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Abstract

Latent variables models used in principal component regression (PCR) or partial least squares
regression (PLSR) often use a high number of components, and this makes interpretation of score
and loading plots difficult. These plots are essential parts of multivariate modeling, and there is
therefore a need for a reduction of the number of components without loss of prediction power. In
this work it is shown that such reductions of PCR models with a common number of components
for all responses, as well as of PLSR (PLS1 and PLS2) models, may be obtained by projection of
the X modeling objects onto a subspace containing the estimators b̂i for the different responses yi.
The theoretical results are substantiated in three real world data set examples, also showing that the
presented model reduction method may work quite well also for PCR models with different numbers of
components for different responses, as well as for a set of individual PLSR (PLS1) models. Examples
of interpretational advantages of reduced models in process monitoring applications are included.
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1 Introduction
Solutions of ill-posed regression problems using principal component regression (PCR) or partial least
squares regression (PLSR) based on latent variables (LV) models, offer the added advantage of score-
loading visualizations. However, for good predictions such models often require so many components
that interpretation of the plots is difficult, and this calls for model reduction methods without loss of
prediction capability. This is the main results of the orthogonal signal correction (OSC) methods [1],
and as pointed out by Trygg [2] the number of final components need not be higher than the number of
independent responses. This fact also follows from an earlier paper by Kvalheim and Karstang [3]. With
a single response, one component will thus be enough, but that will obviously not facilitate the score
and loading plots that are essential parts of multivariate modeling. This was the motivation behind the
2PLS algorithm [4], where a single response LV model (PLS1) with many components is reduced to a
model with two components only. That is obtained by projection of the objects in the A-dimensional
loading weights space onto a two-dimensional subspace containing the vector b̂ of prediction coefficients
(the estimator).
In the present paper the 2PLS theory is extended to show that any PCR or PLSR (PLS1 and PLS2)

model with an A-dimensional loading space can be reduced by projection onto a subspace with any
dimension m ≤ Ã < A, where m is the number of independent responses, and that this can be done
while retaining exactly the same predictions. Since the only significant difference between PCR and
PLSR (especially PLS1) often is the number of original components, and since this difference disappears
after the model reduction, the two methods will often give practically the same final results. The model
reduction results may utilized in e.g. operator support systems for process understanding and monitoring
[5,6].
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In the multiresponse case with m > 1 the corresponding reduction of a set of individual PLSR
(PLS1) models will not give exactly the same predictions, and the reason for this is that the individual
coefficient vectors in B̂PLS1 are located in different subspaces. The same problem will occur for a set
of individual PCR estimators based on different numbers of components. The predictions in these cases
may be approximately the same, however, just as a multiresponse PLS2 models may give approximately
the same predictions as a set of individual single response PLS1 models.
The theory behind these model reductions is given in Section 2, while comparisons between the

different cases using real world data are presented in Section 3. Section 3 also includes illustrations of
the interpretational advantages obtained. Conclusions are finally given in Section 4, and a detailed proof
in Appendix A.

2 Theory
LV models
Assume an ill-posed linear regression problem with modeling data X ∈ RN×p and Y ∈ RN×m, and

solutions using PCR or PLSR. For simplicity also assume thatY is non-collinear, or alternatively replaced
by an appropriate number of principal components of Y. In PCR we use the LV model

Y = TQT +F (1)

X = TPT +E, (2)

where both T ∈ RN×A and P ∈ Rp×A are orthogonal, and P also orthonormal. Least squares (LS)

estimation gives T̂ = XP
¡
PTP

¢−1
= XP and Q̂T =

³
T̂T T̂

´−1
T̂TY , and the estimator (matrix of

prediction coefficients) in Ŷ = XB̂ = T̂Q̂
T
thus becomes

B̂PCR = P
¡
PTXTXP

¢−1
PTXTY. (3)

The loading matrix P is here found by principal component analysis (PCA) or singular value decomposi-
tion (SVD) of X, with the number of components determined through validation. This ensures that the
individual estimators (columns of B̂PCR) are all located in the column space of P. This is the case also
if the individual estimators are found one by one, provided that the same number of components is used
in all individual PCR models.
In PLSR we may use the orthogonalized LV model

Y = TWQ
T
W +F (4)

X = TWP
T
WWWT +E, (5)

possibly withX expressed asX = TWP
T
W+EW, where both TW ∈ RN×A andW ∈ Rp×A are orthogonal,

andW also orthonormal. Alternatively we may use the non-orthogonalized LV model

Y = TMQ
T
M +F (6)

X = TMW
T +E, (7)

where TM is non-orthogonal. From all of these PLSR models follows the LS estimator

B̂PLSR =W
¡
WTXTXW

¢−1
WTXTY. (8)

The loading weights matrixW is here found by the step-wise NIPALS algorithm, with some extensions for
the multiresponse case [7]. PLSR differs from PCR in that the columns of B̂PLSR in the multiresponse case
(PLS2) are not the same as the individual estimators for the different single response cases. Individual
PLSR for different responses yi (PLS1) will result in different loading weights matrices Wi, and the
different estimators b̂i will therefore be located in different subspaces. A common PLSR for all responses
(PLS2) will ensure individual estimators in the same subspace, often at the cost of degraded predictions.
Finally note that in the case of collinear responses, the matrix Y may be replaced by an appropriate

number of principal components of Y.
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Model reduction
In PCR and PLSR all objects in X are projected onto the column space of P orW. They may also be

further projected onto subspaces of these column spaces, e.g. the column space of
£
B̂PCR PL

¤ ∈ Rp×Ã
or
£
B̂PLSR WL

¤ ∈ Rp×Ã, where m ≤ Ã < A, and where PL orWL are linear combinations of P or
W that are not collinear with B̂PCR or B̂PLSR. After such a projection we may define an orthonormal
matrix P̃ spanning such a subspace, and an LV model

Y = T̃Q̃
T
+ F̃ (9)

X = T̃P̃
T
+ Ẽ, (10)

where T̃ = XP̃ and Q̃T =
³
T̃T T̃

´−1
T̃TY. In the same way as for the estimators (3) and (8) this will

result in the LS estimator

B̃ = P̃
³
P̃TXTXP̃

´−1
P̃TXTY, (11)

and assuming a PCR model with the same number of components for all responses as a starting point, this
estimator will be exactly the same as the PCR estimator (3). This is true also for a single response PLSR
model (PLS1), and for a common multiresponse PLSR model (PLS2). We summarize in the following
theorem:

Theorem 1 A PCR, PLS1 or PLS2 latent variables model with m independent response variables and
A components, can by projection of all modeling objects in X onto a subspace containing the columns of
the estimator B̂PCR or B̂PLSR respectively be reduced to an LV model with m ≤ Ã < A components, while
still retaining exactly the same estimator.

Proof. See Appendix A.

Note that Theorem 1 is not valid for a set of individual PCR models with different numbers of
components, or for a set of individual PLSR (PLS1) models. The reason for this is that the individual
estimators b̂i in these cases generally are located in different subspaces. Also in these cases, however,
we may obtain results that are approximately in accordance with the theorem (see examples in Section
3 below).

3 Examples
The main point with the examples below is to indicate the possibility to obtain approximate results
according to Theorem 1 also in the multiple response PCR and PLSR cases where the reduced model
estimators are not exactly equal to the original set of individual estimators. Analogously to PLSR we will
here use the notation PCR1 for individual single response PCR results, and PCR2 for multiresponse PCR
with a common number of components. Examples of interpretational advantages of model reduction are
given in the references [4,5,6], but for the readers convenience some illustrative results from [5] are also
included here.

3.1 Gasoil example

The data in this example are provided by the Wentzell group at Dalhousie University
(http://myweb.dal.ca/pdwentze/downloads.html, Data Set #3), under the name "gasoil". The data set
consists of 115 samples for which the UV spectra over 572 channels have been obtained. The data includes
four response variables. After centering and standardization of the data, and using the first 70 samples
for modeling and the next 44 samples for validation (the last is an outlier), the results in Table 1 were
obtained.
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Table 1: RMSE values for the four Gasoil responses using different LV models. A common "best
possible" value of A was chosen for the original PCR2 and PLS2 estimators, while the PCR1 and PLS1
estimators were individually optimized. The best result for each response is underlined.

ŷ1 ŷ2 ŷ3 ŷ4
PCR2 model with A = 15, and
reduced PCR2 model with Ã = 4

0.1087 0.1477 0.1851 0.2764

Individual PCR1 models with A = 23, 23, 23 and 15 0.1026 0.1414 0.1824 0.2764
Reduced PCR2 model with Ã = 4, based on
individual PCR1 models with A = 23, 23, 23 and 15

0.1026 0.1414 0.1824 0.2759

Individual PLS1 models with A = 6, 5, 4 and 4 0.1129 0.1434 0.1749 0.2774
Reduced PLS2 model with Ã = 4, based on
individual PLS1 models with A = 6, 5, 4 and 4

0.1109 0.1384 0.1989 0.2838

PLS2 model with A = 5, and
reduced PLS2 model with Ã = 4

0.1215 0.1471 0.1615 0.2883

From Table 1 it is clear that none of the methods is decisively better than the others. In accordance
with the theory, reduction of the PCR2 and PLS2 models give exactly the same results as the original ones,
while reduction of the individual PCR1 and PLS1 models give results slightly different from the original
ones (same PCR2 result for response with highest number of PCR1 components, since the subspaces then
coincide).

3.2 Cleaner example

The following example uses multivariate regression data from a mineral processing plant [8] (the ’cleaner’
data, originally published in [9]). The problem considered here is to predict two given responses y4 and
y7 from twelve known process variables.

Prediction results
After centering and standardization of the data, and using the first 120 samples for modeling and

samples 181-240 for validation, the results in Table 2 were obtained.

Table 2: RMSE values for the two Cleaner responses in different cases. A common "best possible"
value of A was chosen for the PCR2 and PLS2 estimators, while the PCR1 and PLS1 estimators were
individually optimized. The best result for each response is underlined.

ŷ4 ŷ7
PCR2 model with A = 10, and
reduced PCR2 model with Ã = 4

0.1880 0.2783

Individual PCR1 models with A = 10 and 10 0.1880 0.2783
Reduced PCR2 model with Ã = 4, based on
individual PCR1 models with A = 10 and 10

0.1880 0.2783

Individual PLS1 models with A = 6 and 3 0.1901 0.2804
Reduced PLS2 model with Ã = 4, based on
individual PLS1 models with A = 6 and 3

0.1930 0.2799

PLS2 model with A = 6, and
reduced PLS2 model with Ã = 2

0.2463 0.2938

The conclusions drawn from Table 2 are essentially the same as in the Gasoil example above.

Interpretational illustrations
In order to illustrate the interpretational advantages the PLS1 model (6,7) for response y4 using A = 6

components is reduced to a 2PLS model [4] by projection onto the plane defined by the estimator b̂ and
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the first loading weight vector w1, resulting in the LV model (9,10). New X data were then introduced
as Xtest = I12, i.e.

Xtest =


1 0 · · · 0
0 1 · · · 0
...
...

. . .
...

0 0 · · · 1

 . (12)

The 2PLS scores and loadings for T̃test = XtestP̃ and P̃ were then plotted (Fig. 1). The loadings were
here normalized to fall on the unit circle (∗-marked). The scores corresponding to Xtest are also plotted
in Fig. 1 (×-marked). As can be seen, the direction for e.g. test score number 2 corresponds exactly
to the direction for row number 2 in the P̃ matrix, i.e. there is an exact score-loading correspondence
(see [10] for a general discussion). In a process monitoring application a large deviation from the origin
thus not only signals a special plant operation situation, but also indicates which regressor variable or
variables that cause the deviation.
Fig. 1 also shows lines for constant ŷ and an axis for b̂ and thus ŷ perpendicular to those lines. The

plot can be used to gain process understanding. As can be seen the predicted response ŷ is strongly
correlated with variable 3 and also with variables 1, 2, 8 and 9, while the other variables according to
the loading directions have little to do with ŷ (and variable 9 has a very limited influence). For process
monitoring purposes, variable contribution vectors and a confidence ellipse may also be incorporated in
the score loading biplot [5,6].
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Figure 1. Score-loading plot for Xtest according to Eq. (12), based on a reduced model with Ã = 2
components (2PLS). The scores are ×-marked, while the normalized loadings are ∗ -marked. Dashed lines for
constant predictions ŷ are included in the score plot, while the estimator b̂ is included in the loading plot. Note
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the exact score-loading correspondence, and that b̂ is perpendicular to the loadings 4, 5 and 6 (compare with
Fig. 2).

Using original score plots and projections of b̂ onto the corresponding loading plots, we obtain the
results in Fig. 2. The prediction ŷ cannot in this case be captured in any of these plots, and the influence
from the different variables on the scores are thus obscured. It is for example not possible to see that
b̂ is perpendicular to a plane through the test scores 4, 5 and 6, as can be seen from Fig. 1, and thus
that ŷ is not influenced by the corresponding variables. This can of course be seen directly from the b̂
coefficients, but that hardly helps an operator in the interpretation of the plots.
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Figure 2. Score plot for Xtest according to Eq. (12) with ×-marked scores, based on an original PLS1 model
with A = 6 components. Projections of the estimator b̂ onto the corresponding loading plots are superimposed.
Note that the direction of ŷ cannot be seen in these plots. Neither can it be seen that b̂ is perpendicular to the
loadings 4, 5 and 6 (compare with Fig. 1).

3.3 Corn example

This data originating from the Cargill company is found on the Eigenvector home site
(http://software.eigenvector.com/Data/Corn/index.html). It consists of 80 samples of corn measured on
a NIR spectrometer labeled m5. The wavelength range is 1100-2498 nm at 2 nm intervals (700 channels).
The moisture (y1), oil (y2), protein (y3) and starch (y4) values for each of the samples are also included.
After centering and standardization of the data, and using the first 40 samples for modeling and samples
41-80 for validation, the results in Table 3 were obtained.
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Table 3: RMSE values for the four Corn responses in different cases. A common "best possible"
value of A was chosen for the PCR2 and PLS2 estimators, while the PCR1 and PLS1 estimators were
individually optimized. The best result for each response is underlined.

ŷ1 ŷ2 ŷ3 ŷ4
PCR2 model with A = 26, and
reduced PCR2 model with Ã = 4

0.3609 0.9732 0.4420 0.4885

Individual PCR1 models with A = 27, 25, 26 and 25 0.3485 0.9536 0.4420 0.4443
Reduced PCR2 model with Ã = 4, based on
individual PCR1 models with A = A = 27, 25, 26 and 25

0.3485 0.9518 0.4420 0.4467

Individual PLS1 models with A = 12, 17, 8 and 9 0.3506 0.6912 0.4466 0.5010
Reduced PLS2 model with Ã = 4, based on
individual PLS1 models with A = 1, 17, 8 and 9

0.3495 0.6902 0.4349 0.5054

PLS2 model with A = 13, and
reduced PLS2 model with Ã = 4

0.3551 1.0128 0.4649 0.5198

In Table 3 we see that for variables y1 (moisture) and y3 (protein) all methods give very similar
results. For variable y2 (oil) only the individual PLS1 models and the PLS2 model based on these give
in any way useful estimates, and the reduced model is just as good as the individual ones. For variable
y4 (starch), the PCR estimators are clearly the best. Note, however, that these results are based on a
relatively limited number of samples.

4 Conclusions
The main idea behind the model reduction results presented above is that models for prediction and
interpretation should not necessarily be the same, and the practical result of model reduction is increased
interpretability. An example of that is the 2PLS algorithm, where a single response PLSR model is
reduced by projection on a plane containing b̂ [4].
It has been shown that a PCR latent variables model with a common number of components for all

responses, as well as a PLSR model for one or several responses (PLS1 or PLS2), can without any change
in the predictions be reduced by projection of the X modeling objects onto a subspace containing the
estimators b̂i for the different responses yi. The result of this is easier interpretation of the score and
loading plots, that are essential parts of multivariate modeling.
The theoretical results are substantiated by use of three real world data set examples, also showing

that the presented model reduction method may work quite well also for a set of individual PCR latent
variables models with different numbers of components for different responses, as well as for a set of
individual PLSR (PLS1) models. Some interpretational advantages are also exemplified, and more details
of this are found in the references.

A Proof of Theorem 1
The proof is given for the PCR estimator (3) based on a latent variables model with loading matrix P.
For a PLSR estimator we must generally replace P with W, and for a PLS1 model we must assume
m = 1.
We first prove the theorem for the special case of Ã = m. Using the simplified notation B̂PCR = B̂,

and introducing an invertible matrixM ∈ Rm×m and an orthonormal loading matrix P̃ = B̂M with the
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same column space as B̂, we obtain by use of Eq. (3) and with (·)−1 = (PTXTXP)−1

B̃ = P̃(P̃TXTXP̃)−1P̃TXTY = B̂M(MT B̂TXTXB̂M)−1MT B̂TXTY

= B̂(B̂TXTXB̂)−1B̂TXTY

= P(·)−1PTXTY
³
YTXP (·)−1PTXTXP (·)−1PTXTY

´−1
YTXP (·)−1PTXTY

= P(·)−1PTXTY = P(PTXTXP)−1PTXTY = B̂. (13)

Note that M = (B̂T B̂)−1B̂T P̃, where the actual choice of P̃ and thus M is application dependent. In
any case we see that the columns of B̂ and thus of Ŷ = XB̂ must be independent, as stated in Theorem
1.
For the general case allowing for Ã > m we introduce a matrix L ∈ RA×(Ã−m) and use P̃ =£
B̂M PL

¤
, where L is chosen such that the column space of

£
B̂M PL

¤
is of dimension Ã. The

actual choices of M and L will here depend on the application at hand. Using B̂ = B and introducing
R =

¡
MTBTXTXBM

¢−1
for simplified notation, the resulting estimator then becomes

B̃ = [ BM PL ]

µ·
MTBT

LTPT

¸
XTX[ BM PL ]

¶−1 ·
MTBT

LTPT

¸
XTY

=

 BMRMTBT +BMRMTBTXTXPL [·]−1 LTPTXTXBMRTMTBT

−PL [·]−1 LTPTXTXBMRTMTBT

−BMRMTBTXTXPL [·]−1 LTPT +PL [·]−1 LTPT

XTY (14)

= BMRMTBTXTY +
³
BMRMTBTXTXPL−PL

´
[·]−1

³
BMRMTBTXTXPL−PL

´T
XTY,

where a standard formula for matrix inversion [11] comes to use, and where

[·]−1 =
h
LTPT

³
XTX−XTXBMRMTBTXTX

´
PL
i−1

. But using that

Ŷ = XP
¡
PTXTXP

¢−1
PTXTY = XBM

¡
MTBTXTXBM

¢−1
MTBTXTY = XBMRTMTBTXTY

and that RT = R we here have³
BMRMTBTXTXPL−PL

´T
XTY = LTPTXTXBMRTMTBTXTY − LTPTXTY

= LTPT
³
XT Ŷ −XTY

´
= LT

³
PTXTXP

¡
PTXTXP

¢−1
PTXTY −PTXTY

´
= LT

¡
PTXTY −PTXTY

¢
= 0, (15)

i.e. also in the general case we have

B̃ = BM
¡
MTBTXTXBM

¢−1
MTBTXTY = B = B̂. (16)
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