0.50 2.5 1.1 2.9

0.75 1.1 0.5 1.3

Table 5.10
Site coordination numbers for methanol-methanol correlations integrated to
respective minima.
a) Numbers in parentheses from integration to 4.2~(xm=O.25 and 0.5) and 4.5Å.
b) Numbers in parentheses from integration to 4.8A.

Xm ncc "00 nHH "co
a)

"CH
b)

"OH

0.25 5.8 0.5 0.6 1.5 (8.0) 0.2 (2.6) 0.2

0.50 8.9 0.9 1.2 2.4 (10.6) 0.4(4.1) 0.4

0.75 10.7 1.4 1.7 4.1 (14.4) 0.8 (5.2) 0.7

1.0 11.9 2.0 2.3 4.9 (15.4) 1.1 (6.0) 1.0

Table 5.11
Site coordination numbers for water-methanol cross correlations, 1st index is
water-sites. Metha.nol-water coordination numbers is found by multiplying the entries
with NJNm

Xm noe "00 "OH "HC "HO nHH

0.25 3.3 0.7 0.3 4.4 0.2 0.6

0.50 5.9 1.5 0.6 7.0 0.4 1.3

0.75 6.9 2.6 1.0 9.2 0.7 2.0
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5.5 Dynamical properties for methanol/water mixtures.

5.5. 1 Selt-diffusion for water and methanol.

Table 5.12 below show calculated and experimental values for self-diffusion of water
and methanol calculated from centre of mass mean square displacement, Equation
(3.36). Except for the NVE simulations of the pure liquids, all temperatures are within
±2K of 298K, cf. Table 5.1.

Table 5.12
Calculated and experimental self diffusion coefficients for water and methanol at
298K, except a) at 309K and b) at 306K. Cf. Table 5.1. Experimental results at 25°C
from [162, 163]. Values of Partington [164] et al. in parentheses.

Molefraction D[10-5cm2/s] D[10-5cm2/s] D[10-5cm2/s]
methanol NVE NVT exp

xm water methanol water methanol water methanol

0.00 4.0a) 2.9 2.26
(2.43)

0.25 1.8 2.0 1.32
1.1 2.0 1.10

0.50 1.4 1.5 1.19
1.4 1.1 1.17

0.75 1.2 . 1.6 1.32
1.7 2.0 1.67

1.00
2.5b) 2.4 2.44

(2.27)

Both the NVE and the NVT simulations Sl10W a decrease in the self-diffusion coeffi­
eients of water as the solution becomes more methanol-rich. An increase in self­
diffusion of methanol with increasing xm is also found, These trends are in agreement
with experiments. Bifurcation (see Subsection 5.4.1) offers an explanation to the de­
creased mobility of water in solution [142]. The number of water molecules with 5
nearest neighbours is reduced, and the linear H-bonds require more energy to break
than the bifurcated bonds. Consequently, dynamics of water are slowed down. Metha-
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no1, on the other hand, experiences an increase in 3-bondedness in going from pure
liquid to solution [126], and must also have a decreased mobility.

Nearly all values are higher than the experimental anes, but the disagreement between
simulation and experiments are less the higher the methanol concentration becomes,
for both components. From the NVT results we find that self-diffusion coefficient of
pure methanol is in close agreement with experiment, while the self-diffusion coeffi­
cient of water is too high.

The NVE simulation temperature of the pure liquids are higher than requested by -9K
for water and -7K for methanol (Table 5.1). Kida and Uedaira [166] have measured
self-diffusion coefficients at 32°C, and find Dw-Dm=2.7S.10-5cm 2/s. Dur calculated
water value is still toa high, particularly with the NVE simulation, while the methanol
value is slightly underestimated.

The results of Hawlicka [162], shown in Figure 5.34, show that the self-diffusion for
methanol has a flat minimum around 0.25 (extending between 0.2-0.5), and that the
self-diffusion of water has a minimum around 0.5 (from 0.3-0.7). The same trend is
also found at 32°C [166]. Our NVE simulation show a minimum in self-diffusion of
water at xm=O.5o

2.5..-----------r-------?!E

1'----------'----------'o
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2.5

2 o

*
o

1.5 o
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2
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a) b)

Figure 5.34 Self-diffusion for water, a) and methanol, b) calculated 'from NVE-simulation
(*) and NVT-sirnulation (o) compared to experimental results of [162] (solid
lines). Note that NVE-values for pure liquids are at higher temperature, see
text.
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We have no simulation results for the concentration range O- 0.25, and can therefore
not confirm the minimum of methanol. The NVE simulations yield results for metha­
nol in close agreement with experiments, see Figure 5.34. Formally, the NVT simula­
tion yield a minimum for methanol atxm=0.5. The NVT-valne for Dm at mole fraction
methanol 0.25 is an exception to the overall reasonable agreement with experiments.
We find no indications in the results of the previous sections to why this value should
be sa high. Further simulations are needed to say anything conclusive about the
source of this discrepancy,

We can also compare to a few simulation results. For OPLS at 298K and a system of
256 particles yield a self-diffusion of 2.33·10-5cm2/s [34], in perfeet agreement with
aur result. Watanabe and Klein, 1989 [104], find the self diffusion of TIP4P to be
(3.3±0.5)·10-5cm2/s at 298K, which compares to aur results.

Haughney et al. [147] find that the OPLS model slightly underestimate self-diffusion
in the range 268.2K to 338.2K. The calculated values of Ferrario et al. [126], for
TIP4P-water - H1-methanol mixtures are typically a little lower than aur results, and
yield a pure water self-diffusion of 2.4·10-5cm2/s. This is in accordance with Hl un­
derestimating self-diffusion in pure methanol more than OPLS. Considering their sta­
tistical uncertainties of ±0.15-0.3, the values are consistent except for the pure water
value and the Dm for the lowest mole fraction methanol discussed above.

Matsumoto and Gubbins [148] find 2.7·10-5cm2/s at 300K with OPLS as an average
over diffusivities for each bonding state.

We estimate the statistical significance in our calculated values to be about ±O.2units.
Also Haughney et al. [147] estimate the statistical uncertainty in their calculations to
be 10%, which is almost the same as aur. Our assumption is based upon results of oc­
casional variation in delay time, and the observation that all mean square displace­
ments not are straight lines at lang times (see Figures C.32 and C.33). The tangent to
the curves are therefore sensitive to the delay time at which it is taken. For all curves
we have used the two last values of the curves to find the tangent. With a tangent to a
larger portion of the curves, the values can differ by as much as 0.3 units. With an
uncertainty of this magnitude, the NVE and NVT-results are within each others accu­
racy, except for the methanol values of the 0.25 mixture, and possibly the pure water
values. As the simulation length and total system size are constant, the statistical pre­
cision of the data in Table 5.12 also varies with methanol mole fraction.

Casulleras and Guardia [34] have studied diffusivities for pure methanol (OPLS) at
different system sizes, and found that even a system of 512 molecules - twice our size
- is far from the thermodynamicallimit. They find a small, but systematic, increase in
the self-diffusion coefficient of methanol with increasing system size.
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Wallquist and Teleman [115] find however that self-diffusion of spe-water [99]
(rigid, three site model) is not significantly enhanced by increasing the number of
molecules from 216 to 1000 molecules. They find also no significant difference in
self-diffusion coefficient whether they use the Ewald summation or a spherical trun­
cation scheme.

We could perhaps turn the question of assigning uncertainties upside down: Formally,
the two simulation methods should give equal self-diffusion coefficients. Therefore
we can regard the two series of simulations as two different 'experiments'. If we lise
their spread around average values as a measure of accuracy, we can find the statisti­
cal uncertainty of each entry in Table 5.12.

For the reason to why the mean square displacements not are linear, we will point at
the relative short length of simulations of only 80ps. The use of a Nase-Hoover ther­
mostat is expected [24] not to influence upon the dynamics of a system. But we found
in Section 5.3 that aur simulations are not strictly representatives of the canonical en­
semble, we can not rule out the possibility that the simulation method affects the dy­
namics.

The trend of self-diffusivities of water to be overestimated, might be due to the po­
tential model TIP4P. The results are in much better agreement with values at 32°C
[166].

5.5.2 Velacity auto corretetion functions for water and methanoJ

Velocity auto correlation functions for centre of mass motion relative to alaboratory
frame of reference appear in Figures 5.35 - 5.36 below, and in Figures C.34 - C.37.

The negative region at intermediate times found for all mixtures is typical for liquids
where density is so high that the average molecule change direction upon interaction
with another moleeule. The oscillations of both methanol and water, particularly clear
in Figure C.38, is a fingerprint of the hydrogen-bond, which makes the molecule os­
cillate back and forth before an eventual escape from its neighbourhood [167]. These
oscillations are seen to diminish with increasing temperature [98]. They are more pro­
nounced with water than with methanol, perhaps not unexpected since water has more
hydrogen bonds than methanol. Pure water also decorrelates more quickly initially, a
decrease to l/e within -O.05ps, as compared to methanol which reaches Ile within
-O.lps. A complete decorrelation seem to occur within approximately the same time,
-1ps for both Iiquids,
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Pure water is characterized by a correlation peak at 0.15·1 0-3ns, which does not disap­
pear with redueed mole fraetion water, but instead is systematieally lowered. In the
negative region we find on the other hand no systematie variation with eomposition.

We have not been able to find any eentre of mass veloeity auto correlation funetions
for pure TIP4P-water in literature, despite its wide and frequent applieation in model
simulations, Stillinger and Rahman [98] calculated velocity auto eorrelation function
for ST2-water at different temperatures. Our ealculated veloeity auto correlation func­
tion is remarkably similar to their, exeept for being less oseillatory and having a loeal
minimum with positive ordinate-value. We might however be misled by the lack of
intermediate points.

Pure methanol has a small plateau at 0.2 - O.25·10-3ns, whieh disappears gradually for
the mixtures. The negative region gets more negative with decreasing methanol con­
tent. Our pure methanol velocity auto correlation function is in good agreement with
the the result of Guardia et al., 1994 [168] ror OPLS-methanol and the results or
Haughney et al., 1987 [147] and Alonso et al., 1991 [150] for the HI-modeI.

The curves for the pure liquids are probably approaehing zero faster than for the
components in the mixtures.

Comparison between X-, y-, and z-components show only minor differenees at long
delay times, whieh are probably due to statistical noise.

Also a eomparison between NVT and NVE results (Figures C.36 and C.37) reveal
only small differenees. The veloeity auto correlations get less negative with the
NVT-simulation. The difference with method in the backscattering region is only
slightly larger than the differenee with direction (not shown for this mixture) for
water. For methanol the differenees in direction is approximately equal to the differ­
ence with method.

Veloeity auto correlation funetions provide an alternative route to the self-diffusion
coefficients [15, 169]. The use of this procedure in addition to the Einstein relation
might have provided insight to whether differences in self-diffusion coefficients with
the NVE and NVT simulations arise from method or are due to statistical uncertain­
ties.
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5.6 Summary

139

From the equilibrium molecular dynamics simulation of water and methanol, we
summarize same of aur results presented and diseussed in the previous sections.

• The results for thermodynamic properties and structure are in good agreement
with experiments and with simulations for the same models.

• There seem to be no difference between the NVE and the NVT results for thermo­
dynamics and structure, except for differences caused by the NVE-temperatures
being slightly higher than the NVT-temperatures.

• This disagreement of temperatures is largest for the pure liquids, and for the mix­
tures the NVE temperatures agree well with the predefined temperatures.

• The calculated pressures are very high, but it seem to be an effect of the
simulational procedure/model potentials, since all other quantities correspond to
values at 1 atmosphere. The pressures in the pure water simulations are a factor
3-4 higher than the pressures found for the mixtures. The pair correlation functions
show no sign of a compressed liquid.

• Energy conservation is good, and improves with decreasing water content. Total
linear momentum is also conserved.

• All teststhat are performed and all variables that are investigated for both the
NVE and the NVT methods, are consistent with systems in thermal and mechani­
calliquid equilibrium.

• The NVT method fails however to reproduce the canonical ensemble for the par­
ticular coupling parameters used. The possibility that the simulation would have
become canonical if the simulation was continued, can however not be excluded.

• The Nase-Hoover dynamics is proved to generate canonical distributions provided
the trajectories are ergodie, and that the total linear momentum is conserved at
zero. The failure of aur simulations to generate canonical distributions, is then be­
lieved to be caused by slightly toa large heat bath masses.

• The relaxation parameters used for mixtures were weighted averages of the sepa­
rate water and methanol relaxation parameters. There seem to be no differences
with the mixtures regarding the approach to the canonical ensemble, so a simple
combination scheme is sufficient for mixtures.

• The radial positions of 1st maxima of the pair correlation function are not affected
by varying concentrations, particularly we find no signs of increased cavities
around the methyl site.
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• The methyl-methyl coordination number decreases less than the other self eoordi­
nation numbers with inereasing water content, and less than the redueed number
density. There is thus a relative inerease in methyl-coordinated-methyL The 11Y­
droxyl self coordination numbers deerease more than number density.

• The self correlations of water in the mixtures yield eoordination numbers that de­
crease linearly with number density. Thus we tind no drastie reduetion or incre­
ment of the water structure.

• The pair correlation functions for methanol are consistent with a simple V-chain,
but we have not considered rings or branehed ehains. These possibilities are then
not exeluded by aur results.

• Upon addition of water to methanol, we find that the nearest neighbour interac­
tions of methanol-methanol deerease, while second nearest interaetions are less af­
feeted. This can be explained with water replaeing methanol.

• The results for self-diffusion earry some uneertainty. The general trends known
from experiments are reproduced. Also the tendency of the TIP4P-model to over­
estimate self-diffusion is confrrmed. Except for the self-diffusion of methanol in
the 0.25 mixture, the NVT and NVE results are equal within estimated uneertain­
ties.

Though the simulations are not strictly mierocanonical, the total of all results make us
eonfident that we can proceed with simulations of the water-ethanol mixtures. The re­
quirement of eanonieal distributions is partieularly important for calculations of de­
rivative properties. We do not caleulate such properties.
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Mixtures of water and ethanol ­

results and analysis

Below we present the results from thermostatted molecular dynamics simulations of
the mode1 system water - ethanol (trans) at 293K. We have also performed an NVE
simulation for ane of the mixtures. The simulation conditions and molecular models
are given in .appendix B. The molecular models were discussed in Chapter 4. The cal­
culational procedures and methodology applied are similar to the water - methanol
simulations.Experimental data exist in varying abundance for thermodynamical data,
structure and diffusion, but simulation results is scarce. Only a handful of Monte
Carlo studies of liquid ethanol and of the infinitely diluted' aqueous solution are pub­
lished. We are not aware of any molecular dynamics study of neither liquid ethanol
nor its aqueous solutions at any concentrations.

The structure of this chapter is similar to the previous chapter on methanol-water
mixtures. In Section 6.1 we present the thermodynamic properties, in Section 6.2 we
discuss verification of the simulations, in Section 6.3 we review models for ethanol
water mixture, and present aur calculated correlation functions. In Section 6.4 we pre­
sent results for self-diffusion coefficients and velocity auto correlation functions for
water and ethanol. The chapter is concluded in Section 6.5, with a summary of our
findings.

Much of the discussion of the results of water-methanol mixtures also apply to water­
ethanol mixtures, and we will refer to the previous sections where appropriate.

141
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6.1 Thermodynamic properties

Table 6.1 present calculated thermodynamical data from NVT simulations of water­
ethanol mixtures. The results are briefly commented below, for discussions we refer
to Section 5.2, page 88.

Temperature:

Table 6.1 show that the average temperature is very close to the desired temperature
of 293.l5K for all mixtures. Also the NVE simulation departs by only 4K from this
temperature. We notice that all average NVT temperatures are slightly lower than the
predefined, as were also observed for the methanol-water mixtures.

Figures D.l and D.2 show translational and rotational temperatures for water and
ethanol separately in a mixture of 0.75 mole fraction ethanol in water. Particularly the
rotational degrees of freedom for water have an irregular behaviour. This is not par­
ticular to this mixture, but was seen for whichever component had the least number of
moleeules. It can be an indication of a heat bath with a frequency that is toa small (ie.
relaxation parameter =period is too large). Consequently Q is toa large and the tem­
perature control to weak, see Subsection 2.5.3, page 40.

For all mixtures the temperatures for the four different types of degrees of freedom
sl10w a slight difference, see Table D.l. The difference is largest with the equimolar
mixture, while the rest of the simulations keep the rotational and translational tem­
peratures within IK of each other.

Pressure: All mixture pressures are stable, but the fluctuations are large. A tendency
of negative pressures to occur more frequently than with the methanol-water mix­
tures is observed. The averages are large, see discussion in chapter 5.2, but lower than
with methanol-water. There is also a marked difference between the pure water simu­
lation and the rest of the simulations.
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Table 6.1
Mixture temperatures TfT]ix' pressures P, and potential energies Ep' from molecular
dyna.mics simulations or water-ethanol mixtures. Numbers in italics is standard
deviation 10". Experimental densities from Perry [125]. Jorg is Mante Carlo
calculations af Jorgensen [27] with OPLS madel included internal rotation at 298K.

Xe p [g/cm3] Tmix [K] P [MPa] -Ep [J/g] -Ep [kJ/mol]

0.0 NVT 0.9982 292.92 (0.067) 240.6 (2.3) -2323.92(0.89) -41.88

0.25 NVT 0.9226 292.97 (0.081) 40.1 (1.7) -1688.56(0.60) -42.27

0.50 NVT 0.8631 293.03 (0.118) 14.4(1.3) -1294.56 (0.50) -41.48

0.75 NVE 0.8219 296.93 (0.29) 11.8 (1.1) -1043.73 (0.19) -40.76
NVT 293.08 (0.16) 17.5 (1.1) -1051.46(0.50) -41.06

1.00 NVT 0.7893 293.13(0.21) 26.5 (1.0) -888.47 (0.29) -40.92
Jorg 0.785 298 0.1 -39.54±0.1
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Figure 6.1 Insta.ntaneous pressure P in a NVT simulation of pure water at 293K.
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Enthalpy: Estimates of the enthalpies of vaporization are found from configurational
energies with the aid of Equation (S.2), page 92. We have neglected corrections aris­
ing from the difference between enthalpy of real and ideal gas, and the differences in
intramolecular rotational energies in gas and liquid. For pure OPLS-ethanol this
amounts to a net energy of 0.2kJ/mol, to be subtracted, Jorgensen, 1986 [27].

Table 6.2
Calculated enthalpy of vaporization for ethanol-water mixtures at 293K compared to
experimental results of 1) Smith and Van Ness [130] at 293K, 2) Marcus [96] at 29SK,
and simulation results of 3) Jorgensen [27] at 29SK.

Xe=O.O xe=O.25 xe=O.50 xe=O.75 xe=1.0

~H (cale) [kJ/mol] 44.26 44.64 43.86 43.44 43.30

~H (exp) [kJ/mol] 44.22 1) 42.302)

MC-simulation 44.603) 41.803)

We see that the water value agrees very well with experiments at this temperature to.
The liquid ethanol value is a little toa high, even when we take the temperature differ­
ence into consideration. From the specific heat of liquid ethanol at 25°C,
c =0.113kJ/moIK [78], we find an enthalpy difference Ml-tiE =-0.S7kJlK for a de­
ciease in liquid temperature of SK. The 'experimental' value ofMfvap would then be
found near 42.7kJ/mol, and the experimental configurational energy dose to ­
40.SkJ/mol. Notice also that our molecular dynarnics results for both methanol and
ethanol are higher than Jorgensen's Monte Carlo results [27] for the same potential.
See the discussion in Section S.2.

We have also calculated the excess configurational energy for each mixture from
Equation (S.3). They are compared to experimental values for excess enthalpy in Ta­
ble 6.3. Experimental results show that ethanol-water mixtures at room temperature
have a negative deviation from the ideal solution at a mole fraction ethanol near O.IS.
At temperatures above -SO°C a positive deviation starts to develop. Our calculated
values show a minimum of reasonable value at xe=0.2S, but at the highest mole frac­
tion we also find a maximurn. See however the discussion on page 14S.
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Table 6.3
Ca.lculated excess potential energies Ep' for the mixtures compared to experimenta.1
values for excess enthalpies J-f. xe is ethanol mole fraetion. All values at 293K.

xe=O.25 xe=O.50 xe=O.75
Ep(calc), [kJ/mol] -0.63 -0.08 +0.10

Ht:(exp ), [kJ/mol] -0.75 -0.47 -0.27

6.2 Theoretical analysis
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The majority of the quantities analysed in this section showa strong similarity with
the corresponding results for water-methanol mixtures. We therefore reier to Section
5.3. Additional figures are found in Appendix D.

Translational order: As with the methanol-water mixtures, the lattiee is seen to melt
well within the equilibration period in all simulations. We do however notice that
mixtures with increasing ethanol content need more timesteps to get disordered than
the corresponding methanol-water mixtures. The effect is not visible with pure water,
so it is probably not the 5K temperature difference that is responsible. Both NVT and
NVE show the same behaviour. An example is provided in Figure D.3.

Drift in total energy: Estimated drift in total energy is shown in Table 6.4, and we
see that it is of the same order as the methanol-water NVT simulations (Table 5.4,
page 96). We also observe the same trend of decreasing drift with increasing water
content as for the methanol-water mixtures. Typical example of fiuctuations in total
energy is shown in Figure D.4. Figure 6.2 below show progress of total energy for
whole simulation for all mixtures.

Plots of extended system energy and its contributions for selected systems are shown
in Figures D.S, D.6, and D.7. The 0.75 mole fraction ethanol mixture displayed in
Figure D.6 provides the only example where potential energy is not satisfactorily con­
stant, but is clearly decreasing by -25kJ/g during the production periode However, as
system potential energy gradually decreases, reservoir potential energy increases by
the same amount, and the total energy is kept constant. We see that conserved total
energy and constant temperature are not sufficient requirements for a stable simula­
tion. The decrease in configurational energy for this mixture imply that the results for
this mixture must be questioned. Results will nevertheless be presented along with the
rest of the mixtures. We doubt that this is an effect of the initial configuration, since
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the same decrease in configurational energy is not found from the NVE simulation,
Figure D.7, which starts from the same initial conditions, There is only a small de­
crease of 5kJ/g in the configurational energy from the NVE simulation. This is ac­
companied by an increase in total kinetie energy.

Table 6.4
Energy drift pr. step during production phase of NVT simulation - a total of 135000 steps.

One example of NVE simulation also included. The drift is only a rough estimate of
difference between maximum and minimum values.

Xm AEext [J/(g step)]

0.0 8.1.10-5

0.25 1.5.10-5

0.50 6.7.10-6

0.75 5.2.10- 6

NVE 3.7.]0-6

1.00 3.0,10- 6

0.080.07

x = 0.25

x =0.50

x =0.75

0.060.050.030.020.01

o

-200

-400

-600

Eext
-800

-1000
[J/g]

-1200

-1400

-1600

-1800

0.04

t [ns]

Figure 6.2 Conservation of extended system energy Eext in NVT-simulation. xe is ethanol
mole fraetion.
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Velocity distribution: Looking at Figures. D.9 - D.15, we find that velocity distribu­
tion for the water molecules in the xe=O.75 mixture (Figure D.11) showa peculiar be­
haviour near average velocity, particularly with the NVT simulation. There is of
course a large statistical uncertainty with the distribution of the 64 molecular veloci­
ties, but comparing ethanol and water, we find that the distribution for the 64 ethanol
molecules (Figure D.9) is closer to the expected ane.

Conservation of linear momentum: Linear momenta are conserved in all directions,
and their values are of the same order as for methanol-water mixtures, compare Ta­
bles D.2 and C.3 for methanol-water. See also Figure D.16.

Conservation of angular momentum: As expected, angular momenta is not con­
served, but fluctuate with large amplitudes about zero, just as for methanol-water.
Compare Tables D.3 and C.6 for methanol-water. See also Figure D.l7.

Equipartition of energy: The kinetie energies are equally partitioned in each coordi­
nate direction, see Tables D.2 and D.3.
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n 0.04

0.03

0.02

0.01

o
-850 -800 -750 -700

U [J/g]
-650

-

-600

Figure 6.3 Distribution of interna.l energy, U, in NVT-simulation of pure ethanol. Dashed
line is canonical distribution at 298.15K. Sea text of Figure D.18.
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Distribution of internal energies: The f1uctuations of internal energy is systemati­
cally overestimated for all mixtures, Figure 6.3 above, and Figures D.18 - D.2l This
was also the observation for methanol-water mixtures.

Moments of kinetie energies: Inspecting Figures D.22 - D.31, we tind the same kind
of behaviour as with the methanol-water mixtures: The moments decrease/increase or
tluctuate irregularly during the first half of the production period, then they seem to
approach alimiting value. Two clear exceptions are found. The moments of transla­
tional energy of the xe=O.5 and xe=l.O mixtures, Figures D.24 and D.26, continue to
decrease at the same rate also in the last part of the production periode

Examples of the.moments of reservoir kinetic energies are shown in Figures D.32 and
D.33. They all seem to approach alimiting value, but this value is not unity as would
be expected (all moments are divided by their canonical values).

Friction parameter 11: Table 6.5 showaverages of friction parameters for the
translational and rotational heat baths. Theoretical average is zero. Averages of the
sums of friction parameters are always faund to be closer to zero than their separate
averages. Note that friction parameters for ethanol-water mixtures are closer to zero
than for the methanol-water mixtures, cf. Table 5.5, page 101.

Table 6.5
Coarse grain averages of translationa.l and rotational friction parameters from the
NVT simulations of water and ethanol at 293K. Standa.rd deviation in parenthesis.

x =0 xe=O.25 xe=0.5 xe=O.75 xe=1.0e

11trans[ns-1] -1.6 (17.4) -1.7 (17.3) -1.6 (18.5) 6.4 (20.3) 3.4 (19.2)

ll
rot

[ns-1] 2.4 (13.8) 2.9 (18.3) 1.0 (21.7) -3.7 (22.8) -2.5 (22.0)

Figures D.34 and D.35 show friction parameters for translation and rotation for all
mixtures. Decreasing amplitude of fluctuations with decreasing water content is due
to increased relaxation parameters in mixtures 'ttrans and trot' see Table 3.1 and Equa­
tion (3.14), page 58. Table 6.7 give average transferred energy pr. step, and average
reservoir kinetie energy of all mixtures. We see that total kinetie energy of reservoirs
is underestimated also with water and ethanol by 15-20%. An example of reservoir
kinetie energy is shown in Figure D.8.
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Reservoir energies and s-variables: Reservoir potential energies, see Equation (2.29
), for all mixtures are presented in Figure 6.4 and Table 6.7. Heat bath parameters,
Strans and Srot' for all mixtures are shown in Figures D.36 and D.37, and their averages
are given in Table 6.6 below.
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The departures of the reservoir potential energies from the theoretical values of zero
are of the same order as with the methanol-water mixtures. The xe=O.25 mixture
shows the largest deviation from zero, this system has had energy in excess to dissi­
pate to the sink. Peculiar though, is that this mixture has ane of the two only nearly
symmetrical pairs of heat bath parameters, see Figure D.37. On the other hand is res­
ervoir potential energy of this mixture marked by slow irregular oscillations superim­
posed on the fluctuations. The same behaviour is also seen with the pure water sys­
tem. Such oscillations are not found with the s-parameters or their SUill, sa it is
probably an effect of adding together the two logarithmic energies with different am­
plitude of fluctuations. Note also that because Strans and Srot are not perfectly symmet­
rical about 1, their sums can not be perfectly stable either. Finally note that the reser­
voir potential energy of the xe=O.75 mixture diverges slowly due to the gradual
decrease of the system configurational energy, see Figure D.6.

Table 6.6
Coarse-grain averages of s-parameter for translational and rotational reservoirs for
simulations of water and etha.nol at 293K. Standard deviation in parenthesis.

x =0 xe=O.25 xe=O.5 xe=O.75 xe=1.0e

Strans 0.749 (0.007) 0.891 (0.004) 0.943 (0.008) 1.625 (0.020) 1.308 (0.014)

Srot 1.379 (0.012) 1.223 (0.006) 1.114 (0.008) 0.702 (0.009) 0.827 (0.008)

Finally observe that the xe=O.5 and 1.0 mixtures which had the poorest approach to
canonical moments, are the mixtures that satisfy the other criteria best.
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Table 6.7
Average potential and kinetie energy of the heat reservoirs, and average transferred

energy pr. step. Sta.ndard deviations in parenthesis. Averages are based on output values
with 4 significant digits taken each 100th step.

Xe Reservoir pot. energy Transf. energy pr step Reservoir kin, energy
[J/g] [J/g] [J/g]

average expected mean expected mean expected

O -1.8 (25.7) O -0.002 (0.4) O 0.43 (0.50) 0.53

0.25 18.4 (19.2) O 0.001 (0.2) O 0.31 (0.37) 0.38

0.50 3.9 (13.9) O -0.0001 (0.1) O 0.25 (0.28) 0.30

0.75 8.9 (13.1) O -0.0001 (0.1) O 0.21 (0.26) 0.24

1.0 4.5 (9.0) O -0.00004(0.08) O 0.18 (0.20) 0.21

6.3 Structural properties of ethanol/water mixtures.

6.3. 1 Structure of bulk ethanol

Harvey, 1939 [11] found from X-ray diffraction that each ethanol molecule was hy­
drogen bonded to about 2 neighbours with a hydroxyl distance of 2.9Å. The results of
Narten and Habenshcuss, 1984 [9], confirm this, They refine the distance to 2.8Å, and
the number of hydrogen bonds to 1.8 ±O.l. .

Jorgensen, 1981, [110] performed simulation with the TIP potential for 128 ethanol
molecules with internal rotation. He found winding chains and evidence of branching,
like with pure methanol. From analysis of bond-energies, he found that each ethanol
monomer is hydrogen-bonded to 1.75 neighbours, consistent with experiments. He
also found the majority (-60%) of the monomers to be engaged in 2 bonds, and an
estimated average chain length of 5-6 monomers. By analogy to solid ethanol, the
chains in liquid ethanol, are believed to consist of U-shaped chains with altemating
gauche and trans molecules as illustrated in Figure 6.5. This is unlike methanol,
where peak positions are consistent with a V-shape, as shown in Figure 5.10.
Vahvaselka et al., 1995 [12] suggest on the basis ofX-ray scattering data that ethanol,
like methanol, consists of irregular chains varying in length with an average of 10 hy­
drogen bonded monomers.
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Figure 6.5 Simplified view of chain structure in
ethanol. After Jorgensen [110]. Only the
oxygens and hydrogens lie in the paper
plane; imagine an alternating back- and
forth-rotation of the ethyl groups through
rotation around OH-bond.
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Figure 6.6 2-dimensional view of hexamer hydrogen bonded ring in ethanol. After
Sarkar and Joarder, 1993 [170]. The ethyl groups are not in the same plane.
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Recently, Sarkar and Joarder, 1994 [170] from comparison of the experimental struc­
ture functions from [9] to a structure function for a hexamer model, suggested that
there is 'on average a good possibility of hexagonal clustering of ethanol monomers
in liquid state at room temperature', see Figure 6.6. This model give however to many
two-bonded monomers compared to simulation results [27, 110]. Their similar analy­
sis of U'-shaped tetramer and closed tetramer structure gave less accordance with ex­
periments.

6.3.2 Structure of ethanol-water solutions.

A prominent feature of the mixing of ethanol with water is the volurne contraction
upon addition of very small amounts of ethanol. The minimum volume occurs at mole
fraction x =0.07. It has been suggested [5, 171] that the behaviour of ethanol-water
mixtures gver the whole range of composition is not due to one mechanism alone.

Very recently Nishi et al., 1995 [172] have performed IR absorption measurements,
mass spectrometry, and X-ray diffraction experiments on ethanol-water mixtures in
the concentration range O.OOl<xe<O.03.

They propose a structure for the dilute region where the solution is composed of sev­
eral ethanol molecules stacked in a hydrophobic core and surrounded by a cage of
strongly (linearly) hydrogen-bonded water molecules. Bulk water with weaker (linear
and bent) hydrogen bonds is surrounding this hydrate structure. The motion of these
large clusters might affect bulk water structure. This corresponds to the findings of
Soper and Finney [157] for dilute water-methanol mixtures,

They also emphasize the resemblance of the structure factor of the dilute aqueous
ethanol solution to that of bulk water at high pressures.

Matsumoto et al., 1995 [173], have studied mixtures in the range O.2<xe<O.8 with
mass spectrograpy and X-ray diffraction. They find ethanol polymer formation and
hydrate clusters to dominate. Water molecules do not prefer to bond to each other, but
might act as stabilizers for the ethanol structure, They propose a ' sandwich-structure'
where layers of ethanol polymers is separated by bridging water molecules. From
their figures, it seem like the structure is composed of V-chain polymers of the trans­
conformers. With all O-O distances fixed at 2.S...Å, they have calculated a number of
model distances which they find to be consistent with measurements, see Table 6.8,
page 172.

0111y very dilute mixtures are studied with Monte Carlo simulations. Alagona and
Tani, 1982, 1988 [29, 31] have simulated a mixture of ane trans-ethanol molecule
and 123 and 215 water molecules with an ab initio potential for the cross interactions.
They find water molecules to form a cage around the ethyl group of ethanol. On the
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average two water molecules are hydrogen-bonded to the hydroxyl group. Lily et al.
[32] have applied TIP4P and OPLS in a simu1ation of 1 ethanol molecule and 108
water molecules. They find 2.3 water molecules hydrogen-bonded to each ethanol
monomer. Even if these calculations are far from the concentration we study, we ex­
pect to recognize some comrnon trends with the pair-correlation functions.

It is not clear which structures dominate in liquid ethanol or its aqueous mixtures. It is
though a general belief that intemal rotation of the methyl group (or hydroxyl hydro­
gen) is likely, and that both trans and gauche conformers are present also in the liquid
as they are in the gas and solid. Their ratio is not known, but is estimated from Monte
Carlo simulations by Jorgensen [27] to nearly 1:1. The hexamer ring and U-shaped
chain are suggested with reservations as bulk liquid structures. Central to both struc­
tures is the altemation of trans and gauche moleeules.

As already mentioned on severaI occasions, our modelliquid contains only the trans
conformer. It is theoretically possible to construct both a hexamer ring and a U­
shaped chain from only trans conformers, see Figure 6.7 and Figure D.38. We believe
that particularly the chain would be more winding than seen from the figure, and
probably subject to more branching than the trans-gauche chain. Note that in the
trans-hexamer, only the CH 3-site is moved relative to the trans-gauche ring, while in
the trans-chain, both CHz and CH3 is moved. For trans-molecules it is perhaps more
naturally to extend the V-chain for methanol by appending ethyl groups instead of
methyl groups, as shown in Figure 6.29.

~ ...~
J O Or
ff~.... ~ .. .. .< b-.

• CH3-group

o CHz-group
o O-atom
• H-atom

- lntram. bond
. ... H-bond

Figure 6.7 This cute little creature show how a hexamer ring can be composed only by
trans conformers. This is not a suggestion for a new ethanol structure, but
only visualize which pair correlation function will be different from
experimental if a hexamer structure for trans-ethanol is found.
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All attempts to visualize structure are oversimplified as much as they only show a
two-dimensional possibility. It is left to the reader to vary angles and orientation to
imagine more realistic structures. Calculated site-site distances are also based upon
planar structures, but will hopefully give us ideas of ranges and limitations of correla­
tions.

From the discussion above, we expect that the simulation of only trans-ethanol should
have little effect upon the peak-positions for correlations containing combinations of
oxygen and hydrogen. To some extent also the positions of peaks involving CH2­

groups are expected to be unaffected. The CH3-interactions are on the other hand ex­
pected to disagree with experiments. Unfortunately, we have not found published ex­
perimental data conceming the ethyl group, but we might also see differences com­
pared to the MC simulations of Jorgensen [27] regarding these correlations.

6.3.3 Self-correlations for water

The overall appearance of the self-correlations is quite similar to the water self­
correlations in water-methanol mixtures. Nearest water neighbours to a central water
molecule are-not affected by the presenee of ethanol in solution instead of methanol.
Some differences can be seen beyond 1st minimum, particularly with increasing etha­
nol content. The water-water self correlations are thoroughly diseussed in Subsection
5.4.2. We shall here only point out a few observations and some differences from the
methanol-water mixtures. The site-site correlation functions are presented in Figures
6.8 - 6.10 and the coordination numbers appear in Table 6.9, page 176. The positions
of maxima and minima are given in Tables D.4 - D.6. Self-correlations for water in
the most ethanol-rich mixture from the NVE and NVT simulations are compared in
Figures D.39 - D.41.

• Intensities of first maxima are higher than for the methanol-water mixtures, but
only 0-5% less than expected from density ratios of the two mixtures.

• The positions of maxima and minima are in most cases not altered significantly
(ie. more than O.5Å), except for the 2nd maximum of gOD for the xe=O.5 and 0.75
mixtures.

• Water-water site coordination numbers are close (lower than or equal) to those
found for methanol-water mixtures.

• The 5K difference in temperature does not seem to influence peak positions and
heights for pure water significantly. We then assume that differences between
water-methanol and water-ethanol pair correlation functions are not due to tem­
perature,
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• For the oxygen-oxygen and oxygen-hydrogen correlations the 1st and 2nd peaks
are slightly broader with the two highest concentration than for the corresponding
water-methanol mixtures.

• For the hydrogen-hydrogen correlations the depth of 1st minimum is less than with
water-methanol mixtures.

• For the xe=O.75 mixture, the 2nd minimum of all correlations are broader, deeper
and at larger separations, This might due to the larger size of intervening ethanol
moleeules.

Regarding the final item of the list above, we found in Section 6.2 that this particular
mixture was less stable than the rest of the mixtures. We have compared the results
from the NVT simulation with the results from the NVE simulation for the same mix­
ture. The temperatures of the simulations differ by only 4K. We find but small differ­
ences out to the first minimum, as can be seen from Figures D.39 - D.41. The correla­
tion numbers will therefore be less affected. From -3Å to 8Å, the NYT simulation
depresses all self-correlations, but there is however still a clear difference between the
NVE results for the 0.75 mixture and the results for the rest of the mixtures in this
region.
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Figure 6..8 Radialself correlation function g(r) for 0w - 0w in water-ethanol mixture at
293K sampled with NVT simulation. xe is etha.nol mole fraetion.
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6.3.4 Self-carrelatians for ethanol

All site-site correlations for the self interactions of ethanol are presented below in
Figures 6.11 - 6.20. The self correlations for ethanol are characterized by

• Except for the CH3 and CH2 correlations, all 1st peak intensities decrease with de­
creasing ethanol mole fraction.

• O-O, O-H, and H-H self-correlations for ethanol are very similar to the sanle cor­
relations for methanol.

• Broad maxima for correlations between CH3 alld CH2 groups indicate severai con­
tributions and varying orientation of ethyl group

• Bulk ethanol self-correlations for CH3-CH2, CH3-O, CH3-H, and CH2-CH2 all
show clear and narrow peaks that diminish rapidly - and ultimately disappear ­
with increasing concentration.

• The oxygen-oxygen peak at 2.75Å agree with experiments [9, 12] Integration of
1st peak yield 2.1, slightly above experiment, but consistent with the calculations
of Jorgensen, 1986 [27] who find 2.0, 0.97 and 2.1-2.2 for 00, OH, and HH re­
spectively.

• The peak positions of oxygen-carbon and carbon-carbon agree nicely with the re­
sults of Jorgensen [110]. Largest disagreement is with the CH3-CH2 correlation,
which is found at O.2Åcloser distance.

• The correlations for CH3-CH3, CH3-CH2, and CH2-CH2 all show broad and clear
minima centred near 7Å. This is not in total agreement with the 'sandwich-model',
if two layers should be present we find them to be separated by 8-9Å.
Note however the discussion of effects of simulating only the trans-conformer,
page 155.

CB3 - CB3 correlations: o

The broadness of the unsymmetric first peak at 4.3A, shown in Figure 6.11, indicate
that several site-site contributions contribute. For pure ethanol there might be one
dominant distance at 4.3Å and another near 5.1Å. The closest methyl-methyl distance
in the trans V-chain is -4.9Å (Figure 6.29, page 174) between non-hydrogen bonded
neighbours. The closest distance can be intrachain contributions or caused by a wind­
ing chain. With decreasing content of ethanol, the largest distance becomes less pro­
nounced and we observe a sharpening and tapering of the peak. This trend is also seen
with methanol, but not nearly as clear. Along with the sharpening, the nlinimum and
2nd maximum are also pulled inward. The minimum near 7Å contradiets the
'sandwich-distance' found by [173]. If two layers should be present, their separation
is about 9Å.
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CH3 - CH2 correiations: o

From Figure 6.12, we find a broad unsymmetric peak:at 4.3A and a narrow minimum
at 6.5 - 7Å. A small peak at -5.9Å for bulk ethanol gradually disappearing with de­
creasing ethanol concentration, indicate ane distinct contribution. Notice the similar­
itY with the CH3-CH3 correlations, not unexpected because of similarity in site­
parameters.

CH3 - O correiations: o

Figure 6.13 show a small maximum at 3.9A shrinking to a shoulder in aqueous mix­
tures. Also a sharp peak at 4.95Å is decreasing with decreasing ethanol concentration,
while a small shoulder develops simultanously to the right of the second peak. The
shape of the correlation function agree well with the TIP structure of bulk ethanol
[110]. Also peak positions agree exactly. We do however find a substantially higher
2nd peak. The 1st peak integrates to 2.7 in pure ethanol.

CH3 - H correlations:
From Figure 6.14, we see that bulk ethanol show three clear maxima at 3.15,5.4, and
6.95. The first maximum disappears completely in the most aquatie solution, along
with a decrease of the height of the 2nd maximum. This is parallell to the develop­
ment for theCH3-O correlations. The function show same kind of resemblance with
the corresponding correlation for methanol, Figure 5.24, page 124. The TlP calcula­
tions of Jorgensen yield a nearly structureless pair correlation function for CH3-H.

CH2 - CH2 corre!ations:
The peak at 4.65A shown in Figure 6.15 seem to be a superposition of at least two
distinct contributions of which the one at smallest separation dominate in bulk etha­
nol. Much of the structure beyond 1st peak is lost upon solution. The shape, height
and peak position agree very well with the calculations of [27, 110].

CH2 - O correlations: o

A symmetric 1st peak at 3.7A, which integrates to three for bulk ethanol, and a small
broad maximum centred at 5.5Å are the dominant features of this correlation, see Fig­
ure 6.16. Positions ofpeaks agree once again very well with [110], but OPLS calcula­
tions [27] yield a coordination number of 'about two' for liquid ethanol, while we
find exactly 3.0. 1st peak must be due to nearest neighbours. It decreases rapidly with
decreasing ethanol mole fraction accompanied with an increase and broadening of
2ndpeak.
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CH2 - H correlations:
Figure 6.17 show the twopeaks arising from the hydrogen bond accepting neighbour
and the hydrogen bond donating neighbour located at 3.0Å and 4.1Å respectively.
The intensities of both peaks are drastically reduced with decreasing ethanol content.
We observe a slight increase in intensity around 6.5Å as the 2nd peak disappears. The
positions appear to agree with [110], but the height of 1st peak: is significantly larger
in our calculation, just as we found with CH3-H above. However, Jorgensen, 1986 [27
] and we agree that the 1st peak integrates to one for pure ethanol.

o - O correlations:
The curves shown in Figure 6.18 are very similar to the corresponding curves for
methanol, with the 1st peak at nearly the same distance. Also the 1st minimum and
the 2nd peak agree, though there is a slight variation with some of the mixtures, see
Table D.5. The intensity of the 1st peak of bulk ethanol is significantly larger than for
bulk methanol, and the intensity for xe=O.25 is slightly lower than for the same mole
fraction methanol, Also the 2nd peak is less pronounced with ethanol than with
methanol; in other words - less structure beyond 1st minimum. The position of 1st
peak agree well with both experiment [9] and simulation [27], and the area integrates
to 2.1 for bulk ethanol, also in good agreement with experiment and simulation.

0- H correlations:
Figure 6.19 show a large peak at 1.85Å and a small peak at 3.. 35Å, both are close to
methanol peak positions, and are also in good agreement with OPLS-ethanol calcula­
tions of Jorgensen [27]. 1st peak integrates to one as expected with only one donating
neighbour. We notice the same differences with methanol in the intensities of 1st
peaks as described for O-O correlations above. Also note that while the disappearance
of second peak for ethanol is caused by a reduction in peak intensity, it is caused by a
filling of the 2nd minimum for methanol mixtures.

H - H correlations:
Figure 6.20 show a sharp and symmetric 1st maximum just as for methanol, appear­
ing at 2.4Å. The peak intensities of the two mixtures are clearly different, as de­
scribed above. Notice the dissimilarity of bulk ethanol and bulk methanol beyond 1st
minimum. Bulk ethanol is more structured than bulk methanol, but the structure is
lost upon mixing.
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6.3.5 Cross-carre/atians for water and ethanol.

The cross-correlations are characterized by

• The peak heights increase with increasing ethanol content.

• The positions of maxima and minima are nearly invariant with composition.

• The peaks are higher than for methanol-water mixtures, but when corrected for the
different number densities they vary within ±5% of the corresponding methanol­
water mixtures. TI1e exception is the xe=O.25 mixture, where combinations of oxy­
gen and hydrogen yield 1st peaks 10-15% higher than for the corresponding
methanol-water mixture.

• There is a strong similarity between oxygen and hydrogen cross-correlations in
water-ethanol and water-methanol mixtures.

0w .. CH3 cross-correla;tions: o

The two peaks at 3.75A and 5.GA seen in Figure 6.21 both decrease with decreasing
ethanol content. We notice that the two peaks nearly coincide with the peaks of the
CH3-O self correlation, which also decrease with decreasing mole fraction ethanol.
There is no similarity with the corresponding correlation function for methanol-water;
the peak appearsat a larger separation, and where there is a broad minimum in metha­
nol mixtures, the ethanol cross-correlation functions show a 2nd peak.

Comparing to Alagona and Tani [31], who use a differentmodeland a very dilute so­
lution, we find that the position of the 1st peak agree fairly well. They find also a
shoulderlsmall maximum at only a slightly shorter (-O.3Å) separation than our 2nd
peak.

0w" CH2 cross-correla~ons:

The peak position at 3.7A, Figure 6.22, correspond almost to the position of the peak
in the dilute solution [31], but while the dilute solution showa clear shoulder to the
right of the peak, we only find a small remnant. This correlation function has very
little structure beyond the 1st maximum. Once again we observe that both CH2-O self
correlations, which we found at the same distance, and cross correlations for CH2 de­
crease with decreasing ethanol content.

0w" 0e cross-correlations: o

As can be seen from Figure 6.23, the 1st peak appear at 2.75A, exactly the same posi-
tion as for cross-correlations of methanol and water. The heights are larger with etha­
nol, but the two alcohols showa strong qualitative similarity,
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0w - He cross-correlations:
These curves shown in Figure 6.24, are easily mistaken with the corresponding curves
for methanol. The 1st maximum appear at the same position, 1.85Å, the minimum at
2.6Å and the 2nd maximum at 3.35, only slightly to the left of the 2nd minimum for
methanol. The major difference is with the peak heights, which once again appear
higher for both peaks. Also there is a complete lack of structure beyond 2nd maxi­
mum where methanol correlations showa diminutive 3rd maximum,

H w - CH3 cross-correlations:
This pair correlation, Figure 6.25, is nearly structureless at all composistions, except
from a minimum at 6.15Å at all concentrations, and the two small maxima for the
most ethanol-rich mixture, This is very unlike the methanol-mixtures. As seen from
hydrogen on water, the methyl groups of ethanol are nearly randomly distributed.

H w - CH2 cross-correlations: The maxima at 2.95Å and at 4.2Å shown in Figur~
6.26, might b~ compared to the self correlations of ethanol hydrogen and CH2 at 3.0A
and 4.1-4.25A. Note also the similarity with the corresponding cross correlation func­
tion of methanol mixtures.

H - O cross-correlations.­-w-e
The correlation functions displayed in Figure 6027, show a strong resemblance with
the 0w-He correlation, with the De-He self correlation, and with the Hw-Om cross cor­
relation for water and metanol. Typically we find higher peaks than for methanol­
water, but lower than with the De-He correlation.

H w - He cross-correlatio,!s:
The 1st maximum at 2.4A shown in Figure 6.28, corresponds to the maximum posi­
tion for the methanol-water mixtures, but the intensity of the peak is higher as usuaL
There are also same minor differences with the 1st minimum beeing shallower and
the 2nd peak clearer.
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The assignment of ane particular structure (or preferably several) to this amount of
information is difficult as there are sa many distances to sort out. We start by compar­
ing to the proposed 'sandwich-model' [173], we see that we do not find the interlayer
distance of 7.0Å. In faet we only tind ethanol-hydrogen and water-oxygen in abun­
dance at this distanee from a central ethanol molecule.

Except for the interlayer distance, aur results are in reasonable agreement with the
proposed modeL It would perhaps have been very peeuliar if we had perfect agree­
ment given all the possible variations in bending and tilting of the ethyl group. We
see perhaps signs of a V-shaped trimer as in the model, but the parallellayers are - if
they exist - at a larger separation.

Table 6.8
Same intermolecular ethanol-etha.nol distances with a 'sandwich made!' for
ethanol-water mixtures from [173] compared to aur findinqs

pairs rmax (from [173]) rmax (our calculations)

De-Oe 4.95 (interlayer) 4.8 (2nd max)

CH3-CH3 7.0 (interlayer) 9.0 (2nd max)

CH3-CH3 4.5 4.3 (broad max)

CH2-CHz 4.0 and 4.5 4.6 (max from 4 to 5.5)

CH3-CHz 4.2 and 5.3 max from 4 to 5-6

CH2-O e 3.6 and 4.8. 3.7 and 5.3 (broad)

Let us try to examine the trimer closer from crude estimates of site-site distances as
given in Figure 6.29.

From 2nd maxima of the oxygen-hydrogen and the oxygen-oxygen self-correlations
for ethanol, we find a trimer angle of 1220 and 124 0 respectively. The close agree­
ment tells us that both hydrogen bonds are linear, but the peak width nevertheless
suggest a variation between -1100 and -1350. We will use a trimer angle of 123°.
The 0e-(OH)e distance is constant with deereasing ethanol mole fraction while the 0­
O-O angle gets slightly less. This imply that the H-bonds will become a little bent in
aqueous solutions.



Chapter 6 Mixtures o/water and ethanol - results and analysis 173

Sitting at a CH3-site, we find a neighbouring methyl within a distance of 4.0 - 4.5Å,
closer the more diluted the mixtures are. At nearly the same distance we also tind a
CH2-site. The 1st peaks are both broad, due to several contributions, and cover the
same radial region. Their distances are toa close to be the hydrogen bonded neigh­
bours, they must both be situated either on the same side of a chain, and/or belonging
to different polymers (or a neighbouring monomer).

The possibly shortestodistance between a CH3 and its nearest hydrogen bonded oxy­
gen neighbour is 4.9A from Figure 6.29. Th~s is the 2nd peak of the CH 3-O correla­
tion. A 2nd CH3-H peak is found at 5.4A, and could very well be due to the
hydrogen-cornpanion of this oxygen-site.

The shortest CH3-O distance is 3.7Å and is found from Figure 6.29 between two hy­
drogen bonded tran~-conformersin the same plane. If the peaks in CH3-O at 3.9Å and
in CH3-H at 3.15A are from nearest donating neighbour, the ethyl groups must be
rotated out of the 0-0-0 plane.

As seen from the CH2-site, another CH2 is found about 4.7Å apart. Also the CH3-site
is found at nearly the same separation. Since also the CH3-correlations show abun­
dance of CH3 and CH2 at the same distances, the two sites must belong to the same
ethyl group, and be roughly parallel to the central ethyl group. The closest hydrogen
and oxygendisappear in the mixtures, but looking at the cross correlations we tind
peaks at these positions, which could mean that ethanol is replaced by water. A shoul­
der build at the right side of 2nd CH2-O peak and also the 2nd minimum of CH3 is
filled.

Finally, placing ourselves at the oxygen site, we see a close and a far-lying hydrogen
at 1.85Å and 3.35Å respectively. The close hydrogen is the proton donor and the far
belong to proton accepting nea!est neighbour. CH2 is observed at 3.7Å (decreasing
with increasing water) an~ 5.5A, and CH3 is at distances 3.9 (disappearing with in­
creasing water) and 4.95A. The closest pair of distances to CH2 and CH3 can be the
nearest H-bonded neighbour in a chain. The outer pair can be a next nearest neigh­
bour. The CH2-O corre1ation at 3}Å are replaced partly by a CH2-Ow correlation,
and the CH3-O correlation at 3.9A by a CH2-O"v correlation in aqueous mixtures.
This is a further indication of ethanols in chain being substituted by water moleeules.

The distances contain detailed information about the geometry of a chain or ring, but
it is not easy to extract this in a manual proeess. It would of course have been smarter
to calculate angular correlation functions,
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We particu1arly wonder why there seem to be a 1ack of sites around 7.Å from the
ethyl-carbons in the bulk ethanol. The region is filled with hydrogen. For mixtures,
the region seems to be filled with water oxygens.
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Figure 6.29 Trans ethanol in trimer with some of the distances calculated. Imagine a back
and forth rotation of ethyl groups around OH-bond. Ethyl groups can not lie in
the same plane as the oxygens, because of overlap between CH3 and O.
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6.3.6 Site-site coordination numbers
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Tables 6.9 - 6.11 below Sl10W site-site coordination number calculated from integra­
tion to 1st minima of the respective pair correlation functions, see Tables D.4 - D.6.

An oxygen-oxygen coordination number of 2.1 for bulk ethanol give preference for
long chains or rings, or branched shorter chains. Experimental value is 1.7 [9], which
allows for more chain ends/monomers ..

The total number of oxygens coordinated to a central ethanol-oxygen increase from
2.1 in bulk ethanol to 2.7 in the x

e
=O.25 mixture, where nearly two of the oxygens

come from the surrounding water. The same increase was seen with methanol. With
increasing water content ethanol, like methanol, must accept an extra proton.

For water the total number of oxygen coordinated oxygens (regardless where they be­
lang) decrease from 4.9 in bulk water to 3.7 in the most ethanol rich mixture. This is
almost the same figures as for water in methanol mixtures, see Tables 5.9 - 5.11, page
132.

The sum of all oxygen-oxygen coordinations is found to have a maximum at ethanol
mole fraction 0.25.

In general, the site-site coordination numbers for ethanol are very similar to the corre­
sponding correlations for methanol mixtures. The differences relate to the CH3 and
CH2 sites, where nCH o for methanol is larger than both nCH o and nCH o for ethanol.
Also the cross correl:itions of methanol give n OCH larger th"b both nO~H and n OCH
for ethanol, but the cross correlations for Hw and eH3 in ethanol yield the

3
same coor:

dination numbers as for methanol. Finally the cross correlations yield nCB o for
methanol equal to n CH o for ethanol. The above observations hold for all mol~ frac-
tions of ethanol. 2

We find good agreement with the reported coordination numbers of Jorgensen[27,110
], except possibly for nCH o which is 'about two' with Jorgensen and 3.0 in aur calcu-
l

. 2
ation.
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Table 6.9
Site coordination numbers for water-water correlations in ethanol-water rnlxtures at
293K integrated to their respective minima.

Xe "00 n OH nHH

0.0 4.9 2.0 5.3

0.25 3.4 1.5 4.2

0.50 2.4 1.1 2.8

0.75 1.1 0.5 1.2

Table 6.10
Site coordination nurnbers for ethanol ..ethanol correlations in ethanol-water mixtures
at 293K integrated to respective minima.

Xe "C3C3 n C3C2 n e 30 n C3H "C2C2 n C20 n C2H "00 "OH "HH

0.25 6.9 6.3 0.9 0.4 7.6 0.8 0.2 0.3 0.2 0.5

0.50 9.3 9.6 1.4 0.7 11.0 1.6 0.4 0.9 0.4 1.1

0.75 11.9 11.5 2.1 1.0 12.5 2.4 0.8 1.4 0.7 1.7

1.0 14.0 13.1 2.7 1.5 13.5 3.0 1.1 2.1 1.0 2.2

Table 6.11
Site coordination numbers for water-ethanol cross correlations in bina.rymixtures at
293K, 1st index is water-sites. Ethanol-water coordination numbers are found by
multiplying the entries with NJNm

Xe n OC3 fi o C2 n o o "OH "He3 n HC2 nHO nHH

0.25 1.8 1.8 0.8 0.3 4.7 0.2 0.2 0.6

0.50 2.7 2.8 1.6 0.6 7.0 0.5 0.4 1.3

0.75 3.2 4.0 2.6 1.0 9.0 0.8 0.7 2.0
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6.4 Dynamical properties for ethanol/water mixtures.
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6.4. 1 Selt-diffusion for water and ethanol.

Table 6.12 and Figure 6.30 show calculated and experimental values [164, 174] for
self diffusion coefficients for water and ethanol. The experimental values are at 298K,
while the calculated values are at 293K. Comparing to the experimental results for
methanol-water mixtures at 25°C and 32°C, we expect that the qualitative features of
the curves for the ethanol-water mixtures will not be altered with a temperature re­
duction of only 5K, but that all values will be lowered.

Partington et al. [164] have reported values for Dw and De in the liquids for the tem­
perature range 15°C to 45°C. Their values at 25°C for water are higher
(2.44.10·5cm 2/s) and for ethanol slightly lower (1.011·10·5cm2/s) than the values of
Hertz and Leiter [174]. Interpolation to 20°C yield the values Dw=2. 16·10·5cm2/s and
De=0.89.10·

5cm2/s. We therefore expect that the experimental curves of Figure 6.30
would have been lowered by roughly 10% if taken at 20°C.

Table 6.12
Calculated and experimental selt diffusion coefficients for water and ethanol. The
NVE simulation is at 296K. Experimental values from Hertz and Leiter, 1982 [174] at
298K, calculated values at 293K, but see text.

Molefraction 0[10-5cm2/s] 0[10.5cm2/s]

ethanol NVT (at 293K) exp at (298K)
Xe water ethanol water ethanol

0.00 3.1 2.25

0.25 1.1 0.9 0.93 0.60

0.50 1.0 1.1 0.87 0.73

0.75 0.8 0.8 0.93 0.87
NVE 0.8 0.7

1.00 0.7 1.09

Cornpared to the interpolated liquid values of Partington et al. [164], and also to the
results of Hertz and Leiter [174], aur liquid values are too high by -40% for water
and too low by --20% for ethanol.
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A very prominent feature of Dw in the ethanol-mixtures as well as in the methanol­
mixtures is the steep descent in dilute aIcohol solution. Then the Dw in ethanol­
mixtures proceed nearly constantly with a weak minimum at xe=O.5, and increase
slowly in the ethanol rich mixtures. In methanol solutions on the other hand, Dw in­
crease to nearly its liquid water value in the very dilute water (methanol-rich) solu­
tion.

The seIf-diffusion coefficient of ethanol is on the otber hand more similar to that of
methanol in aqueous solutions, with a clear minimum near x

e or
m =0.2.

Turning to our calculated values, we see that for water all values, except possibly for
the xe=O.75 mixture, are slightly higher than experimental values. The general trend
of a steep decrease followed by a nearly constant development is reproduced. The
weak experimental minimum is not reproduced, but considering the uncertainties in
the values, they show a good agreement with experiments.

For ethanol our figures are reasonable, but we see an increase in De with reduced
ethanol mole fraction from xe=1.0 to xe=O.5 instead of a slow decrease.

The accuracy of the caIcuIations is assumed to be of the same order as for the
methanol-water calculations. This is probably not good enough to reveal the finer de­
tails of the variation with concentration, see discussion of accuracy in Subsection
5.5.1.

a)

2.5

1.5

b)

2.5

1.5

0.5'------l-----l-_..I...----J......---l-_..J--.-----l...-----l..--I
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O.51..-.-.....I.----l......-----I...-.L...-.--l--.........L------l--I..-.-....L....----J

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.30 Self-diffusion coefficients Dw for water (a) a.nd De for ethanol (b ) calculated
from NVT-simulation (*) at 293K compared to experimental results [174]
(solid lines) at 298K.
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The TIP4P-water yield too high values, also when mixed with ethanol, while the
OPLS-ethanol yield toa low values. It is tempting to ascribe the lowering of Dw in
ethanol rich mixtures and the increase of De in water rich mixtures to the influence of
the solvent-solute interactions. Again, the effect of only simulating a trans-ethanol
moleeule must be taken into consideration. This might very likely be a source of error
in the self-diffusion of ethanol. Intuitivelyone would believe that a molecule capable
of changing internal orientation would diffuse more readily than a molecule with a
completely rigid structure,

From Figure D.42 and D.43, we see that all the mean square displacements for water
yield straight and smooth curves, while the same curves for ethanol are not smooth.
The curves for mole fractions 0.5 and 0.25 are clearly convex also at long times,
which explain the higher diffusivities calculated for these mixtures. The validity of
the Einstein-relation for those curves is questionable.

In fig D.44, the mean square deviations of the NVT and NVE simulations at mole
fraction xe=O ..75 is compared. Even if the NVT simulation of this mixture is question­
able with respect to stability, see Section 6.1, the NVT and NVE simulations yield
values in close agreement.

6.4.2 Velocity auto correletion functions for water and ethanol

Figure 6.31 show the x-components of normalized velocity auto correlation function
for water in .mixtures with ethanol. Velocity auto correlation function for pure water
is similar to that at 298K, but the minimum near O.lns is deeper in mixtures with
ethanol than in mixtures with methanol. Also the behaviour in the back-scattering re­
gion is different with ethanol: there is a larger variation in depth with varying concen­
tration than with methanol. The molecular velocities in the xe=O.25 mixture seem to
change sign more often, and the velocities in the xe=O.75 mixture more seldom than
in the corresponding methanol mixtures. But remember that the 0.75 mixture has an
anomalous velocity distribution for water, Section 6.2.

For ethanol the minimum near O.3ns grows deeper with decreasing ethanol content.
Pure ethanol has a shallow and broad minimum. Notice a very small shoulder in the
same position as for methanol, but weaker.

The variation with direction is small, particularly for times less than 0.4 - 0.5, as is
seen from Figure 6.33.
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Figure 6.31 Normalized velocity auto correlation function (x-component) for water 'from
NVT-simulations of water-ethanol mixtures at 293K.
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6.5 Summary

We summarize below same of aur results from the NVT equilibrium simulations of
water and ethanol and their rnixtures. The results are presented and diseussed in the
previous sections. An important premise of aur simulations, is that ethanol is mod­
elled as the trans-conformer.

• None of the simulations are striet representatives of the canonieal ensemble, but
they seem to improve with time, as we also found for the methanol-water simula­
tions. In both cases this seem to be due to a slightly to weak temperature control
(toa large Q). With a smaller Q, a reduction in steplength must however be consid­
ered.

• Our thermodynamic caleulations are in general in good agreement with experi­
ments and simulations. The exception is the mixture with 0.75 mole fraetion etha- .
nol, which failed to reaeh a stable conformational energy in the NVT-simulation.
Thus the excess potential energy for this mixture has a positive value for this mix­
ture.
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• An additional simulation at constant energy was performed for this mixture .. This
simulation showed a more stable configurational energy..

• The calculated pressures are high, as for the methanol-water simulations e

• Also the structure data for the pure liquids agree with the experimental datae

• The radial positions of 1st maxima are not changed with varying composition.

• Site coordination numbers for methyl-methyl correlations decrease only by a fac­
tor of two when the ethanol mole fraction is reduced from 1.0 to 0 ..25. This was
also observed for methanol.. The hydroxyl interaction decrease more than number
density.

• For the mixtures we find evidence that water is replacing ethanol upon addition of
water to ethanol, as we found from the methanol-water simulations ..

• We found our calculated structure of the mixtures to be in reasonable agreement
with a proposed 'sandwich-model' for mixtures [173], but the interlayer distance
was not in agreement..

• For the structure, we could not expect to find the hydration cages observed in ex­
periments, simply because we did not simulate the dilute mixtures.

• The self-diffusion coefficients of water in mixtures of ethanol and water are found
to be reasonably reproduced, but the diffusjon is, as for the methanol-water mix­
tures, overestimated.

• The resultsfor self-diffusion of ethanol does not reproduce experimental trends,
even if the values not depart unreasonable far from experimental values .. One pos­
sible reason for this behaviour might be the lise of the trans-conformation only,
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Conclusion

We have implemented a multiple Nose-Hoover thermostat for separate temperature
control of translational and rotational degrees of freedom in equilibrium molecular
dynamics simulations. We have performed equilibrium molecular dynamics simula­
tions at constant energy (NVE) and constant temperature (NVT) for model liquids of
water, methanol, and ethanol, and for binary aqueous mixtures of the alcohols as de­
scribed in the introductory chapter. The results for thermodynamics, structure and
dynamics have been presented.

The stability -of pressure and energy, along with the numerical values of potential en­
ergy show that the systems are equilibrated. From the conserved quantities, and from
the distribution of energy between the various kind of degrees of freedom, the mix­
tures are in internal equilibrium. Finally, the radial correlation functions are consis­
tent with a liquid state.

Conservation of total energy is found to improve with increasing alcohol mole frac­
tion for both NVE and NVT simulations.

The agreement between aur NVT and NVE simulations is very good. Our results are
in overall good agreement with experiments, and with published Monte Carlo and
molecular dynamics simulations of the same modelliquids.

Temperatures for mixtures calculated in the NVE simulations are also very close to
the desired temperatures. Thus, if accurate temperatures are not needed, NVE simula­
tions are sufficient.

We deliberately do not name the thermostatted simulations 'canonical', since we find
that none of the simulations are strictly canonica1. They showa' slightly noncanoni­
cal' behaviour, which is due to a toa weak coupling between the system and the reser-
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voirs. They seemed however to be approaching the canonical distribution, but
whether this would ever have happened for the particular relaxation parameters we
applied is not clear ..

The estimation of appropriate relaxation parameters tumed out to be a tedious trial­
and-error proeedure. From the simulated results, our values are however not very
much out of range.

Comfortingly, it also seems that a simple weighted average of relaxation parameters
for the mixtures is sufficient. The analysis with respect to the canonical distribution
show no large differences between the liquids and their mixtures,

Except for the overestimation of fiuctuations, the thermodynamical and structural
data are not affected by the choice of surroundings. With the exception of self­
diffusion of methanol in the most water-rich mixture, the self-diffusion coefficients
are not affected by the thermostats either, The application of two separate heat baths
is therefore quite successful.

The heats of vaporizations are in good agreement with the experimental results. Ex­
cess configurational energies are compared to experimental excess enthalpies. They
are in good agreement for the methanol-water mixtures. For the ethanol-water mix­
tures the agreement get worse with increasing ethanol mole fraetion, the curve show­
ing both a maximum and a minimum.

We find the self-diffusion constants of water and methanol to be in reasonable aCCOf­
dance with experiments. The self-diffusion coefficients of ethanol disagree most with
experiments. This might be due to the rigid potential applied for ethanol. Water in
mixtures with ethanol, seem on the other hand not to be affected by its mixture com­
panion.

We found that the structures of methanol-water and ethanol-water mixtures were
similar. This not surprising, as the potential models are similar. They were found to
be consistent with a V-chain, but the presenee of other structures is however not ruled
out.

We also found that upon mixing, water tended to replace the nearest neighbors of
methanollethanol in the chains. The ethanol results must be interpreted with some
caution, though, since only one conformer is present.

Methyl-methyl coordination numbers decrease less than hydroxyl coordination num­
bers upon increasing the water content for both methanol and ethanol mixtures.
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Suggestions for future work

Contrary to be at the finishing line, we feel that the subject is not exhausted at all, and
that several topics remain unexplored. Given a fresh start, we would have continued
with some of the following:

For the method of thermostatting:

• An analysis of the effects of using one thermostat contra using several thermostats.
We have.not included this in a formal manner, but except for the adjustment of
heat bath masses, it is straightforward and easily performed within the existing
program.

• Finding a smoother method to select values for thermostat parameters. The trial­
and-error method usually applied is far to laborious if one wants to between mod­
els and liquids. The general recommendation is to select frequencies close to char­
acteristic frequencies. The connection between frequencies and heat bath masses
are on the other hand only through the approximate relations of Nose,

• We have assumed without discussion that the potential is sufficiently chaotic to
generate ergodic trajectories. The periodic boundaries condition together with the
Ewald sum might introduee restrictions upon the available phase space. Previ­
ously, only model systems of harmonic oscillators and non-polar Lennard-Jones
systems have been investigated with respect to ergodie behaviour. Any effect can
for instance be investigated by studying larger systems, different handling of long
range forces, or applying a potential with fractional charges increasing from zero.

• A refinement of the values we have found is not necessary for calculation of ther­
modynamics and structure, but if one wants to calculate quantities derived from
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fluctuations, the simulations must be canonica1. However, one might also consider
the application of other methods that is claimed to be canonical regardless of ther­
mostat coupling, for instance the recently proposed method of Hoover and Holian,
1996 [25].

For the nlolecular dynanlics calculational proeedure:

• Longer simulations are needed in the calculation of the diffusional properties.
Then the implementation of a faster version of the Ewald summation method, or
an alternative method is needed. An alternative method would still have to meet
the requirements of a simulation that is close to canonica1. The simulation times
applied in this study are however sufficient for the calculation of the other proper­
ties.

• A rigid calculation of the statistical errors in the self-diffusion constants is impor­
tant It is dangerous to interpret the causes to disagreement between calculated and
experimental results when the accuracy is not known. To a first approximation this
can be done with a ealculation of the varianee in tangent to the mean square dis­
placement curves.

For the systems:

• Smaller mole fractions of the alcohols must be simulated in order to reproduce the
minimum in excess energy, or to reproduce (if possible) the experimentally ob­
served hydration cages. This might require larger number of moleeules, and for the
hydration structure, different sampling techniques.

Other calculations we would have enjoyed:

• A hydrogen-bond analysis for ethanol and ethanol-water mixtures, both with re­
speet to total number of hydrogen bonds per moleeule, and fractions of n-mers in
the mixtures. This is not performed for for these systems.

• A ealculation of angular eorrelation functions. These functions makes it easier to
analyze the structures,

• The calculation of reorientational eorrelation funetions. They can be eompared to
spectroseopic experiments, and then provide a mean for validation of the modeL

• Calculations of free energy and entropy. Entropie quantities are to aur knowledge
not studied in simulations for water-ethanol mixtures, and eould provide useful in­
formation to the meehanisms of solvation.
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Regarding the potential models:

• On the basis of the above investigations for diffusion, excess energies and struc­
ture, it should be possible to get a stronger confidence to whether a flexible model
should be used for ethanol. As for the moment, we have a strong feeling that both
conformers are needed in order to get realistic results for dynamics and structure.
If sa, a Monte Carlo calculation is easier, but then the dynamical results are not
available. A faster calculation of long range forces is then needed to allow for the
increased computing time associated with flexible models due to the multiple
timescale.

• For methanol and ethanol there are few model potentials to choose from. Indica­
tions of a possible underestirnation of diffusion are seen for the OPLS models.
Also the TIP4P model has a weakness regarding the self-diffusion, and is known
to yield toa much structure in the oxygen-oxygen self correlations. We also found
extremely high pressures in the liquid water simulations at room temperature.
These deficiencies suggest that one still should look for improved model potentials
for water, preferably rigid, and for the alcohols.
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Appendix A

Proofofcanonicald~tribuuon

The proof that Equation (2.26), page 35 generates canonical states is due to Nose [18,
24] and is included for completeness. For simplicity, q and prepresents both
translational and rotational degrees of freedom, and Mi symbolizes the either the mass
or the moment of inertia of the system.

Let !=/(q,P,T\l, ...,Tl]J be the distribution of states in extended phase space
(Q,P,l1l' ...,11J). Each phase point move with velocity v=(q ,p ,Ttl' ...;r\T). The total time
derivative ofjis

df aj
- = -+ V • (VJ)dt at (A.l)

where V = [aqa , ... , aqa 'a~ , ... , a~ 'a~ , ... , a~ ] is the gradient. If the flow of phase
11 .Ik r it rfk "'l "'k

points is regarded as a fluid flow, the continuity equation for a volume in phase space
applies

aj
_ -- n . (vf\ --f(n o v,- v · (\ll\at ~ v YJ ) = J \ V') • V J)

Combining Equations (A.l) and (A.2) and expanding in components yield

: =-L (aqa ... 4ij+ a~ .. ·Pii)J- L (a~.· iji)!
ij lJ r: lJ j"/J

(A.2)

(A.3)

Al



A2 Appendix A Proofof canonical distribution

Now, substituting the equations of motion (2.26)

df (iJ Pi) a {au })--- _._+_0 ---P"1]' f
dt - L iJq·· M·· ap·· aq·· l) lij ZJ lJ lJ l)

(
a l {pij })

- ~ a'fJj' Qj ~Mij- giBT f (A.4)

where the only surviving term is

: = L (apa .. ·Pij1]j) f = fLgjTJj (A.5)
ij lJ j

For an isolated system no 'frictional force' appears, and (A.S) reduce to Liouville's
theorem, df/dt =0. The microcanonical distribution function then follow as a conse­
quence. Next defining a function corresponding to the total energy of the system

P2.
- _ ~ II l" 2
8(q,p,1j) - LJ2M.. + U(q) + 2LJQ/17)

i) lJ j

with time derivative

di "( at . as .) ~ (as .)dt = L-t. aq" .qij + an .. ·Pi} + L...J an .. 1]j
ij lJ Yl) } '/)

( eu" Pi) Pij {au* }) (p~ )- 1]"------ - - + p··TJ· + 1]' -- g-k T- L laq·· M·· M·· aq" l) ) L) LM" l B
ij II l) lJ II } i lJ

=-L1]jgjkBT
}

Equating (A.5) and (A.?) yield

Idf 1 di
1dt =-kBT dt

which integrates to

(A.6)

(A.?)

(A.8)

(A.9)

which has the form of a canonical distribution function. To make the formal identifi­
cation with the canonical ensemble, we must however assume that the trajectories in
the extended system as generated by Equation (2.26), is ergodie. This is necessary if
we are to say that ensemble averages equaIs time averages, the essenee of statistical
mechanics.



AppendixB

Madel data and simulatian details

Table 8.1
Geometry and physical data of TIP4P-water, OPLS-methanol, and OPLS-ethanol. X
denotes CHs/CH2

for methanol/ethanol and H for water.

water methanol ethanol

<X-O-H 104.52 108.5 108.5

< C-C-O - - 108

LOM [Å] 0.15 - -

LOH [Å] 0.9572 0.945 0.945

Lea [Å] - 1.43 1.43

Lee [Ål 1.53

Moment of inertia
lxx [g~2] 1.02054.10-23 2.823468.10-23 1.212316.10-23

Irv [g!,\2] 2.93870.10-23 2.945919.10-23 9.099199.10-23

zz [gA2] 1.91816,10-23 0.122451.10-23 7.886886.10-23

Mass of moleeule, [gl 2.99167,10-23 5.32082.10-23 7.64995.10-23

Mass of molecule[amu] 18.02 32.0 46.1

Bl



2 Chapter B Model data and simulation details

Table 8.2
Potential parameters for madel of water (TIP4P) and methanol (OPLS).

model site (J [Ål Eiks [Kl q/e

O 3.154 78.05 O
TIP4P

H O O 0.52

M O O -1.04

CH3
3.775 104.22 0.265

OPLS-
methanol O 3.070 85.59 -0.700

H O O 0.435

CH3
3.905 88.11 O

OPLS- CH2 3.905 59.41 0.265
ethanol

O 3.07 85.59 -0.700

H O O 0.435



Chapter B Model data and simulation details

Table 8.3
Simulation conditions for water-ethanol mixtures.

NVT NVE

Timestep rfs] 0.5

Total steps 160000 (= 8Ops)

Equilibration steps 25000
velocity scaling

System geometry Cubic simulation box with PBC

Total number of molecules 256

Mole fraction alcohol 0.0,0.25,0.50,0.75, 1.0

No. ethanol molecules O, 64, 128, 192, 256

WIM: 19.7305,21.3739,22.9346,24.4200,25.8781
Lengths of box, L [Å]

WÆ: 19.7233,22.5931,25.0833,27.2344,29.1666

Long range forces Ewald sum, K = 51L

Initial start fcc-1attice
Maxwell distributed linear/angular velocities

Numbers of heat res. 2 (trans and rot) .[1G:~ < 'ol ~0'i"')lfI ' ;~.."". ' ~'~~~ ";' J:. ~ ~~~ ~ " "::'~., ' .<".
water .'~ e", (, '~': ~ . . ~-' -. :II(;i ~

't trans [fs] methanol 25 , . .. .. , ' ..
25 - l

. .
o

ethanol 50 I ~;~ " . ~ ~ .~~ ... . ' '. , ->.1r. '
I~ . ;;;,. ' .:.o,.~ . <.,' . -'Il,'

water
r: ~ <f; '; ~ ...., "~""'"". :' , ":" .

20 . .. . '.
't rot rfs] methanol "

_.
23

I~'~ J ; c
-;

- I
ethanol 50

. . . '""... ,,.. ' .'" ll/ -s : "
Data output each 100th step

Structural sampling each 150th step

Coarse grain intervals 450, each based on 300 steps

Potential model TIP4P-water/OPLS-alcohol

3



Appendix C

Further results water-methanol
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O
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t [ns]

Figure C.1 Instantaneous totaltemperature Ti of purewater from NVE simulation. Each
100th step is plotted.

Cl



Appendix C Further results water-methanol C2

1600140012001000800600400200
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o
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1600140012001000800600400200
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250 '-----__....l....-__.......l....-__----'- ..&.....-__--.L-.__---L. ..l----__---J

o

300~---1LI1

output points

Figure C.2 Instantaneous translational (Tk) and rotational (Tr) temperatures from NVE
simulation of pure water. 100 units on abcissa = 10000 timesteps.
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Figure C.3 Exess potential energy Ep for water-methanol mixtures at 298K as function of
methanol mole fraction xm' Straight line is for ideal solution, * are calculated
values.
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Figure C.4 Conservation of extended system energy Eext in NVT-simulation. xm is
methanol mole fraetion.
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Figure C.5 Conservation of extended system energy in NVE-simulation. xm is metha.nol
mole fraetion.



Appendix C Further results water-methanol C4

-1293.5 r------r----r------.-----,------,------,.....--------,

-1294
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-1295
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Figure e.G Typical progress of extended system energy. Shown above is the last
135000 steps of the NVE-simulation of the equimolar rnixture of water and
methanol displayed in Figure C.5. Note the finer vertical scale.



es Appendix C Further results water-methanol

Table C.1
Rotational and translational temperature for each species from NVE simulation.
Averages and standard deviations in round brackets calculated from tabulated values
with one decimal taken at intervals of 100 timesteps. There is thus a slight
disagreement between T{'(lix above and mixture temperature as given in Table 5.1.
Standard deviation is for dlstribution of single points.

water methanol
xm

<Tk> <Tr> <T~ <Tr>
<Tmix>

0.0 307.8 (14.8) 309.5 (14.1) " . o t. I ~ :
~o'

0' 0' ~ 308.6 (9.3)
-r , :.. . , ' n o" o~ o,", . .

0.25 301.6 (16.8) 298.4 (16.7) 300.2 (29.0) 300.3 (31.1) 300.0 (9.2)

0.50 297.9 (20.1) 295.5 (19.9) 297.1 (20.4) 296.2 (19.8) 296.6 (8.5)

0.75 299.5 (29.9) 299.8 (27.6) 299.4 (16.6) 300.3 (15.8) 299.7 (8.7)

1.0
.~ '.."'" "0 -' j~'" 'JG;; 0 '~7i~"" . 305.4 (13.5) 305.4 (14.2) 305.3 (8.9)
.,' Ij.~ - ;."~~. I,·... ' :-'~ ... :~,.~ ...,.r:ir,0

Table C.2
Rotational and translational temperature for each species from NVT simulation. See text of

Table C.1 above.

water methanol
xe

<Tk> <Tr> <Tk> <Tr>
<Tmix>

0.0 298.1 (15.2) 297.0 (15.3) I:J} "~ " ""o:"'~ ;~~r:~rA:~:.:1. o~ '" "i;~ o . 297.5 (10.9)
~. ~ • •: .", w ••• • :~,~~ .~ : ~.-

0.25 298.1 (17.7) 297.6 (17.7) 298.6 (29.4) 297.7 (29.6) 297.8 (10.6)

0.50 297.6 (21.7) 296.8 (21.7) 298.1 (21.5) 298.8 (21.3) 297.7 (10.6)

0.75 297.5 (30.4) 297.1 (31.1) 298.6 (17.8) 298.6 (16.9) 298.2 (10.5)

1.0 '\~J\~ ~~. o:&~~:' I ~: ,. -.f ]' 298.2 (15.4) 297.9 (15.3) 298.0 (11.0)li,t :., " o~' ~ ':~ ~;~'.; '."
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0.50.40.30.2

0.03

0.025

0.02

N(v) 0.015

TI

0.01

0.005
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v, /vmax

Figure C.7 Velocity distribution N(v)/n of 64 methanol molecules in a NVT-sirnulation of a
25% rnixture with water at 298K. n is number of methanol moleeules. Smooth
line is Maxwell distribution. vma,,=2000m/s. Structural sampling each 150th
step. Uncertainty in x..direction IS 0.01.
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N(v)
0.015
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-0.5 -0.4 -0.3 -0.2 -0.1 o 0.1

», /vmax

Figure c.a Velocity distribution N(v) of 256 metha.nol molecules in a NVT-simulation of
pure methanol. See text to Figure C.7.
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0.50.40.30.2

0.02

0.025 r---------,...---~----r----r-----r--_,__-___r--_.__--r___-_,

0.005

0001

0.015

N(v)

n

-0.4 -0.3 -0.2 -0.1 o 0.1

Vx /vmax

Figure e.g Velocity distrlbutlon N(v) of 64 water molecules in an NVT-simulation of a
750/0 mixture of meta.nol in water. n is number of water moleeules. See text to
Fig C.?
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0.005
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TI

0.02

Figure C.10 Velocity distribution N(v) of 256 water molecules in a.n NVT-simulation of
pure water. n is number of water moleeules. See text to Figure C.7.
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Table C.3
Linear momentum per mass, Pl;:' and translational energy per mass, K~, for each direction

with NVT-simulations.

x-direction y-direction z-direction
xm

px[10-13m/s] 2Kx [J/g] Pi10·13m/s] 2Ky [J/g] pz[1o·
13m/s] 2Kz [J/g]

O -2.501 2.302 136.9 11.8 3.021 2.548 136.9 11.9 7.938 6.622 137.2 11.5

0.25 -3.245 3.398 115.2 9.9 0.178 2.696 114.4 9.8 3.548 3.652 115.0 10.0

0.50 -1.460 2.609 98.5 8.2 -3.024 2.172 98.5 8.3 5.662 4.071 98.8 8.2

0.75 -0.968 2.328 86.5 7.4 -1.118 1.860 87.1 7.6 -1.302 1.328 86.4 7.5

1.0 -1.057 1.699 77.1 6.6 -2.578 3.458 77.0 6.3 0.661 0.997 77.1 6.7

Table C.4
Linear momentum per mass, p~, and translational energy per mass, K~, for each direction

from NVE-simulations.

x-direction y-direction z-direction
xm

px[1o·13m/s] 2Kx [J/g] Py[1o·
13m/s] 21\ [J/g] p

z[10-
13m/s] 2Kz [J/g]

O 1.096 2.120 140.8 11.7 1.942 2.969 140.6 11.8 3.030 2.771 141.2 12.2

0.25 2.855 2.646 115.8 9.4 -2.636 2.427 116.0 10.0 4.411 2.474 115.4 9.6

0.50 -6.140 4.204 98.3 8.1 1.236 2.142 98.1 7.9 1.112 1.431 99.1 7.8

0.75 0.137 1.246 86.8 7.2 2.775 2.290 86.8 7.4 0.492 0.699 86.9 7.4

1.0 1.266 1.325 78.9 6.7 -3.624 2.073 78.8 6.3 -0.981 1.113 78.5 6.6
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Figure C.11 X-component of linear momentum (top) and translational energy (bottom)
from NVE simulation of an equimolar mixture of water and methanol. m is
system mass.
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Table C.5
Mean and standard deviation of angular momentum per mass, L sand rotational energy

per mass, Rs in NVE-sirrlulations. xm is mole fraction methanol.

Xm x-direction y-direction z-direction

Lx[10·11m2/s] 2Rx[J/g] Ly[10·11m2/s] 2Ry[J/g] Lz[10·11m2/s] 2Rz[J/g]

O 0.713 44.7 141.9 11.9 1.384 71.9 143.2 11.9 2.254 60.0 141.4 11.6

0.25 0.072 104.6 115.7 9.8 -0.219 113.3 115.2 9.5 -0.258 45.6 115.6 9.6

0.50 1.136 116.6 98.6 8.3 -0.463 119.9 97.9 8.3 -1.378 38.5 98.7 8.0

0.75 0.591 125.7 87.5 7.1 1.042 125.6 87.5 7.4 2.322 32.1 86.7 6.9

1.0 -0.406 130.8 78.9 6.9 -0.106 131.1 78.7 6.6 0.206 26.8 78.9 6.6

Table C.6
Mean and standard deviation of a.ngular momentum per mass, L sa.nd rotational energy

per mass, Rs in NVT-simulations. xm is mole fraction methanol.

Xm x-direction y-direction z-direction

Lx[10·
11m2/s]

2Rx[J/g] L [10.11m2/s]
2Ry[J/g] lz[1 0.11m2/s]

2Rz[J/g]y

O 0.515 41.6 137.1 11.6 0.323 70.3 137.4 11.9 1.084 57.2 137.5 11.7

0.25 -3.469 100.2 114.8 10.3 -3.798 105.7 115.6 9.8 1.972 46.2 114.9 9.8

0.50 -2.065 113.8 99.0 8.5 -1.373 121.5 98.9 8.6 -0.472 37.8 98.6 8.4

0.75 -1.773 118.4 86.6 7.4 1.950 130.6 86.3 7.4 1.721 33.2 86.9 7.5

1.0 -2.855 127.5 77.4 6.5 2.784 136.5 77.7 6.7 0.505 24.8 77.2 6.9
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Figure C.17 Running averages of 1st (tap) to 5th (bortom) moments of translational
energy for a NVT simulation of pure water. 8irnulation conditions as in table
B.3, page 3. Averages based on insta.ntaneous values of energy each
150th step. Figure cover whole simulation, and va.lues are divided by
theoretical va.lues, see Equation (3.39).
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Figure C.18 Running averages of 1st (tap) to 5th (bottom) moment oftranslational energy
for a NVT simulation of 0.25 mole fraction methanol in water. 8imulation
conditions as in table 8.3, page 3. Averages based on instantaneous
va.lues of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, see Equation (3.39).
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Figure C.19 Running averages of 1st (top) to 5th (bottom) moment of tra.nslational energy
for a NVT simulation of 0.50 mole fraction methanol in water. 8imulation
conditions as in table B.3, page 3. Averages based on instantaneous
values of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, see Equation (3.39).
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Figure C.20 Running averages of 1st (tap) to 5th (bottom) moment of translational energy
for a NVT simulation of 0.75 mole fraction methanol in water. 8imulation
conditions as in table 8.3, page 3.Averages based on instantaneous
values of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, see Equation (3.39).
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Figure C.21 Running averages of 1st (top) to 5th (bottom) moment of translational energy
for a NVT simulation of pure metha.nol. 8imulation conditions as in table 8.3,
page 3. Averages based on instantaneous values of energy each 150th
step. Figure cover whole simulation, and values are divided by theoretica.1
values, see Equation (3.39).



Appendix C Further results water-methanol cis

1200

1200

1200

1000

1000

1000

800

800

800

600

600

600

400

400

400

200

200

200

_2L...-----..l----...L....----.....L.--------L....----........L.....-------J

500°r---------r-----,.------r----,.---------,---------,

_500L.......----..J.:....----...l----.....J.-,..---......I.....--------'---------l

500°.....--------r-----~-------r----...,....---------.,.------,

O.99.A- ~ ___L...._ ___L...._ ___L...._~:......__......L.._ ___l

2°.....-__---.--- ..-__----.-- .-----__-----r--__----.

1200200
-500 L-.----r---_...J.- ...l- """"'--- ......L...- ----'-- ----l

O< 105 ""

200 400 600 800 1000 1200

Number of samples, IOO=15000timesteps=O.0075ns

Figure C.22 Running averages of 1st (tap) to 5th (bottom) moments of rotational energy
for a NVT simulation of pure water. 8imulation conditions as in table B.3,
page 3. Averages based on instantaneous values of energy each 150th
step. Figure cover whole simulation, and values are divided by theoretica.1
values, see Equation (3.39).
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Figure C.23 Running averages of 1st (tap) to 5th (bottom) moment of rotational energy for
a NVT simulation of 0.25 mole fraction methanol in water. Simulation
conditions as in table B.3, page 3. Averages based on instanta.neous
values of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, see Equation (3.39).
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Figure C.24 Running averages of 1st (top) to 5th (bottom) moment of rotational energy for
a NVT simulation of 0.50 mole fraction methanol in water. 8imulation
conditions as in table B.3, page 3. Averaqes based on lnstantaneous
values of energy each 150th step. Figure cover whole slrnulatlon, and values
are divided by theoretical values, sea Equation (3.39).
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Figure C.25 Running averages of 1st (top) to 5th (bottom) moment of rotational energy for
a NVT simulation of 0.75 mole fraction methanol in water. 8imulation
conditions as in table B.3, page 3.Averages based on instantaneous
values of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, see Equation (3.39).
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Figure C.26 Running averages of 1st (top) to 5th (bottom) moment of rotational energy for
a NVT simulation of pure methanol. 8imulation conditions as in table 8.3,
page 3. Averages based on instantaneous values of energy each 150th
step. Figure cover whole simulation, and values are divided by theoretical
values, see Equation (3.39).
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Figure C.27 Running averages of 1st (tap) to 5th (bottom) moment of reservoir
tra.nslational energy for a NVT simulation of 0.50 mole fraction methanol in
water, 8imulation conditions as in table B.3, page 3. Averages based on
instantaneous values of energy each 150th step. Figure cover whole
simulation, and the values are divided by theoretical values, see Equation
(3.39).
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Figure C.28 Running averages of 1st (tap) to 5th (bottom) moment of reservoir rotationai
energy for a NVT simulation of 0.50 mole fraction methanol in water.
Simulation conditions as in table 8.3, page 3. Averages based on
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simulation, and va.lues are divided by theoretical values, see Equation (3.39)
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Table C.7
Radial distance and height of 1st and 2nd maximum a.nd of 1st minimum for site-site self

correlations of water with varying methanol content. Results for 298K from
NVT-simulations with simulation conditions as given in table 8.3.

Xm 9 1.maximum 1.minimum 2.maximunl

r[Å] Height r[Å] Depth r[Å] Height

O 90 0 2.8 2.99 3.5 0.81 4.55 1.11
90 H 1.85 1.46 2.5 0.21 3.25 1.51
9HH

2.4 1.24 3.0 0.75 3.8 1.17

0.25 90 0 2.8 4.09 3.45 0.80 4.55 1.13
90 H 1.85 2.04 2.55 0.23 3.25 1.85
9 HH

2.35 1.64 3.05 0.84 3.8 1.27

0.50 900 2.8 5.48 3.5 0.75 4.7 1.14
90 H 1.85 2.82 2.55 0.25 3.25 2.25
9HH 2.40 2.16 3.1 0.95 3.75 1.38

0.75 90 0 2.75 6.16 3.55 0.53 5.15 1.12
gOH 1.85 3.20 2.55 0.23 3.3 2.31
9HH 2.45 2.37 3.15 0.82 3.75 1.32
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Table C.S
Radial distance and height of 1st and 2nd maximum and of 1st minimum for site-site self

correlations of methanol with varying methanol content. Results for 298 K 'from
NVT-simulations with simulation conditions as given in table B.3.

A weak maximum appearing in geo near 5 Å not regarded as a separate maximum, but
see text on page 119.

Xm 9 1.maximum 1..minimum 2.maximum

r[Å] Height r[Å] Depth r[Å] Height

0.25 9c c 4.1 2.11 6.05 0.71 7.75 1.13
geo 3.65 1.60 6.75 0.89 7.95 1.08
9CH 2.9 0.62 2.95 0.56 4.0 1.24
900 2.85 1.66 3.35 0.38 4.75 1.39
90 H 1.9 1.69 2.6 0.17 3.5 0.91
QHH 2.55 1.58 3.2 0.52 - -

0.50 gcc 4.1 2.02 6.0 0.72 7.65 1.11
geo 3.65 1.62 6.35 0.87 8.0 1.06
9CH 2.95 0.68 3.1 0.64 4.05 1.20

~oo 2.8 2.06 3.35 0.37 4.75 1.28
gOH 1.9 2.07 2.6 0.16 3.45 0.91

HH 2.5 1.90 3.3 0.45 - -

0.75 9c c 4.1 1.97 5.9 0.71 . 7.8 1.14
9c o 3.65 1.75 6.55 0.87 7.75 1.06
9CH 2.90 0.81 3.25 0.71 4.2 1.22
90 0 2.8 2.59 3.45 0.35 4.85 1.27
90 H 1.9 2.68 2.55 0.16 3.45 0.97
9HH 2.5 2.22 3.3 0.44 - -

1.00 9c c 4.1 2.01 5.85 0.71 8.0 1.17
9c o 3.60 2.02 6.45 0.88 7.75 1.07
9CH 2.90 1.05 3.3 0.75 4.2 1.25
90 0 2.8 3.60 3.45 0.28 4.95 1.24
90 H 1.9 3.75 2.65 0.14 3.45 1.03
9HH 2.5 2.92 3.4 0.30 - -
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Table c.s
Radial distance and height of 1st and 2nd maximum a.nd of 1st minimum for site-site

cross-correlations of water with varying methanol content. Results for 298 K from
NVT-simulations with simulation conditions as given in table 8.3.

Xm 9 1.maximum 1.minimum 2.maximum

r[Å] Height r[Å] Depth r[Å] Height

0.25 90c 3.60 2.03 5.15 0.81 7.35 1.06
90 0 2.75 2.47 3.40 0.53 5.25 1.18
90 H 1.90 1.77 2.60 0.21 3.40 1.23
9Hc 4.10 1.32 5.65 0.86 7.70 1.03
9HO 1.80 1.62 2.55 0.15 3.25 1.19
9HH 2.45 1.48 3.15 0.60 - -

0.50 90 c 3.55 2.27 5.25 0.83 7.50 1.11
900 2.75 3.36 3.45 0.54 5.20 1.19
90 H 1.85 2.55 2.60 0.24 3.45 1.43
9HC 4.10 1.40 5.55 0.87 7.35 1.07
9HO 1.80 2.21 2.55 0.16 3.25 1.43
9HH 2.45 1.96 3.25 0.64 (3.80) (0.97)

0.75 90 c 3.55 2.78 5.00 0.81 7.45 1.13
900 2.75 4.72 3.60 0.46 5.30 1.18
90 H 1.85 3.69 2.60 0.24 3.45 1.68
9HC 4.10 1.56 5.55 0.85 7.70 1.07
9HO 1.80 3.10 2.55 0.17 3.20 1.79
9HH 2.45 2.58 3.20 0.61 (3.95) (0.99)



Appendix C Further results water-methanol C30

10000r--------,------..,...---........-----------.

9000

-- Xm = 1.0
- - - - Xm =075
.. - ... " x

m
=0.5

- . - . - xm =0.25
7000

80001---------.

/'
,/

,/
,/

,/

,/

/'

/'
/'

,/

,/ /'
,/ /'

.,;'

/' /'

,/ .,;'
/'

,/

,/

4000

3000
/'

/'
/'

/'
,/

/'
,/

/' ""2000 /'
,/

/'

/' ./

5000

.,... .......
,/ ./ .-'

/. /'./ .0" .' •• _.-'- _o_o,/ /' _0-'-'- ._0--
/ ,;"". .,.".... -- ........

1000 ~ ~ /' .-:: ::::::: ::.... _.:::: :::::::::::::::: :: : .- .- .

O...::~..~:~:,:~:.:~" ... ,.... :..:-.

6000
MSD

o 0.005 0.01 0.015

t(ns)

0.02 0.025

Figure C.32 Mean square displacement for methanol in different environment. Upper
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Figure C.34 x, y, and z-components of normalized velocity auto correlation ·function 'P(t)
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Figure C.35 x, y and z-components of normalized velocity auto correlation function 'P(t)
for pure methanol from NVT-simulation.



C33 Appendix C Further results water-methanol

0.25

0.2

0.15

0.1

'PxCt)
0.05

o

/

-0.05 I, I.

-0.1
o 0.5 1.5

t [ns]
2 2.5

X 10-3

Figure C.36 Normalized velocity auto correlation function \JIx(t) for water in an equimolar
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Figure C.37 Normalized velocity auto correlation function \JI~(t) for methanol in an
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Figure D.1 Instantaneous translational (Tk) and rotational (Tr) temperatures for water
from NVT simulation of 0.75 mole fraction ethanol in water.
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Figure 0.2 Instantaneous translational (Tk) and rotational (T r) temperatures for ethanol

from NVT simulation of 0.75 mole fraction ethanol in water.

Table 0.1
Rotational and translational temperature for each speeies from NVT simulation. Averages

and standard deviations in round brackets calculated from tabulated values with ane
decimal taken at intervals of 100 timesteps. There is thus a slight disagreement between
T . above and mixture temperature given in table. Standard deviation for distribution of

mlx . I .
smg e points

water ethanol
xe

<Tk> <Tr> <Tk> <Tr>
<Tmix>

0.0 293 .3 (13.9) 292.6 (13.8) I~~ "" ;~' ~~·C· I ~~~~;;!:~:#;,! 292.9 (9.9)
• J •..,;,,: . •
. .

0.25 293.1 (15.7) 292.2 (15.8) 293.5 (27.7) 294.4 (27.2) 292.9 (9.8)

0.50 293 .8 (19.7) 290.3 (19.4) 292.8 (19.3) 295.9 (19.3) 293.2 (9.9)

0.75 292.6 (27.9) 293.9 (27.6) 293.3 (16.3) 292.6 (16 .1) 293 .0 (9.7)
NVE 295.2 (28.4) 293.6 (27.5) 296.3 (15.5) 297.4 (15.0) 296.1 (8.3)

1.0 fi1' .:.-:t:":if.'· ~~".!'~"?"'f,,:" 293.3 (13.9) 293.1 (13.9) 293.1 (9.9)
. . ~ j.' .,0• •.p': ' . :It":;".
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Figure 0.3 Translational order parameter p for a NVT simulation of ethanol and water,
xe=O.75. Every 10Dth steps are plotted. Inset shows the first 30000 steps.
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Figure 0.5 Contributions to energy, Ei' for pure ethanol NVT simulation. Ek + Er is total
kinetie energyfor the moleeules, Eres is sum of potential energy of the two
reservoirs, Ep.ot is total configurational energy, and Eext is total energy of
extended system. Reservoir kinetie energy not shown, out included in Eexr
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Figure 0.7 Contributions to energy for a NVE sirnulation of 0.75 mole fraction ethanol
mixture with water. See text of Figure 0.5 above.

2

1.8

1.6

1.4

Ek,res
1.2

[J/g] 0.8

0.6

0.4

0.2

00 0.05 0.06 0.07 0.08

Figure 0.8 Sum of resevoir kinetie energy Ek res for quimolar mixture of water and
ethanol. '



D7 Appendix D Further results water-ethanol

0.50.40.30.2

0.01

0.005

0.04

0.035

0.03

0.025

N(v) 0.02

n
0.015

OL....---......-.I....~=-.L....-.._........L..---L.------I...-------l-_----I...-__L.-......:::::::a -.I

-0.5 -0.4 -Q.3 -0.2 -0.1 o 0.1

Vx /Vmax

Figure 0.9 Velocity distribution N(v)/n of 64 ethanol molecules in a NVT simulation of a
25% mixture with water. n is number of methanol moleeules. Smooth line is
Maxwell distribution at T=293K. vmax=2000m/s. 8tructural sampling each
150th step. Uncertainty in x-direction is 0.01.

0.03

0.025

0.02

0.015

N(v)

n

0.035,---,---,.-----,----,-----r=---r-----r---;----r---,

0.01

0.005

0.50.40.30.2
OL.----.-::=;~.L....-..-........L..---"-------'----"-----'----I...---==---_---I

-0.5 -0.4 -0.3 -0.2 -0.1 o 0.1

». /vmax

Figure 0.10 Velocity distribution N(v) of 256 etha.nol molecules in a NVT simulation of
pure etha.nol. n is number of methanol moleeules. See text to Figure 0.9.
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Figure D.11 Velocity distribution N(v) of 64 water molecules in a NVT simulation of a 75%
mixture of etha.nol in water. n is number of water moleeules. See text to Fig
0.9
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Figure 0.12 Velocity distribution N(v) of 128 water molecules in a NVT sirnulation of a
equimolar mixture of ethanol in water. n is number of water moleeules. See
text to Fig 0.9.
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Figure 0.13 Velocity distribution N(v) of 192 water molecules in a NVT simulation of a
250/0 mixture of ethanol in water. n is number of water moleeules. See text to
Fig 0.9.
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Figure 0.14 Velocity distribution N(v) of 256 water molecules in a NVT simulation of pure
water at 293K. n is number of water moleeules. See text to Figure 0.9
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Table 0.2
Linear momentum per mass, ~, and translational energy per mass, Kr} for each direction

for NVT-simulations of water and etha.nol.

x-direction y-direction z-direction
xe

px[10-13m/sl 2Kx [J/g] Py[1o·
13m/sl 21\ [J/g] Pz[10-

13m/s] 2Kz [J/g]

O 5.032 (4.633) 135.3 (11.6) 3.853 (2.833) 135.1 (11.5) -8.355 (6.810) 134.6 (11.9)

0.25 -7.500 (3.908) 97.1 (8.2) -1.540 (2.205) 96.8 (8.2) -4.589 (3.203) 97.2 (8.1)

0.50 1.628 (2.416) 75.7 (6.4) 0.871 (2.616) 75.9 (6.4) 1.449 (2.355) 75.6 (6.5)

0.75 -2.149 (1.943) 62.1 (5.4) 0.609 (1.258) 62.3 (5.4) -3.312 (3.905) 62.0 (5.2)
NVE 1.076 (1.329) 62.9 (5.5) 0.082 (0.516) 63.4 (5.4) 0.603 (1.332) 62.6 (5.5)

1.0 2.066 (1.595) 53.0 (4.6) 0.774 (1.695) 52.4 (4.6) -2.689 (1.871) 52.8 (4.7)
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Figure 0.16 X-component of linear momentum (top) and translational energy from NVT
simulation of ethanol. m is system mass.
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Table 0.3
Mean and standard deviation of angular momentum per mass, I sand rotational energy per

mass, Rsin NVT-simulations. xe is mole fraction etha.nol.

Xe x-direction y-direction z-direction

Ix[1 0-11m2/s] 2Rx[J/g] ly[10.11m2/s]
2Ry[J/g] Iz[1 0-11m2/s] 2Rz[J/g]

O 0.906 (40.6) 134.1 (11.9) -1.89 (71.7) 135.3 (11.2) 0.40 (57.5) 135.0 (11J

0.25 0.337 (60.4) 97.3 (8.5) 0.43 (154.5) 97.1 (8.1) 2.21 (144.0) 97.2 (8.1:

0.50 -0.704 (60.4) 75.8 (6.5) -5.76 (167.5) 76.2 (6.5) 3.31 (148.5) 75.8 (6.3:

0.75 -0.833 (63.5) 62.5 (5.6) -3.64 (173.2) 62.5 (5.3) -1.31 (150.5) 62.1 (5.5
NVE -0.976 (63.3) 62.9 (5.3) -3.34 (167.1) 63.3 (5.5) -2.57 (146.3) 63.0 (5.5

1.0 -1.370 (69.7) 52.9 (4.9) -5.24 (163.1) 52.8 (4.5) 1.15 (153.1) 52.8 (4.7
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Figure 0.17 X-component of a.ngularmomentum (top) and rotational energy for NVT
simulation of an equimolar mixture of water and ethanol. m is system mass.
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Figure 0.20 Distribution of internal energy, U, in NVT-simulation. Molefraction ethanol is
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Figure 0.22 Running averages of 1st (tap) to 5th (bottom) moments of translational
energy for a NVT sirnulation of pure water at 293K. Sirnulation conditions
given in table B.3. Averages based on instanta.neous values of energy each
150th step. Figure cover whole simulation, and values are divided by
theoretical values, see chapter 5.
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Figure 0.23 Running averages of 1st (top) to 5th (bottom) moment of translationa.l energy
for a NVT simulation of 0.25 mole fraction ethanol in water. Simulation
conditions as in table B.3. Averages based on instantaneous values of
energy each 150th step. Figure cover whole simulation, and values are
divideå by theoreticai values, see chapter 5.
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Figure 0.24 Running averages of 1st (tap) to 5th (bottom) moment of translational energy
for a NVT sirnulation of 0.50 mole fraction ethanol in water. Simulation
conditions as in table 8.3. Averages based on instantaneous values of
energy each 150th step. Figure cover whole simulation, a.nd values are
divided by theoretical values, see chapter 5.
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Figure 0.25 Running averages of 1st (top) to 5th (bottom) moment of translational energy
for a NVT simulation of 0.75 mole fraction ethanol in water. Simulation
conditions as in table B.3, page 3.Averages based on instantaneous
values of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, sea chapter 5.
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Figure 0.26 Running averages of 1st (top) to 5th (bottom) moment of translational energy
for a NVT simulation of pure ethanol at 293K. 8imulation conditions as in
table B.3. Averages based on instantaneous values of energy each 150th
step. Figure cover whole simulation, and values are divided by theoretical
values, see chapter 5.
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Figure 0.27 Running averages of 1st (tap) to 5th (bortom) moments of rotational energy
for a NVT simulation of pure water. Simulation conditions as in table 8.3.
Averages based on instantaneous values of energy each 150th step. Figure
cover whole simulation, and values are divided by theoretical values, see
chapter 5.
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Figure 0.28 Running averages of 1st (top) to 5th (bottom) moment of rotationa.l energy for
a NVT simulation of 0.25 mole fraction ethanol in water. 8imulation
conditions as in table 8.3. Averages based on instantaneous values of
energy each i 50th step. Figure cover whole simulation, and values are
divided by theoretical values, see chapter 5.
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Figure 0.29 Running averages of 1st (top) to 5th (bottom) moment of rotational energy for
a NVT simulation of 0.50 mole fraction ethanol in water. Simulation
conditions as in table B.3. Averages based on instantaneous values of
energyeach 150th step. Figure cover whole simulation, and values are
divided by theoretical values, see chapter 5.
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Figure 0.30 Running averages of 1st (top) to 5th (bottom) moment of rotational energy for
a NVT simulation of 0.75 mole fraction metha.nol in water. Simulation
conditions as in table B.3. Averaqes based on instantaneous values of
energy each 150th step. Figure cover whole simulation, and values a.re
divided by theoretical values, see chapter 5.
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Figure 0.31 Running averages of 1st (top) to 5th (bottom) moment of rotational energy for
a NVT simulation of pure ethanol. 8imulation conditions as in table B.3.
Averages based on instantaneous values of energy each 150th step. Figure
cover whole simulation, and values are divided by theoretical values, see
chapter 5.
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Figure 0.32 Running averages of 1st (tap) to 5th (bottom) moment of reservoir
translational energy for a NVT simulation of 0.75 mole fraction etha.nol in
water, Simulation conditions as in table B.3. Averages based on
instantaneous values of energy each 150th step. Figure cover whole
simulation, and values are divided by theoretical values, see chapter 5.
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Figure 0.33 Running averages of 1st (top) to 5th (bottom) moment of reservoir rotational
energy for a NVT simulation of 0.75 mole fraction ethanol in water,
8imulation conditions as in table B.3. Averages based on insta.ntaneous
va.lues of energy each 150th step. Figure cover whole simulation, and values
are divided by theoretical values, see chapter 5.
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Figure D..34 Friction parameter lltrans simulation for mixtures of water and ethanol at
293K. Panels ranging from pure water (top) to pure ethanol (bottorn).
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Figure 0.37 Heat bath variables Strans and Srot for all mixtures, ranging from pure water on
top to pure ethanol in the bottom panel.
Panel 1 and 2: Lower curve is Strans

Pa.neI3: Strans on top to t-O.035ns bottom for the rest. Thr curves touch at
O.045ns
Pa.nel 4: Strans on top, except at the very beginning. Srot has now the samllest
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Panel 5: Strans on top, except around O.02ns. The curves touch at severai
places.
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Figure 0.38 This chain show how the u-shape could look like when the chain consists
only of trans conformers. We have only varied site posistions in the paper
plane, but a utilization of the full thre dimensional space is more attractive.
Symbols as in Figure 6.7.
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Table 0.4
Radial distance and height of 1st and 2nd maximum and of 1st minimum for site-site self

correlations of water with va.rying ethanol content. Results for 293K 'from NVT-simulations.

Xe g(r) 1.maximum 1.minimum 2.maximum

r[Å] Height r[Å] Depth r[Å] Height

O goo 2.85 3.02 3.45 0.80 4.4 1.12

gOH 1.9 1.50 2.5 0.20 3.25 1.52

glllI 2.4 1.26 3.0 0.74 3.8 1.16

0.25 goo 2.85 4.79 3.45 0.83 4.6 1.24

gOH 1.9 2.41 2.55 0.24 3.25 2.09

gHH 2.45 1.89 3.1 0.92 3.85 1.40

0.50 goo 2.85 7.08 3.5 0.95 4.5 1.40

gOH 1.9 3.54 2.55 0.31 3.25 2.89

gHH
2.4 2.74 3.1 1.16 3.8 1.78

0.75 goo 2.85 8.29 3.5 0.81 4.5 1.30

gOH 1.9 4.25 2.55 0.31 3.2 3.10

gHH 2.45 3.09 3.1 1.09 3.75 1.80

Table 0.5 (Noxt page)
Radial distance and height of 1st and 2nd maximum and of 1st minimum for site-site self

correlations of ethanol in aqueous mixures with varying ethanol content. Results for 298 K
from NVT-simulations
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Xe 9 1.maximum 1.minimum 2.maximum I 2nd min 3rd max

r[Å] Height r[Å] Depth r[Å] Height r/height r/height

gC3C3 4.3 1.83 6.8 0.76 8.95 1.06
gC3C2 4.5 1.53 6.55 0.81 8.5 1.04
gC30 - - - - 5.05 1.30 7.3/0.94
gC3H - - - - 5.45 1.12 6.1/1.00 7.05/1.0

0.25 gC2C2 4.7 1.52 7.05 0.85 8.85 1.03
gC20 3.75 1.02 4.2 0.79 5.4 1.21
gC2H 3.0 0.56 3.2 0.43 4.25 0.99
goo 2.75 1.42 3.3 0.31 4.8 1.02
gOH 1.85 1.41 2.6 0.13 ~ -
gHH 2.45 1.50 3.2 0.50 - -

gC3C3 4.2 1.65 6.6 0.74 8.65 1.10
gC3C2 4.65 1.46 6.7 0.80 8.75 1.07
gC30 4.05 1.02 4.35 0.97 4.95 1.39
gC3H - - - - 5.45 1.16 6.05/1.1 6.9/1.08

0.50 gC2C2 4.6 1.67 7.05 0.84 9.1 1.07
gC20 3.8 1.32 4.3 0.85 5.5 1.15 7.1/0.93
gC2H 3.0 0.89 3.3 0.58 4.25 1.06
goo 2.75 2.50 3.55 0.34 4.7 1.11
gOH 1.85 2.55 2.6 0.17 3.35 1.06 5.5/0.85
gHH 2.4 2.57 3.2 0.57 4.9 0.96

gC3C3 4.3 1.52 6.85 0.73 8.8 1.12
gC3C2 4.75 1.45 6.75 0.78 8.75 1.10
gC30 3.95 1.07 4.5 0.99 5.0 1.52
gC3H 3.2 0.87 3.7 0.80 5.4 1.20 6.0/0.99 6.9/1.08

0.75 gC2C2 4.7 1.85 6.95 0.79 8.85 1.11
gC20 3.75 1.63 4.4 0.83 5.6 1.15 7.0/0.89
gC2H 3.0 1.23 3.4 0.66 4.1 1.15
goo 2.75 3.51 3.45 0.39 4.85 1.09
gOH 1.85 3.64 2.65 0.20 3.35 1.32
gHH 2.4 3.43 3.35 0.55 4.7 0.92 5.35/0.9

gC3C3 4.3 1.47 '7 rv« 0.41 9.3 1.15I.VJ

gC3C2 4.5 1.48 6.85 0.76 8.95 1.09
gC30 3.9 1.20 4.6 0.97 4.95 1.72
gC3H 3.15 1.14 3.85 0.78 5.4 1.25 6.1/0.96 6.95/1.8

1.00 gC2C2 4.65 2.08 6.95 0.74 9.05 1.15
gC20 3.7 1.99 4.4 0.76 5.5 1.08 7.0/0.86
gC2H 3.0 1.78 3.45 0.70 4.1 1.16
goo 2.75 5.22 3.6 0.23 4.85 1.03
gOH 1.85 5.51 2.7 0.14 3.35 1.54
gHH 2.4 4.90 3.35 0.31 4.65 0.84 5.45/0.6
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Table 0.6
Radial distance and height of 1st and 2nd maximum and of 1st minimum for site ..site

cross-correlations of water with varying ethanol content. Results for 293 K from
NVT-simulations. Water firstindices.

Xe 9 1.maximum 1.minimum 2.maximum 2.maximum

r[Å] Height r[Å] Depth r[Å] Height r[Å]/height

0.25 gOC3 3.75 1.46 4.65 0.93 4.95 1.17 5.6/0.82

gOC2 3.7 1.88 (4.55) (0.98) (4.9)* (1.04)* 6.05/0.89

goo 2.75 3.14 * * 4.75 1.16 6.15/0.90

gOH 1.85 2.38 3.45 0.56 3.35 1.58 -

gHC3 - - 2.6 0.24 5.35 1.03 6.15/0.90

gHC2 2.95 0.74 .. - 4.25 1.33 5.95/0.90

gHO 1.85 2.01 3.25 0.56 3.25 1.40 5.5/0.92

gHH 2.35 1.97 2.55 0.16 3.8 1.04 -
3.1 0.73

0.50 gOC3 3.75 1.54 4.65 0.92 4.95 1.32 5.6/0.81

gOC2 3.7 2.31 (4.45) (0.94) (4.75)* (1.00)* 6.35/0.87

goo 2.75 4.40 * * 4.65 1.20 5.95/0.83

gOH. 1.85 3.54 3.5 0.57 3.35 1.95 -

gHC3 - - 2.6 0.29 5.35 1.08 6.15/0.90

gHC2 2.95 0.97 - - 4.25 1.47 5.9/0.90

gRO 1.85 2.79 3.3 0.67 3.25 1.77 5.5/0.88

gHH 2.4 2.76 2.6 0.20 3.85 1.13 ..

3.15 0.81

0.75 gOC3 3.75 1.79 4.55 0.98 5.0 1.57 5.6/0.82

gOC2 3.75 2.93 (4.5)* (0.94) 5.55 1.00 6.3/0.80

goo 2.8 6.43 3.55 * 4.65 1.20 5.85/0.74

gOR 1.85 5.27 2.65 0.59 3.35 2.56 -

gHC3 3.25 1.10 3.9 0.35 5.3 1.18 6.15/0.94

gHC2 2.95 1.38 3.35 1.00 4.2 1.73 6.2/0.86

gRO 1.85 4.07 2.6 0.78 3.25 2.39 5.6/0.78

gRR 2.35 3.82 3.15 0.23 3.8 1.24 -
0.94
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Figure 0.39 Comparison self correlations 90 0 for water from NVE (dashed line) and NVT
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Figure 0.40 Comparison self correlations 99H for water from NVE (dashed line) and NVT
(solid line) simulations of xe=O. 5 mixture of ethanol and water.
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Figure 0.42 Mean square displacement (MSD) for ethanol in mixtures with water at 293K.
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Figure 0.43 Mean square displacement MSD for water in mixtures with ethanol at 293K
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Figure D.44 Difference of NVT (--) and NVE (- .. - - -) results for mean square
displacements (MSD) in an ethanol-water mixture with mole fraction ethanol
0.75. Upper pair ethanol, lower pa.ir water.




