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Preface

In the search for a numerical scheme which: (i) is semi-descrete in nature (only space
discritization) so that built-in ODE solvers in MATLAB or Modelica can be used, (ii) can
handle dry bed conditions (island or dry shoals), (iii) is Reimenn-solver free so that it can
be used as a black box solver, (iv) is higher order yet Total Variation Diminishing (TVD),
(v) can handle bed discontinuities (discontinuity in bottom topography), (vi) can handle
width discontinuities, (vii) is well-balanced and preserves the static equilibria (lake-at-
rest), and (viii) can be modified to support higher order polynomial reconstruction, a
second order accurate scheme known as Kurganov-Petrova central upwind scheme is
presented. The scheme is implemented in MATLAB and a case study of a run-of-river
power plant is described.
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Chapter 1

Introduction

Shallow water equations also known as Saint Venant equations (for one dimensional
case) are hyperbolic partial differential equations. A common way of expressing the
Saint Venant equation with the source term is

∂U(x, t)

∂t
+
∂F (x, t, U)

∂x
= S(x, t, U) (1.1)

where U is the vector of conserved variables, F is the vector of fluxes and S is the source
terms which are expressed as

U = (A,Q)T (1.2)

F =

(
Q,

Q2

A
+ gI1

)T
(1.3)

S = (0, gI2 + gA (S0 − Sf ))T . (1.4)

Here, A is the wetted cross sectional area, Q is the discharge, g is the acceleration
due to gravity, S0 is the bed slope or bathymetry and Sf is the friction term. The
bathymetry shows the variation of the bed along the length of the open channel (see
Figure 1.1). It is expressed as the spatial partial derivative of the bottom elevation B as

S0 = −∂B
∂x

. (1.5)

I1 represents the hydrostatic pressure force term and is expressed as

I1(x,A) =

∫ h(x,A)

0
(h(x,A)− z̃)w(x, z̃)dz̃. (1.6)

Here, h(x,A) is the water depth and w(x, z̃) is the width of the channel at an arbitrary
position z̃ from the datum. The width of the channel is written as

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic of an open channel flow

w(x, z̃) =
∂A(x, t)

∂z̃
. (1.7)

I2 represents the pressure forces in a volume of constant depth h due to longitudinal
width variations.

I2(x,A) =

∫ h(x,A)

0
(h(x,A)− z̃)∂w(x, z̃)

∂x
dz̃. (1.8)

For rectangular channel, the side slope SL = 0. Then,

I1 =
h2w

2
=
A2

2w
(1.9)

I2 =
A2

2w2
dw

dx
. (1.10)

For a rectangular channel with constant width, I2 = 0. For a trapezoidal channel
with side slope SL and with base width W ,

I1 = h2
(
W

2
+ h

SL
3

)
(1.11)

I2 = h2
(

1

2

dW

dx
+
h

3

dSL
dx

)
. (1.12)

For a trapezoidal channel with constant side slope and constant base width, I2 = 0.
For a Newtonian fluid1, the friction term Sf can be represented2 by using Manning’s
roughness coeffi cient n as

Sf =
Q |Q|n2P 4

3

A
10
3

(1.13)

with P being the wetted perimeter. For a rectangular channel P = w + 2h.For a
rectangular channel with a constant width w, a very common expression of the system
is

1For a non-Newtonian fluid, the friction slope can be calculated using Herschel −Bulkley model.
2Other representations or forms of the friction slope Sf can also be used.
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∂A

∂t
+
∂Q

∂x
= 0 (1.14)

∂Q

∂t
+

∂

∂x

(
Q2

A
+
gA2

2w

)
= gA(S0 − Sf ). (1.15)

If F = F (U, x, t),equation 1.1 can be written in the form

∂U

∂t
+ J

∂U

∂x
= S (1.16)

where J is the Jacobian matrix of the system and is given by

J =

[
0 1

c2 − u2 2u

]
. (1.17)

The cross section averaged water velocity u = Q
A = hu

h . The celerity
3 of the small

amplitude surface wave c =
√
gh. The eigen values of the Jacobian matrix is

λ1,2 = u∓
√
gh. (1.18)

The eigen values represent the speed of propagation of the perturbations and hence are
the convective wave velocities. A diffi culty may occur when dry (h = 0) or near dry
(h ∼ 0) bed conditions are to be captured or studied. In such cases, due to numerical
oscillations, h may become negative and the numerical computation scheme which uses
the eigen values will break down. Thus a good numerical scheme should be able to
preserve the positivity property i.e. the computed values of the fluid depth should be
nonnegative.

Using Q = huw = qw, for a rectangular channel with constant width w, A = wh and
q = hu, equations 1.14 and 1.15 can be written as

∂h

∂t
+
∂q

∂x
= 0 (1.19)

∂q

∂t
+

∂

∂x

(
hu2 +

g

2
h2
)

= −gh∂B
∂x
− gn2q |q| (w + 2h)

4
3

w
4
3

1

h
7
3

. (1.20)

When Q = 0 or q = 0, the system should exhibit stationary steady state solution
(lake at rest condition) i.e. it should be well-balanced. When the system is in the
stationary steady state, it is very important to understand that the water surface h +
B = z is constant, not the water depth h. Thus, to preserve the well-balanced and
positivity conditions, change of variables from (h, hu) to (z = h + B, hu) is performed.
An equivalent representation of the system in terms of the water surface z = h+B and
the discharge q = hu is

3Celerity is analogous to the speed of sound in gases and contains the essence of the compressibility
associated to the deformability of the free surface.
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∂z

∂t
+
∂q

∂t
= 0 (1.21)

∂q

∂t
+

∂

∂x

(
q2

z −B +
g

2
(z −B)2

)
= −g(z −B)

∂B

∂x
(1.22)

−gn
2q |q| (w + 2(z −B))

4
3

w
4
3

1

(z −B)
7
3

.

In the compact form, equations 1.21 and 1.22 can be written as

∂U

∂t
+
∂F

∂x
= S (1.23)

with

U : = (z, q)T (1.24)

F : =

(
q,

q2

z −B +
g

2
(z −B)2

)T
(1.25)

S : =

(
0,−g(z −B)

∂B

∂x
− gn2q |q| (w + 2(z −B))

4
3

w
4
3

1

(z −B)
7
3

)T
. (1.26)



Chapter 2

Finite Volume Method

Conservation laws are usually solved by finite-volume methods. With the finite volume
method, we divide the grid into small control volumes or control cells and then apply the
conservation laws of equation 1.23 to each cell. Since equation 1.23 hold for any subset
k ⊂ Ω ⊂ Rn,it holds for any cell in some defined grid. For simplicity, we consider one
spatial dimension only. However, the concept can be equally extended to higher spatial
dimensions.

2.1 Control Cell and notations

Let us consider a single cell of a grid as shown in Figure 2.1.

Figure 2.1: Control volume/cell and notations

The given cell is denoted by j i.e. it is the jth cell. Cell average is calculated at
the center of the cell and U j denotes the average values of the conserved variables. The
left and the right interfaces of the cell are denoted by j − 1

2 and j + 1
2 respectively. At

each cell interface, the right(+)/left(-) point values are reconstructed. As an example,

5



6 CHAPTER 2. FINITE VOLUME METHOD

U−
j− 1

2

denotes the value of U slightly left of the left interface, U+
j− 1

2

denotes the value

of U slightly right of the left interface, U−
j+ 1

2

denotes the value of U slightly left of the

right interface and U+
j+ 1

2

denotes the value of U slightly right of the right interface. As

we will see later, U±
j± 1

2

are actually the end point values of a piecewise reconstructed

polynomial. Similarly, Bj± 1
2
represents the channel bed elevation at the left and the

right interfaces of the cell respectively. Bj represents the channel bed elevation at the
cell center. a±

j− 1
2

denotes the right and the left sided local speeds of propagation at the

left interface of the cell, and a±
j+ 1

2

denotes the right and the left sided local speeds of

propagation at the right interface of the cell. a±
j± 1

2

are obtained from the largest and

the smallest eigenvalues of the Jacobian matrix J and are described later in detail.
Let xj = j4x, j = · · · ,−2,−1, 0, 1, 2, · · · and tn = n4t, n = 0, 1, 2, · · · be a de-

scritization of the space-time domain (x, t). Let us consider a grid cell in the interval[
xj− 1

2
, xj+ 1

2

]
. The cell average at time t = tn at the grid cell is defined as

U
n
j =

1

4x

∫ x
j+1

2

x
j− 1

2

U(x, tn)dx. (2.1)

Let us integrate equation 1.23 on the rectangle [tn, tn+1]×
[
xj− 1

2
, xj+ 1

2

]
such that

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

∂U

∂t
dxdt+

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

∂F

∂x
dxdt =

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

S dxdt (2.2)

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

S dxdt =

∫ x
j+1

2

x
j− 1

2

U(x, tn+1)dx−
∫ x

j+1
2

x
j− 1

2

U(x, tn)dx (2.3)

+

∫ tn+1

tn

F
(
U(xj+ 1

2
, t)
)
dt−

∫ tn+1

tn

F
(
U(xj− 1

2
, t)
)
dt.

Dividing equation 2.3 by the cell size 4x and the time step size 4t and using the
defination of the cell average from equation 2.1 we get

U
n+1
j − Unj
4t = − 1

4t4x

 ∫ tn+1tn
F
(
U(xj+ 1

2
, t)
)
dt−

∫ tn+1
tn

F
(
U(xj− 1

2
, t)
)
dt

+
∫ tn+1
tn

∫ xj+1
2

x
j− 1

2

S dxdt

 . (2.4)
By definition,

d

dt
U j(t) = lim

4t→0

U
n+1
j − Unj
4t . (2.5)

Now taking the limit 4t→ 0 and rearraging, we finally obtain
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d

dt
U j(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

4x + Sj(t) (2.6)

where

Hj+ 1
2
(t) = lim

4t→0

1

4t

∫ tn+1

tn

F
(
U(xj+ 1

2
, t)
)
dt (2.7)

Hj− 1
2
(t) = lim

4t→0

1

4t

∫ tn+1

tn

F
(
U(xj− 1

2
, t)
)
dt (2.8)

Sj(t) = lim
4t→0

1

4t4x

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

S dxdt ≈ 1

4x

∫ x
j+1

2

x
j− 1

2

S(U(x, t), B(x)) dx.(2.9)

Provided that we find an adequate numerical approximation to the time integral,
equation 2.6 provides a numerical scheme for the hyperbolic conservation law.

2.2 REA Algorithm

One of the ways of building up a high-resolution numerical method providing high-order
accuracy is to apply the REA algoirthm: Reconstruct, Evolve, Average which is a three-
steps algorithm to advance the solution of the semi-discrete conservation law of equation
2.6.

1. Reconstruct:

The cell averages U are used to obtain the end point values of the conserved variable
U . The end point values are the values of U at the left and right interfaces of a given
cell i.e. U±

j± 1
2

are the end point values. For this, we reconstruct a polynomial

Ũj(x) = p(x), xj− 1
2
≤ x ≤ xj+ 1

2
(2.10)

for each cell and use it obtain U±
j± 1

2

which in turn are used to evaluate the flux interface

integrals Hj± 1
2
. The first order reconstructed polynomial for each cell would be to

set Ũj(x) = U j i.e. we approximate the conserved variables by a piecewise constant
function. The second order reconstructed polynomial would be to approximate the
conserved variables by a piecewise linear function at each cell in the grid as shown in
Figure 2.2

If sj represents the slope of the piecewise linear function for the jth cell, it can be
expressed as,

pj(x) = Ũj(x) = U j + sj(x− xj), xj− 1
2
≤ x ≤ xj+ 1

2
. (2.11)

Infact the order of the proposed scheme depends on the order of the reconstructed
polynomial pj(x). A third order scheme employ a piecewise quadratic approximation



8 CHAPTER 2. FINITE VOLUME METHOD

Figure 2.2: Piecewise linear and constant approximation at each cell in a 1D grid

(see [1] and [2] for details) . It is also possible to use the essentially nonoscillatory
(ENO) reconstruction (see [3] and [4]) and the W(weighted)ENO reconstruction (see [5],
[6], [7] and [8] for more details).

From Godunov’s order barrier theorem [9], a scheme which produces nonoscillatory
solutions is to the most first order accurate. This means that the second order scheme
may produce spurious osciallations near discontinuous points. A good higher order
scheme should minimize the spurious oscillations and be total variation diminishing
(TVD). Total variation (TV) is given by

TV =

∫ ∣∣∣∣∂U∂x
∣∣∣∣ dx =

∑
j

|Uj+1 − Uj | . (2.12)

A numerical scheme is said to be TVD if

TV (U(x, τ)) ≤ TV (U(x, t)), ∀ t ≤ τ . (2.13)

A second order reconstruction should posses these properties and converge with max-
imal accuracy in smooth areas, but at the same time behave properly around discon-
tinuities. The TVD property is achieved by using a limiting function. For the second
order scheme where piecewise linear reconstruction is used, this limiting function is also
known as slope limiter. For obtaining the slope sj of the piecewise linear function pj(x)
of equation 2.11 we have three choices of two point stencils1 (cells) (from the basic theory
of finite difference methods), which are

s−j =
U j − U j−1
4xi

, scj =
U j+1 − U j−1

24xi
, s+j =

U j+1 − U j
4xi

(2.14)

1 In plain english, stencil means a thin sheet of card, plastic or metal with a pattern, used to produce
the design on the surface below by applying ink or paint through the holes. Here, it means those cells of
the grid that are being used to design the slope needed for reconstructing the piecwise linear polynomial.
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The choice of Sj is performed in a way that the spurious osciallations are the least.
One such limiter function which ensures least oscillations is the minmod limiter (see [10],
[11] and [12] for details)

sj = minmod(s−j , s
c
j , s

+
j ) =


min(s−j , s

c
j , s

+
j ) if s−j > 0&scj > 0&s+j > 0

max(s−j , s
c
j , s

+
j ) if s−j < 0&scj < 0&s+j < 0

0 otherwise

(2.15)

There are other types of limiter functions such as Superbee, QUICK, Sweby, V an
Leer, Osher etc. mentioned in literature.

Sumup: The piecewise reconstructed polynomial Ũj(x) (with slope limiter for main-
taining the TVD property) is used to obtain the values of U±

j± 1
2

at the left/right cell

interfaces at time t = tn. We then use U±j± 1
2

to compute the fluxes Hj± 1
2
(tn) and the

source term Sj(tn).

2. Evolve:

From time t = tn, we evolve the reconstructed polynomial Ũj(x, tn) = p(x, tn) ac-
cording to the conservation law of equation 2.6 to obtain Ũj(x, tn+1) at time t = tn+1.

3. Average:

The average cell value at t = tn+1 is then obtained as

U
n+1
j =

1

4x

∫ x
j+1

2

x
j− 1

2

Ũj(x, tn+1)dx (2.16)

The evolving and averaging step can be done by an appropriate TVD preserving Runge-
Kutta method. For our implementation, we will use the built-in ODE solvers in MAT-
LAB. Thus the evolving and averaging step is not dicussed in detail here. Detailed
information about the TVD preserving RK method are available elsewhere in literature.
It is worth mentioning that using a higher order ODE solver (in our case, higher than
second order) does not increase the order of the numerical scheme. It is probably better
to use an ODE solver having the same order as the order of the numerical scheme.
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Chapter 3

Second order Central Upwind
scheme

3.1 Introduction

In order to determine the fluxes at the cell interface Hj± 1
2
(tn) and the source term

Sj(tn), various schemes are available. We focus on a scheme developed by Alexander
Kurganov and Guergana Petrova (here indicated as KP07 scheme). This is a second
order scheme which is both well balanced (preserves the stationary steady state by
appropriately handling the source term) and also preserves the positivity of the height.
It is a Reimann problem1 solver free scheme (central scheme) while at the same time
it takes the advantage of the upwind scheme by utilizing the local, one side speed of
propagation (given by the Eigen values of the Jacobian matrix J of equation 1.16)
during the calculation of the flux at the cell interfaces.

In this chapter the detailed description of the developement of the scheme and the
underlying proofs and theorems are not explained. We simply describe the scheme
in a way that is can readily and easily be implemented by the readers (say by using
MATLAB/Modelica for their numerical problems). For readers who are interested in
the details about the development of the scheme, refer to [13], [14], [15] and [16].

1At the cell interfaces, the two one-sided reconstructions of U i.e. U+
j+ 1

2

and

U−
j+ 1

2

(
or U+

j− 1
2

and U−
j− 1

2

)
are in general not equal, and determining the flux integral is similar

to locally solving the Riemann problem. We call a method upwind if it aims to solve the Riemann
problem, either exact or by an approximate solver, in order to compute the interface fluxes. In contrast,
a central scheme, does not apply any Riemann solvers.

11
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3.2 Numerical scheme

3.2.1 Semi-Descritization

The central-upwind numerical schem is presented for one dimensional case. At first let
us re-write the Saint Venant equations that needs to be solved numerically.

∂U

∂t
+
∂F

∂x
= S (3.1)

with

U : = (z, q)T (3.2)

F : =

(
q,

q2

z −B +
g

2
(z −B)2

)T
(3.3)

S : =

(
0,−g(z −B)

∂B

∂x
− gn2q |q| (w + 2(z −B))

4
3

w
4
3

1

(z −B)
7
3

)T
. (3.4)

To recall, z = h+B is the water surface elevation with h being the water depth and
B being the the channel bed elevation. q = hu = Q/w is the discharge per unit width of
the open channel. Let us consider a one dimensional uniform grid with a cell size of 4x
as shown in Figure 2.1 and a finite volume cell xj− 1

2
≤ xj ≤ xj+ 1

2
. The semi-discrete

(time dependent ODEs) central-upwind scheme of equation 3.1 can be written in the
following from,

d

dt
U j(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

4x + Sj(t) (3.5)

where the central upwind numerical fluxes Hj± 1
2
(t) at the cell interfaces are given by

Hj+ 1
2
(t) =

a+
j+ 1

2

F

(
U−
j+ 1

2

, Bj+ 1
2

)
− a−

j+ 1
2

F

(
U+
j+ 1

2

, Bj+ 1
2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

− U−
j+ 1

2

]
(3.6)

Hj− 1
2
(t) =

a+
j− 1

2

F

(
U−
j− 1

2

, Bj− 1
2

)
− a−

j− 1
2

F

(
U+
j− 1

2

, Bj− 1
2

)
a+
j− 1

2

− a−
j− 1

2

+
a+
j− 1

2

a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

[
U+
j− 1

2

− U−
j− 1

2

]
,

(3.7)
with a±

j± 1
2

being the one-sided local speeds of propagation.
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3.2.2 Piecewise linear reconstruction

Equation 3.5 is initialized with the cell center average values U j . However, for calculating
the numerical fluxes Hj± 1

2
(t) using equations 3.6 and 3.7, the values of U±

j± 1
2

are needed.

These can be calculated as the end points of a piecewise linearly reconstructed function
Ũj(x) as

Ũj(x) = U j + sj(x− xj), xj− 1
2
≤ x ≤ xj+ 1

2
. (3.8)

U±
j+ 1

2

are the right/left point values at x = xj+ 1
2
i.e.

U±
j+ 1

2

= Ũ(xj+ 1
2
) = U j+ 1

2
± 1
2
∓ 4x

2
sj+ 1

2
± 1
2
. (3.9)

U±
j− 1

2

are the right/left point values at x = xj− 1
2
i.e.

U±
j− 1

2

= Ũ(xj− 1
2
) = U j− 1

2
± 1
2
∓ 4x

2
sj− 1

2
± 1
2
. (3.10)

Listing them separately we have,

U−
j+ 1

2

= U j +
4x
2
sj (3.11)

U+
j+ 1

2

= U j+1 −
4x
2
sj+1 (3.12)

U−
j− 1

2

= U j−1 +
4x
2
sj−1 (3.13)

U+
j− 1

2

= U j −
4x
2
sj . (3.14)

3.2.3 Slope limiter

The slope sj of the reconstructed function in each cell is computed using a limiter
function to obtain a non-oscillatory nature of the reconstruction. The KP07 scheme
utilizes the generalized minmod limiter as

s−j = θ
U j − U j−1
4xi

, scj =
U j+1 − U j−1

24xi
, s+j = θ

U j+1 − U j
4xi

(3.15)

sj = minmod(s−j , s
c
j , s

+
j ) =


min(s−j , s

c
j , s

+
j ) if s−j > 0&scj > 0&s+j > 0

max(s−j , s
c
j , s

+
j ) if s−j < 0&scj < 0&s+j < 0

0 otherwise

.(3.16)

The parameter θε [1, 2] is used to control or tune the amount of numerical dissipation
or numerical viscosity present in the resulting scheme. The larger the value of θ the
smaller the numerical dissipation. The value of θ = 1.3 is a good starting point in
general.
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Figure 3.1: Bottom topography and its piecewise linear approximation [15]

3.2.4 Bottom or bed topography

The KP07 central-upwind scheme can also handle bed discontinuities or discontinuous
bottom topography B. It achieves this by replacing the bottom topography function
B(x) with its piecewise linear continuous approximation B̃(x) as shown in Figure 3.1.

B̃(x) = Bj− 1
2

+
(
Bj+ 1

2
−Bj− 1

2

) x− xj− 1
2

4x , xj− 1
2
≤ x ≤ xj+ 1

2
(3.17)

with

Bj± 1
2

=
B
(
xj± 1

2
+ 0
)

+B
(
xj± 1

2
− 0
)

2
. (3.18)

At x = xj , B̃(xj) = Bj gives the cell average value in the domain xj− 1
2
≤ x ≤ xj+ 1

2
.

Being a piecewise linear function, it is equal to the average value at the endpoints.

Bj = B̃(xj) =
1

4x

∫ x
j+1

2

x
j− 1

2

B̃(x)dx =
Bj+ 1

2
+Bj− 1

2

2
. (3.19)

In most of the cases, the cell interface/edge values of the bottom elevation Bj± 1
2
is

known from the geometry of the open channel. We then apply equation 3.19 to obtain
the bottom elevation at the cell center.
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3.2.5 Positivity preserving

The average value of the depth of the fluid at the cell center can be calculated as

hj = zj −Bj . (3.20)

The use of a slope limiting function does not guarantee the positivity of the fluid
depth. In cases where the reconstruction given by equation 3.8 produces negative values
of h, make the slope of h equal to the slope of B (correction of the basic piecewise linear
reconstruction) i.e.

if z−
j+ 1

2

< Bj+ 1
2
or z+

j− 1
2

< Bj− 1
2
then sj = ∂B

∂x .

Equivalently we obtain the following,

if z−
j+ 1

2

< Bj+ 1
2
or z+

j− 1
2

< Bj− 1
2
then

z−
j+ 1

2

= hj +Bj+ 1
2
, z+

j− 1
2

= hj +Bj− 1
2
.

The general way of calculating the velocity is

u±
j± 1

2

=
q±
j± 1

2

h±
j± 1

2

(3.21)

with

h±
j± 1

2

= z±
j± 1

2

−Bj± 1
2
. (3.22)

3.2.6 Desingularization

In the channel areas which are dry or almost dry (if computational domain contains
dry bed, islands or coastal areas), the values of h±

j± 1
2

could be very small or even zero.

If h±
j± 1

2

is very small or zero, then u±
j± 1

2

will become artificially large if it is calculated

using equation 3.21. In such cases when h±
j± 1

2

< ε, with ε being an a-priori chosen

small positive number (e.g. ε = 1e−5), the piecewise linear reconstruction of U (2) := q
should be replaced with a piecewise linear reconstruction of u in the entire computational
domain. At first the velocity at the cell centers in the entire domain is recomputed by
the desingularization formula

uj =
2hj · qj

h
2
j + max

(
h
2
j , ε

2
) , (3.23)
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then the point values of the velocity u±
j± 1

2

at the left/right cell interfaces i.e. at xj = xj± 1
2

are computed as

u−
j+ 1

2

= uj +
4x
2
suj (3.24)

u+
j+ 1

2

= uj+1 −
4x
2
suj+1 (3.25)

u−
j− 1

2

= uj−1 +
4x
2
suj−1 (3.26)

u+
j− 1

2

= uj −
4x
2
suj . (3.27)

The slope or the numerical derivative of the velocity
(
suj
)
are calculated using the

same limiter function as in equation 3.15 however in this case replacing U by u (it has
not been rewritten here for the sake of brevity). Finally and most importantly, the
values of the discharge q±

j± 1
2

should be recomputed as

q±
j± 1

2

= h±
j± 1

2

· u±
j± 1

2

. (3.28)

3.2.7 One-side local speeds of propagation

Once the values of h±
j± 1

2

and u±
j± 1

2

are obtained, the one-sided local speed of propagations

can be estimated as the largest and the smallest eigen values of the Jacobian of the system
as

a+
j± 1

2

= max

{
u+
j± 1

2

+

√
gh+
j± 1

2

, u−
j± 1

2

+

√
gh−
j± 1

2

, 0

}
(3.29)

a−
j± 1

2

= min

{
u+
j± 1

2

−
√
gh+
j± 1

2

, u−
j± 1

2

−
√
gh−
j± 1

2

, 0

}
. (3.30)

3.2.8 Well-balanced

The source term Sj(t) has to be appropriately discretized to ensure that the method is
well-balanced. When q := hu = 0, then z = constant and the system exhibits stationary
steady state solutions (lake at rest condition). Obviously for q := hu 6= 0, the system
has a particular nontrivial steady state solution such that hu = constant, h = constant.

A well balanced scheme should use the quadrature formula for
∫ xj+1

2
x
j− 1

2

S dx such that it

is of second order and

Sj(t) ≈
1

4x

∫ x
j+1

2

x
j− 1

2

Sdx =
Hj+ 1

2
(t)−Hj− 1

2
(t)

4x (3.31)
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Figure 3.2: Ghost cells at the grid boundaries

i.e. the flux integrals should be cancelled out by the source term at the stationary
steady state. The detailed formulation and the development of such a quadrature rule
can be found at [14]. The first part of S

(2)
j (t) (the bed slope part) can be written as

S
(2),1
j (t) ≈ −g (zj −Bj)

Bj+ 1
2
−Bj− 1

2

4x . (3.32)

The second part of S
(2)
j (t) (the friction part) can be computed using the same desin-

gularization procedure as in equation 3.23 as

S
(2),2
j (t) ≈ −

gn2qj
∣∣qj∣∣ (w + 2(zj −Bj))

4
3

w
4
3

·
(

2(zj −Bj)
(zj −Bj)2 + max ((zj −Bj)2, ε2)

) 7
3

.

(3.33)

3.3 Ghost cells

From equations 3.11 - 3.15, it can be observed that for a given jth cell, information from
the neighbouring cells j − 1 and j − 2 (to the left) and j + 1 and j + 2 (to the right) are
required for calculating the flux integrals. This will pose diffi culties at the cells on the
left and right boundaries of the open channel. While evaluating the flux integrals near
the left boundary cells (j = 1 and j = 2) and near the right boundary cells (j = N − 1
and j = N, N being the number of cells in the grid), imaginary cells that lie outside the
physical boundary of the open channel should be taken into consideration as shown in
Figure 3.2.

These imaginary cells denoted by j = 0 and j = −1 on the left, and j = N + 1
and j = N + 2 on the right are called ghost cells. The average value of the conserved
variables at the center of these ghost cells depend on the nature of the physical boundary
of the channel taken into account. Various boundary conditions such as the Neumann
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boundary conditions and the Dirichlet boundary conditions can be applied to obtain the
ghost cells values.

For a transmissive left boundary, one simple possibility for zj=0 would be

hj=0 = 2hj=1 − hj=2 (3.34)

zj=0 = hj=0 +Bj=0, (3.35)

and for zj=−1

hj=−1 = 2hj=0 − hj=1 (3.36)

zj=−1 = hj=−1 +Bj=−1. (3.37)

For the values of qj=0 and qj=−1, one possibility would be

qj=0 = 2qj=1 − qj=2 (3.38)

qj=−1 = 3qj=1 − 2qj=2. (3.39)

Similarly for a transmissive right boundary, for zj=N+1 we have

hj=N+1 = 2hj=N − hj=N−1 (3.40)

zj=N+1 = hj=N+1 +Bj=N+1, (3.41)

and for zj=N+2

hj=N+2 = 2hj=N+1 − hj=N (3.42)

zj=N+2 = hj=N+2 +Bj=N+2. (3.43)

For the values of qj=N+1 and qj=N+2, one possibility would be

qj=N+1 = 2qj=N − qj=N−1 (3.44)

qj=N+2 = 3qj=N − 2qj=N−1. (3.45)

The values of Bj=0, Bj=−1, Bj=N+1 and Bj=N+2 can be obtained by extending the
geometry of the channel at each ends.



Chapter 4

Application

4.1 Introduction

The KP07 central-upwind scheme can be used for various applications as a black box
solver. However, in this chapter, to provide an example of the application of the scheme,
a river flow simulation is presented.

4.2 Example of a river flow

Trinnelva is a river in eastern Norway that flows through a town called Notodden. It
flows out of lake Tinnsjøen. There are several hydropower stations along the length of
the river. We will focus our attention to the part of the river the lies between Årlifoss
and Grønvollfoss hydropower stations. A birds eye view of the river and the surrounding
area is shown in Figure 4.1. The topography of the river bed and the elevation of the
free water surface is schematically shown in Figure 4.2.

The river is 5 km in length. The difference in the elevation of the river bed between
the left and right boundaries is 17.5 m. There is a steeper drop of the river bed at 2.5
km distance from Årlifoss power station (left boundary).

4.2.1 Simulation scenario

The volumetric flowrate of the water entering the part of the river (at the left boundary)
can be controlled1 at the Årlifoss power station. Similarly, the volumetric flowrate of
the water leaving the part of the river (at the right boundary) can be controlled at the
Grønvollfoss power station. The nominal flowrate of water at these power stations is 120
m3/s. The nominal depth of the water at Grønvollfoss is about 17.08 m and at Årlifoss
is about 0.5 m. If the flowrate of the water (inflow) at Årlifoss is changed from 120 m3/s
to 160 m3/s for 15 minutes, it is of interest to observe the following:

1The flowrate of the water can be changed by altering the power production. In general, in a hydro
power station, guide vanes are closed/opened to control the flowrate.

19
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Figure 4.1: Trinnelva in Notodden
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Figure 4.2: Bottom topography and surface elevation
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Table 4.1: Parameters of the river flow system
Parameters Value Description Unit
L 5 Length of river km
Vin 120 Inflow m3/s
Vout 120 Outflow m3/s

w 180 Constant channel width m

4x 25 cell size m

θ 1.3 dissipation tuner −
ε 1e-8 small positive number −
n 0.04 Manning’s roughness coeffi cient s/m

1
3

a) How long does it take the wave to travel from Årlifoss to Grønvollfoss?

b) If the outflow at Grønvollfoss is kept constant at 120 m3/s, how does the level of
the water at Grønvollfoss change?

Table 4.1 lists the values of the parameters of the river system. MATLAB is used as
the simulation tool. For solving the ODE’s, the built-in MATLAB ode solvers are used
(with an assumption that they are TVD preserving).

4.2.2 Simulation results

The central-upwind scheme of Kurganov and Petrova is used to simulate the river flow.
At the simulation time of t = 10 min, the inflow at Årlifoss is increased from 120 m3/s
to 160 m3/s. At t = 25 min, the inflow is decreased back to 120 m3/s. This can also be
depicted in the lower part of Figure 4.3. The level of the river and the average volumetric
flow rate in the first cell of the grid are shown in Figure 4.3. A wave is formed at the
first cell (at Årlifoss) of the grid (see upper figure of Figure 4.3) and this wave travels
downstream towards Grønvollfoss.

However, from Figure 4.4 it can be clearly seen that the level of the water at Grøn-
vollfoss starts to increase only at about t = 20.5 min. This means that it takes about
10.5 min for the first wave to hit the right boundary of the grid at Grønvollfoss.The
first wave will be reflect back at Grønvolfoss because of which the level once again start
to decrease (at about t = 38 min). A second wave (with a smaller amplitude than the
first wave) arrives at the right boundary and reaches its peak (at about t = 50 min). It
gets reflected back again. This process repeats until the system attains a new steady
state level of about 17.2 m at Grønvollfoss as shown in Figure 4.4. Due to the inflow of
water into the channel from Årlifoss for 15 minutes, the level of the water at Grønvollfoss
increases by about 4 cm.
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Figure 4.3: Height and volumetric flow rate at the first cell of the grid
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Figure 4.4: Height and volumetric flow rate at the last cell (Grønvollfoss)
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