
This file was downloaded from Telemark Open Research Archive TEORA - 

http://teora.hit.no/dspace/ 
 

 

 

 

 
 

 
Title:  Control of temperature and energy consumption in buildings - a review.   
 
 
Authors: Perera, D. W. U., Pfeiffer, C., & Skeie, N.-O. 
 
  

 

Article citation:  Perera, D. W. U., Pfeiffer, C., & Skeie, N.-O. (2014).  Control of 
temperature and energy consumption in buildings - a review. The International 
Journal of Energy and Environment, 5(4), 471-484. 
http://www.ijee.ieefoundation.org/ 

 
 
 
 
 

http://teora.hit.no/dspace/
http://www.ijee.ieefoundation.org/


INTERNATIONAL JOURNAL OF 

ENERGY AND ENVIRONMENT 
 

 
Volume 5, Issue 4, 2014  pp.471-484 
 

Journal homepage: www.IJEE.IEEFoundation.org 

 
 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2014 International Energy & Environment Foundation. All rights reserved. 

Control of temperature and energy consumption in 
buildings - A review 

 
 

D.W.U. Perera, C. F. Pfeiffer, N.-O Skeie 
 

Faculty of Technology, Telemark University College, Porsgrunn, Norway. 
 
 
Abstract 
Building sector is one of the largest energy consumers in the world and currently it utilizes 40% of the 
total energy in the European Union. At the beginning of the article, energy crisis related to the buildings 
is defined with regard to occupant thermal comfort, energy savings and temperature control. 
Subsequently, a brief presentation of various types of building heating models available for control 
purposes is given. Afterward, different approaches used for controlling the building thermal comfort and 
the energy consumption are shown. These strategies are primarily, classical control, advanced control, 
intelligent control and hybrid control. The proposed survey also provides up-to-date applications of 
control techniques. The overview hence affords an insight into current control systems used for 
temperature and energy consumption in buildings. Further, it helps to have a comprehensive 
understanding about the variety of control techniques in the field of HVAC (Heating, Ventilation and Air 
conditioning) applications, at the same time delivering information for careful design of suitable 
controllers. 
Copyright © 2014 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Buildings are one of the largest energy consumers all over the world. According to the EU Directive on 
the Energy Performance of Buildings issued in 2010, the building sector in the European Union is 
continuously expanding and currently uses 40% of total energy consumption in the union [1]. Amongst, 
residential buildings are the main energy consumer. In 1999, the shares among space heating, water 
heating and electrical appliances together with lighting were 68%, 14% and 13% respectively [2]. 
However, during the last 15 years, the space heating energy demand has decreased owing to the national 
laws, regulations and administrative provisions forced by the governmental bodies [2]. Several policies 
are mandated by the European Commission because the European Union is dependent on the external oil 
and gas. In 2000, 50% of the energy supplies were provided by the external countries. Based on the 
projections it will become increasingly reliant in the future and will reach 70% in 2030 [3]. According to 
[4], in Norway, household buildings have utilized 34% of the total energy consumption in 2010. Out of 
that, space heating has consumed two third of the residential building energy and two fifth of commercial 
building energy [4]. In the early 1990s, Norwegian household energy consumption per square meter was 
about 210 kWh/m2, and it has been reduced to 180 kWh/m2 in 2010, which is a decline in 14% [4]. 
Recent investigations showed that there is a potential of saving 65 TWh both from residential and 
industrial buildings in 2020 [5]. Technical potential for savings based on all existing dwelling is 13.4 
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TWh and possible savings from commercial buildings are 19.5 TWh in 2020 [5]. Norwegian building 
technical standards, such as TEK10, direct the people for accomplishing these goals.  
Even though the buildings constructed before 1970s had enough openings for natural ventilation, later 
buildings were built with small openings. It helped to overcome the soaring energy cost occurred ought 
to the oil embargo. This lets low air flow rates into the building. Since people are living inside the 
buildings for more than half of their life, environmental comfort is important for occupant satisfaction 
and to obtain a high productivity. There are four main factors that affect the quality of life inside the 
buildings, and they are: (i) thermal comfort; (ii) visual comfort; (iii) aural comfort; and (iv) indoor air 
quality [6]. Thermal comfort is measured by Predictive Mean Vote (PMV), which has values from -3 to 
+3 [7]. Lowest value indicates the coldest condition; the highest value indicates the hottest condition and 
zero indicates the neutral condition. Comfort conditions are achieved if the PMV belongs to the [-0.5 0.5] 
range which is desired inside a building [7]. Visual comfort is about having enough luminance level 
either by solar radiation or lighting. Aural comfort enhances the acoustical environment inside the 
building which will improve the speech intelligibility and privacy. CO2 concentration inside a building 
characterizes the level of indoor air quality (IAQ) [6]. Maintaining IAQ is a major problem with small 
openings in a building as it reduces the natural ventilation.  
If the building is provided with higher amounts of ventilation, more input energy must be supplied to 
raise the temperature of the incoming air to obtain thermal comfort. When the heating systems are 
operated continuously throughout the 24 hours of the day, the thermal comfort can be satisfied easily, but 
it may lead to energy overconsumption as the occupancy is intermittent. Therefore there is a compromise 
between the air quality and thermal comfort when it comes to energy savings. Further, solar irradiation 
and lighting helps to increase the indoor air temperature which reduces the external heating requirements. 
Moreover, the energy consumed to raise the temperature to a different level may be lower compared to 
preserving the current conditions. Therefore during low outside temperatures, low occupancy levels and 
at nights temperature can be lowered either by lowering the heater power or by switching it off 
depending on which is more efficient. Subsequently the temperature can be brought back to the desired 
level. Hence it is important to manage the three factors ventilation, temperature and lighting 
simultaneously to obtain a better quality of life while saving energy.  
The most often studied building types in the latter discussed research area are residential and office 
buildings. These buildings range from small rooms to multi-zone buildings with several floors. There are 
various factors other than the thermal comfort, indoor air quality and lighting that influence the energy 
consumption in each of these buildings. They are the age of the building, size of the building, envelope 
construction, weather conditions, efficiency of the equipments and hot water production. Utilization of 
the best available equipments and components can minimize the impact from these factors, but it will not 
be an optimal solution. To obtain an optimal energy performance it is necessary to integrate the effects 
from each and every fact mentioned above. It can be carried out via a precisely selected building control 
system. A good control system ought to have a lot of benefits such as minimize the energy consumption, 
reduce the pollution caused by energy usage, improve the comfort, prevent out of hours operation of the 
equipments, reduce the maintenance cost and limit the excessive wear and tear associated with the 
building systems. Throughout this article we focus on the control of indoor air temperature for having a 
better thermal comfort and low energy consumption.  
Building heating control systems can be either time controllers (occupancy based controllers) or 
condition based controllers. Time controlled heating systems response to programmed time frames based 
on the occupancy of the building. They can be developed either for a 24 hour period with regular daily 
schedules or for a 7 day period with varying specifications in each day [8]. Further, the time controllers 
can be either simple on/off type switches or optimal controllers. Optimal time controllers can decide the 
time needed for reaching the preferred temperature, and they are more efficient compared to the simple 
on/off time switches [8]. Building heating control by condition means control with respect to 
temperature, humidity or whatever the control variable. These two control methods may use various 
strategies such as On/Off control, PID control, predictive control, adaptive control, optimal control and 
intelligent control or combinations of them [2] to achieve the heating requirements. 
 
1.1 Building heating models 
There are three classes of building heating models available for control purposes: (i) mechanistic models 
(white box models); (ii) black box models; and (iii) grey box models. Mechanistic models are developed 
based on the physical principles of heat transfer and fluid dynamics. They consist of several equations, 
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which carry numerous coefficients, to represent the building geometry and thermal properties of the 
building envelope and equipments. A large number of numerical software tools are frequently met for 
solving such systems of equations [9]. Still, mechanistic models have some deficiencies in the area of 
control with regard to the calibration of physical parameters. Black box models can be generated for a 
particular building after measuring the input variables such as temperature, humidity, air flow rates, wind 
speed and solar irradiation. Examples of black box models are system identification based models, 
regression models, genetic algorithm, neural network models, fuzzy logic models, neuro-fuzzy models 
and support vector machine [9-12]. These models do not expect any physical data of the system and also 
the resulting model coefficients do not have any physical meaning [11]. Black box models may be more 
reliable compared to physical knowledge based models, but they are valid only for the building where the 
data is collected. Grey box models are a blend of mechanistic and black box models and hence the 
information about these systems is partly known [9, 12]. They are most commonly used for parameter 
estimation and there is only a limited work has been done on them [12].  
Simulation programs like Energy Plus, TRNSYS and Fluent provide comprehensive physics based 
models for buildings. Even though they can be highly accurate, they may have high computational 
burden specially when applying to on-line control [13]. Black box models can give unrealistic or non-
physical results when the inputs are outside the training range. The intended model for building heating 
control is a simplified, fast enough and in-depth dynamic model which can be integrated with most of the 
architectural designs. However, to choose the best model for control, model validation is required. 
Kramer et al. have reviewed contemporary research articles about simplified thermal and hygric building 
models [10]. They have categorized the simplified models into three collections: (i) neural network 
models; (ii) linear parametric models; and (iii) lumped capacitance models. Their summing-up concludes 
that the modeling of sun irradiation and thermal capacitance is not well executed. Besides, it has been 
hard for them to find good models dealing with both temperature and relative humidity. Another group of 
researchers has published an article which includes most of the available techniques present in a broad 
area of building thermal modeling [9]. They have defined physical models, machine learning tools based 
models and hybrid models as the model classes. In [11], physically based models and data driven models 
which are predominantly used for control purposes have briefly examined. Zhao and Magoulès [12] 
follow the same classification produced by [10]. Instead, they use different names: (i) simplified 
engineering methods; (ii) artificial intelligence methods; and (iii) statistical methods. 
 
1.2 Objective 
There are quite a large number of publications dealing with building heating control systems related to 
thermal comfort and energy saving. In spite of the large amount of research efforts on building heating 
control strategies, a comprehensive literature review is missing. Still, [2] has briefed the strategies with 
their advantages and disadvantages. It has classified the indoor building environment control systems 
into three categories: (i) conventional methods; (ii) computational intelligence systems; and (iii) agent 
based intelligent control systems. Intelligent control systems are the main focus of their work, and further 
attention has given to describe the design of agent-based intelligent control systems. Moreover, in [14], 
available control techniques in HVAC systems are discussed. They have summarized the general details 
of traditional, advanced and intelligent control techniques. 
This article is lined up to give an overview of the existing and most commonly found heating control 
methods, and appropriate thermal modeling techniques. Section 2 describes theoretical details about 
control strategies including their advantages, limitations and up-to-date applications. Ultimately, a 
closure Summary about the building heating control will be presented in section 3. 
 
2. Building control strategies 
The primary goal of controlling the building environment (HVAC system) is to maintain the thermal 
comfort of the occupants and to achieve good energy efficiency. However, in most of the situations, 
achievement of one of these goals may cause the other goal to be sacrificed to a certain extent. In 
building control, the usually accepted setpoints for temperature and humidity inside a residential or office 
building are 220C temperature and 45% relative humidity with an operating band of ±20C and ±15% RH 
[14]. The different strategies used for controlling the building thermal environment within the given 
ranges are roughly categorized into four classes in this paper. They are: (i) classical control techniques; 
(ii) advanced control strategies; (iii) intelligent control methods; and (iv) hybrid control methods. 
However, there exists a certain overlap among the different control technologies. 
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2.1 Classical control techniques 
The two main classical controllers used in building control are two-position control (on/off) and PID 
control. They have a simple structure and low initial cost, which makes them the most used controllers in 
HVAC systems in both commercial and residential buildings [14]. Yet, the maintenance cost of the 
actuator is quite high (because of the intensive oscillations) and the energy efficiency is low for both of 
these mechanisms that cause high cost [14]. 
On/off control is one of the oldest techniques that is practiced in buildings for the purpose of energy 
saving and occupant thermal comfort. It is a simple, fast and inexpensive feedback controller that accepts 
only binary inputs which is also known as bang-bang control and hysteresis control. This control 
technique is still being using in domestic and commercial buildings effectively, as the well known 
thermostat, humidistat and pressure switch [14]. Thermostats are commonly found in home heating 
systems and domestic refrigerators.  
Basic function of a thermostat is to control the heating or cooling equipment according to the target and 
current conditions. They should not be affected by draughts and heat sources and also advised to fix them 
in a building halfway up the wall [8]. Thermostat plays a vital role in providing comfort to the people 
and controlling the most energy intensive systems in dwellings. Furthermore, it can control heating and 
cooling equipments, humidifiers and dehumidifiers, economizers and ventilation systems [15]. The basic 
components of a thermostat are: (i) sensor to measure the temperature in the desired environment; (ii) 
switch/actuator to turn the heating or cooling equipment on and off; (iii) feedback loop to find the offset 
and decide on/off time; and (iv) user interface to display the current conditions [15]. Thermostat sensor 
must be accurate, and it should provide a quick response. If the sensor is sluggish, it cannot detect the 
temperature changes fast enough, which causes the system to consume more energy with less occupant 
comfort [16]. For example if the thermostat time constant is 1 sec it is fast and if it is 90 sec response is 
slow [16]. In order to avoid hunting (hunting produces a continuously changing deviation from the 
normal operating point which is often known as instability, cycling or oscillation), thermostats are 
introduced with a dead zone of ±10C to ±1.50C. First thermostats were either mechanical or mercury 
based devices. However they are now replaced with electronic devices, which also have wireless 
connections instead of wired connections. Nowadays, many new features and functions have emerged to 
thermostats to facilitate more energy saving [15] such as programmable thermostats [15]. They are 
simple and trouble free devices [17] and the most advanced thermostats can control even multiple zones 
and humidity levels [15]. While thermostat is a simple and inexpensive control method, it is often 
incapable of tracking the setpoint accurately and hence could be inefficient in terms of energy.  
Same as on/off control, PID control is also a feedback control mechanism, which does not use 
knowledge/model of the interested system. It determines the error, which is the difference between the 
measured process variable and the desired setpoint, and adjusts the control signal according to that value. 
There are three separate control techniques used in the PID control algorithm: (i) proportional term 
relates to the present offset; (ii) integral term depends on the accumulation of past errors; and (iii) 
derivative term predicts the future offsets based on the current rate of change of the process. A control 
signal is delivered based on a weighted sum of these three actions. The distinct effect of these three terms 
causes the most important stimulus for the survival of the PID control mechanism, and it also committed 
to the evolution of modern control approaches [14]. It could be beneficial for certain applications to 
apply only one or two actions out of the three by setting the other parameters to zero. P control and PI 
control are two mostly used control algorithms. Thermal process dynamics in a building is usually a slow 
responding process. Therefore, proportional control can be engaged in building temperature control with 
a good stability and a reasonable small offset. Also, it is good in building humidity control. Derivative 
term also contributes to combat the sudden load changes encountered in the system [14]. Still, small 
amounts of measurement and process noise can cause large variations in the output due to the derivative 
term present in the PID control. 
Even though there are a number of advantages in using PID control such as simplicity of implementation 
[14], it may not be the most suitable controller for building control due to several reasons [18]. It requires 
three parameters to be trained for each building zone after the installation. This is quite a time consuming 
task and re-tuning after the commissioning may be inconvenient. They are unable to handle random 
disturbances, and therefore large deviations from the setpoint can occur. In buildings, thermal interaction 
between the zones leads to multi-variable behavior. However, standard PID controller assumes a single-
input single-output (SISO) system during the analysis which may cause unacceptable deviations. Since 
these controllers operate at low energy efficiencies they may not be suitable in the long run [18]. 
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Shein et al. [19] have used a PID controller to control the room temperature using 2 actuators; (i) air 
conditioner; and (ii) window opening. Kulkarni and Hong have introduced a proportional control system 
for a residential building heating system, and they have compared it with the two position and PI control 
schemes with respect to energy consumption and thermal comfort perspectives [20]. They concluded that 
both two position control and proportional control are pretty similar in the energy consumption 
perspective, but PI control has benefits over thermal comfort too. Finally, they have stated that 
proportional control has advantages over on/off control relative to equipment life owing to much 
smoother control signal. 
 
2.2 Advanced control techniques 
Classical control strategies can be applied to building control with certain limitations. They are easy to 
tune for (SISO) systems but, it is not easy or even impossible to tune them for multiple-input, multiple-
output (MIMO) systems. Even though, PID control is one of the best control strategies, it cannot reflect 
the very important outside temperature effects unless feed forward control is integrated. Moreover, it 
may not be the best solution for non-linear systems like HVAC systems. Large time delays and higher 
order dynamics are still hard to control using PID controllers. These requirements can be satisfied with 
advanced control techniques. These techniques usually use a dynamic model of the system for control 
purposes, and show non-linear characteristics [2]. As HVAC systems are non-linear, these techniques are 
extensively used in building control [14]. This paper outlines the advanced control techniques in three 
different aspects: (i) predictive control; (ii) adaptive control; and (iii) optimal control. 
 
2.2.1Model predictive control (MPC) 
Application of predictive control for building automation systems can provide increased energy savings, 
and they are more cost effective than non-predictive control applications. Several benefits, other than the 
energy savings, can be attained by using the predictive control framework in building automation. Some 
of benefits are robustness to disturbances and changes, multivariable control, improvement of the steady 
state response, future disturbances prediction, future control actions prediction and many more [21, 22]. 
There are many applications where predictive control is applied to a variety of building HVAC systems. 
They can be applied to both single zone and multi zone (a zone is generally a completely enclosed or 
partly open division of a building) buildings including residential, office and public buildings [22]. 
However, the decision of implementing the predictive control for a particular building depends on the 
return time of investments [23].  
MPC was formulated in 1970s, and at present, it is extensively used in process control applications. It 
generally provides superior performance in terms of lower energy consumption, better transient response, 
robustness to disturbances and consistent performance under fluctuating conditions [22]. MPC can also 
cope with slow moving processes with time delays, and with a large number of manipulated and 
controlled variables [24]. This multivariable control technique is based on a prediction model which 
utilizes past information and the future inputs to predict the future output. While controlling the process, 
using the system model, MPC generates a control vector that minimizes a certain cost function over the 
prediction horizon in the presence of disturbances and constraints. Model identification is the bottleneck 
of the whole MPC application procedure, and there are not any stringent requirements on the model 
structure. It is possible to use any kind of model out of the three types: black box, grey box and white 
box [23].  
Physics based models used in MPC are generally analogous to electrical RC networks. They are dynamic 
first order models produced using lumped thermal capacitance and resistance of the building. However, 
finding the first principle model could be time consuming for complex building structures. Data driven 
models (grey or black box models) fit linear and non-linear mathematical functions to the measured data 
of the building HVAC system. They can be developed using artificial neural networks, fuzzy logic, 
support vector machine, first and second order time delay models, statistical models (AR 
(Autoregressive), ARX (Autoregressive exogenous), ARMA (Autoregressive moving average), ARMAX 
(Autoregressive moving average exogenous), BJ (Box Jenkins), OE (Output Error)) and combinations of 
them. Prívara has explained subspace identification methods (4SID), prediction error methods (PEM), 
MPC relevant identification (MRI), deterministic semi-physical modeling (DSPM) and probabilistic semi 
physical modeling (PSPM), which are popular statistical methods used in the predictive model formation 
[23]. MRI, DSPM and PSPM are grey box models while 4SID is a black box model. Accuracy of these 
data driven models depend on the quality of the measured data. Hence the measurements must have high 
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accuracy, low noise and appropriate sampling frequency depending on the process dynamics [22]. 
However, in general, precision of the data driven models is high compared to physics based models. 
Even though, the comprehensive models formulated using programs such as Energy Plus, Fluent and 
TRNSYS are highly accurate; they are not usually used for controller development [22]. High quality 
models are very accurate, but quite complex and not good in computational tractability with the loss of 
physical insight. Use of low quality models may result in less energy saving potential. The best is to use 
a model with least possible complexity, which is developed on simple physics or simple mathematical 
formulations, to achieve reasonable accuracy and computational simplicity.  
A family house consisting of two rooms and an attic is controlled using MPC in [25]. A linear state space 
model developed with resistor capacitor network is used as the predictive model to control heating and 
cooling with a prediction horizon of 24 hours. Kim and Brown have also developed a reduced order state 
space model with 10 states for controlling a single zone of a building [13]. Reduced order models (ROM) 
provide less model complexity and less computational requirements while preserving the prediction 
accuracy. They have successfully used the ROMs in MPC and compared the results with a TRNSYS 
model.  
HVAC systems are non-linear complex systems with delays, and, therefore, it is usually difficult to 
model them using first principles and apply them in MPC. Back propagation neural networks (NN) with 
few layers can approximate these non-linear systems with high recognition. A back propagation neural 
network to establish a prediction model for a HVAC system is used in [26]. They have used four inputs 
(room temperature and chilled water inlet valve opening at time t and t-1) to develop a prediction model 
and used MPC and feedback correction to control the air handling unit. It has been concluded that the 
used control mechanism can efficiently control the room temperature. Both feed forward neural network 
prediction model and an ARX model for a single zone building block have been developed by [27], and 
they have concluded that non-linear NN models with Levenberg Marquardt algorithm gives accurate 
temperature prediction than linear ARX models. Fuzzy logic techniques can also be applied to building 
predictive control applications. Fuzzy predictive control scheme has been practiced to control the 
temperature in an air-conditioning (AC) system in [28]. The controller is based on a Takagi Sugeno 
fuzzy model, and it performs well in controlling the non-linear dynamic AC unit with less computation. 
Support vector regression (SVR) has universal approximation ability, and it can be used to model non-
linear HVAC systems [29]. It minimizes the prediction error and model complexity simultaneously. Xi et 
al. used SVR to build a non-linear dynamic model for a HVAC system. Consequently, they developed a 
non-linear MPC based on SVR model, to control the temperature and relative humidity in a thermal 
chamber successfully [29]. Lixing et al. also used SVR to predict the cooling load of a building HVAC 
system [30]. 
Subspace identification methods with Kalman filter prediction are demonstrated for a two floor 
residential building by [31]. The building was equipped with a large wireless sensor network to measure 
the temperatures, humidities and solar radiation. Two statistical approaches, ARMAX and subspace 
identification methods, to predictively control a ceiling radiant heating system are used in [32]. 
Collection of data from a large multi-zone office building to build a predictive control model is not 
straightforward. To overcome this issue, [33] has developed an implicit model of the office building in 
Energy Plus software. Then they have generated good quality data for predictive model, after exciting the 
implicit model with specially proposed signals. Later, predictive control of the building is implemented 
with system identification methods. ARMAX models are also a type of black box linear parametric 
models preferred in building predictive control. One such a model is presented in [34], which can be used 
to control the room temperature in office buildings. Furthermore, [35] justified the application of black 
box linear ARX, ARMAX, BJ and OE models for prediction of room temperature and relative humidity 
of an office room in a commercial building. For more details about statistical prediction models, 
interested readers can refer to [36, 37]. 
 
2.2.2 Adaptive control 
Adaptive control is a specific type of non-linear control system applicable to processes with changing 
dynamics in normal operating conditions subjected to stochastic disturbances. They control the processes 
in a closed loop and the information about the system characteristics are obtained online while the 
system is operating. When the parameters of the plant dynamic model are unknown and/or vary in time 
the adaptive control system still can obtain or sustain the desired level of control system performance 
[38]. Conventional control systems use feedback to reject the effect of disturbances upon the controlled 
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variables. Further, they do not determine the control system performance. Instead, adaptive control 
system measures a particular performance index of the control system using the inputs, the states, the 
outputs and the known disturbances [38]. After analyzing the measured performance index with the 
reference PI's, adaptation mechanism modifies the parameters of the adjustable controller in order to 
maintain the performance index of the control system. Hence the adaptive control system can be 
interpreted as a feedback system where the controlled variable is the performance index [38]. The 
primary feedback handles the process signal variations and secondary feedback handles the process 
parameter changes making the control adaptive. The basic configuration of an adaptive control system is 
presented in Figure 1. 
 

 
 

Figure 1. Basic configuration of adaptive control system [38] 
 

Most adaptive control systems can be split into two main groups as feedback adaptive control and feed 
forward adaptive control. Feedback adaptive controllers are further classified into several categories [39].  
Feed forward adaptive control is also said to be open loop adaptive control. This technique considers that 
there exists a rigid relationship between some measurable variables characterizing the environment, and 
the parameters of the system model. System performance modifications resulting from the controller 
parameter changes are not measured and fed back to a comparison-decision block in order to check the 
efficiency of the parameter adaption [38, 39]. Hence, there is a possibility of system failure if the 
relationship between the environmental measurements and system model parameters change [38]. 
However, this type of adaptive control systems react fast to the process changes which is an advantage 
[39]. There are also some limitations of open loop adaptive control. Negligence of all effects related to 
unmeasured signals/disturbances, unpredictable changes of the system behavior and the parameter 
storage requirements to accommodate many operating conditions are some of them [39]. Gain 
scheduling, a feed forward adaptive control scheme, was used for the first time in 1950s to control 
aircrafts and they are widely used in variety of situations though they are not fully adaptive [38].  
Wen et al. [40] present the use of feed forward adaptive control for a four room building and they have 
devised a model of the building relating lumped thermal capacitors and resistors. Neural networks can 
also be used to generate a model for adaptive control that has been illustrated in [41]. Extensive work has 
been done related to the application of adaptive control in building HVAC systems and they can be 
observed in [18, 42-46]. 
 
2.2.3 Optimal control 
In optimal control, control signals are derived to satisfy some physical constraints and at the same time to 
extremize a chosen performance criterion. Optimal control and its ramifications have found applications 
in many different disciplines, including aerospace, process control, robotics, bioengineering, economics, 
finance, and management science, and it continues to be an active research area within control theory 
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[47]. According to [47], formulation of optimal control problems requires: (i) mathematical model of the 
system to be controlled; (ii) specification of the performance index; (iii) specification of all boundary 
conditions on states, and constraints to be satisfied by states and controls; and finally (iv) a statement of 
what variables are free. 
Rather using conventional control methodologies, building control has concentrated on much advanced 
control techniques. There is an increased interest in applying optimal control for buildings lately to 
improve the comfort and to minimize the energy consumption. This twofold objective can be 
accomplished by minimizing a cost function encountered in the optimal control aspect. The Indicated 
control strategy could rely either on white box, grey box or black box models [48].  
Optimal control strategies using mathematical models for building heating control are developed in [49-
52]. Grey box models can be used for optimal control that has been illustrated by [53]. They have used 
measured data from one floor elementary school building to identify a grey box model and later the 
model has been used to test two optimal control strategies based on setpoint temperature. According to 
[53], grey box models are well adapted to perform optimization because they run quickly and are liable 
to constraints. 
 
2.3 Intelligent/Soft control 
It is a challenging task to identify a suitable mathematical model for HVAC systems as they are complex, 
non-linear and MIMO systems. Further, they are exposed to lots of disturbances, contingencies and time 
delays. Human sensation of thermal comfort is a vague and subjective matter and taking it into account is 
therefore difficult [54]. In intelligent control, no model is needed for controller configuration and is 
solely based on the human perception of the thermal comfort. Consequently, it avoids the issues 
associated with physical model development for distinct building structures. Therefore, intelligent 
controllers are promising control techniques for HVAC systems [14]. Artificial Intelligence (AI) was 
started to use in advanced building control in 1930s [55]. However, these techniques were started to use 
extensively in 1990s [2]. 
Intelligent control techniques can directly be used in HVAC control and they can also be employed to 
improve the existing traditional controllers, as well. These intelligent techniques are presented under 
three fundamental subcategories: (i) fuzzy logic (FL) based controllers; (ii) artificial neural network 
(ANN) based controllers; and (iii) neuro-fuzzy based controllers. The two last methods are adaptive 
techniques engaging iterative self tuning process during system operation. Moon et al. have described the 
three AI based thermal control techniques used for building control [56]. Performance of each control 
method is tested in a typical two story residential building in USA. They have concluded that adaptive AI 
based control methods are potentially good in maintaining indoor air temperature more comfortably than 
conventional methods. However, they have not seen significant energy saving effect over the three 
techniques. 
 
2.3.1 FL based intelligent control 
Fuzzy logic comprised of three basic processes: (i) fuzzification; (ii) fuzzy inference; and (iii) 
defuzzification. Fuzzification is the process of mapping crisp numbers in the input data matrix into fuzzy 
sets. Membership functions (such as triangular, trapezoidal, gaussian distribution, bell functions and 
sigmoidal functions) play the main role throughout this process by mapping each input value to a degree 
of membership between 0 and 1. Fuzzy inference system maps a fuzzy set into a different fuzzy set using 
fuzzy rules and logical operations. Fuzzy rules are usually denoted as IF-THEN statements and they can 
be derived by professionals or be automatically generated from the available numerical data using soft 
computing techniques and evolutionary algorithms. There are two principal types of fuzzy inference 
systems: Mamdani fuzzy inference and Sugeno fuzzy inference. Mamdani type is generally accepted and 
extensively used while Sugeno type is particularly good for dynamic non-linear systems. The aggregate 
linguistic output value produced from the former processes is the input for the defuzzification process. 
The target is to have a single crisp value as the output from the final process. Fuzzy logic can explain the 
thermal comfort linguistically and, therefore, can describe the thermal comfort levels rather than 
temperature or humidity levels which result in improved thermal comfort. There are several control 
methods originated based on fuzzy logic control and they are briefly described hereafter.  
Fuzzy P controller is a technique where the FL is used in closed loop control. Inputs to the controller are 
obtained from process measurements and the fuzzy logic system output is used to control the process. In 
fact, this is a pure FL system which is indicated as fuzzy P controller [2, 55]. 
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PID-like fuzzy controllers are categorized into two main classes. The first type is a typical FLC (Fuzzy 
Logic Controller), realized as a set of heuristic control rules [2, 55]. This type is usually referred to as PI-
like or PD-like fuzzy controllers. Second type consists of a conventional PID controller in conjunction 
with a set of fuzzy rules and fuzzy reasoning mechanism to tune the PID gains online. This system is, 
however, model dependent [2].  
Application of fuzzy logic control to buildings is effective as this technique is well-suited for non-linear 
system control [57]. They are capable of uniformly approximating any non-linear function to any degree 
of accuracy and also provide rapid operation. If the fuzzy rules are designed to be more robust, fuzzy 
controllers can improve the disturbance response by reducing the overshoot/undershoot present in the 
controlling variable [57]. Fraisse et al. applied this technique to control discontinuously occupied 
buildings [57]. Many other researchers have been working on the application of only fuzzy logic to 
control the thermal comfort of buildings [58-62].  
The use of fuzzy-PID, fuzzy-PD and adaptive fuzzy-PD for controlling thermal-visual comfort and 
indoor air quality is described in [63]. One of their main aims was to reduce the energy consumption and 
lowest values are obtained with the adaptive fuzzy-PD controller. Moreover, [64] presents the 
development of a PID-Fuzzy controller for indoor temperature control consent to energy resources 
management in buildings. 
 
2.3.2 ANN based intelligent control 
ANNs are inspired by the human brain, nervous system and its learning process. They consist of a set of 
interconnected neurons in different layers (input, hidden and output layers) of the network. Output of the 
network is computed using the inputs, network weights and transfer functions. ANN models have 
adaptability via a self tuning process and they are increasingly used in advanced thermal control of 
buildings. Amongst diverse AI methods, ANN method has some advantages over the others: (i) ANNs 
handle a large number of input variables (fuzzy and neuro-fuzzy methods can use only a limited number 
of inputs as the increased number of membership functions and fuzzy inference rules make the system 
more complex to solve); (ii) ANN can handle a large number of input data [65]. With these benefits, 
application of ANN for predicting the energy consumption of building services claimed to be more 
reliable. An overview of different neural network architectures in building's energy prediction is 
presented by [66] with appropriate examples, for a detailed understanding of the concept. 
ANN based controllers are very useful in optimizing the energy demand of buildings, especially having 
high thermal masses [67]. There are vast number of applications covering the neural network control of 
buildings such as: [65, 67-70]. Moreover, as building HVAC systems are dynamic and non-linear, it is 
also very usual to use dynamic neural network based controllers. A dynamic neural network based on the 
idea of a non-linear autoregressive with external input (NARX) to model and control a HVAC system is 
used in [71]. 
 
2.3.3 Neuro-Fuzzy based intelligent control 
Fuzzy logic has a challenge in producing optimal fuzzy rules and determining membership functions for 
better control. In order to overcome this problem and to develop an optimum rule base, a new method 
coupling both FL and ANN has introduced. Here, the neural network technology is used in fuzzy 
technology and one such neuro-fuzzy approach is the adaptive neuro fuzzy inference system (ANFIS).  
Marvuglia et al. present a demonstration of a combined neuro-fuzzy model for indoor temperature 
regulation [72]. An autoregressive neural network with external inputs has been used to produce indoor 
temperature forecasts using the outside temperature, relative humidity, wind speed and past forecasts as 
inputs. Considerable work has been done in the field of building control using ANFIS [73]. 
 
2.4 Hybrid control 
Hybrid controllers are formulated by the fusion of soft control techniques (FL and ANN) and classical or 
advanced control techniques [22]. Some examples of this control strategy are discussed in the previous 
sections such as fuzzy-PID control, adaptive neuro control and neuro-fuzzy control. Here, the soft control 
techniques are used at higher levels and the other control technique is used at lower levels of the control 
structure [22]. Hybrid controllers are beneficial as the combination can solve problems that may not be 
solved by the individual controller. However, the design of the soft control part obliges user experience 
and an immense quantity of data for training, whereas the classical or advanced controller is laborious to 
tune (especially for HVAC systems), which are some constraints of the controller. 
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Various techniques have been used to improve the performance of PID controllers, and fuzzy-PID 
control scheme is one of them. A self tuning fuzzy PI controller for the supply air pressure control loop 
for a HVAC system has been developed in [74]. It performs better under normal operating conditions, 
and when there exists large parameter variations. Adaptive PI control is also a new technique that can be 
used to tune PI controllers in HVAC systems [75]. It has faster response, smaller overshoot, higher 
accuracy, stronger robustness and better stability. Paris et al. have presented the application of three 
heating control schemes (PID, PID-MPC and PID-FUZZY) for indoor temperature control in multi-
energy buildings [76]. They found out that the PID-MPC scheme is versatile over the others as it permits 
better management of different energy sources. Application of ANN models in thermal control of 
residential buildings with adaptive and predictive logics is presented in [77]. They take air temperature, 
humidity and PMV as control variables. These systems are observed to be more comfortable than typical 
thermostat systems, and have potential of enhancing thermal comfort of residential buildings. Besides, a 
performance analysis of the ANN based predictive and adaptive models for disturbances in and around 
residential buildings is given by [78]. 
 
3. Summary 
Variety of control methodologies as employed in the control of building temperature and energy usage 
were reviewed in the present study. At the beginning of the paper, energy crisis owing to buildings in all 
over the world is described. Next, different building control strategies, classical; advanced and intelligent 
techniques, were presented. Classical control methods are still the first choice in building control today, 
while advanced and intelligent methods are gaining increased attention. The types of control systems and 
their advantages and limitations are listed and summarized in Table 1. 
 

Table 1. Advantages and limitations of building heating control strategies 
 

Control strategy Advantages Limitations 
On/Off control Low initial cost, Simple structure, Fast response, 

Feedback type 
Accepts only binary inputs, often 
incapable of tracking the setpoint 
accurately and hence could be inefficient, 
Not versatile and effective in the long run 

PID control Feedback type, Derivative term combat with sudden 
load changes in the system 

Little measurement and process noise can 
cause large variations in the output due to 
derivative term, Energy inefficient, Tuning 
is time consuming 

MPC Increased energy savings, Cost effective, Robustness 
to disturbances, Control of multiple variables, 
Steady state response improvement, Future 
disturbance prediction, Prediction of future control 
actions, Better transient response, Handle slow 
moving processes with time delays 

Need to identify a suitable model of the 
system, Installation could be expensive 

Adaptive control Increased energy savings, Good stability, Parameters 
can be changed quickly in response to changes in 
process dynamics, Easy to apply, React fast 

Need to identify a suitable model of the 
system, The design required for 
implementation is enormous 

Optimal control Increased energy savings, Rapid response, Multi-
variable control 

Need to identify a suitable model of the 
system 

Fuzzy control Non-linear control method and can be applied to 
HVAC systems effectively, High accuracy, Rapid 
operation 

Can use only a limited number of input 
variables, Development of optimal number 
of fuzzy rules and determination of the 
membership function parameters are not 
straightforward 

ANN control Handle large number of input variables and data, 
Reliable predictions   

Require large number of data for quality 
predictions 

Neuro-Fuzzy 
control 

Combination can develop optimal fuzzy rules and 
determine membership function parameters 

Can use only a limited number of input 
variables 

Hybrid control Combination of soft control and classical/advanced 
control can solve problems that may not be solved 
by an individual controller 

Soft control requires large quantity of data 
for training, It is difficult to tune the 
classical/advanced controller 
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As a whole, the use of classical controllers is because of their low initial cost and simplicity of 
implementation. However, they admit high maintenance cost and higher energy consumption. Further, 
they cannot be used in MIMO systems efficiently. Advanced control methodologies could be an 
alternative approach in building control. These techniques require a good quality dynamic model of the 
building and they exhibit non-linear characteristics. As HVAC systems are non-linear and time delayed 
processes, advanced control methods can handle them more smoothly than conventional methods. In 
intelligent control, no mathematical model is needed and it is solely based on the human perception of 
the thermal comfort. Hence, it can provide improved thermal comfort to the occupants. Further, these 
controllers can be used to upgrade the existing traditional controllers. 
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