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Abstract

Genetic assimilation emerges from selection on phenotypic plasticity. Yet,

commonly used quantitative genetics models of linear reaction norms con-

sidering intercept and slope as traits do not mimic the full process of genetic

assimilation. We argue that intercept–slope reaction norm models are insuf-

ficient representations of genetic effects on linear reaction norms and that

considering reaction norm intercept as a trait is unfortunate because the

definition of this trait relates to a specific environmental value (zero) and

confounds genetic effects on reaction norm elevation with genetic effects on

environmental perception. Instead, we suggest a model with three traits

representing genetic effects that, respectively, (i) are independent of the

environment, (ii) alter the sensitivity of the phenotype to the environment

and (iii) determine how the organism perceives the environment. The

model predicts that, given sufficient additive genetic variation in environ-

mental perception, the environmental value at which reaction norms tend

to cross will respond rapidly to selection after an abrupt environmental

change, and eventually becomes equal to the new mean environment. This

readjustment of the zone of canalization becomes completed without

changes in genetic correlations, genetic drift or imposing any fitness costs of

maintaining plasticity. The asymptotic evolutionary outcome of this three-

trait linear reaction norm generally entails a lower degree of phenotypic

plasticity than the two-trait model, and maximum expected fitness does not

occur at the mean trait values in the population.

Introduction

All natural populations evolve in environments that

are to some degree variable. Biologists have long real-

ized that the phenotypic expression of different geno-

types may respond differently to the same

environmental change and that such phenotypic plas-

ticity may be heritable (DeWitt & Scheiner, 2004;

Pigliucci, 2005). Depending on the effect this pheno-

typic plasticity has on selection (fitness), evolution

may thus bring about mechanisms that either buffer

the phenotypic expression against environmental vari-

ation (i.e. environmental canalization) or modify the

responses to some environmental influence in an

adaptive manner (Nijhout, 2003). Phenotypic plasticity

involves developmental, physiological and/or beha-

vioural phenotypic responses to some component(s) of

the environment (DeWitt & Scheiner, 2004; Pigliucci,

2005; Pigliucci et al., 2006). These environmental com-

ponents, often referred to as environmental ‘cues’

(DeWitt & Scheiner, 2004), are often just correlated

with, but not identical to, the environmental variables

affecting fitness (e.g. McNamara et al., 2011;

Svennungsen et al., 2011; Gienapp et al., 2014). Hence,

cues do not provide perfect information about the

optimal phenotypic expression, and it is usually
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adaptive to respond more conservatively towards infor-

mation-poor cues than more informative ones (Yoccoz

et al., 1993; Ergon, 2007; McNamara et al., 2011). The

phenotypic expression of a particular genotype as a

function of an environmental cue is called a reaction

norm (Woltereck, 1909; Pigliucci, 2005). There has

been considerable interest in evolutionary processes

governing reaction norms as this is crucial for our

understanding of how populations may respond to

environmental change and introduction to novel envi-

ronments (e.g. Lande, 2009; Reed et al., 2010; McNa-

mara et al., 2011; Gienapp et al., 2014).

Waddington (1953, 1961) originally used the term

‘genetic assimilation’ to describe experimental results

where qualitative phenotypes (such as lack of cross-

veins in Drosophila wings) that are initially only

expressed in response to a particular environmental

stimuli (such as heat shock during a particular stage of

development) become constitutively produced (i.e.,

become expressed independently of the environmental

stimuli) after continued selection. However, ‘genetic

assimilation’ is also used to describe similar phenomena

in evolution of the mean of quantitative phenotypes

that may remain plastic at equilibrium in a stochastic

environment after an environmental change (Pigliucci

& Murren, 2003; Lande, 2009). In such cases, the new

equilibrium phenotypes will not be independent of the

environment unless the reaction norm slope is zero.

We here use the term ‘genetic assimilation’ essen-

tially as in Pigliucci et al. (2006) and Lande (2009) to

describe the evolutionary scenarios where, after an

abrupt environmental change, there is an initial

increase in phenotypic plasticity, after which mean

plasticity is reduced and the zone of canalization (i.e.,

the environment range, or value, where phenotypic

variance is at minimum; Dworkin, 2005; Lande, 2009)

moves towards the current mean environment (Fig. 1).

Although the exact definition of ‘genetic assimilation’

and proposed mechanisms are somewhat contentious

(Scharloo, 1991; Pigliucci et al., 2006), there is substan-

tial evidence from both laboratory experiments and

field studies that such processes commonly take place

(Pigliucci & Murren, 2003; Braendle & Flatt, 2006;

Pigliucci et al., 2006). In our treatment, we regard the

process of genetic assimilation as complete in a station-

ary environment when phenotypic variance is mini-

mized in the mean environment (but both mean

reaction norm slope and phenotypic variance in the

mean environment may remain nonzero). Population-

level phenotypic variation in a fluctuating environment

depends on both the degree of environmental canaliza-

tion, or ‘buffering’, of individual plasticity (represented

by the genotypic reaction norm slopes; Dworkin, 2005)

and the variation among genotypes in the reaction

norm elevation around the mean environment. Consid-

ering linear reaction norms, phenotypic variance in the

population is always minimized in the environment

where the correlation between reaction norm slope and

the phenotypic expression is zero (i.e. where reaction

norms ‘tend to cross’; Lande (2009)).

The final stage of the genetic assimilation process

where the zone of canalization moves to the new mean

environment is perhaps the least understood; it has

been suggested that genetic drift or fitness costs of

maintaining plasticity plays a part (West-Eberhard,

2003; Pigliucci et al., 2006; Lande, 2009; Bateson &

Gluckman, 2011), and changes in the genetic variances,

covariances and genetic architecture of reaction norm

components may be involved (Wagner et al., 1997;

Steppan et al., 2002; Le Rouzic et al., 2013).

One approach to quantitative genetics analysis of

phenotypic plasticity (Via et al., 1995; Rice, 2004) is to

consider the intercept and slope of linear reaction

norms as two quantitative traits in their own right (de

Jong, 1990; Gavrilets & Scheiner, 1993a; de Jong &

Gavrilets, 2000; Tufto, 2000; Lande, 2009). More gener-

ally, reaction norms have been modelled by considering

polynomial coefficients as traits (Gavrilets & Scheiner,

1993b; Scheiner, 1993). In these models, the intercept

trait is defined as the value of the plastic phenotype at

a reference cue designated as zero by the researcher.

Lande (2009) analysed the evolution of such a linear

reaction norm, assuming a stochastic environment

undergoing a sudden change in both the mean envi-

ronmental cue and the phenotypic value where fitness

is maximum. In his model, the population responded
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Fig. 1 Genetic assimilation of a quantitative character. In a

stationary fluctuating environment (indicated by red and blue

normal distributions), phenotypic variation (indicated by lighter

shaded areas) will evolve to be minimized at the mean

environmental cue value. Mean reaction norm slope (thick solid

lines) will depend on the correlation between the cue (U) and the

phenotypic value that maximize fitness (H), see Fig. 3 and

eqn (1). Five individual reaction norms in each of the

environments are indicated with thin coloured lines. After a

sudden environmental change (from red to blue or blue to red),

mean reaction norm slope will first increase towards the stippled

line representing EðHjUÞ and then decline as the zone of

canalization (the narrowest parts of the shaded areas) moves to

the new mean cue value. Figure is adapted from Fig. 2 in Pigliucci

et al. (2006) and Fig. 1 in Pigliucci & Murren (2003).
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by a rapid increase in mean reaction norm slope

(plasticity), followed by a slow increase in reaction norm

intercept with a concomitant decrease in plasticity.

However, the genetic assimilation was not completed, as

the zone of canalization could never move away from

the reference cue because the covariance between reac-

tion norm slope and intercept was assumed to remain

constant. Lande (2009) argued that further reduction in

phenotypic variance would take place (e.g. due to fit-

ness costs of maintaining plasticity), but did not include

any such mechanisms in his modelling.

In this study, we argue that the two-trait model is an

insufficient representation of genetic effects on linear

reaction norms and hence fails to predict critical aspects

of the evolution of phenotypic plasticity and genetic

assimilation. Instead, we suggest modelling linear reac-

tion norms as being composed of three traits based on

the most fundamental ways that gene products may

alter linear reaction norms in such a way that they

remain linear, specifically distinguishing between

genetic effects on reaction norm elevation and genetic

effects on cue perception (Fig. 2). Reanalysing the sce-

narios for extreme environmental change considered by

Lande (2009), we show that, under the three-trait reac-

tion norm model, genetic assimilation in the new

stochastic environment becomes complete (as defined

above) without changes in genetic correlations among

the defined traits, genetic drift or imposing any fitness

costs on maintaining plasticity. Further, we show that

the evolutionary equilibrium of this three-trait linear

reaction norm under random mating entails (with cer-

tain exceptions) a shallower mean reaction norm slope

than the slope of the optimal individual reaction norm

and the equilibrium slope of the two-trait model.

Hence, maximum individual fitness does not occur at

the mean trait values in the population.

We start by deriving an expression for optimal linear

reaction norms as a function of environmental cues in

stationary stochastic environments. We then derive our

three-trait linear reaction norm model, and finally, we

analyse the evolutionary dynamics of this model in a

quantitative genetics framework and compare it to the

dynamics of the two-trait reaction norm model anal-

ysed by Lande (2009).

Models

Optimal linear reaction norms in temporally variable
environments

Models for optimal adaptations in variable environ-

ments have traditionally assumed either that individu-

als have no information about the relevant

environmental variables, or that individuals have

exact information about the state of the environment

(Yoshimura & Clark, 1991; Roff, 2002). Whenever the

phenotype yielding highest fitness is not known

exactly (i.e., the individuals do not have full informa-

tion about the present and future environment), the

long-term success of a genotype depends not only on

the expectation of fitness, but it is also adaptive to

reduce the variance in mean fitness across generations

(Yoshimura & Clark, 1991; Starrfelt & Kokko, 2012).

Models that assume that individuals have no informa-

tion about the environment have been used to

explain risk-avoidance and bet-hedging strategies (den

Boer, 1968; Hopper et al., 2003; Starrfelt & Kokko,

2012). On the other side of the spectrum, models that

predict optimal trait values as a function of environ-

mental variables often assume that these variables are

known to the individuals without error (e.g. Stearns,

1992; Roff, 2002).
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(b) Nonlinear reaction norm

Fig. 2 Genetic effects on reaction norms to interval-scaled environmental cues. Genetic effects affecting the organisms cue ‘perception’ will

shift the reaction norm along the cue-axis (indicated by blue horizontal arrows and stippled lines), whereas genetic effects that are

independent of the cue value will shift the reaction norm along the phenotype-axis (indicated by red vertical arrows and stippled lines). In

a linear reaction norm model (panel a), a shift along the cue-axis may have the same effect on the reaction norm as a shift along the

phenotype-axis. This is not the case for a nonlinear reaction norm (panel b). The slope of linear reaction norms may also be altered by

genetic effects on cue sensitivity (indicated by the stippled black line in panel a).
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The concept that phenotypic expressions are func-

tions of more or less informative environmental cues is

well established in evolutionary ecology (Tollrian &

Harvell, 1999; DeWitt & Scheiner, 2004; Stephens et al.,

2007; McNamara et al., 2011; Gienapp et al., 2014). For

example, seasonal reproduction in many organisms

must take place within a rather narrow time window

which often varies largely between years (Durant et al.,

2007; Gienapp et al., 2014). As such phenological

events must often be prepared a long time in advance

(due to acquiring resources, physiological developments

and migration), seasonal reproduction may be influ-

enced by rather information-poor cues such as temper-

ature and food constituents weeks before reproductive

success is determined (Berger et al., 1981; Korn & Taitt,

1987; Lindstrom, 1988; Negus & Berger, 1998; Nussey

et al., 2005). Examples of such obviously adaptive phe-

notypic plasticity to more or less informative environ-

mental cues are ubiquitous in nature (Pigliucci, 2005;

Sultan, 2010; Landry & Aubin-Horth, 2014).

To derive an optimal norm of reaction to an imper-

fect cue, we may view the cue U and the phenotypic

expression that maximizes fitness, H, as having a joint

distribution with given means, lU and lH, variances, r
2
U

and r2H, and a correlation, q ¼ rUH
rUrH

(Fig. 3). Note that

we here define the cue (U) in a general sense as the en-

vironmental component that affects the phenotype, not

how this component is perceived by the individuals (as

in, e.g., Tufto (2000)). Also note that U must not neces-

sarily be interpreted as a proxy for another environ-

mental component that affects fitness (e.g. Miehls et al.,

2013), although this may be the case (see caption of

Fig. 3). Hence, following McNamara et al. (2011), we

focus on the information content in the cue (U) about

the optimal phenotypic expression (H) in the given

environment.

Under the assumption of no density or frequency

dependence, the optimal phenotypic trait values are

those that maximize the geometric mean of fitness

across generations (Dempster, 1955; Caswell, 2001).

This is equivalent to maximizing the expected loga-

rithm of fitness. Hence, if fitness, W, is a Gaussian func-

tion (with constant width and peak value) of the

phenotype value, y, such that ln(W(y)) is a quadratic

function, the optimal linear reaction norm as a function

of cue value u is

yoptðuÞ ¼ lH þ q
rH
rU

ðu� lUÞ (1)

(Appendix S1). Note that, due to the quadratic fitness

function ln(W(y)), this is the same as the least squares

prediction line of H as a function of cue value u

(Battacharyya & Johnson, 1977).

This optimal individual reaction norm under imper-

fect information (eqn 1) may be seen as a weighted

average of the optimal phenotype under no informa-

tion (lH) and the optimal phenotype under perfect

information (lH þ rH
rU

ðu� lUÞ), with the weight being

jqj (Fig. 3). Given that W is a Gaussian function of y,

this linear reaction norm is the optimal reaction norm

(i.e. a nonlinear reaction norm would not perform bet-

ter) as long as E½HjU ¼ u� is a linear function of u,

which is the case when U and H are binormally dis-

tributed (chap. 7.8 Johnson & Wichern, 2007).

Optimality models of this kind have been central in

the development of evolutionary ecology (Parker &

Maynard Smith, 1990; Sutherland, 2005; Roff, 2010).

McNamara et al. (2011) analysed the general optimal

linear reaction norm given by eqn (1) in terms of

optimal phenology under environmental change.

Ergon (2007) used a similar approach to analyse opti-

mal trade-offs between prebreeding survival, onset of

seasonal reproduction and reproductive success in

populations of multivoltine species with fluctuating

densities.

Quantitative genetics models for linear reaction
norms – two vs. three traits

The optimal linear reaction norm given by eqn (1) says

nothing about the selection process and does not con-

sider genetic constraints. In the following, we will con-

sider a quantitative genetics model for linear reaction

norms, assuming phenotypic responses to an interval-

scaled cue with an arbitrary zero point (Houle et al.,

2011).

In quantitative genetics models for the evolution of

phenotypic plasticity, it is common to consider the

intercept (a) and slope (b) of the reaction norm as two

traits (e.g. de Jong, 1990; Gavrilets & Scheiner, 1993a;

de Jong & Gavrilets, 2000; Tufto, 2000; Lande, 2009;

Scheiner, 2013). That is, the plastic phenotype is mod-

elled as a function of an environmental cue u in the

form

yðuÞ ¼ aþ bu: (2)

In this two-trait model, the intercept trait a is the

phenotypic expression for the cue value designated as

zero. Lande (2009) assumed that minimum phenotypic

variation occurred in the mean environment that the

population had been adapted to, and hence defined

the cue to have its zero point in this reference envi-

ronment. He then used this reaction norm model

(eqn 2) in a quantitative genetics analysis of adapta-

tions to a sudden extreme change in the mean envi-

ronment when the reference environment remained

unchanged.

We will here analyse a more general linear reaction

norm model based on the three most fundamental

ways that genetic effects can alter a linear reaction

norm in such a way that it remains linear: (i) a change

along the plastic phenotype-axis, (ii) a change in slope

(cue sensitivity), and (iii) a change in the reaction

4 T. ERGON AND R. ERGON

ª 2 0 1 6 T H E A U T HO R S . J . E V O L . B I O L . d o i : 1 0 . 1 1 1 1 / j e b . 1 3 0 0 3

J OU RN A L O F E V O L U T I O N A R Y B I O L OGY P U B L I S H E D B Y J O HN W I L E Y & SON S L T D ON B E H A L F O F E U RO P E A N SOC I E T Y F O R E V O L U T I O N A R Y B I O L OG Y



norm along the cue-axis (Fig. 2). This leads us to con-

sider a linear reaction model in the form

yðuÞ ¼ za þ zbðu� zcÞ; (3)

where za, zb and zc are considered as (latent) traits. A

particular genetic effect may of course affect more than

one of these traits, but any genetic effect on a linear

reaction norm can be decomposed into these three

components. Obviously, shifting a linear reaction norm

along the cue-axis (a change in zc) may have exactly

the same effect on the reaction norm as shifting it along

the y-axis (a change in za) (Fig. 2). By rearranging the

reaction norm model (3) as y(u) = a + zbu, where

a = za–zbzc, we see that increasing za by one unit has

the same effect on y(u) as decreasing zc by 1/zb units.

However, traits za and zc still represent very different

genetic effects within the organisms. Trait zc may be

thought of as representing genetic effects on ‘percep-

tion’ of the environmental cue in a general sense. For

example, variation in zc may represent genetic effects

affecting the sensory apparatus in such a way that dif-

ferent genotypes perceive the same environmental cue

as different, but cue perception may not necessarily

involve a sensory apparatus (see Discussion). Note that

the intercept (za–zbzc) depends on the chosen zero point

of the interval-scaled cue, whereas trait za represents

genetic effects that are invariant to which environment

that has been designated (by the researcher) to

have cue value zero. Variation in trait za may thus

represent variation in gene products for which both

Θ

ρ  = 1

ρ = 0

ρ = .5

E

E

Cue (U)
u

ρ = 0.5

Fig. 3 Conceptual overview of optimal linear reaction norms in stochastic environments. The environmental component U (cue) that

determines the mean phenotype and the environmental component E determining the phenotypic expression that maximize fitness (H)

have a bivariate distribution with correlation q (central 95% of a binormal distribution with q ¼ 0:5 is indicated by the ellipses in the

lower right panel). This leads to a bivariate distribution of U and H with means lU and lH, variances r
2
U and r2H, and a correlation

q ¼ rUH=ðrUrHÞ (top right panel). The shaded areas show the conditional probability distributions of E and H given a cue value u (with

q ¼ 0:5). If fitness, W, is a Gaussian function of the plastic phenotype value y(u), the optimal reaction norm as a function of cue value u is

the same as the least squares prediction of H given u, yoptðuÞ ¼ lH þ q rH
rU

ðu� lU Þ, Appendix S1. Some authors refer to U in this context as

a ‘proxy cue’ of environmental component E. However, it is sufficient to only consider U and H as two correlated components of a

temporally varying environment. Blue line represents the optimal reaction norm under perfect information (q ¼ 1) (when the ellipses

collapse to a line), and green line represents the optimal reaction norm when U and H are uncorrelated (q ¼ 0). Solid red line represents

the optimal reaction norm when q ¼ 0:5 (corresponding to the drawn ellipses). Thick stippled red line is referred to in the Analysis section.

Note that in Lande’s (2009) notation, et corresponds to a random value of E in generation t, and et�� corresponds to a random U in the

same generation.
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the production of these gene products and their effect

on y(u) are independent of the cue. Finally, trait zb (re-

action norm slope) represents variation in gene prod-

ucts that affect the sensitivity of the plastic phenotype

y(u) to the cue. With this reaction norm model (eqn 3),

zc may be referred to as a ‘cue reference trait’ although

we do not suggest that there is necessarily a ‘template’

of a specific environment that is stored genetically in

the organisms; what is essential is the types of genetic

variation that is represented by the three traits in the

model. Note that it is only when assuming a linear

reaction norm that genetic effects on cue ‘perception’

can lead to the same change in the reaction norm as

genetic effects on the environment independent com-

ponent of the plastic phenotype (za); this will not be

the case in a nonlinear reaction norm model (Fig. 2b).

The two-trait model (eqn 2) is a special case of the

more general three-trait model (eqn 3) where zc is fixed

to zero. Reaction norm slope is considered as a trait in

both models (i.e. b = zb), but for clarity we have used

separate notations in the two models.

Analysis

Basic properties of the reaction norm models

As already noted, an obvious difference between the

two-trait (eqn 2) and the three-trait (eqn 3) reaction

norm models is that the two-trait model implies a one-

to-one correspondence between genotypes and reaction

norms, whereas the three-trait model implies that one

reaction norm can represent many genotypes. As we

will see below, linear reaction norms in a population

will evolve very differently and reach different equilib-

ria when we consider the reaction norm to result from

three traits rather than two traits.

An essential difference between the two-trait and the

three-trait reaction norm models relates to constraints

in the evolution of the covariance between reaction

norm intercept and slope in the population. To see this,

it is elucidating to consider a particular representation

of this covariance, u0, defined as the cue value for

which phenotypic variance is at a minimum and

where the covariance between the plastic phenotypic

value y(u) and reaction norm slope is zero (the ‘zone of

canalization’ at the population level is centred around

u0). Given a phenotypic covariance between intercept

and slope (Pab) and a variance in reaction norm slope

(Pbb), this cue value is

u0 ¼ � Pab

Pbb
(4)

(Appendix S2).

From eqn (4) we see that in the two-trait model (2),

where reaction norm intercept (a) and slope (b) are

considered as traits, u0 is independent of the trait

means, and directional selection on any of the traits

will not affect u0 unless the selection also changes the

variance of the slope or covariance of the traits. In the

three-trait model (3), however, the covariance between

intercept and slope depends on the mean traits �zb and

�zc. Under the assumption of normal traits, u0 then

becomes

u0 ¼ �zc þ
�zbPbc � Pab

Pbb
; (5)

where Pbc, Pab and Pbb are the elements of the pheno-

typic variance–covariance matrix indicated by the sub-

scripts (Appendix S2). Thus, under the three-trait

model (3), u0 may respond directly to directional selec-

tion on both trait zb (if Pbc 6¼ 0) and trait zc. If trait zb is

independent of trait za and zc (i.e. Pbc = Pab = 0), u0
becomes �zc. Note also that u0 is independent of Pac.

Lande (2009) defined the cue u (et�� in his model) to

have its zero point at u0, referred to as a ‘reference

environment’. Hence, one could define the two-trait

model analysed by Lande (2009) for any arbitrary

interval-scaled cue variable as yðuÞ ¼ a0 þ bðu� u0Þ
where the genetic correlation between the traits a0 and
b is by necessity zero as u0 is defined by

covðyðu0Þ; bÞ ¼ covða0; bÞ ¼ 0 (Appendix S2; see also last

paragraph on page 1438 in Lande (2009)). This model

is structurally similar to our three-trait model except

that the ‘reference environment’ in our model is con-

sidered as an individual trait, zc (reflecting individual

variation in cue ‘perception’), which is exposed to

selection. Unlike in Lande’s (2009) model, where the

definition of trait a0 depends on u0, there are no con-

straints on the phenotypic or genotypic covariances in

our three-trait model (other than the covariance matrix

being positive-definite). The two-trait model of Lande

(2009) can only evolve in the same way as the three-

trait model if u0 is treated as the mean of an individual

trait with variance different from zero. Hence, the

three-trait quantitative genetics model and Lande’s

(2009) two-trait model are not alternative parameteri-

zations of the same model. Lande’s (2009) two-trait

model is a constrained version (i.e. a special case) of

our more general three-trait model with the trait zc
fixed to u0, which requires that Pcc = Pac = Pbc = 0 as

well as Pab = 0 (Pab = 0 is only required to maintain the

same definition of za and a0 and to give �zc ¼ u0). We

will later show that expected u0 at equilibrium in the

three-trait model always becomes lU.

Evolution of linear reaction norms

Environmental change may lead to changes in any of

the parameters of the joint distribution of the cue (U)

and the best possible phenotype (H) (c.f., eqn 1 and

Fig. 3). Any such change will impose directional selec-

tion on the individual traits defining the reaction

norm, and the evolutionary response to this selection

will depend on the additive genetic variances and
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covariances of these traits. We will here compare the

dynamics of the three-trait model (eqn 3) to the

dynamics of the more constrained two-trait version

(eqn 2), the intercept–slope model analysed in detail

by Lande (2009). Specifically, we will analyse the tran-

sient and asymptotic evolution of the reaction norm

distribution after a sudden and extreme concomitant

change in both lU and lH while r2U , r2H and rUH

remain unchanged. We assume that all individuals in

each generation experience the same environment and

that the environments in subsequent generations are

independent (as also in Lande’s (2009) analysis). Fol-

lowing Lande (2009), we also assume that trait vari-

ances and covariances remain constant under

selection. Although this may be a particularly unrealis-

tic assumption (Steppan et al., 2002), it serves the pur-

pose of examining how reaction norms can evolve

through changes in trait means only.

Quantitative genetics – modelling
Assuming that the individual traits of the reaction

norm (3) have a multivariate normal distribution

with a constant variance–covariance matrix in a pop-

ulation with discrete generations, the change in the

population mean of the traits from a generation t to

the next,

�za
�zb
�zc

2
4

3
5
tþ1

�
�za
�zb
�zc

2
4

3
5
t

¼
Gaa Gab Gac

Gab Gbb Gbc

Gac Gbc Gcc

2
4

3
5bt; (6)

is the product of the additive genetic variance–covari-
ance matrix for the traits, G, and the selection gradient

bt. Here, bt is the sensitivity of the logarithm of popula-

tion mean fitness to changes in each of the mean trait

values (Lande, 1979; Lande & Arnold, 1983),

bt ¼
@=@�za;t
@=@�zb;t
@=@�zc;t

2
4

3
5 lnð �WtÞ: (7)

We will assume a Gaussian fitness function with width

x and peak value Wmax, and that all individuals experi-

ence the same environment in any generation.

A random individual in generation t has phenotype

yt(ut) = za,t + zb,t(ut � zc,t), where the traits [za,t, zb,t, zc,t]

are drawn from a multivariate normal distribution with

mean ½�za;�zb;�zc �t and phenotypic covariance matrix P.

When the phenotypic expression that maximizes fitness

in that generation is ht, this individual will have fitness

Wt ¼ WðytðutÞ; htÞ ¼ Wmax exp �ðytðutÞ � htÞ2
2x2

 !
: (8)

To find an analytical expression of the selection gra-

dient (7), a common approach (Lande & Arnold, 1983;

Lande, 2009) would be to first find the population

mean fitness by integrating over the phenotype

distribution, p(yt(ut)),

�Wt ¼
Z 1

�1
WðytðutÞ; htÞpðytðutÞÞdy: (9)

However, because p(yt(ut)) is not normal as it

involves the product of the two normally distributed

traits zb,t and zc,t, it is not straightforward to solve this

integral analytically. Indeed, it seems that an exact ana-

lytical expression for the selection gradient (7) does not

exist. We therefore initially based our analysis on simu-

lations of the evolutionary process (6), where the selec-

tion gradient (7) is computed numerically by

simulating a population of 10 000 individuals at each

generation (see Appendix S5 for R code). These simula-

tions are accompanied by (and compared to) mathe-

matical analyses presented in Appendix S3 and

Appendix S4.

In the simulation results presented in Fig. 4, we used

the same parameter values as in Lande’s (2009) analy-

sis of the two-trait model except that we, for conve-

nience, used a somewhat less extreme sudden change

in the environment, with a change in lU and lH of 3

(instead of 5) standard deviations of the background

fluctuations (rU and rH of eqn 1). As Lande (2009), we

used a diagonal G matrix and sat Gcc to half the cue

variance (three-trait model) or zero (two-trait model).

For simplicity, in the simulations we also assumed that

only trait za had a nonadditive residual component with

variance r2e , such that Paa ¼ Gaa þ r2e , Pbb = Gbb,

Pcc = Gcc, and Pab = Pac = Pbc = 0. The two-trait model is

obtained simply by setting also Pcc = 0 and �zc ¼ 0.

Quantitative genetics – results
The simulations show that immediately after the sud-

den environmental change, there is a rapid increase

in reaction norm slope (Fig. 4b), while �zc (Fig. 4c)

swings back in the opposite direction of the change in

mean cue lU (i.e. away from the new optimum). This

phase of the adaptation may be characterized as a

‘stage of alarm’, where exaggerated perception of the

environmental change becomes adaptive. As �za moves

towards the new optimum (Fig. 4a), the reaction

norm slope �zb is reduced and �zc turns towards the

new optimum. Eventually, �zc stabilizes around lU and

�za stabilizes around lH (Fig. 4d), in accordance with

the theoretical results in Appendix S3 (see

Appendix S4 for detailed numerical results). Note that

with Pab = Pbc = 0 (as in the simulations), the theoreti-

cal equilibrium mean values �z�a ¼ lH and �z�c ¼ lU are

independent of the variances and covariance of U and

H. In Appendix S4, we conjecture that the equilib-

rium mean traits �z�a and �z�c in general (for Pab 6¼ 0 and

Pbc 6¼ 0) are affected by r2U , r2H and rUH, but only

indirectly through �z�b .
As we used a diagonal phenotypic variance–covari-

ance matrix (P) in the simulations, the cue value u0
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that yields minimum phenotypic variance (eqn 5)

equals �zc, which stabilizes around the theoretical equi-

librium lU (Fig. 4c; Appendix S3). Hence, in this case,

equilibrium u0 becomes u�0 ¼ lU . As shown both by

simulations (Figs S1–S3) and theoretical considerations

(Appendix S4), this property (u�0 ¼ lU) holds also when

P is not diagonal – that is, at equilibrium, phenotypic

variance is always minimum in the mean environment.

As a result, the three-trait model leads to complete

genetic assimilation in the sense that the population-

level zone of canalization (represented by u0) evolves to

the mean environment regardless of what this mean is.

In contrast, in the two-trait model, u0 does not evolve

in response to changes in the trait means and the phe-

notypic variance can only be minimized when the

mean environment equals �Pab=Pbb (see eqn 4). This

contrast in the asymptotic state of the systems obtained

from the two alternative reaction norm models is illus-

trated in Fig. 5, whereas Fig. 6 shows the trajectories of

phenotypic variation and difference between u0 and lU
in the simulated scenario presented in Fig. 4. Figures

S4 and S5 show simulation results for a scenario where

there is no environmental variation before and after

the sudden environmental change (more similar to clas-

sic examples of genetic assimilation).

Interestingly, as seen in Fig. 4b, the mean reaction

norm slope �zb in the three-trait model stabilizes at a

lower level than the optimal slope yielding the highest

expected fitness of an individual, rUH=r2U (see eqn 1),

which is also the equilibrium mean slope in the two-

trait model (Gavrilets & Scheiner, 1993a; Lande, 2009).

Intuitively, this is because the optimal value of trait zb

Generation

M
ea

n 
tra

it 
z a

 /I
nt

er
ce

pt

(a)

Generation

M
ea

n 
tra

it 
z b

(b)

Generation

M
ea

n 
tra

it 
z c

(c)

0 5000 10 000 15 000 20 000 0 5000 10 000 15 000 20 000

0 5000 10 000 15 000 20 000 –4 –2 0 2 4 6

0
2

4
6

8
10

12

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

–4
–2

0
2

4
6

0
2

4
6

8
10

12

Mean trait zc

M
ea

n 
tra

it 
z a

(d)

Fig. 4 Evolution of linear reaction norms after a sudden environmental change. Panels a–c: Trajectories of the population mean trait

values with a sudden environmental change at generation 5000 (see text). Panel d: Phase plane diagram showing �za plotted against �zc
through all generations (this is the point in the cue phenotype plane where reaction norms ‘tend to cross’ (see Figs 1 and 5), as the

phenotypic variance–covariance matrix here is diagonal (see eqn 5). Solid blue lines represent the three-trait model (3) and the stippled

red lines represent the two-trait model (2). The trajectories were calculated as the mean of 1000 independent simulations. Grey lines show

the realization of a single simulation. Solid green lines show lH (panel a), the optimal slope when reaction norm slope and intercept can

be tuned independently, rUH=r2U (eqn 1) (panel b), and lU (panel c). In panel a, the dotted blue line is the mean intercept (�za � �zb�zc � Pbc)

in the three-trait model for comparison with the intercept trait in the two-trait model (stippled red line). In panel b, stippled green line

shows the approximate equilibrium mean slope, �z�b � rUH=ðr2U þ PccÞ. Parameter values in the initial environment were lU = 0, lH ¼ 0,

rU ¼ 2, rH ¼ 4, and q ¼ rUH
rUrH

¼ 0:25. At generation 5000, lU jumps to 6 and lH jumps to 12 while the other parameters remain

unchanged. Diagonal G and P matrices were used with Gaa = 0.5, Paa = Gaa + 0.5, Pbb = Gbb = 0.045, and Pcc = Gcc = 2 (three-trait model) or

Pcc = Gcc = 0 (two-trait model). Initial mean trait values were �za ¼ 0, �zb ¼ q rH
rU

¼ 0:5, and �zc ¼ 0.
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of an individual depends on the value of trait zc that this

individual possesses, which is stochastic. Under the

assumption that Pab = Pbc = 0, an approximate mean

slope value is found as �z�b � ðrUH þ PacÞ=ðr2U þ PccÞ
(Appendix S4 and eqn 10 below), which is close to the

stationary mean in the simulations (Fig. 4). For compar-

ison, the equilibrium mean traits in the two-trait model

become �b� ¼ rUH=r2U and �a� ¼ lH � �b�lU (Gavrilets &

Scheiner, 1993a; Lande, 2009). Note that the

denominator in the approximate expression for �z�b is the

variance of (U–zc), and not the variance of the cue U

alone as in the expression for �b� in the two-trait model;

that is, genetic variance in the perception trait zc inflates

the variance of the perceived cue (U–zc). Hence, if

Pac = 0, �z�b is always lower than the optimal slope

in eqn (1) unless Pcc = 0 (which gives the two-trait reac-

tion norm model). This is indicated by a stippled reac-

tion norm in Fig. 3.
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(b)   Three-trait model

Fig. 5 Reaction norm distribution when the populations have reached a stationary dynamics in the two-trait model (a) and the three-trait

model (b) under the scenario presented in Fig. 4. The distribution of the environmental cue (U) in the new environment is indicated by

the shaded areas on the x-axes, and the central 95% of the joint distribution of U and H is shown with the ellipses with an ‘9’ at the

mean. For each model, 50 random reaction norms (genotypes) are plotted. In the two-trait model, the cue value u0 where phenotypic

variation is minimal will always be at zero when reaction norm slope and intercept are independent (indicated with a white, crossed,

symbol plotted at the mean plastic phenotype for this cue value). In contrast, in the three-trait model genetic assimilation becomes

complete and u0 moves to lU with a mean plastic phenotype at lH.
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Fig. 6 Phenotypic standard deviation, SD(y) (a), and the distance between the mean environment and the zone of canalization, lU–u0 (b),

in the simulations presented in Fig. 4. Blue solid lines represent the three-trait model, whereas the red stippled lines represent the two-

trait model. Horizontal grey lines are drawn at the mean values of the last 3000 generations prior to the sudden environmental change at

generation 5000. Lines show the mean of 1000 independent simulations plotted at every 100th generation.
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As seen in Fig. 4b, the asymptotic mean �zb in the

simulations (where Pac = 0) is close to but somewhat

larger than the approximation �z�b � rUH=ðr2U þ PccÞ. This
discrepancy is further analysed in Appendix S4. As

shown there, the equilibrium mean reaction norm

slope �z�b can be approximated analytically if we assume

that the plastic phenotype y(u) has a normal distribu-

tion, which is very nearly the case with the parameter

values in our simulations in Fig. 4. The integral (9)

then has an analytical solution, and as a result, an

approximate equilibrium slope �z�b can be found numeri-

cally from the equation (assuming Pab = Pbc = 0)

�z�b � rUH þ Pac

r2U þ Pcc

þ ðr2H þ �z�2b r2U � 2�z�b rUH þ Pbbr2UÞð�Pac þ �z�bPccÞ
ðx2 þ Paa � 2�z�bPac þ PbbPcc þ �z�2b PccÞðr2U þ PccÞ ;

(10)

where the large values of r2H and especially x2 used in

the simulations make the second term positive but

small compared with the first term (see Appendix S4

for detailed numerical results).

Another reason for the discrepancy between the

asymptotic mean �zb in the simulations and the approxi-

mation �z�b � rUH=ðr2U þ PccÞ is that when the population

under directional selection based on eqn (6) evolves

towards a stationary state, the mean traits will fluctuate

around the equilibrium because of the influence from

the random inputs ut and ht (as seen in Fig. 4). In sta-

tionarity, this leads to �za ¼ E½�za� þ va, etc. (where

E½�za� ¼ limN!1 1
N

PN
t¼1 �za;t and E½va� ¼ 0 etc.), and, as

shown in Appendix S4, the variances and covariances

of va, vb and vc then enter into eqn (10). Note that we

assume that ut and ht have zero autocorrelation, such

that the covariances between the mean reaction norm

parameters and the environment, caused by adaptive

tracking (Tufto, 2015), are zero.

Because the equilibrium reaction norm slope �z�b is

influenced by the phenotypic variance of the cue refer-

ence trait zc (and its covariance with the other traits;

eqn 10), and hence deviates from the slope that maxi-

mizes fitness (eqn 1), the expected fitness at equilib-

rium will be lower than the expected fitness of the

optimal individual reaction norm in eqn (1) (Fig. 7,

lower right panel). As a consequence, a proportion of

the population will have a higher expected fitness than

an individual with mean trait values. Nevertheless,

mean fitness in the population after the environmental

change stabilizes around a higher level in the three-

trait model than in the two-trait model (Fig. 7, left

panels), despite a lower expected fitness at mean trait

values (right panels). The reason for this is that the

three-trait model gives a lower phenotypic variance in

the new environment (Fig. 6a). Mean fitness in the

two-trait model thus stabilizes around the optimum

only when the mean cue is zero because phenotypic

variance will not be minimized in other environments

(Fig. 7, left panels).

Discussion

Quantitative genetics models are theoretical models for

the joint evolution of population means of quantitative

individual phenotypic traits, where the researchers

define traits that they find most meaningful in the con-

text they are studied. In quantitative genetics models of

reaction norms where a plastic phenotype is modelled

as a linear function of an interval-scaled environmental

cue, the reaction norm intercept and slope are often

considered as individual traits subjected to selection

(Gavrilets & Scheiner, 1993b; Scheiner, 1993, 2013; de

Jong & Gavrilets, 2000; Tufto, 2000, 2015; Lande,

2009). The intercept of such a reaction norm (i.e. the

reaction norm value at cue value zero) is often not very

biologically meaningful because this trait, as well as its

variance and covariance with other traits, depends on

the defined zero point, or ‘reference cue’, of the (arbi-

trary) interval-scaled cue variable. One may, however,

as in Lande (2009), define the zero point of the cue to

be the mean cue value which the population is adapted

to. This ensures that the variance of the plastic pheno-

type is minimized in the mean environment, which is

theoretically plausible (B€urger, 2000; Lande, 2009; Le

Rouzic et al., 2013), but it is not clear how this ‘refer-

ence cue’ may evolve (in Lande’s (2009) analysis it is

assumed to remain constant; see however de Jong &

Gavrilets, 2000).

We have here suggested that the ‘reference cue’ can

be considered as an individual trait that reflects genetic

variation in cue ‘perception’ in a general sense,

and hence considered a linear reaction norm in the

form y(u) = za + zb(u � zc). In this model, the biological

meaning of all the traits, and their variances and

covariances, is not modified when redefining the zero

point of the cue variable u (which is not the case for

the intercept a = za + zbzc, var(a) and cov(a,zb)). The

three traits in this model reflect three fundamentally

different genetic effects on linear reaction norms.

Whereas zb represents genetic effects on cue sensitivity,

zc reflects genetic effects on cue ‘perception’ (in the

general sense discussed below) and has the same scale

as the environmental cue, and za represents genetic

effects that are both independent of the cue value and

invariant to its defined zero point (the latter is not the

case for the intercept). These structural differences in

the reaction norm models matter for the equilibrium

mean reaction norms (and distributions), because the

traits do not have independent effects on the plastic

phenotype (y(u)) (note the product zbzc in the three-

trait model).

In our analysis of the three-trait model, we have

shown that the cue value where variance of the plastic

phenotype is minimized (where reaction norms ‘tend to
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cross’; u0) always evolves to equal the mean environ-

ment at equilibrium. This occurs without assuming any

cost of maintaining plasticity (DeWitt et al., 1998; West-

Eberhard, 2003; Pigliucci et al., 2006; Lande, 2009;

Bateson & Gluckman, 2011; Svennungsen et al., 2011),

or any change in the variances or covariances of our

defined traits (de Jong & Gavrilets, 2000). Even though

u0 may be interpreted as ‘�cov(intercept,slope)/var

(slope)’, u0 is biologically more meaningful than the

covariance between reaction norm slope and a some-

what arbitrarily defined intercept trait. Note that u0 is a

population-level parameter that does not depend on

any quantitative genetics model for the linear reaction

norm, and which can easily be estimated (as discussed

below). Further, our analysis also demonstrate that the

equilibrium mean reaction norm slope in the three-trait

model will deviate from the optimal slope yielding the

highest expected fitness of a hypothetical individual

that can tune reaction norm intercept and slope accu-

rately and independently (eqn 1), which is also the

equilibrium mean slope of the two-trait model (Gavri-

lets & Scheiner, 1993a; Lande, 2009). At least when

there is weak correlation between za and zc (i.e. Pac is

sufficiently small), the equilibrium mean slope will be

lower than the optimal individual slope. Intuitively, this

is because the optimal slope is lower when the cue ref-

erence trait of a random individual, in addition to the

environmental cue, is stochastic due to random mating.

As a consequence, maximum expected fitness does not

occur at the mean trait values in the population.

In the three-trait model, phenotypic variance in a

given environment increases with both �zb and the dis-

tance between �zc and the environmental cue (u), at

least when the traits are independent (see eqn S4-3 in

Appendix S4), whereas in the two-trait model, pheno-

typic variance is independent of the trait means

(Fig. 6). In our simulations, after the sudden environ-

mental change, there is a rapid initial increase in both

�zb and the distance between �zc and the new mean cue

value (i.e. �zc initially evolves rapidly in the opposite

direction of the change in the environmental cue, such

that the perception of the environmental change is

exaggerated). Hence, due to the positively interacting

effects of �zb and �zc on the plastic phenotype y(u), this

efficiently increases phenotypic variance in the new

environment which enhances the evolvability of the

plastic phenotypic character and acts to restore popula-

tion mean fitness (see Figs 4 and 7). The subsequent

process of assimilation whereby reaction norm slope �zb
is reduced, �zc moves towards the mean cue value, and

�za evolves towards mean H, is a much slower process.

Genetic effects on linear reaction norms

Although a shift in the reaction norm along the cue-

axis (through trait zc) can have exactly the same effect
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Fig. 7 Fitness trajectories in the

simulation example (Fig. 4). Left

panels: Population mean fitness relative

to maximum fitness (Wmax). Right

panels: Expected fitness at the mean

trait values. The lower panels show the

same values plotted with a narrower

range on the y-axis. Thick blue line

represents the three-trait model and the

thin red line represents the two-trait

model. Horizontal stippled green line

shows the fitness of the optimal

reaction norm (1). Only every 20th

generation is plotted in the left panels

and every 100th generation is plotted in

the right panels. Plotted values are the

mean of the same 1000 independent

simulations used for Fig. 4.
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on the individual linear reaction norm as a shift along

the phenotype-axis (through trait za), the genetic bases

for these effects are fundamentally different, and, as

explained above, changes in the means of these two

traits have different effects on the population. It also

seems obvious that there will often be genetic variation

on both these traits.

Phenotypic plasticity involves complex pathways, at

both organismal and cell levels, from perception of

environmental cues and physiological transduction to

phenotypic expression (reviewed in Sultan & Stearns,

2005). Depending on the type of organism and the nat-

ure of the phenotypic characters and the environmental

cues, these pathways may, to varying degrees, involve

sensory systems, neuroendocrine and metabolic sys-

tems, cellular reception, gene regulation networks, and

other developmental, physiological and behavioural

processes. Environmental conditions may directly affect

any of these systems and processes, not just the sensory

systems (e.g. temperature may directly affect metabo-

lism and gene regulation in ectothermic organisms (Gil-

looly et al., 2002; Ellers et al., 2008), and various

processes may be affected by food constituents (Sanders

et al., 1981; Meek et al., 1995; Krol et al., 2012) and

nutritional state (L~omus & Sundstr€om, 2004; Rui, 2013;

Mueller et al., 2015)). Genetic variation in upstream

(i.e. close to the cue perception) regulatory processes,

which may involve cue activation thresholds for trans-

duction elements, may affect the way the environment

is ‘perceived’ (in a general sense) by the organism, and

hence the cue reference trait (trait zc) in our model.

Genetic variation in downstream processes close to the

phenotypic expression of quantitative characters, on

the other hand, may affect the degree of up/down-reg-

ulation in response to given levels (and types) of trans-

duction elements and hence the slope of linear reaction

norms (trait zb in our model). Finally, some genetic

variation may have the same additive effect on the

phenotype irrespective of the environmental cue (trait

za in our model). The importance of differentiating

between these three traits may be better appreciated

when considering the effects of the mean traits on the

population; A change in �zc will change the cue value at

which different genotypic reaction norms tend to cross

(u0), whereas a change �za will not.

Although there is ample evidence for widespread

genetic variation for reaction norms in natural popula-

tions (Falconer & Mackay, 1996; Sultan & Stearns,

2005; Sengupta et al., 2016), there are not many exam-

ples where the full pathway of phenotypic plasticity

from cue perception to phenotype expression is known

in great detail (Sultan, 2010; Morris & Rogers, 2014),

and even less is known about the genetic variation of

the different elements of these pathways. It seems,

however, obvious that there may be substantial geno-

typic variation in perception of environmental cues (i.e.

variation in trait zc in our model). Examples indicating

genetic variation in environmental perception include

substantial among-population variation in the signal

transduction pathway of induced plant defence in Ara-

bidopsis thaliana (Kliebenstein et al., 2002), and individ-

ual variation in systemic stress responses has likely

components of individual variation in what is perceived

as stressful (Hoffmann & Parsons, 1991; Badyaev, 2005;

Dingemanse et al., 2010). There is also considerable

variation and ‘fine-tuning’ in light (and shading) per-

ception systems involving phytochromes that are sensi-

tive to different wavelengths in plants (Smith, 1990,

1995; Schlichting & Smith, 2002).

Predictions and empirical evaluations

Parameters in a reaction norm function considered as

quantitative traits are always latent in the sense that

one cannot measure their phenotypic value by a single

measurement of an individual (except for traits that are

defined for a particular environment, such as an inter-

cept). Although one may estimate reaction norm inter-

cept and slope from multiple measurement of the same

genotype or related individuals with known genealogy

(Nussey et al., 2007; Martin et al., 2011), such data

alone does not provide enough information to separate

the traits za and zc (from a statistical point of view, the

three-trait model fitted to such data is overparameter-

ized, which may be one of the reasons it has not previ-

ously been considered). Nevertheless, if one have a

detailed understanding of the physiological (or develop-

mental) mechanisms of the plastic response, one may

still be able to estimate meaningful reaction norm traits

beyond a phenomenological ‘intercept’ and ‘slope’,

including traits associated with cue perception (trait zc).

Time-series data from selection experiments may also

provide information about the genetic architecture of

the reaction norms (Fuller et al., 2005).

The cue value that gives minimum phenotypic varia-

tion in the population (u0) may be estimated by fitting

data on genotype-specific phenotypic measurements to

mixed-effects linear models with random individual

slopes and intercepts (Martin et al., 2011; Bates et al.,

2015), or from a random regression ‘animal model’

building on a known relatedness among individuals

(Nussey et al., 2007). Our three-trait quantitative genet-

ics model gives certain predictions about the evolution

of u0 under environmental change. Our analysis shows

that the mean cue reference trait (�zc), and hence u0
(eqn 5), will respond rapidly to changes in the mean

environment (provided sufficient additive genetic varia-

tion). Whenever there is selection for increased plastic-

ity (i.e. selection for higher j�zbj), exaggerated

perception of the environmental change also becomes

adaptive, and one may observe that u0 swings away in

the opposite direction of the change in the mean cue

during a ‘stage of alarm’ after large and fast changes in

the environment (see Fig. 4). Later, u0 will move
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towards, and eventually fluctuate around, the new cue

value. In contrast, under the two-trait model u0 will

not change in response to changes in the mean cue

value.

Future directions

In this paper, we have made a number of simplistic,

but quite standard, assumptions, including interval-

scaled cues and phenotypes, Gaussian fitness with

constant width and peak value, lack of density and

frequency dependence, random mating, discrete gener-

ations where all individuals are exposed to the same

environment (e.g. no spatial heterogeneity), and uncor-

related environments from one generation to the next.

These assumptions may be modified or relaxed in

future developments. In particular, the two-trait model

has been used in theoretical studies involving within-

generation heterogeneity (de Jong & Gavrilets, 2000;

Tufto, 2000, 2015; Scheiner, 2013). We suggest that

these studies may be developed by including a cue ref-

erence trait in the linear reaction norms (our three-trait

model). The models may also be modified by incorpo-

rating different reaction norm shapes. Notably, de Jong

& Gavrilets (2000) allowed the genetic covariance

between reaction norm intercept and slope, as well as

their variances, to evolve through selection on allelic

pleiotropy. It would be interesting to repeat their

approach on our three-trait model to investigate the

relative contributions (and synergies) of the evolution

of trait means and trait variances and covariances.

Several authors have assumed flexible polynomial

reaction norms with the polynomial coefficients consid-

ered as traits (Gavrilets & Scheiner, 1993a,b; Scheiner,

1993; Via et al., 1995). We suggest that such rather

phenomenological nonlinear reaction norm models

may be modified by considering the slope and percep-

tion traits of the three-trait model as themselves depen-

dent on the environment, which may result in a

polynomial of (u � zc); considering trait zb as a linear

function of (u � zc) results in a reaction norm that is a

second-order polynomial of (u � zc), etc. Note that in

nonlinear reaction norms, unlike linear ones, a change

in the perception trait(s) will never have the same

effect on the genotypic reaction norm as a change in

elevation trait (the component of the plastic phenotype

independent of the environment) (see Fig. 2b).

Regardless of the reaction norm shape, we argue

that it is essential to distinguish genetic variation in

how the environmental cues are perceived from other

genetic variation affecting the reaction norm distribu-

tion in the population. We suggest that future develop-

mental and behavioural studies pay more attention to

genetic variation in environment perception and trans-

duction, and that the contributions of such genetic

variation to phenotypic variation in natural environ-

ments are evaluated.

Data archiving

No data used. The R code used for simulations is pro-

vided in Appendix S5 in the Supporting Information.
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