
This file was downloaded from Telemark Open Research Archive TEORA -

http://teora.hit.no/dspace/

Title: Where impact got going

Authors: Tiller, M., & Winkler, D.

Article citation: Tiller, M., & Winkler, D. (2015). Where impact got going. Linköping

Electronic Conference Proceedings(118), 725-736.

doi:http://dx.doi.org/10.3384/ecp15118725

http://teora.hit.no/dspace/

Where impact got Going

Michael Tiller1 Dietmar Winkler2

1Xogeny Inc., USA, michael.tiller@xogeny.com
2Telemark University College, Norway, dietmar.winkler@hit.no

Abstract

This paper discusses the impact package manager. The
primary goal of this project is to support the development
of a healthy eco-system around Modelica. For many
other languages, the existence of an easy to use pack-
age manager has made it easier for people to explore and
adopt those languages. We seek to bring that same kind
of capability to the Modelica community by incorpo-
rating useful features from other package managers like
bower, npm, etc.

This paper is an update on the status of the impact
package manager which was discussed previously in
(Tiller and Winkler 2014). This latest version of
impact involves a complete rewrite that incorporates
a more advanced dependency resolution algorithm. That
dependency resolution will be discussed in depth along
with many of the subtle issues that arose during the de-
velopment of this latest version of impact. Along with
a superior dependency resolution scheme, the new ver-
sion of impact is much easier to install and use. Fur-
thermore, it includes many useful new features as well.
Keywords: Modelica, package management, GitHub, de-

pendency resolution, golang

1 Introduction

1.1 Motivation

The motivation behind the impact project is to support
two critical aspects of library development. The first is to
make it very easy for library developers to publish their
work. The second is, at the same time, to make it easy
for library consumers to both find and install published
libraries.

We also feel it is important to reinforce best practices
with respect to model development. For this reason, we
have made version control an integral part of our solu-
tion. Rather than putting users in a position to have to
figure out how to make impact work with a version
control system, we’ve build impact around the version
control system. Not only do users not have to find a
way to make these technologies work together, impact
actually nudges those not using version control toward

solutions that incorporate version control. In this way,
we hope to demonstrate to people the advantages of both
impact and version control and establish both as “best
practices” for model development.

By creating a tool that makes it easy to both publish
and install libraries, we feel we are creating a critical
piece of the foundation necessary to establish a healthy

ecosystem for model development.

1.2 History

Earlier, we mentioned that impact has been completely
rewritten. In fact, the very first version of impact was
just a single Python script for indexing and installing
Modelica code (Tiller 2013). It eventually evolved into
a multi-file package that could be installed using the
Python package management tools.

2 Requirements

After building the original Python version, we gave
some thought to what worked well and what didn’t
work well. One issue we ran into almost immediately
was the complexity of installing the Python version of
impact. Python is unusual in that it has two package
managers, easy_install and pip. It comes with
easy_install, but pip is the more capable package
manager. So in order for someone to install impact,
they first needed to install Python, then install pip and
then install impact. This was far too complicated. So
we wanted to come up with a way for people to install
impact as a simple executable without any run-time
or prerequisites.

Another issue we ran into with the Python version
was the fact that there are two different and incompat-
ible versions of Python being used today (i.e., 2.x and
3.x). Trying to support both was an unnecessarily ineffi-
cient use of resources. We also had some difficulties in
the Python version with support for SSL under Windows
(StackOverflow 2010). Because we were doing lots of
“crawling” (more on this shortly), we needed a platform
that provided solid HTTP client support. For these rea-
sons, we felt we needed to move away from Python alto-
gether.

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

725

Although most Modelica users run their development
tools and simulations under Windows, there are several
tools that support OSX and Linux as well as Windows.
So as to not neglect users of those tools and to support
more cross-platform options, we also wanted to be able
to compile impact for all three major platforms.

Furthermore, we wanted to provide a simple exe-
cutable for all platforms without having to have actual
development machines for each of these different plat-
forms. For this reason, cross compilation between dif-
ferent platforms was an important consideration as well.

Of course, we also wanted to have good performance.
For most package management related functions, the
speed of the internet connection is probably the biggest
limiting factor. So CPU performance wasn’t that high
on the list. But, as we shall discuss shortly, the compu-
tational complexity of the dependency resolution algo-
rithm we implemented could lead to some computation-
ally intensive calculations for complex systems of depen-
dencies.

For these reasons, we ultimately rewrote impact in
Go (Go-Developers 2014). Go is a relatively new lan-
guage from Google that stresses simplicity in language
semantics but, at the same time, provides a fairly com-
plete standard library. You can think of Go as being quite
similar to C with support for extremely simple object-
oriented functionality, automatic garbage collection and
language level support for CSP-based concurrency. With
Go, we were able to satisfy all the requirements above.

3 Version Numbering

Before we dive into all the details associated with crawl-
ing, indexing, resolving and installing, it is useful to
take a moment to briefly discuss versioning. Modelica
supports the notion of versions through the use of the
version and uses annotations. These two annota-
tions allow libraries to explicitly state what version they
are and what versions of other libraries they use, respec-
tively.

But there is one complication to the way Modelica
deals with versions. In Modelica, a version is simply
a string. This by itself isn’t a problem. But it becomes
a problem, as we will discuss in greater detail shortly,
when you need to understand relationships between ver-
sions. In particular, there are two important things we
would like to determine when dealing with version num-
bers. The first is an unambiguous ordering of versions.
In other words, which, of any two versions, is the “latest”
version? The second is whether a newer version of a li-
brary is “backwards compatible” with a previous version.
These are essential questions when trying to resolve de-
pendencies and the current string based approach to ver-
sions in Modelica is not semantically rich enough to help
us answer either of these.

This issue is not unique to the Modelica world. These

same questions have been asked for a very long time and
various approaches have been invented to deal with an-
swering these questions. One recent and widely used
approach is to employ what is called semantic ver-

sioning (Preston-Werner 2014). Semantic versioning is
pretty much what it sounds like, an approach to defining
version numbers where the version numbers have very
explicit meanings associated with them.

A very simple summary of semantic versioning would
be that all versions have exactly three numerical compo-
nents, a major version number, a minor version number
and a patch. A semantic version must have all of these
numbers and they must be .-separated. For this rea-
son, the following versions are not legal semantic version
numbers: 1, 1a, 1.0, 1.0-beta5, 4.0.2.4096.
Each of the three numbers in a semantic version means
something. If you make a non-backward compatible
change, you must increment the major version. If you
make a backward compatible version, you must incre-
ment the minor version. If you make a change that should
be completely compatible with the previous version (e.g.,

doesn’t add any new capability), you increment only the
patch version.

There are additional provisions in semantic versioning
to handle pre-release versions as well as build annota-
tions. We will not discuss those semantics here, but they
are incorporated into our implementation’s treatment of
version numbers.

Our use of semantic versioning is aligned with our
goal of strongly encouraging best practices. It is im-
portant to point out that the use of semantic versions is
completely legal in Modelica. In other words, Modelica
allows a wider range of interpretations of version num-
bers. By using semantic versions, we narrow these inter-
pretations but we feel that this narrowing is much better
for the developer since it also provides meaning to the
version numbers assigned to a library.

However, because Modelica libraries are free to use
nearly any string as a version number, we need to find a
way to “bridge the gap” between past usage and the us-
age we are encouraging moving forward. Although in-
ternally impact understands only semantic versions, it
is still able to work with nearly all existing Modelica li-
braries. This is achieved through a process of “normaliz-
ing” existing versions. When impact comes across ver-
sions that are not legal semantic versions, it attempts to
create an equivalent semantic version representation. For
example, a library with a version string of 1.0 would be
represented by the semantic version 1.0.0.

For this normalization to work, it is important to make
sure that the normalization is performed both on the ver-
sion number associated with a library and on the version
numbers of the libraries used. In other words, it must
be applied consistently to both the version and uses
annotations.

Where impact got Going

726 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

4 Indexing

As mentioned previously, there are two main functions
that impact performs. The first is making it easy for
library developers to publish their libraries and the other
is making it easy for consumers to find and install those
same libraries. Where these two needs meet is the li-
brary index. The index is built by collecting informa-
tion about published libraries. The same index is used

by consumers searching for information about available
libraries.

Building the index involves crawling through repos-
itories and extracting information about libraries that
those repositories contain. In the following section we
will discuss this crawling process in detail and describe
the information that is collected and published in the re-
sulting index.

4.1 Sources

Currently, impact only supports crawling
GitHub (GitHub 2014) repositories. It does this by
using the GitHub API (GitHub-Developers 2014) to
search through repositories associated with particular
users and to look for Modelica libraries stored in those
repositories. We will shortly discuss exactly how it
identifies Modelica libraries. But before we cover those
details it is first necessary to understand which versions

of the repository it looks into.
Each change in a Git repository involves a commit.

That commit affects the contents of one or more files in
the repository. During development, there are frequent
commits. To identify specific versions of the repository,
a tag can be associated with that version. Each tag in the
repository history that starts with a v and is followed by
a semantic version number is analyzed by impact.

4.2 Repository Structure

For each version of a repository tagged with a seman-
tic version number, impact inspects the contents of
that version of the repository looking for Modelica li-
braries. There are effectively two ways that impact
finds Modelica libraries in a repository. The first is to
check for libraries in “obvious” places that conform to
some common conventions. For cases where such con-
ventions are insufficient, impact looks for a file named
impact.json to explicitly provide information about
the repository.

4.2.1 Conventions

With respect to impact, the following is a list of “ob-
vious” places that impact checks for the presence of
Modelica libraries:

• ./package.mo The entire repository is treated as
a Modelica package.

• ./<dirname>/package.mo or
./<dirname> <ver>/package.mo The di-
rectory <dirname> is presumed to be a Modelica
package.

• ./<filename>.mo or
./<filename> <ver>.mo The file
./<filename>.mo is a file containing a
Modelica library.

In all cases, the name of the library is determined by
parsing the actual Modelica package definition and is
not related to the name of the repository. As can be seen
from these conventions, only files and directories that ex-
ist at the root level are checked for Modelica content.

4.2.2 impact.json

For various reasons, library developers may not wish to
conform to the repository structure patterns discussed
previously. Furthermore, there may be additional in-
formation they wish to include about their libraries.
For this reason, a library developer can include an
impact.json file in the root of the repository di-
rectory that provides additional information about the
contents of the repository. For example, a repository
may contain two or more Modelica libraries in sub-
directories. The impact.json file allows informa-
tion about the storage location of each library in the
repository to be provided by the library developer. Fur-
thermore, the author may wish to include contact infor-
mation beyond what can be extracted from information
about the repository and its owner. These are just a few
use cases for why an impact.json file might be use-
ful for library developers. A complete schema for the
impact.json file can be found later in Section 4.4.2.

4.3 Handling Forks

The Modelica specification implicitly assumes that each
library is uniquely identified by its name. This name is
used in both the version and uses annotations as well
as any references in Modelica code (e.g., Modelica in
Modelica.SIunits). This assumption works well
when discussing libraries currently loaded into a given
tool. But when you expand the scope of your “names-
pace” to include all libraries available from multiple
sources, the chance for overlap becomes possible and
must be dealt with.

Previously, we mentioned the importance of support-
ing best practices in model development and the specific
need to accommodate version control as part of that pro-
cess. Up until now, we have leveraged version control to
make the process of indexing and collection libraries eas-
ier. However, version control does introduce one com-
plexity as well. That complexity is how to deal with
forks.

Forks are common in open source projects and typi-
cally occur when there are multiple perspectives on how

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

727

development should progress on a given project. In some
cases, rather than reconciling these different perspec-
tives, developers decide to proceed in different direc-
tions. When this happens, the project becomes “forked”
and there are then (at least) two different libraries being
developed in parallel. Each of these libraries may share a
common name and perhaps even the same version num-
bers but still be fundamentally different libraries.

A fork can arise for another, more positive, reason.
When someone improves a library they may not have
permission to simply fold their improvement back into
the original library. On GitHub in particular, it is ex-
tremely common for a library to be forked simply to en-
able a third-party to make an improvement. The author
of the improvement then sends what is called a pull re-

quest to the library author asking them to incorporate the
improvement. In such a workflow, the fork is simply a
temporary measure (akin to a branch) to support concur-
rent development. Once the pull request is accepted, the
fork can be removed entirely.

Regardless of why the fork occurs, it is important
that impact accommodates cases where forking occurs.
This is because forking is a very common occurrence in
a healthy eco-system. It indicates progress and interest
and we should not do anything to stifle either of these.
The issue with forking is that the same name might be
used by multiple libraries. In such cases, we need a bet-
ter way to uniquely identify libraries.

For this reason, impact records not only the library

name, but also a URI associated with each library. In
this way, the URI serves as a completely unambiguous
way of identifying different libraries. While two forks
may have the same name, they will never have the same
URI.

4.4 Schema

We’ve mentioned the kinds of information impact col-
lects while indexing as well as the kind of informa-
tion that might be provided by library developers (via
impact.json files). In this section, we will provide a
complete description of information used by impact.

4.4.1 impact_index.json

As part of the indexing process, impact produces an in-
dex file named impact_index.json. This is a JSON
encoded representation of all the libraries found during
indexing. The root of an impact_index.json file
contains only two elements:

version A string indicating what version of impact
generated the index. The string is, of course, a se-
mantic version.

libraries The libraries field is an array. Each ele-
ment in the array describes a library that was found.
The order of the elements is significant. Libraries

that occur earlier in the list take precedence over li-
braries that appear later. This is important in cases
where libraries have the same name.

For each library in the libraries array, the follow-
ing information may be present:

name The name of the library (as used in Modelica)
description A textual description of the library
stars A way of “rating” libraries. In the case of

GitHub, this is the number of times the repository
has been starred. But for other types of sources,
other metrics can be used.

uri A URI to uniquely identify the given library (when
it shares a common name with another library)

owner_uri A URI to uniquely identify the owner of
the library

email The email address of the owner/maintainer of
the library

homepage The URL for the library’s homepage
repository The URI for the library’s source code

repository
format The format of the library’s source code repos-

itory (e.g., Git, Mercurial, Subversion)
versions This is an object that maps a semantic ver-

sion (in the form of a string) to details associated
with that specific version

The details associated with each version are as fol-
lows:

version A string representation of the semantic ver-
sion (i.e., one that is identical to the key).

tarball_url A URL that points to an archive of the
repository in tar format.

zipball_url A URL that points to an archive of the
repository in zip format.

path The location of the library within the repository.
isfile Whether the Modelica library is stored as a file

(true) or as a directory (false)
sha This is a hash associated with this particular ver-

sion. This is currently recorded by impact during
indexing but not used. Such a hash could be useful
for caching repository information locally.

dependencies This is an array listing the dependen-
cies that this particular version has on other Model-
ica libraries. Each element in this array is an object
with one field, name, giving the name of the re-
quired library and another field, version, which
is the semantic version of that library represented
as a string (see previous discussion on normaliza-
tion in 3).

4.4.2 impact.json

As mentioned previously in Section 4.2.2, each directory
can include a file named impact.json that provides
explicit information about Modelica libraries contained

Where impact got Going

728 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

in that repository. The root of the impact.json file
contains the following information:

owner_uri A link to information about the libraries
owner

email The email address of the owner or maintainer
alias An object that whose keys are the names of li-

braries and whose associated values are the unique
URIs of those libraries. This information can,
therefore, be used to disambiguate between depen-
dencies where there may be multiple libraries with
that name.

libraries This is an array where each element is
an object that contains information about a library
present in the repository.

For each library listed in the libraries field, the
following information may be provided:

name The name of the library
path The path to the library
isfile Whether the entity pointed to by path is a

Modelica library stored as a file (true) or as a di-
rectory (false).

issues_url A link pointing to the issue tracker for
this library

dependencies An explicit list of dependencies for
this library (if not provided, the list will be based
on the uses annotations found in the package def-
inition).

Each dependency in the list should be an object that
provides the following information:

name Name of the required library

uri Unique URI of the required library

version Semantic version number of the required li-
brary (represented as a string)

5 Installation

The previous section focused on how impact collects
information about available libraries. The main applica-
tion for this information is to support installation of those
libraries. In this section, we’ll discuss the installation
side of using impact.

5.1 Dependency Resolution

5.1.1 Background

To understand the abstract problem behind the concept of
a dependency, we refer to the formal study undertaken in
(Boender 2011). There, a repository is defined as a triple
(R,D,C) of a set of packages R, a dependency function
D : R → P(P(R)), and a conflict relation C ⊆ R×R.

At that level, version numbers have been abstracted to
(distinguishable) packages: Every version yields a dis-
tinctive package p ∈ P.

The dependency function D maps a package p to sets
of sets of packages d ∈ D(p), where each set represents a
way to provide one required feature of p. In other words:
If for each d ∈D(p) at least one package in d is installed,
it is possible to use p.

Currently, there is no way to express conflicts directly
in a Modelica package. However, due to the existence
of external libraries (which could conflict in arbitrary
ways), it is likely that such a need will arise in the fu-
ture. Additionally, current Modelica makes it impossible
to refer to two different versions of a library from the
same model. Hence, we consider different versions of
the same package conflicting.

The dependency resolution of impact fits into Boen-
der’s model. Therefore, the conclusions drawn in (Boen-
der 2011) can be applied to impact as well:

The set of packages impact installs for a given
project needs to fulfill two properties, Boender calls
abundance and peace. Informally, abundance captures
the requirement that all dependencies be met while peace
avoids packages that are in conflict with each other. A
set of packages that is peaceful and abundant is called
healthy and a package p is called installable w.r.t. a given
repository if and only if there exists a healthy set I in said
repository such that p ∈ I.

The problem of finding such an installable set is how-
ever a hard one. In fact, Boender proves by a simple
isomorphism between the boolean satisfiability problem
and the dependency resolution that finding such a set is
NP-hard. Fortunately, for the current typical problem
size, this isn’t really an issue.

5.1.2 Resolution Algorithm

The indexing process collects quite a bit of information
about available libraries. Most of the complexity in im-
plementing the installation functionality in impact is in
figuring out what to install. And most of that complex-
ity is in finding a set of versions for the required libraries
that satisfy all the dependency relations. This process is
called dependency resolution.

The resolution algorithm starts with a list of libraries
that the user wants to install. In some cases, this may
be a single library but, in general, the list can be of any
length. For each library in the list, the user may specify
a particular version of the library they wish to install, but
this isn’t mandatory. One important point here is that we
refer to this as a list, not a set. Order is significant here.
The libraries that appear first are given a higher priority
than those that appear later.

Let’s explain why this priority is important. Consider
a user who wishes to install libraries A and B. If the user
has not explicitly specified what version of each library
they are interested in, impact assumes the user wants

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

729

the latest version, if possible. But what if the latest ver-
sion of both cannot be used? To understand this case,
consider the following constraints:

A:1.0.0 uses B:2.0.0

A:2.0.0 uses B:1.0.0

where A:1.0.0 means version 1.0.0 of library A.
This example is admittedly contrived, but the underly-
ing issue is not. We can see here that if we want the
latest version of A, we cannot also use the latest version
of B (and vice versa) while still honoring the constraints
above. The ordering of the libraries determines how we
“break the tie” here. Since A appears first, we assume it
is more important to have the latest version of A than to
have the latest version of B.

Let’s take this extremely simple example to outline
how the resolution algorithm would function in this case.
In later sections, we’ll introduce additional complexities
that must be dealt with.

If a user asks for libraries A and B to be installed, the
question that the dependency algorithm has to answer is
which versions do we use. Assuming that each library
has a version 1.0.0 and 2.0.0, then each “variable”
in this problem has two possible values. The following
table essentially summarizes the possibilities:

Version of A Version of B
1.0.0 1.0.0

1.0.0 2.0.0

2.0.0 1.0.0

2.0.0 2.0.0

This is a simple enumeration of the possibilities. But
remember, we assume the user wants the most recent ver-
sion and we assume A is more important than B. Seman-
tic versioning provides us with a basis for determining
which version is more recent. Given these we reorder
these combinations so that the most desirable combina-
tions appear first and the least desirable appear last:

Version of A Version of B
2.0.0 2.0.0

2.0.0 1.0.0

1.0.0 2.0.0

1.0.0 1.0.0

Now we see the impact of the dependency con-
straints. Specifically, the first (most desirable) combi-
nation in this table does not satisfy the dependency con-
straints (i.e., A:2.0.0 does not work with B:2.0.0).
If we eliminate rows that violate our dependency con-
straints, we are left with:

Version of A Version of B
2.0.0 1.0.0

1.0.0 2.0.0

In summary, we order the combinations by their de-
sirability (considering both the relative priority of the

libraries and their version numbers) and then we elimi-
nate combinations that don’t satisfy our dependency con-
straints.

This gives an overview of how the algorithm works
conceptually. But, as you may have guessed, the problem
is not quite this simple. Consider now a slightly more
complex case with the following dependencies:

1 A:3.0.0 uses B:1.2.0

2 A:3.0.0 uses C:1.1.0

3 B:1.2.0 uses C:1.2.0

4 A:2.0.0 uses B:1.1.0

5 A:2.0.0 uses C:1.0.0

6 B:1.1.0 uses C:1.1.0

7 A:1.0.0 uses B:1.0.0

8 A:1.0.0 uses C:1.0.0

9 B:1.0.0 uses C:1.0.0

Now we have three variables we need to solve for, A, B
and C. For each variable, we have three possible values.
As we’ve already described, newer versions are preferred
over older versions while searching. This means that the
first combination we will consider will be. . .
A:3.0.0, B:1.2.0 and C:1.2.0

. . . and the last combination we will consider will be. . .
A:1.0.0, B:1.2.0 and C:1.2.0
There are several interesting things to notice about this

case. First, although the problem is not particularly large
(3 libraries with 3 versions each), the number of combi-
nations to check is significant (i.e., 3 ·3 ·3= 27). Of these
27 combinations, only the last one to be considered (i.e.,

the least desirable) satisfies the dependency constraints.
There is nothing we can really do about the fact that the
oldest version of each of these libraries must be used (this
is dictated by the dependencies themselves and has noth-
ing to do with the algorithm). But the complication is
that we must consider all of them (in this contrived case)
before finding the one we want.

In reality, we would not actually enumerate all possi-
bilities a priori. Instead, we would simply consider each
“variable” one at a time and loop over all possible ver-
sions. If, at any point, we find a conflict with our con-
straints, we simply break out of the inner most loop. This
is referred to as backtracking. In Modelica pseudo-code,
the algorithm (for this specific case) might look like this:

for A in ["3.0.0", "2.0.0", "1.0.0"] loop

for B in ["1.2.0", "1.1.0", "1.0.0"] loop

if not are_compatible(A,B) then

break;

end if;

for C in ["1.2.0", "1.1.0", "1.0.0"] loop

if not are_compatible(B,C) then

break;

end if;

if not are_compatible(A,C) then

break;

end if;

//If we get here, we have a solution

end for;

end for;

end for;

Where impact got Going

730 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

Using this backtracking, we can more efficiently tra-
verse the possibilities by eliminating lots of cases that
we know are a dead end (especially in larger problems).
Any search based on backtracking is vulnerable to poor
performance under certain (typically pathological) con-
ditions. We’ll return to this point later when we talk
about performance of our current implementation.

There is one last complication we must deal with when
resolving dependencies. Consider the following simple
set of dependencies:

1 A:2.0.0 uses B:1.2.0

2 A:2.0.0 uses C:1.1.0

3 B:1.2.0 uses C:1.2.0

4 A:1.0.0 uses B:1.1.0 or
B:1.0.0

(i.e., A can use B:1.1.0 or B:1.0.0)
5 A:1.0.0 uses D:1.1.0

6 B:1.0.0 uses C:1.1.0

7 C:1.2.0 uses D:1.0.0

8 B:1.1.0 uses C:1.2.0

We can also represent this set of dependencies graphi-
cally as shown in Figure 1. Graphically, we have a box to
represent each library and that box contains the different
versions available. These versions are connected by the
constraints shown in the table above.

Library A

A:2.0.0

A:1.0.0

Library B

B:1.2.0B:1.1.0B:1.0.0

1

4 4
Library C

C:1.2.0C:1.1.0

3

8

2

6

Library D

D:1.1.0

D:1.0.0

5

7

Figure 1. Graphical representation of package dependencies

Given these dependencies and the fact that the user
wishes to install both A and B, what are the variables
in our dependency resolution algorithm? Obviously, we
must consider all the versions of both A and B (i.e., we
must pick a version from the box for library A and B in
Figure 1). But what about C and D? It makes no sense to
enumerate all combinations of versions for these four li-
braries because in many cases D isn’t even required. Fur-
thermore, what is their relatively priority (i.e., if a choice

is required, is it more important to have the latest version
of C or D?)

When resolving dependencies, we only introduce new
libraries when necessary (i.e., if they are needed by our
current choices of existing libraries) and their relative
priority is determined by the relative priority of the li-
brary that introduced them.

To understand how the resolution works in this case,
first consider the case of A:2.0.0. This version cannot
be chosen. This is because A:2.0.0 wants C:1.0.0
while B:1.2.0 wants C:1.1.0. So no choice for C is
valid. Furthermore, we don’t even consider D because it
isn’t required in any of these cases.

Now if we move to the case of A:1.0.0, things
are more complicated. Now we do need to consider
both D and C. However, note that because A:1.0.0
depends directly on D, we consider D more important.
This is important because when considering A:1.0.0

we have two versions of B that are compatible1 (i.e.,
B:1.1.0 and B:1.0.0). Given that we are consid-
ering A:1.0.0 and we’ve already ruled out B:1.2.0,
we are left with the following combinations:

Version of B Version of D Version of C
1.1.0 1.1.0 1.2.0

1.1.0 1.1.0 1.1.0

1.1.0 1.0.0 1.2.0

1.1.0 1.0.0 1.1.0

1.0.0 1.1.0 1.2.0

1.0.0 1.1.0 1.1.0

1.0.0 1.0.0 1.2.0

1.0.0 1.0.0 1.1.0

Notice the ordering of the columns? Since the user
originally asked for both A and B, B comes first. But
when it comes to C and D, having a more recent version
of D is more important than having a more recent version
of C.

As mentioned previously, we don’t construct every
combination. Furthermore, we don’t always consider all
libraries. The best way to understand how this search
proceeds is to enumerate the partial combinations that
our search generates and the point at which backtrack-
ing occurs. In such a case, we can think of the search as
proceeding as follows:

1It is not possible to express this kind of “or” dependency currently
in Modelica, but it is supported by impact. This capability exists in
impact both to support anticipated future capabilities in Modelica
(Tiller 2012) and/or to support cases we will discuss shortly that con-
sider cases of compatibility implicit in semantic versions.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

731

A:2.0.0 ❯
A:2.0.0 & B:1.2.0 ❯
A:2.0.0 & B:1.2.0 & C:1.2.0 ✘→#2
A:2.0.0 & B:1.2.0 & C:1.1.0 ✘→#3
A:2.0.0 & B:1.1.0 ✘→#1
A:2.0.0 & B:1.0.0 ✘→#1
A:1.0.0 & B:1.2.0 ✘→#4
A:1.0.0 & B:1.1.0 ❯
A:1.0.0 & B:1.1.0 & D:1.1.0 ❯
A:1.0.0 & B:1.1.0 & D:1.1.0 & C:1.2.0 ✘→#7
A:1.0.0 & B:1.1.0 & D:1.1.0 & C:1.1.0 ✘→#8
A:1.0.0 & B:1.1.0 & D:1.0.0 ✘→#5
A:1.0.0 & B:1.0.0 & D:1.1.0 & C:1.2.0 ✘→#6
A:1.0.0 & B:1.0.0 & D:1.1.0 & C:1.1.0 ✔

This elaboration of the search shows the role that
the relative priority of libraries and versions has on the
search order but also how a particular library is not even
considered until a dependency on that library is intro-
duced by choosing a particular version that depends on
it.

It should be noted that there are a variety of other spe-
cial cases we also deal with like self dependency and
cyclic dependency. But these are constraints like any
other and don’t really impact the algorithm in any sig-
nificant way.

The actual algorithm is implemented
by the findFirst method on the
LibraryGraph type found in the
github.com/xogeny/impact/graph pack-
age. The inputs to this function are:

mapped Any existing decisions about specific versions
of each library (initially empty)

avail The set of all (remaining) possible versions for
each library (initially all versions of all libraries)

rest A list of libraries that are required based on ex-
isting decisions but for which no version choice has
yet been made (initially the libraries the user wants
installed in the order specified by the user)

The algorithm then proceeds as follows:

1. Is rest empty? If so, we are done and we have a
solution (i.e., mapped)

2. Consider the first library in rest

3. Loop over available versions (based on avail)

(a) Add this choice to mapped

(b) Find any new library dependencies resulting
from this choice

(c) If incompatible decisions have already been
made about these new dependencies, back-
track

(d) Update avail to include version of new de-
pendencies that are compatible with our pre-
vious choices

(e) If there are no possible versions for any li-
brary we depend on, backtrack

(f) Return the result of calling this function
again recursively using updated values for
mapped, avail and rest.

5.1.3 Formulating Constraints

The default assumption is that dependencies will come
from the uses annotation in Modelica. There is a pro-
posal to extend the uses annotation to allow multiple
compatible versions to be listed (vs. only a single com-
patible version today). As mentioned previously, such
an or relationship is already supported by impact. So
this change would not impact the resolution algorithm
used by impact.

Although it hasn’t yet been implemented, one pro-
posed fallback mode for impact is to ignore the ex-
plicit dependencies contained in Modelica code and in-
stead rely on the dependency relationships implicit in
semantic versions. In other words, if a library B has two
versions, 1.1.1 and 1.1.2, and those versions strictly
follow semantic versioning conventions, then we know
that any library that depends on B:1.1.1 must also be
compatible with B:1.1.2. Such a fallback mode could
be employed when impact is unable to find a solution
using explicit constraints.

6 Go Implementation

We’ve created an implementation of impact using Go.
This implementation includes different sub-packages for
dealing with crawling repositories, resolving dependen-
cies, parsing Modelica code and managing configuration
settings. It also contains a sub-package for implementing
the command-line tool and all of its sub-commands. This
structure means that impact is not only a command-
line tool, but also a Go library that can be embedded in
other tools.

The Go implementation includes the following com-
mands:

search Search library names and descriptions for
search terms.

install Install one or more libraries and their depen-
dencies.

index Build an index of repositories.
version Print out version and configuration informa-

tion.

For each command, you can use the -h switch to find
out more about the command and its options.

Earlier we described our requirements. The main rea-
son we moved to Go from Python was Go’s support for
cross-compiling between all major platforms and the fact

Where impact got Going

732 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

that it generates a statically linked binary that doesn’t de-
pend on any runtime. The Go compiler includes a com-
plete implementation of HTTP for both the client and
server. In fact, the standard library for Go is fairly com-
plete. At the moment, the only third party dependencies
for impact are a Go implementation of the GitHub v3
API and an implementation of semantic versioning.

The performance of compiled Go code is quite good.
In Section 5.1.2 we described how the algorithm we are
using could, in a worst case scenario, search every po-
tential combination before finding either a solution or
failing. We constructed several test cases with n vari-
ables where each variable had 2 possible values. The re-
sult is that there will be 2n possible combinations. These
cases were contrived so that the least desirable combina-
tion was the only one that would satisfy the dependency
constraints. We tested the time required for find a solu-
tion for different values of n and we got the following
performance results:

n Time (ms)
10 45
12 141
14 646
20 52,000

It is important to keep in mind that this is a con-

trived case to demonstrate the worst possible case for
resolution. There may very well be other algorithmic
approaches that will find identical solutions but search
more efficiently. But given what we know about Model-
ica libraries and their dependencies, we found this per-
formance more than sufficient for our application.

One last point worth making about the implementa-
tion of impact has to do with security. In order to gen-
erate an index from GitHub repositories, it is necessary
to crawl repositories. In order to accomplish this, many
API calls are required. GitHub will only allow a very
limited number of “anonymous” API calls. This limit
will be reached very quickly by impact. In order to in-
crease the number of allowed API calls, GitHub requires
an “API key” to be used. Such a key can be provided to
impact but it cannot be provided via a command line
option or a configuration file. This is to avoid this sensi-
tive information being inadvertently recorded or exposed
(e.g., by committing it to a version control repository).
Instead, such tokens must be provided as environment
variables.

The impact source code is licensed under an MIT
license and is hosted on GitHub. The GitHub reposi-
tory (Xogeny 2015) includes a LICENSE, README.md
and CONTRIBUTING.md which provide a detailed li-
cense, introductory documentation and instructions for
contributors, respectively. We’ve linked the GitHub
repository to a continuous integration service so that each
commit triggers tests and emails out build status to the
maintainers.

7 impact on library developers

What does all this mean for library developers wanting to
make their library accessible via impact? Let us first
have a look at the past “sins” that were restricting the
development work on Modelica libraries.

7.1 Observations

1. We noticed that the MODELICAPATH concept is
not properly understood by the users and often gets
in their way. Therefore we should not rely on it
but rather work with all of our files collected into
a working directory (which should always part of
the MODELICAPATH and made first priority for the
look-up in the tool).

2. If we go away from having to collect all Mod-
elica libraries in the MODELICAPATH then there
is no longer a need to store the version num-
ber with the library folder name. I.e., simply
“<PackageName>” is sufficient and no need for
“<PackageName> <Version>”.

3. Until now, we advised the lib developers to keep the
current development version in a master branch
and merge master into a release branch where
the directory structure can be changed (e.g., into
“<PackageName> <Version>” and any gen-
erated content can be added). Finally, developers
should then place a tag on the release branch. This
was done for the following reasons:

• The link to the tag provided a (tar)zip
file that contained the library with the
“<PackageName> <Version>” format
ready to be used with MODELICAPATH.
However, we no longer need to rely on
MODELICAPATH any more we don’t need to
add the <Version> identifier to the folder
anymore.

• If we would like to see what stage a certain
release in master was at, then we needed
to either inspect the git history (following
backwards from the release tag) or use an ad-
ditional tag (e.g., “1.2.3-dev”) which is
rather cumbersome and seems unnecessary.

But since GitHub also supports new alternatives
(see below) there is no longer a need for a specific
release branch. That is to say, libray developers
can still use it if they think it useful but they don’t
have to anymore.

7.2 Repository structure recommendations

There are new features/mechanisms made available both
by GitHub and impact:

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

733

• GitHub’s support for assets (GitHub-Blog 2013) al-
lows us to upload additional files to tagged releases

• impact does not use the MODELCAPATH model
but rather uses a “one working directory per
project” approach where (one version) of all re-
quired libraries and their dependencies live in one
(working) directory.

We recommend that library developers make the most
out of the new features above and change the structure in
which they organize their library repositories.

1. Get rid of the release branch as long as it was
only for the sake of providing a download-able
zip-file with a customized structure or providing
additional generated files. Instead use the new
GitHub Releases (GitHub-Blog 2013) which allows
uploading of additional assets for download.

• E.g., rather than adding HTML documenta-
tion to the Resources sub-folder and com-
mitting this to the release branch and then
tagging it, tag the master branch and then
generate a zip-file which contains that state
and add the generated files to the tagged re-
lease. GitHub also provides some informa-
tion on “Creating Releases” (GitHub-Help
2015a) and there exists, for example, the
aktau/github-release tool (Hillegeer
2015) to help automating that process.

• Another benefit of the release assets is that
the GitHub API (GitHub-Developers 2014)
allows you to get the download count for
your releases (GitHub-Help 2015b). This was
not possible for the simple taggged-zip-ball
downloads.

2. Get rid of the <PackageName> <Version>

formatted folder names. The version number does
not belong in the master (i.e., development)
branch anyway and the version annotation is con-
tained in the version annotation which tools will
happily display for you. When you install a pack-
age with impact it will strip that version number
in any case.

7.3 Changes for the library listing

The listing of Modelica libraries on https://

modelica.org/libraries is generated by parsing
the GitHub API and creating a static HTML file that con-
tains all information with links. Currently it is a stand-
alone Python script but we are thinking of adding this
functionality as a sub-module to impact itself.

Up to May 2015 the listing pointed directly to the
(tar)zip-ball URL of the latest tag of a library. This
worked fine if the library used the old release branch

model where the “ready to install” version was placed.
Clicking on that coloured version link resulted in a di-
rect file download.

This has now been changed in such a way that if one
clicks on the listed “Last Release” button one will get
redirected to the “Releases” page of that project show-
ing the last release. This has the advantage that one does
not immediately download the (tar)zip ball but gets to
see proper release notes first and is given a choice of
what version of a release to download (e.g., pure source
distribution of that tag, customized version with addi-
tional files, different platform dependent versions with
pre-compiled binaries).

7.4 Which license is best for your library

The Modelica Standard Library (Modelica) (Model-
ica Association 2013) is licensed under the “Modelica
License Version 2.0” (Modelica Association 2008). So
in order to stay compatible with the Modelica library
most user libraries chose the same license. This seemed
like a natural choice. However, there is one problem
which is not immediately apparent to most library devel-
opers. This is that the “Modelica License Version 2.0”
contains the section “4. Designation of Derivative Works
and of Modified Works” which says that:

“. . . This means especially that the (root-level) name of

a Modelica package under this license must be changed

if the package is modified . . . ”.
This clause makes perfect sense for a main library like

the Modelica library that is developed and maintained
by a major group centrally and wants to protect its prod-
uct name. But what does this mean for open-source
projects that no longer are hosted centrally but rather
decentralized on platforms like GitHub and GitLab but
were contributions no longer are made by committing di-
rectly into one central repository? In the de-centralized
case contributions are given by first “forking” (i.e., gen-
erating a copy of the original repository), modifying that
fork and then sending the contribution back via a “pull-
request” (i.e., offering the originating project to accept
the changes made on the fork). The problem is that the
very first step of “forking” the library generated a copy
with the identical “(root-level) name” and at a different
location. One could argue that this alone is already a
violation of the terms of the “Modelica License Version
2.0”.

So what should the library developer do? The simplest
solution is to not use the “Modelica License Version 2.0”
for libraries but rather go for standard licenses (Open
Source Initiative 2015) that are more compatible with
open source, community driven development (e.g., MIT
or BSD licenses). Interestingly, the old “Modelica Li-
cense Version 1.1” is still suitable for user libraries since
it does not contain the restrictions of having to change
the package name.

So what about “copyleft style” licenses? The most

Where impact got Going

734 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

famous copyleft license is the GNU General Public Li-
cense. People might think this would be a good choice
for a license in order to protect parts of their library from
being used inside proprietary libraries without any bug-
fixes and improvements being fed back to them as “up-
stream” developers. Unfortunately the GPL also forbids
that any other non-GPL library (even the Modelica Stan-

dard Library) uses the GPL licensed library and is dis-
tributed that way. So what about the LGPL, this allows
the usage and distribution alongside with other non-gpl
libraries. The problem here is that it does not allow static
linking. Something that typically happens when one cre-
ates a compiled version of a simulation model that uses
different Modelica libraries. A typical example would be
the generation of an FMU (Modelica Association 2015).
A way out of this is the “Mozilla Public License” which
is very much alike the LGPL but allows generated code
to be statically linked together with non-GPL licensed
code.

In conclusion, libraries should, if possible, avoid the
“Modelica License Version 2.0” as this was primarily
designed for the requirements of the Modelica Standard

Library. Perhaps there will be a future revision that is
adapted to current open-source development models. But
until then, we suggest the use of standard licenses along
the lines of BSD/MIT or MPL.

8 Future Development

8.1 Dependency Constraints

As already mentioned, there is currently no way to ex-
press conflicts between different packages. However, it
is highly likely that such conflicting pairs will exist as
more and more packages are published. For instance,
two Modelica models might depend on different, specific
versions of an external library that cannot be linked or
loaded at the same time, an already published package
might contain known bugs etc. Hence, impact could
be extended by the means to express conflicts as well.

Boender introduces the notions of strong dependen-

cies and strong conflicts to optimize the handling of very
large repositories. This kind of optimization might not
be necessary in the Modelica ecosystem right now, but
could provide helpful performance enhancements in fu-
ture versions of impact.

8.2 Crawling

At the moment, impact is only able to crawl GitHub
repositories. There is nothing particularly special about
GitHub and/or its APIs. The authors are confident that
indices could be constructed for many different storage
types. The most obvious next steps for crawling sup-
port would be to add support for GitLab and Bitbucket
(Mercurial and Subversion) repositories. Pull requests to
introduce such functionality are welcome.

On a related note, we anticipate there will be many use
cases where impact could be useful for closed source
projects that involve private repositories. We think this is
an important use case and we hope to provide support for
crawling such repositories. This would, for example, al-
low model developers at companies that have made a sig-
nificant investment in building Modelica related models
and libraries to use impact to search and install these
proprietary libraries via their corporate intranet.

8.3 Project Details

We have already created a number of issues that require
users to provide more explicit information about how
they want impact to function on a per project basis. For
example, when working with forked libraries (where the
index contains multiple libraries with the same name),
it is useful to use the URIs associated with each library
in the index to disambiguate which particular library to
use. Furthermore, there may be cases where the user is
actually interested in doing development work on the de-
pendencies as well. In such cases, those dependencies
shouldn’t simply be installed, they should be checked

out from their repository to make modifying and re-
committing easier.

For these and other project related features, we feel
there is a need to introduce another file to provide such
additional information that is project specific.

8.4 Web Based Search

Other package managers often provide a web site where
users can search for a specific package through the web,
read documentation, log issues and/or even download the
packages. Because impact is organized into libraries
(and not just a command line tool), we feel this kind of
functionality could be added in the future.

8.5 Installers

Finally, when installing software, it is common for de-
velopers to distribute “installers” (i.e., executables that,
when run, unpack and install the software). Another po-
tential extension of impact could be to generate such
installers. In this case, we could once again leverage
Go’s static executable generation to build such installers
from the index. Instead of installing the needed files lo-
cally, the installer could simply bundle them up and at-
tach them to an installation program using one of the
many Go extensions (Riemer 2015; Tebeka 2015) for
concatenating static content onto executables or simply
downloading some pre-specified libraries over the net-
work.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

735

9 Conclusion

In conclusion, impact leverages information already
available in Modelica source code along with some com-
mon conventions in order to help users find and in-
stall Modelica libraries. It does this by crawling repos-
itories and indexing their contents. An index of pub-
licly available libraries created by impact is hosted on
modelica.org for use by the impact command line
tool.

If present, the impact command line tool is already
used by OpenModelica to help find and install depen-
dencies. By making the impact executables available
across platforms and providing a version of the source
code that can also be embedded as a library, we hope
the Modelica community will benefit from having first
class package management capabilities, just like other
software eco-systems.

10 Acknowledgements

The authors would like to thank Christoph Höger
of Technische Universität Berlin, Martin Sjölund of
Linköping University, Francesco Casella of Politecnico
di Milano and Peter Harman of ESi Group for their con-
tributions to this project.

References

Boender, Jaap (2011). “A formal study of Free Software
distributions”. PhD thesis. Université Paris-Diderot-
Paris VII.

Go-Developers (2014). The Go Programming Language

Specification. URL: http://golang.org/ref/
spec.

GitHub (2014). Build software better, together. URL:
https://github.com/.

GitHub-Blog (2013). Release Your Software. URL:
https : / / github . com / blog / 1547 -

release-your-software.
GitHub-Developers (2014). GitHub API v3. URL:
http://developer.github.com/v3/.

GitHub-Help (2015a). Creating Releases. URL: https:
/ / help . github . com / articles /

creating-releases/.
– (2015b). Getting the download count for your re-

leases. URL: https://help.github.com/
articles / getting - the - download -

count-for-your-releases.
Hillegeer, Nicolas (2015). aktau/github-release. URL:
https : / / github . com / aktau / github -

release.
Modelica Association (2008). Modelica Licence Ver-

sion 2.0. URL: https : / / modelica . org /

licenses/ModelicaLicense2.

– (2013). Modelica - Free library from the Modelica

Association. URL: https : / / github . com /

modelica/Modelica.
– (2015). Functional Mock-up Interface. URL: https:
//fmi-standard.org.

Open Source Initiative (2015). Licenses. URL: http:
//opensource.org/licenses/.

Preston-Werner, Tom (2014). Semantic Versioning 2.0.0.
URL: http://semver.org/.

Riemer, Geert-Johan (2015). go.rice. URL: https://
github.com/GeertJohan/go.rice.

StackOverflow (2010). How to install Python ssl module

on Windows? URL: http://stackoverflow.
com / questions / 2261866 / how - to -

install - python - ssl - module - on -

windows.
Tebeka, Miki (2015). nrsc - Resource Compiler for Go.

URL: https : / / bitbucket . org / tebeka /
nrsc.

Tiller, Michael (2012). Modelica Change Pro-

posal For Package Handling. URL: https :

//trac.modelica.org/Modelica/raw-

attachment / ticket / 573 / Package -

Proposal_asMCP.doc.
– (2013). Gist of first version of impact.py. URL:
https : / / gist . github . com / xogeny /

fac3ea9174e74275e7fe.
Tiller, Michael and Dietmar Winkler (2014). “im-

pact - A Modelica Package Manager”. In: Proceed-

ings of the 10th International Modelica Conference,

March 10-12, 2014, Lund, Sweden. Ed. by Hubertus
Tummescheit and Karl-Erik Årzén. Modelica Associ-
ation. Linköping University Electronic Press, pp. 543–
548. URL: http://www.ep.liu.se/ecp/
096/057/ecp14096057.pdf.

Xogeny (2015). impact code repository on GitHub. URL:
https://github.com/xogeny/impact.

Where impact got Going

736 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

	ForteksTEORA
	ecp15118725

