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Abstract

The paper is considering the following question: Using principal component regression (PCR) or par-
tial least squares regression (PLSR), how much data can be removed from X while retaining the original
ability to predict Y? Two model reduction methods using similarity transformations are discussed, one
giving projections of original loadings onto the column space of the �tted response matrix Ŷ (essentially
the orthogonal signal correction (OSC) methods), and one giving projections of original scores onto the
column space of the coe¢ cient matrix B̂ (essentially the net analyte signal (NAS) methods). The loading
projection method gives model residuals that are orthogonal to Y and Ŷ, which is valuable in certain
applications. The score projection method, on the other hand, gives model residuals that are orthogonal
to B̂, which is essential in other applications. It is shown that the reduced matrix XS

Y from the score
projection method is a subset of the reduced matrix XL

Y from the loading projection method. It therefore
has the smallest Frobenius norm, and thus the smallest total column variance, assuming centered data.

KEYWORDS: PCR/PLSR model reduction; similarity transformations; OPLS, NAS; minimum Y-
relevant part; Frobenius norm

1 Introduction

Principal component regression and partial least squares regression (PCR and PLSR) are well known methods
for solution of ill-posed multivariate regression problems. Both methods make use of factorizations of the
regressor and response data matrices into X =

PA
i=1 tip

T
i + E = X̂+E and Y =

PA
i=1 tiq

T
i + F = Ŷ + F,

where the number of components A with score vectors ti and loading vectors pi and qi is determined through
either cross-validation or test set validation, and where E and F are unmodeled residuals. The number of
components in such latent variables (LV) models are often higher than strictly necessary, and methods for
model reduction are therefore of interest. One reason for this is that interpretations of score and loading plots
are easier with fewer components, as discussed in references given below, and in an industrial data example
in Subsection 4. The present paper will, however, primarily focus on a di¤erent aspect, as illustrated in Fig.
1:

� How much data can be removed from X, without loss of the original ability to predict Y ?

� In other words, what is the truly smallest possible Y-relevant part XY of X ?

As a measure of the size of XY we may use the Frobenius norm, de�ned in Section 3 below. This will
also be a measure of the total column variance of XY, assuming centered data.
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Figure 1. Illustration of data matrices Y and X, with Y-relevant part XY.

One method for model reduction is to identify and remove the Y-orthogonal part of X, which is the
aim of the preprocessing orthogonal signal correction (OSC) methods [1,2], e.g. the OPLS algorithm [3].
The Y-orthogonal part of X can also be found by a post-processing similarity transformation of the original
PCA/PCR or PLS factorization [4]. The starting point in reference [4] was the non-orthogonalized PLS
factorization [5], where in the single response case and as illustrated in Fig. 2, all score vectors except the
�rst one are orthogonal to the �tted response vector ŷ. Hence, the similarity transformation only has to
split t1 into one component tST1 in the direction of ŷ and one component orthogonal to ŷ, while the score
vectors in T2:A (columns 2 to A of T) should be left as they are. It was also shown in Reference [4] that
the results of this within a second similarity transformation are identical with the results from a slightly
modi�ed version of the OPLS algorithm (OPLS with non-orthogonalized PLS).

ŷ
tST
1

T2:A

t1

Figure 2. Score vectors in relation to ŷ for non-orthogonalized PLS factorization of X. Here, T2:A stands
for columns 2 to A of the non-orthogonalized score matrix T.

For the orthogonalized PLS factorization [5], the situation is di¤erent. As illustrated in Fig. 3, all the
orthogonal score vectors must here be split into components in the direction of and orthogonal to ŷ, but
that can also be done with a similarity transformation (see Section 2).

t1

ŷ

T?;2:A

Figure 3. Score vectors in relation to ŷ for orthogonalized PLS factorization of X. Here, T?;2:A stands
for columns 2 to A of the orthogonalized score matrix T?.

As shown in Section 2 the post-processing similarity transformation method illustrated in Figures 2 and
3 can be extended to cover also multi-response cases, with a response matrix Y and a �tted matrix Ŷ. The
common e¤ect of all these similarity transformations is that the original loadings in the space spanned by
the score vectors are projected onto the column space of Ŷ. We will therefore refer to these methods as
loading projection methods (although an alternative reference could have been score vector projections).
An alternative reduction method is obviously to project the original scores onto the column space of

the coe¢ cient matrix B̂, and by doing so we can identify and remove B̂-orthogonal parts of XT . Such a
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projection was suggested already in Reference [6], and it has been used in de�nitions of net analytic signal
(NAS) [7,8,9]. An example related to this is the 2PLS algorithm presented in Reference [10] and intended
for process monitoring applications, where the projection subplane includes b̂, and a more general treatment
is given in Reference [11]. As illustrated in Fig. 4, all loading vectors must here be split into components
in the direction of and orthogonal to B̂, which as shown in Section 2 can also be done with a similarity
transformation. We will refer to this type of reduction methods as score projection methods (although an
alternative reference could here have been loading vector projections).

p1

P2:A

B̂

Figure 4. Loading vectors in relation to B̂ for a general LV factorization of X. Here, P2:A stands for
columns 2 to A of the loading matrix P.

The fact that model reduction can be obtained through either loading or score projections onto reduced
subspaces (removing Y- and Ŷ-orthogonal parts from X or B̂-orthogonal parts from XT ), raises interesting
questions:

� Will the two approaches give identical results? As shown in Section 2, the answer is no.

� Which method will give the smallest Y-relevant part of X, in some reasonable sense? As shown in
Section 3, XS

Y from the score projection method is a subset of X
L
Y from the loading projection method,

and it therefore has the smallest Frobenius norm, and thus the smallest total row and column variance.
In that respect it is a better method for this purpose than use of OSC methods.

� Does the reduction result in a standalone reduced LV model? As shown in Section 3, the answer is yes
for the score projection method, and no for the loading projection method.

2 Model reduction by similarity transformations

2.1 Latent variables model

Let us in the following use the non-orthogonalized PLSR factorization as an example. Results for PCR
follow in corresponding and straightforward ways, while results for orthogonalized PLSR are summarized in
remarks below. As a starting point we use the LV model

Y = TQT + F (1)

X = TWT +E; (2)

where we assumem independent responses and A � m components, and where F and E are unmodeled resid-
uals. We thus have Ŷ = TQT , whereQT is found from the least squares (LS) solutionQT =

�
TTT

��1
TTY.

The loading weights matrixW is orthonormal, and from the LS solution T = XW
�
WTW

��1
= XW thus

follows Ŷ = XWQT , i.e. the regression coe¢ cients

B̂ =WQT =W
�
WTXTXW

��1
WTXTY: (3)

Here,W is found by use of the NIPALS PLSR algorithm [5].

Remark 1 It is straightforward to show that Eq. (3) is valid also if W is not orthonormal, i.e. for all LS
regressions of Y on T = XW for any W:
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For what follows it is important to note that EW = 0, and thus also EB̂ = EWQT = 0, while on
the other hand TTE 6= 0 (see Appendix A for proofs of these and some other orthogonality properties).
For simplicity of presentation we will assume that Y has full rank, otherwise it should be replaced by an
appropriate number of principal components. With m independent responses, we will also need at least
A = m components in order to obtain good predictions of all responses.

2.2 Loading projection transformation

Introducing an invertible transformation matrix ML the LV model (1,2) gives

Y = TMLM
�1
L QT + F = ~TL ~Q

T
L + F (4)

X = TMLM
�1
L WT +E = ~TL ~W

T
L +E: (5)

Under the given assumptions we have A � m components, and it is then straightforward to show that (using
the notation Q =

�
Q1:m Qm+1:A

�
etc.)

ML =

"
QT
1:m �

�
ŶTT1:m

��1
ŶTTm+1:A

QT
m+1:A I

#
(6)

gives
~TL;1:m = TQ

T = Ŷ; (7)

while
~TL;m+1:A = �T1:m

�
ŶTT1:m

��1
ŶTTm+1:A +Tm+1:A (8)

is orthogonal to Ŷ.
From Ŷ = ~TL ~Q

T
L and ~TL;1:m = Ŷ according to Eqs. (4) and (7) follows ~QL=

�
I 0

�
, and from Eq.

(5) and the fact that ~TTL;1:m~TL;m+1:A = Ŷ
T ~TL;m+1:A = 0 follows the LS solution

~WT
L =

�
~TTL ~TL

��1
~TTLTW

T =

264
�
ŶT Ŷ

��1
ŶTTWT�

~TTL;m+1:A
~TL;m+1:A

��1
~TTL;m+1:ATW

T

375 : (9)

Note that we here cannot replace TWT with X, for the reason that T and thus ~TL = TML are not
orthogonal to the residual E. The results for ~QL and ~WL may with some e¤ort also be obtained from
~QT
L =M

�1
L QT and ~WT

L =M
�1
L WT .

In summary, the structured information in X is split into two parts resulting in

X = Ŷ
�
ŶT Ŷ

��1
ŶTTWT + ~TL;m+1:A ~W

T
L;m+1:A +E; (10)

where ~TL;m+1:A is orthogonal to Ŷ (and ~WT
L;m+1:A is orthogonal to B̂). Note that the second block

column in ML may be multiplied from the right by any invertible matrix, resulting in di¤erent similarity

transformations of ~TL;m+1:A ~WT
L;m+1:A, but not a¤ecting Ŷ

�
ŶT Ŷ

��1
ŶTTWT .

Remark 2 For orthogonalized PLSR [5] using the factorization X = T?P
T + E? (where E? is somewhat

di¤erent from E in Eq. (2)) the result corresponding to Eq. (10) is obtained by replacing WT with PT , or
by replacing TWTwith X (since T? is orthogonal to E?). For the single response case, the �rst y-relevant
part will then be exactly the same as with use of the OPLS algorithm [3], while the y-orthogonal parts will
be identical within a similarity transformation (di¤erent ~T? and ~P, but the same product ~T?~PT , see also
related results in [4]).

Remark 3 For orthogonalized PLSR the loading matrix of the Y-relevant part is XT Ŷ
�
ŶT Ŷ

��1
, which

should be compared with the ordinary LS result XTY
�
YTY

��1
for spectrum pro�le estimation (see also

Reference [12] for a discussion).
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2.3 Score projection transformations

As a starting point we here use the LV model (1,2) and an invertible transformation matrix MS , giving

Y = TM�T
S MT

SQ
T + F = ~TS ~Q

T
S + F (11)

X = TM�T
S MT

SW
T +E = ~TS ~W

T
S +E: (12)

It is now straightforward to show that

MS =

"
QT
1:m �

�
B̂TW1:m

��1
B̂TWm+1:A

QT
m+1:A I

#
(13)

gives
~WS;1:m =WQT = B̂; (14)

while
~WS;m+1:A = �W1:m

�
B̂TW1:m

��1
B̂TWm+1:A +Wm+1:A (15)

is orthogonal to B̂.
From Eq. (12) and the fact that ~WT

S;1:m
~WS;m+1:A = B̂

T ~WS;m+1:A = 0 follows the LS solution

~TS = X ~WS

�
~WT
S
~WS

��1
=

�
Ŷ
�
B̂T B̂

��1
X ~WS;m+1:A

�
~WT
S;m+1:A

~WS;m+1:A

��1 �
; (16)

where we make use of the fact that EB̂ = 0. From Ŷ = ~TS ~Q
T
S thus also follows ~QS=

�
B̂T B̂ 0

�
. The

results for ~QS and ~TS may also be obtained by use of M
�1
S .

In summary, the structured information in X is now split into two parts resulting in

X = Ŷ
�
B̂T B̂

��1
B̂T + ~TS;m+1:A ~W

T
S;m+1:A +E; (17)

where ~WS;m+1:A is orthogonal to B̂ (while ~TS;m+1:A is not orthogonal to Ŷ). Also here the second block
column of MS may be multiplied from the right by any invertible matrix, with a similarity transformation
of ~TS;m+1:A ~WT

S;m+1:A as result.

Remark 4 For orthogonalized PLSR using the LV model Y = T?Q
T
? + F and X = T?P

T + E? (where
E? 6= E ), a factorization corresponding to Eq. (17) cannot be obtained. The reason for this is that
the columns of B̂ are found in the column space of W and not of P. This is an argument for using the
factorization X = T?P

TWWT+E, where T?PTW is equal to T in Eq. (2), as also argued for in Reference
[4]. Also using X = T?P

T + E?, however, we can construct the �rst Y-relevant part of Eq. (17) as soon
as B̂ is determined. Note here that B̂ is the same as for non-orthogonalized PLSR.

Remark 5 The Y-relevant part of Eq. (17) applied to a new sample, i.e. xSnew = B̂
�
B̂T B̂

��1
B̂Txnew , is

a multiresponse generalization of NAS according to the de�nition "The NAS vector is the part of the mixture
spectrum that is useful for prediction" [8].

3 Comparison of the two model reduction methods

3.1 General comparison

As shown in subsections below, the basic di¤erence between the methods discussed above is that the �rst

Y-relevant part on the right hand side of Eq. (17), XS
Y = Ŷ

�
B̂T B̂

��1
B̂T , is a subset of the �rst Y-relevant

part on the right hand side of Eq. (10), XL
Y = Ŷ

�
ŶT Ŷ

��1
ŶTTWT (see Theorem 1 with proof below).

The score projection method will thus remove all Y-orthogonal information from the modeled part of X,
just as the loading projection method will do (this is the main objective of the OSC/OPLS methods). But
in addition it will remove some other information that is not necessary for prediction of Y.
In some more detail the following general di¤erences should also be noted:
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� The loading projection method isolates all information related to Y in the �rst part XL
Y, leaving

Y-orthogonal information only in the residual second part. This may certainly be bene�cial in some
applications, while the drawback in other applications may be that the loading matrices in the two
parts are not orthogonal.

� The score projection method isolates as little information as possible in the Y-relevant part XS
Y,

leaving not only Y-orthogonal information in the residual second part. In this case, however, the
loading matrices in the two parts are orthogonal, and this is a useful property in some applications
(see process monitoring example in Section 5 below).

� The loading projection residuals may be used for analysis of Y-orthogonal structured information,
while the score projection residuals may be used for analysis of B̂-orthogonal structured information.

� An additional di¤erence is that the score projection method results in a standalone reduced model,
which is not the case for the loading projection method (see discussion below).

A thorough application oriented comparison of the two methods is beyond the aim of the present theo-
retical paper, and many applications related to chemical, biological, genetic etc. data are presumably not
yet developed. However, a single process monitoring example in Section 4 below will illustrate the usefulness
of the score projection method.

3.2 Relation between the two Y-relevant parts

We focus here on the �rst Y-relevant parts on the right hand sides of Eqs. (10) and (17),

XL
Y = Ŷ

�
ŶT Ŷ

��1
ŶTTWT and XS

Y = Ŷ
�
B̂T B̂

��1
B̂T . The relation between these parts are given by

the following theorem and illustrated in Fig. 5, and as a result Fig. 1 may be altered into Fig. 6:

Theorem 1 Using Ŷ as common score matrix for XS
Y and XL

Y, the loading matrix of X
S
Y is obtained by

projection of the loading vectors of XL
Y onto the column space of B̂. For the special case of A = m, i.e. for

as many original components as the number of responses, the two loading matrices are equal.

Proof. Projection of the column vectors in the loading matrixWTT Ŷ
�
ŶT Ŷ

��1
of XL

Y (using Ŷ as score

matrix) onto the column space of B̂, results in B̂
�
B̂T B̂

��1
B̂TWTT Ŷ

�
ŶT Ŷ

��1
= B̂

�
B̂T B̂

��1
QWTWTTTQT

�
QTTTQT

��1
= B̂

�
B̂T B̂

��1
, where the relations Ŷ = TQ

T
and B̂ =WQ

T

from Eqs. (1) and (3) and the fact that WTW = I come to use. The fact that the projection results

in the loading matrix of XS
Y (again using Ŷ as score matrix), shows that XL

Y = XS
Y + ŶZ

T
, where

Z is orthogonal to B̂. For the special case of A = m the matrix Q is invertible, such that XL
Y =

TQT
�
QTTTQT

��1
QTTTWT = TWT , while XS

Y = TQT
�
QWTWQT

��1
QWT = TWT , which

means that Z = 0 and XL
Y = X

S
Y.

B̂

Z WTT Ŷ
³
ŶT Ŷ

´¡1

B̂
³
B̂T B̂

´¡1

Figure 5. Relation between loading vectors of XL
Y and XS

Y (using Ŷ as score matrix).
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X

XL
Y XS

Y
YŶ

Figure 6. Modi�ed illustration of data matrices Y and X, with Y-relevant parts XL
Y and XS

Y.

3.3 Frobenius norms

The Frobenius norm of a matrix X 2 RN�p is de�ned as [13]

kXkF =
r
trace

h
XXT

i
=

vuut NX
i=1

pX
j=1

x2ij ; (18)

i.e. as the square root of N � 1 times the total column variance of X, assuming centered data. For the score
projection factorization (17) follows the Frobenius norm

XS
Y


F =

vuuttr "Ŷ �B̂T B̂��1 B̂T B̂�B̂TB̂��1 ŶT
#
=

s
tr

�
Ŷ
�
B̂T B̂

��1
ŶT

�
: (19)

For the loading projection factorization (10), on the other hand, Theorem 1 with proof results in

XL
Y


F =

s
tr

�
Ŷ

��
B̂T B̂

��1
B̂T + ZT

��
B̂
�
B̂T B̂

��1
+ Z

�
ŶT

�
(20)

=

s
tr

�
Ŷ

��
B̂T B̂

��1
+ ZTZ

�
ŶT

�
=

s
tr

�
Ŷ
�
B̂T B̂

��1
ŶT

�
+ tr

h
ŶZTZŶ

T
i
:

Since trace
h
ŶZTZŶ

T
i
is positive, this shows thatXS

Y


F �

XL
Y


F : (21)

Equality is obtained for A = m, where Z = 0.

3.4 Reduced models and prediction properties

The score projection factorization (17) forms the basis for a reduced model

Y = TSQ
T
S + F (22)

X = TSW
T
S +ES ; (23)

where the loading matrix WS = B̂
�
B̂T B̂

�� 1
2

is orthonormal (just as W in Eq. (2)), and where QS =�
B̂T B̂

� 1
2

and TS = Ŷ
�
B̂T B̂

�� 1
2

= XWS (just as the score matrix in Eq. (2) is T = XW). The reduced

model (22,23) thus has the same score-loading correspondence properties as the original model (1,2) [14],
which have been found useful in process monitoring methods [11,15,16], and it results in the same PLSR pre-
dictions (or PCR predictions, if a PCRmodel is used as a starting point). The regression coe¢ cients B̂may be
found from the formula (3), usingWS instead ofW, and a new sample will thus give the predictions ŷTnew =
xTnewW

�
WTXTXW

��1
WTXTY = xTnewWS

�
WT

SX
TXWS

��1
WT

SX
TY. If all of X except for XS

Y =
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TSW
T
S is discarded, the model (22,23) is still valid (with zero residual), although a new PLSR computation

usingXS
Y as input will result in a new loading weights matrix ~WS . The coe¢ cients B̂ and thus the predictions

will still be the same, however, now computed as ŷTnew= x
T
new

~WS

�
~WT
S

�
XS
Y

�T
XS
Y
~WS

��1
~WT
S

�
XS
Y

�T
Y.

In these respects the score projection method results in a standalone reduced model.
The loading projection factorization (10), on the other hand, will not form the basis for a standalone

reduced model. This is re�ected in the fact that a new sample xTnew must be pretreated by removal of the
Y-orthogonal part according to Eq. (10), before the reduced model is used for prediction [3,4]. In order to
do that we must make use of ~WT

L;m+1:A in the Y-orthogonal part of X.

4 Industrial and laboratory data examples

4.1 Data sets

Three multiresponse data sets are used as examples, with all data centered and standardized:

� The Wentzell group at Dalhousie University has provided a data set under the name gasoil
(http://www.dal.ca/~pdwentze/download.htm). The X data are UV spectra over 572 channels, and
the number of response variables is four. The �rst 40 samples are here used for modeling, and samples
71-110 for validation.

� A data set originating from a mineral processing plant is published in Reference [17] (the cleaner data,
originally published in Reference [18]). The problem considered here is to predict two given responses
y4 and y7 from twelve known process variables. The �rst 40 samples are here used for modeling, and
samples 181-220 for validation.

� The Cargill company and Eigenvector Research Inc. have provided a data set labeled corn
(http://software.eigenvector.com/Data/Corn/index.html). From these data 80 samples of corn mea-
sured on a NIR spectrometer labeled m5 are used. The wavelength range is 1100-2498 nm at 2 nm
intervals (700 channels). The moisture (y1), oil (y2), protein (y3) and starch (y4) values for each of
the samples are also included. The �rst 40 samples are here used for modeling, and samples 41-80 for
validation.

4.2 Comparison of multiresponse models

Table 1 summarizes root mean square error of prediction (RMSEP) and Frobenius norm results for the
loading and score projection factorizations (10) and (17). The following procedure was followed for each of
the data sets:

� The optimal number of original PLSR components, and the corresponding RMSEP values, were �rst
determined by use of the NIPALS algorithm with the modeling data X and Y as inputs [5]. The
original number of components A and the resulting matrix of coe¢ cients B̂ were noted.

� The loading projection factorization (10) was performed by determination of the transformation matrix
ML . The Y-relevant �rst part of X, XL

Y = Ŷ
�
ŶT Ŷ

��1
ŶTTWT , was then together with Y used

in a new PLSR computation with as many components as number of Y variables, and the resulting
coe¢ cient matrix B̂L was noted. The validation data Xval was pretreated according to Eq. (10), i.e.
Xred
val = Xval � ~TvalL;m+1:A

~PTL;1+m:A = Xval �XvalWML,2 ~P
T
L;1+m:A, where ML,2 is the second column

of ML . Finally, the RMSEP values were determined by use of the prediction error Yval �Xred
val B̂L .

� The score projection factorization (17) was performed by determination of the transformation matrix
MS . The Y-relevant �rst part of X, XS

Y = Ŷ
�
B̂T B̂

��1
B̂T , was then together with Y used in a new

PLSR computation with as many components as number of Y variables, and the resulting coe¢ cient
matrix B̂S was noted. Finally, the RMSEP value were determined by use of the prediction error
Yval �XvalB̂S .
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� Finally, the Frobenius norms in Table 1 were determined.

Table 1: Various Frobenius norms for three data sets, based on 40 modeling samples and non-orthogonalized
multiresponse PLSR (PLS2). RMSEP values were obtained by use of 40 test set samples. For each data set,
the RMSEP values determined as described in the text for the original model and the two reduced models
were identical.

Gasoil data Cleaner data Corn data
Number of variables 572 12 700
Number of PLSR components for original model 6 6 15
Number of responses 4 2 4
Number of PLSR components for reduced models 4 2 4
RMSEP for response 1 0.1331 0.2030 0.3561
RMSEP for response 2 0.1643 0.3490 0.9004
RMSEP for response 3 0.1985 0.4332
RMSEP for response 4 0.3160 0.4783
kXkF 145.6108 18.5925 165.2266XL

Y


F 121.0159 12.5143 144.0545XS

Y


F 64.6440 10.2373 2.9796�B̂T B̂��1 B̂

F
486.0401 1.6603 0.6325Ŷ

F
12.3876 8.7445 12.3835

Note that
XS

Y


F <

XL
Y


F for all data sets. Also note the very similar

Ŷ
F
and large di¤erence inXS

Y


F for the gasoil and corn data. This is due to the fact that the numerical values in B̂gasoil generally are

much smaller (
q
tr(B̂TgasoilB̂gasoil)

�1 = 486) than the values in B̂corn (
q
tr(B̂TcornB̂corn)�1 = 0:63), although

the column mean values are very similar.
When the residual E was added to the reduced matrices XL

Y and XS
Y, i.e. when the second terms only

in Eqs. (10) and (17) were removed, the RMSEP values were not the same as for the original model, but
they were very similar. The reason is that the in�uences from the unstructured noise in E are di¤erent after
removal of the second terms.

4.3 Process monitoring involving residual analysis

As shown in Section 3 above the score projection method gives the Y-relevant part of X with the smallest
Frobenius norm. From this also follows that it gives the largest residual after removal of the Y-relevant part.
These facts may potentially be utilized in many di¤erent application areas, and as an example we here use
process monitoring.
Model reduction by use of the score projection method has been found useful for monitoring of processes

with two response variables [16,17]. In such cases the natural choice is to project the scores onto the
plane spanned by the two vectors of regression coe¢ cients, b̂1 and b̂2. With one response variable only,
the projection plane must in addition to b̂ be spanned by some other appropriate vector v in the space
spanned byW (PLSR) or P (PCR). A natural choice of v is then the loading vector p1 of the �rst principal
component of the residual of X�XS

Y (for added residual information and interpretation, we may also use
score plots involving other residual components). The scores will then be plotted in the plane de�ned by

the orthonormal loading matrix Pplot = [ b̂
�
b̂T b̂

��0:5
p1 ], with a corresponding score matrix Tplot =

[ ŷ
�
b̂T b̂

��0:5 �
X�XS

Y

�
p1 ]. Assuming centered modeling data with N samples, the score covariance

9



matrix is given by S = 1
N�1T

T
plotTplot , and from this a con�dence ellipse for the scores based on the upper

control limit (UCL) for the Hotelling�s T 2 statistics is computed from [21]

T 2UCL =
2
�
N2 � 1

�
N (N � 2) F�(2; N � 1); (24)

where T 2 for a given sample is given by T 2i =
�
ŷi

�
b̂T b̂

��0:5
pi;1

�
S�1

�
ŷi

�
b̂T b̂

��0:5
pi;1

�T
. Since

Pplot is orthonormal, there is total score-loading correspondence [14], and the contributions to a given score
from the di¤erent variables can therefore be shown by contribution vectors in the score-loading biplot, as

illustrated in Figure 7 below (where the �rst score vector ŷ
�
b̂T b̂

��0:5
is scaled such that ŷ can be red

directly from the axis). In order to indicate the direction of variable in�uences, the loadings are here plotted
at equal distances from the origin.
As an example we use the Cleaner data presented above with y4 as the single response variable, but for

clarity of presentation we make use of the dominating X (in the projection used) variables number 2, 3, 4,
5, 8 and 10 only. As earlier the �rst 40 samples were used for PLSR modeling, now with A = 3 components,
while samples 181-220 were used for testing, now with RMSEP = 0:1757. Figure 7 shows validation score
number 191 approaching the UCL in a direction mainly orthogonal to the ŷ axis. This is caused by positive
values of variables 2 and 4 (attracting the score), and negative values of variables 3 and 5. If the score trace
continues outside the con�dence ellipse in that direction, the ŷ value will still be close to target, but some
process situation not represented in the modeling data would anyhow be indicated. Note that the sum of all
six contribution vectors corresponds exactly to the score position, and that variables 6 and 8 has very little
to say.
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Figure 7. Score-loading-contribution plot with contribution vectors for sample 191, showing the score
trace mainly moving in a direction orthogonal to the ŷ axis (the dotted line shows score history). The
�-markings with variable names are normalized loadings, showing the direction of variable in�uence on the
scores.

Later, Fig. 8 shows score 209 falling slightly outside the con�dence ellipse mainly in the direction of ŷ,
indicating a potentially more serious failure situation. The contribution vectors show that this is caused by
positive values of variables 2, 3 and 5, and a negative value of variable 4, while variables 6 and 8 also now
has very little to say..
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Figure 8. Score-loading-contribution plot for a sample 224, showing the score trace (dotted line) mainly
moving in a direction of ŷ.

Note that the score projection application above is based on the fact that XS
Y has b̂

�
b̂T b̂

��0:5
as loading

vector, and that b̂ is orthogonal to the loading vectors of the residual. From this follows an orthonormal
loading matrix Pplot , and thus exact score-loading correspondence [14]. The alternative use of the loading
projection method would give a non-orthogonal matrix PLplot =

�
w1 p1

�
, and thus only approximate

score-loading correspondence, depending on to which extent b̂ is dominated by w1.

5 Conclusion

In order to �nd the smallest part XS
Y of X that can be used for explanation of Y, one should remove all

information in XT orthogonal to B̂ using score projections (essentially as in the NAS methods). The result
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is a reduced model (22,23) with the same basic properties as the original non-orthogonalized PLSR model
(1,2), but with as many components as number of responses only.
The alternative use of loading projections (essentially as in the OSC/OPLS methods), where the goal is

to remove information in X orthogonal to Y and Ŷ (although also B̂-orthogonal parts of XT may then be
removed), isolates a part XL

Y of X. A comparison the two projection methods shows the following:

� The Y-relevant part XS
Y of the score projection factorization of X may also be obtained by a further

projection of the corresponding partXL
Y of the loading projection factorization. It thus has the smallest

Frobenius norm and the smallest total column variance, assuming centered data. For the special case
of as many original components as number of responses, the two norms are equal.

� The score projection method removes all Y-orthogonal information from the modeled part of X, just
as the loading projection method does (this is the main objective of the OSC/OPLS methods). But
in addition it removes some other information that is not necessary for prediction of Y.

� The reduced score projection model is all that is needed for �nding B̂ and thus for prediction of a new
response ynew from new regressor data xnew , and it may therefore be used as a standalone model.

� The score-loading correspondence property of the reduced score projection model makes it well suited
for process monitoring applications, as shown in an example as well as in references.

The theoretical results including Theorem 1 on Frobenius norms, are substantiated by use of three
industrial and laboratory data sets. The di¤erences between

XL
Y


F and

XS
Y


F are clear, and in some

cases quite large. Theorem 1 is so far a theoretical result only, and ideas about chemical, biological, genetic
etc. data meaning and practical applications in addition to process monitoring remain to be developed.

A Orthogonality properties of LV factorizations

We are considering here some orthogonality properties of the PLS factorizations X = T?P
T +E? (orthog-

onalized) and X = TWT + E (non-orthogonalized). The following well established properties are assumed
known:

� TT?T? is diagonal

� TTT is non-diagonal

� WTW = I

� T = XW.

For the sake of completeness we also include orthogonality properties of the PCR factorization.

Lemma 1 The product PTW has the bidiagonal structure

PTW =

266666664

1 pT1w2 0 � � � 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1 pTA�1wA
0 � � � � � � 0 1

377777775
: (25)

Proof: See Reference [19].
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Lemma 2 The relation between loading and loading weights vectors is

wa+1 =
wa � pa
kwa � pak

=
wa � pap
pTa pa � 1

: (26)

Proof: This follows trivially from the NIPALS algorithm [6] andWTW = I.

Lemma 3 The general vector product in PTW above is

pTawa+1 =
1� pTa pap
pTa pa � 1

= �
q
pTa pa � 1: (27)

Proof: This follows directly from Lemma 1 and Lemma 2.

Lemma 4 The factorizations X = T?W
TWWT + E (revised orthogonalized) and X = TWT + E are

identical.
Proof: From the two well known estimator expressions

B̂ =W
�
WTXTXW

��1
WTXTY (28)

and
B̂ =W

�
PTW

��1
QT
? =W

�
PTW

��1 �
TT?T?

��1
TT?Y (29)

[20], follows

W
�
WTXTXW

��1
WTXTY =W

��
PTW

�T
TT?T?P

TW
��1 �

PTW
�T
TT?Y;

i.e. T?PTW = XW = T.

Lemma 5 The di¤erence between the two residuals is

E? �E = t?;A
�
wT
A � pTA

�
: (30)

Proof: From the the revised orthogonalized factorization in Lemma 4 and Lemma 1 follows

X = T?P
TWWT +E =

�
t?;1 t?;2 � � � t?;A�1 t?;A

�

�

266666664

1 pT1w2 0 � � � 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1 pTA�1wA
0 � � � � � � 0 1

377777775

2666664
wT
1

wT
2
...

wT
A�1
wT
A

3777775+E (31)

= t?;1
�
wT
1 + p

T
1w2w

T
2

�
+ � � �+ t?;A�1

�
wT
A�1 + p

T
A�1wAw

T
A

�
+ t?;Aw

T
A +E;

and from Lemma 2, Lemma 3 and Lemma 4 thus follows

X = TPTWWT +E = t?;1p
T
1 + � � �+ t?;A�1pTA�1 + t?;AwT

A +E: (32)

Comparison with the orthogonalized factorization

X = T?P
T +E? = t?;1p

T
1 + � � �+ t?;A�1pTA�1 + t?;ApTA +E? (33)

completes the proof.

Property 1 The orthogonalized factorization has the property TT?E? = 0.
Proof: Factorization with as many components as possible, i.e A = p, results in p � A orthogonal score

vectors in a complete factorization of E?. From this follows the property trivially.
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Property 2 The non-orthogonalized factorization has the property EW = 0.

Proof: FromWTW = I and T = XW follows EW =
�
X�TWT

�
W = T�T = 0.

Property 3 The orthogonalized factorization has the property E?W = 0.
Proof: FromWTW = I, Lemma 1, Lemma 5 and Property 2 follows

E?W = (E? �E)W +EW = t?;A
�
wT
A � pTA

� �
w1 w2 � � � wA

�
= t?;A

��
0 � � � 0 1

�
�
�
0 � � � 0 1

��
= 0:

Note, however, that E?P 6= 0 (not proved here).

Property 4 The non-orthogonalized factorization has the property

TTE =WTpAt
T
?;At?;A

�
pTA �wT

A

�
: (34)

Proof: From T = XW, the orthogonality of T?, Lemma 1, Lemma 5 and Property 1 follows

TTE = WTPTT?E =W
TPTT?

�
E? � t?;A

�
wT
A � pTA

��
=WTPTT?t?;A

�
pTA �wT

A

�
= WT

�
p1 � � � pA

�
26664

0
...
0

tT?;At?;A

37775�pTA �wT
A

�
=WTpAt

T
?;At?;A

�
pTA �wT

A

�
:

Finally we include orthogonality properties of the PCR factorization X = TPCRP
T
PCR +EPCR .

Property 5 The PCR factorization has the property TTPCREPCR = 0.
Proof: Using singular value decomposition (SVD) we obtain

X =
�
U UE

� � S 0
0 SE

� �
VT

VT
E

�
= USVT +UESEV

T
E = TPCRP

T
PCR +EPCR :

Since UTUE = 0, this gives TTPCREPCR = S
TUTUESEV

T
E = 0.

Property 6 The PCR factorization has the property EPCRPPCR = 0.
Proof: Since the SVD above gives VT

EV = 0 it also gives EPCRPPCR = UESEV
T
EV = 0.
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