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Abstract 

An emerging process analytical technology (PAT) technique, acoustic chemometrics, was 
applied for monitoring of heated fluidised bed drying process. The feasibility of quantitative 
on-line monitoring of the drying progress and end-point determination of silica gel dried in a 
heated fluidised bed was investigated. Silica gel was used owing to its high water adsorption 
property and stability to heat. Acoustic signals were acquired using four accelerometers 
mounted at different locations on the wall of the fluidized bed. The accelerometer located 
close to the base was the best based results from this study. Prediction models validated with 
independent acoustic data (test set validation) were developed using Partial Least Square 
Regression, PLS-R. Some data pre-preprocessing techniques were applied to improve the 
developed prediction model. The final prediction results were satisfactory for monitoring of 
the drying progress and end point determination. The prediction results based on the 
independent data indicated a slope = 0.97, correlation coefficient, R2 = 0.99 and the root mean 
square error of prediction was 1.71 water %, within the range  0 ─ 35.69 water % of sampled 
reference. It was  concluded that the results from this feasibility study shows that acoustic 
chemometrics is a viable on-line technique for monitoring the drying progress and for 
determining the end-point during drying of particulate matter. This on-line monitoring 
technique for the drying process developed in this study can be applied in many relevant 
industries in order to improve the overall economics of material drying by optimising 
fluidised bed drying technology using this decisive end-point determination approach.  
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1 Introduction 

Fluidised bed technology is widely applied for drying of particulate matter in the industry. 
Because fluidized bed dryers offers efficient mixing, high heat and mass transfer rates, 
smooth drying operation, as well as continuous drying and handling of large quantities of 
materials. These are important properties in order to achieve fast, gentle and uniform particle 
drying. Due to the high drying rate and associated economic gain, fluidised bed drying has 
been proposed as the method of choice as compared to other drying techniques [1─6]. 
However, for many drying processes involving fluidisation technology, the analytical method 
applied for monitoring and control purposes is a critical factor regarding the assessment of the 
fluidised bed and even cost of monitoring drying processes in general. Reliable and low cost 
methods help to achieve consistent results and reduce the overall cost of drying processes. 

In recent years, several Process Analytical Technology (PAT) techniques have been applied 
for moisture content determination and/or material drying in heated fluidized beds in research 
work as well as industrial installations [2-5, 7]. However, monitoring methods based on 
pressure measurements still remain as the conventional and most used monitoring techniques 
[8]. One of the drawbacks with pressure sensors is the intrusive deployment. Intrusive sensors 
are highly prone to blockage and thus it is possible to acquire pressure signals that are non-
representative of the hydrodynamics in the bed being monitored [8]. Furthermore, among the 
PAT approaches adapted for fluidised bed monitoring, on-line techniques are preferred 
because of the non-invasive sensor probes. Therefore, there is still need for further research 
and adaptation of on-line measurement concepts for improved process monitoring and 
control. One of the emerging on-line non-invasive PAT approaches for process 
characterisation is acoustic chemometrics. However, adaptation of this technique and other 
acoustic methods for fluidised bed characterisation is still very low. This fact can be seen in a 
critical review on the various experimental measurement principles applied in fluidisation 
technology as presented by Omen and Mudde [8]. The experimental techniques according to 
the review included direct visual inspection during fluidisation, tomography, optical probe, 
capacitance probe, pressure measurements and acoustic measurements. They explained that 
no measurement technique could be regarded as ultimate for elucidation of all the properties 
of the gas-solid fluidised bed and that acoustic measurement techniques has the lowest 
number of applications as compared to the others. However, in a study by De Martin, et al. 
[9], the characteristic dynamics of acoustic signals were applied to monitor gas–solid 
fluidized beds for bulk and bubble behaviour. Statistical analyses (auto correlation and 
standard deviation) were utilised for analysing the time domain acoustic data. The authors 
stated that the results from the acoustic measurements and pressure data were similar. They 
concluded that this fact might thus instigate the use of acoustic sensor instead of pressure 
sensor for fluidised bed monitoring. Similarly, good results that are comparable to pressure 
measurement were obtained for acoustic measurement application for bubble behaviour 
measurement in fluidised bed [10]. From this point of view, the motivating factor for the 
current investigation was in tandem with the need for especially on-line acoustic measurement 
applications in particle processing, food and allied industries.  



The present work is an attempt to adapt acoustic chemometrics for on-line fluidised bed 
drying progress monitoring and end-point determination using dedicated test material and 
PLS-R regression models validated with independent test data [11]. 

2 Materials and methods 

2.1 Acoustic chemometrics 

Acoustic chemometrics is an emerging non-invasive on-line PAT technique. Its application 
spans various research and industrial monitoring of systems generating sound (vibrations). 
The acoustic measurement concept is based on recording of passive acoustic emission from 
systems or processes contain information of which can be useful for their characterisation. In 
this regard, the calculated frequency spectra are thus related to the physical/chemical 
properties of the investigated materials/test system. In recent years, application of acoustic 
chemometric for various research and industrial process studies has increased [7,12-17, 24]. 
The advantages of acoustic chemometrics as compared to other on-line methods are numerous 
and some of them can be summarised as follows: 
• On-line and real-time prediction  
• Relatively low cost and no maintenance needed for the measurement unit 
• Easy and non-intrusive sensor deployment 
• No modification of existing systems needed  
• Possibility of predicting several properties from the same acoustic spectrum 
• Acoustic sensors can withstand high temperatures 
 
Furthermore, acoustic chemometrics provides information about other parameters directly 
from the same acoustic spectra, e.g. information about critical failure (early warning) of 
which can be dead zones, clogging of the bottom plate etc. [24]. Therefore, acoustic 
chemometrics is considered viable, and to have some advantages compared to other available 
invasive measurement approaches. A widely used invasive approach is to correlate the 
residual moisture content against the change in gas temperature and humidity inside the 
fluidized bed. However, invasive sensors will not work properly in the presence of a lot of 
fine dust which will cover the temperature sensors resulting in erroneous temperature 
measurements. Invasive measurements are clearly much less problematic in the inlet/exit gas 
than in the bed itself. 
 
The principles, theory and application of acoustic chemometrics in science and technology 
can be found in open literature [16].  Acoustic signals are sampled in time domain and 
conditioned to a more useful format as frequency spectra to allow multivariate regression 
modelling. The signal conditioning includes amplification to maximise the digital resolution, 
analogue to digital (A/D) conversion, window transformation to avoid spectral leakage, and 
fast Fourier transformation (FFT). A digital acquisition (DAQ) system from National 
Instruments is used for the A/D-conversion. Interested readers are referred to relevant open 
literatures to gain more insight on the signal pre-processing involved in the acoustic 
chemometric method [18, 19]. 



2.2 Partial Least Squares Regression 
 
Partial least squares Regression is a well known method for calibration of multivariate 
prediction models. It is especially necessary for large data sets. This data modelling approach 
has been employed in many multivariate modelling applications in science, technology and 
industrial process monitoring and control [20, 21]. In PLS-R modelling, the relationship 
between two data matrices known as X (independent variables) and y (the dependent variable) 
is established.   
 
The predictive ability of A PLS-R model and determination of the optimal number of PLS-R 
components are based on model validation. There are several validation techniques available 
[20-22]. However, test-set validation has been the recommended validation method because it 
provides realistic prediction errors and optimal number of PLS-R components [11]. In this 
regard, over-fitting or under-fitting of the prediction model is avoided. In over-fitted models 
also PLS-components containing noise is mistakenly included in the prediction models which 
will lead to non-representative predictions. In the under-fitted case informative PLS-
component(s) are omitted in the model which means useful information is lost. Diagnostic 
results including the slope, off-set, correlation coefficient (R2) and root mean square error of 
prediction (RMSEP) are used for PLS-R prediction model evaluation.  Resulting plots such as 
the X loading weights plot, the y-residual validation variance plot, t-u plots, etc., are used for 
model interpretation and assessment. For instance, the X-loading weights provide information 
concerning the important variables to be included in a prediction model [20, 21]. Equation (1) 
below is used for the calculation of RMSEP. 
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The calculated RMSEP value has the same unit as the reference y, 𝒚� is the predicted y, n is 
the number of observations in the independent test set. 
 
In multivariate calibration, the multivariate data is in most cases improved by using some data 
pre-treatment before multivariate calibration. For acoustic data, mean centring and scaling to 
unit variance pre-processing is commonly applied. Another pre-treatment method applied to 
acoustic data is averaging to eliminate or dampen the effects of the noisy variables. However, 
the applied pre-processing techniques depend on the acquired data set and this is usually 
judged by the prediction performance of the model (e.g. RMSEP), statistical results or 
diagnostic plots. There are several pre-processing methods and more details on the underlying 
principles are available in literatures [20, 21].  
  
2.3 Test material  
The test material used in the current study is silica gel known as indicator gel. This name is 
due to the fact that the silica gel during absorption of moisture changes from its original 
orange colour and becomes transparent. This colour changing feature of the indicator gel will 



allow for visual inspection of the moisture content during drying. Orange gel is odourless, 
non-toxic, and non-corrosive, with stable chemical and thermal characteristics. Silica gel 
(SiO2) is a hard, very porous and crystalline substance (spherical or irregularly-shaped 
particles). In general, silica gel is the most commonly used desiccant, and is regarded as the 
highest humid adsorbent in desiccant community. With active, interconnected pores forming a 
vast surface area, silica gel is the most capable desiccant for dehumidification. The voids are 
about 50 ─ 70% by volume and can adsorb moisture 40% or up of its weight at 100% 
humidity environment. The size of the gel is 250-1800 µm and the bulk density is 670Kg/m3. 
The maximum drying temperature for this product was 140oC. But to avoid extreme situation, 
120oC was used in the current study. The driving force for using orange gel for this 
investigation is due to its thermal stability and ability to retain high degree of crystalline water 
that can only be removed by heating. This however, will allow for monitoring of material 
drying due to loss of water over a reasonable time period. Most of industrial drying processes 
have been designed to avoid harsh and destructive drying to keep the quality of products. 
Also, long time drying will make obtaining of enough acoustic data and reference for 
calibration and validation purpose possible, which in this case, is a prerequisite for drying 
progress monitoring using acoustic chemometrics.   

3 Experimental set-up 
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Figure 1. Schematic view of the test rig (hot fluidised bed) used for the drying of silica gel. Acoustic sensors 
were used for data acquisition for subsequent PLS-R modelling. 
 
The experiments were conducted using a cylindrical pilot-scale fluidised bed in the powder 
research laboratory of POSTEC, Norway. A sketch of the fluidised bed including temperature 
transmitters and acoustic sensors are presented in figure 1. The picture in figure 2 shows the 
fluidised bed and the acoustic monitoring system used in the drying experiments. The 



fluidised bed was constructed with stainless steel and the diameter and height of the bed were 
162 mm and 1050 mm, respectively. A computer with National Instruments LabVIEW 
software was used to control the temperature and air flow rate in the fluidised bed during the 
experiment (see figure 2). Two temperature sensors were used to monitor the inlet air 
temperature and the temperature inside the fluidised bed. The air entering from the bottom of 
the drying bed was pre-heated by an electrical heater. Even hot air distribution at the column 
base was ensured by a uniform perforated air distribution plate made of stainless steel (see 
figure 1). In addition, a set of heating elements wrapped around the external wall of the bed 
contributed to the heating of the bed. In order to maintain uniform and stable air temperature, 
insulation material of about 5 cm thicknesses was used to cover the exterior wall of the bed 
and wrapped with aluminium foil (shown in figure 2). The temperature set point was always 
maintained at 120oC and controlled by means of a PID controller. The actual temperature of 
the test material however, varied from the initial temperature of about 19oC to approximately 
92oC at the end of each test run (end point). The optimal airflow rate used for the present 
investigation was 14.6 Nm3/h. This flow rate was chosen to allow for initial sampling of the 
materials. Another factor taken into consideration when determining this optimal flow rate 
was avoiding spouting of materials from the bed as the drying progressed. This is because the 
weight of the material was always higher before drying (7.77 kg) due to high water content 
than when dried (5.60 kg). Using an airflow rate above the optimal would have led to loss of 
material from the bed over time. Loss of material during drying would have affected the 
acoustic measurement. For material sampling purpose, a cylindrical 500 mL container made 
from stainless steel and welded to 1 m long rod was constructed as a sample taker. 
 
Four stainless steel rods (8 cm length and 1cm diameter) were welded onto the exterior wall 
of the bed (see figure 1). On each of the rods an accelerometer (Brüel & Kjær® 4518-002) 
was glued on to the end of each rod to avoid thermal damage of the sensors and cables. Four 
sensor locations along the bed height were used in order to capture the hydrodynamic profile 
of the bed. The considerations made while choosing sensors locations (see figure 1) were to 
place sensor 1 as low as possible to the base of the bed. Sensor 2 was located at the middle of 
the height covered by the material. Sensor 3 was placed exactly at the level of the material 
(height covered by the simulated material) whilst sensor 4 was placed 5 cm above sensor 3. 
The reason for locating sensor 4 above the height covered by the test material was to capture 
the acoustic signature of particle spouting and impacting the bed wall at the top of the bed. 
The sensors were connected to the acoustic signal conditioning system. These include an 
amplifier which was connected to a DAQ unit (USB-6361Series) and a computer with 
dedicated LabVIEW software (see figure 2). The time domain acoustic signals (window size 
of 4096) were sampled at a sampling rate of 300 kHz. The signal conditioning applied to the 
acoustic signals included amplification, analogue-to-digital conversion, filtering, Blackman 
Harris window transformation [18], Fast Fourier Transformation (FFT), and averaging. Each 
acoustic spectrum was calculated from a linear average of 500 FFT spectra and covered a 
frequency range 0 – 150 kHz.  
 



 
Figure 2.  The experimental set-up for the hot fluidised bed drying experiment. The control and acoustic signal 
acquisition system can be seen in the lower part of the picture. 
 
4. Test Procedure 

The test material used in this feasibility study was prepared by weighing 5.60 kg of orange 
gel. This quantity was required to get to the height of fluidization column, where sensor 3 was 
mounted. The material was soaked in water for 1 hr, drained and air-dried. On re-weighing 
the simulated test material, it was found that the weight was 7.77 kg. This implied that the 
water absorption was about 38.75% of its weight. The same sample preparation protocol was 
used to obtain another batch of test material used in a repeated drying experiment to obtain 
independent data for the test set validation of the PLS-R prediction model.  
 
The drying experiment was started by filling in the bed with a fixed amount of silica gel to be 
dried. This was followed by furnishing the bed with the required conditions (temperature of 
120oC and air flow rate of 14.6 Nm3/h). The bed was allowed to stabilise for about 10 min. 
Once optimal setting was achieved and the bed was fluidised, acoustic measurement was 
initiated by recording 10 replicate acoustic spectra. Then, three individual samples were taken 
from the fluidised bed using the cylindrical sample taker. The sampled material were weighed 
and poured back into the bed. The mass of the reference sample was used to calculate the 
moisture content in the silica gel. The moisture content was used as the reference (y) in the 
modelling stage where PLS-R was used to calibrate a prediction model for the moisture 
content in the silica gel. The sampling procedure was carried out every 10 minutes. It was 
found that the variation in mass of these three reference samples collected at specific time 
intervals were maximum 3 gram. The average mass of each group of three samples were later 



converted into water percentage (moisture content) this was used as the reference value (y-
vector) in this work. The duration of each drying experiment was approximately 7 hours. By 
this time however all the particles of indicator silica gel turned from white to orange colour, 
which indicated the loss of their moisture content. After the experiment, the experimental 
systems were turned off and the bed was emptied using a suction vacuum system with a 
cyclone.  The same experimental procedure were repeated another day to obtain independent 
test data for validation of the prediction model.  
 
The acoustic spectra were calibrated against their respective water percentage (y-vector). The 
acoustic data, however, recorded during the sample extraction from the fluidised bed were 
deleted prior to PLS-R modelling. The acoustic signals were influenced by the introduction of 
the sampling container in the bed and therefore the acoustic spectra would not be 
representative of the drying material properties only. If the spectra from the sampling periods 
were included, they would have constituted gross outliers which cannot be used for 
modelling. Therefore, only PLS-R prediction results after removing the acoustic data recorded 
during material sampling) is presented.  
 
It was necessary to apply some pre-processing to the data before the PLS-R modelling step. 
The initial pre-processing done before modelling were auto-scaling, reduced average of factor 
four on the variables; moving average using a rectangular window size which corresponds to 
5.86 kHz. Subsequently, low pass filtering of the final model prediction output. The window 
size in the output filter was five predictions corresponding to 2 sec.  
 
 
4 Results and discussion 

Drying of materials using hot fluidised be technology has been of great interest and has been 
widely used for drying of materials in industries. This can be attributed to the accompanying 
high mixing rate as well as increased heat and mass transfer that promote fast and uniform 
loss of moisture content of the wet materials during drying process.  

In the present study, drying process of water soaked silica gel was monitored over a 
considerably long time period by taking samples and weighing them. After some period of 
time, a point was reached when there was no change in mass of materials sample over time 
(end-point). At this time period, the colour of the silica gel turned completely back to orange 
colour (representing complete loss of moisture its content). The accompanying statistical 
results and diagnostic plots for interpreting the developed PLS-R prediction model for this 
drying progress monitoring of silica gel in a heated fluidised bed is presented. 

4.1 Initial PLS-R modelling results 

In the initial PLS-R modelling, the entire acoustic signals for the four sensors were used. The 
prediction model was promising as can be seen in figure 2. From the residual y-validation 
variance plot (see figure3, lower left), two PLS-R components were required for optimal 
prediction of the y data. The loading weights for the 2-component PLS-R model for the 4 



sensors can be seen in upper left of figure 3. It showed that the loading weight for sensor 1 
was far much higher than that for the acoustic signals from sensors- 2, 3 and 4. Based on this, 
it was decided to use only sensor 1 for predicting the reference, as will be explained further 
below. The predicted verses measured scatter plot is presented in figure 3, lower left. The 
evaluative validation statistics comprise of a slope of 0.96, squared correlation coefficient 
(R2) of 0.94 and prediction error expressed as RMSEP was 5.08 water percentage (for the 
range of 0 ─ 35.69 water percentage of the sampled material). In addition, the predicted 
verses measure plot in time was also presented in figure 3, lower right. This was primarily to 
show the drying progress in time because; this is a drying progress monitoring study. Also, 
the time series plots are usually used for process elucidation in process industries. This is due 
to the fact that the application of this drying monitoring methodology in industries was the 
target for undertaking this study. As mentioned earlier, the represented predicted vs. measured 
plot in time does not include acoustic data during the sampling steps. Therefore, though the 
whole drying experiment lasted for about seven hours in each case (experiments for 
acquisition of calibration and test acoustic data), the total time frame judging from the plot in 
figure3, lower right is about five hours. This is because the acoustic data during the sampling 
steps were deleted because they would have constituted outliers. The important thing 
however, is that the acoustic data acquired represents the dynamic properties of the test 
system as regards the water percentage at every point in time. From the scatter plot and time 
plot for predicted vs. measured y it was observed that the data points were relatively scattered 
(for scattered plot) and noisy (for time plot), respectively. Therefore, it was concluded that 
applying a low pass (smoothing) filter to only the prediction was necessary. Hence, further 
pre-processing was applied to this initial model and the result is shown in figure 4 below. 

  



  

Figure 3.  PLS-R prediction for all four sensors, no smoothing of the prediction output. Upper left: plot of the 
loading weights of two PLS-components used for modelling; upper right: residual y-validation variance plot; 
lower left: predicted vs. measured scatter plot; lower right: predicted vs. measured time plot. 

4.2 Final PLS-R modelling results 

As mentioned in the preceding sub-section, since sensor 1 was optimally (with highest 
loading weight) capable of modelling the acoustic data as compared to the other 3 sensors. 
Sensor 1 was thus used for further modelling of the acoustic data. Also, there was need for 
applying low pass filtering to the prediction output. The PLS-R modelling based on one 
sensor (sensor 1) is presented in figure 4. The loading weight plot is shown in figure 4, upper 
left and it can be seen that all the frequencies were important and included for the modelling 
though higher frequencies were close to zero. Using all the frequencies did not have any 
adverse effect on the model. The residual variance plot as shown in figure 4, upper right 
indicated that only two PLS-components were also needed (figure 4, upper right). The visual 
appearance of the plots was improved because they appeared less noisy for the time plot and 
less scattering for the scatter plot as compared to those in preceding figure 3.  This can be 
seen in the depicted prediction verses measure scatter plot and prediction vs. measures time 
plot in figure4, lower left and figure4 and lower right, respectively. There was also 
improvement in the resulting prediction results slope, R2 and RMSEP were 0.97, 0.99 and 
1.71, respectively, when the prediction output was pre-processed. The statistics of the final 
model can be seen in figure4, lower left (see also figure3, lower left for comparison). One can 
easily observe that there is dramatic reduction in the error of prediction (RMSP) and higher 
values for the slope and R2. From the time plot of the predicted verses measured y, one could 
easily see that at the initial drying period, the loss of moisture from the material was low 
(clustered points in the scatter plot and almost stable line in the time plot). Since the water to 
be dried in this material was not just surface moisture but rather the moisture was entrapped in 
the crystal; this phenomenon can be explained on the basis that at the initial period, the 
material was absorbing the supplied heat. Then it was when the required temperature for the 
crystalline water to start evaporating was reached that water started escaping gradually from 
the materials by diffusion. Hence, as time went on there was noticeable increase in the loss of 
water represented as the loss in weight of the sampled material over time. Then the material 
started changing colour from transparent to faint orange until the period when it completely 
orange in colour (original colour) showing that its moisture content was completely lost. It 



can also be seen from these scatter and time plots that the loss in weight of material were 
comparably low over some time period. This effect can observed by the occurrence of more 
cluster points at the lower parts in the scatter plot and stable line in time plot of the predicted 
verses measured y. Therefore, the end-point for the drying of the material in the fluidised bed 
has been reached, which is a point of interest in any real life industrial scale drying operation. 
At this juncture further drying of the materials would not be required because virtually all its 
moisture content has been lost. If drying was continued, it might lead to over-heating of 
materials or destruction of the inherent crystalline structure of silica.  

  

  

Figure 4.  PLS-R prediction for sensor 1 only, with smoothing of the prediction output (rectangular window, size 
4.39 kHz). Upper left: plot of the loading weights of two PLS-components used for modelling; upper right: 
residual y-validation variance plot; lower left: predicted vs. measured scatter plot; lower right: predicted vs. 
measured time plot. 

From the foregoing, it can be concluded the data pre-processing applied during multivariate 
data analysis can be seen as a good practice herein since there were considerable 
improvement on the developed prediction model. The use of only one sensor for modelling 
was also reasonable since including the other 3 sensors introduced noise in the data.  The y-
residual validation variance for all components in figure 3 (upper right) is higher then that of 
figure 4 counterpart) result showed higher. There was reasonable change in the statistical 
results shown in the predicted vs. measured scatter plot, especially as regards the RMSEP 
value. Furthermore, application of low pass filtering to only the prediction output actually 
improved the visual interpretation of the prediction plots. The prediction models obtained in 
this investigation thus confirmed that application of acoustic chemometrics for continuous on-



line monitoring of drying progress and determining the end-point is feasible. Once a PLS-R 
model has been developed, it could be used for predicting the mass of materials being dried 
until the end-point is reached. Here, the hydrodynamic change (loss of the moisture content) 
of materials in hot fluidised bed was particularly captured by the acoustic sensors deployed on 
the wall its wall (see figure 1). Sensor 1, located close to the base of the bed, served the main 
objective for this present study. It was able to optimally capture the dynamics of the system 
based on the loss in moisture content with time. However, it was also interesting to compare 
the acoustic data from all the four acoustic sensors localised along the bed height.  

In this study, predicting specifically the drying progress of the material and the determining 
the end-point was the focus. Silica gel saturated with water to create a real life situation where 
materials with some moisture content need to be dried in a hot fluidised bed. In some cases, a 
specific moisture content of the finished granules is nevertheless desired after fluidised bed 
drying operation in industries. This is the case in most food industries where food materials of 
various moisture contents are dried to certain required moisture content. Thus, utilisation of 
cost effective and stable method as studied in the present work will help in solving the issue 
of over-drying of materials since end-point assessment is possible. Once a representative 
acoustic data is acquire, reliable on-line and real-time prediction of drying process in 
industries can be achieved as well as end-point determination. These measures will allow for 
having the knowledge of the amount of moisture present at any point in time. In addition, 
consumption of large amount of power in industrial processes involving drying can be 
mitigated by employing this PAT measuring technique. 

5 Conclusion 

Acoustic measurement and PLS-R analysis (acoustic chemometrics) were successfully 
applied, as a PAT method, in the present feasibility study for on-line monitoring of the drying 
progress and end-point determination of silica gel saturated with water. Out of the four 
accelerometers used for this investigation, only one sensor placed close to the base of the hot 
bed was able to capture the real change (loss of the moisture content) of materials. The 
satisfactory results from the test set-validated final PLS-R prediction model were an 
indication that this technique is reliable for on-line industrial process drying of particulate 
materials. The prediction error expressed as RMSEP was 1.71 water percentage (within the 
range of the 0 ─ 35.69 water percentage of sampled reference), the slope was 0.97 and the R2 
was 0.99. As the drying progressed, it was possible to monitor the drying of the studied 
material using water content percentage as the reference.  

In industries were drying of materials are employed such as in the particle processing 
industries, pharmaceutical and food industries, acoustic chemometrics can serve as  a simple 
and viable on-line technique based on the present feasibility study. The overall economics of 
drying could be improved by using this and relatively cheap on-line PAT method.  In 
addition, since end-point could be reliably predicted using this method, over- use of thermal 
energy will be circumvented.  These will translate into improved drying process monitoring 
and reduced drying costs in industries. 
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List of figure captions: 

Figure 1. Schematic view of the test rig (hot fluidised bed) used for the drying of silica gel. 
Acoustic sensors were used for data acquisition for subsequent PLS-R modelling. 

Figure 2. The experimental set-up for the hot fluidised bed drying experiment. The control 
and acoustic signal acquisition system can be seen in the lower part of the picture. 

Figure 3. PLS-R prediction for all four sensors, no smoothing of the prediction output. Upper 
left: plot of the loading weights of two PLS-components used for modelling; upper right: 
residual y-validation variance plot; lower left: predicted vs. measured scatter plot; lower right: 
predicted vs. measured time plot. 

Figure 4. PLS-R prediction for sensor 1 only, with smoothing of the prediction output 
(rectangular window, size 4.39 kHz). Upper left: plot of the loading weights of two PLS-
components used for modelling; upper right: residual y-validation variance plot; lower left: 
predicted vs. measured scatter plot; lower right: predicted vs. measured time plot. 
 

 

 


