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Abstract

The well known NIPALS algorithm is commonly used for computation of components in

partial least squares regression (PLSR) with orthogonalized score vectors. Based on gener-

alized inverse formalism, Pell et al. [1] have recently claimed that the NIPALS results are

inconsistent with respect to model spaces for residual-based outlier detection and prediction

purposes. This theoretically important result is supported by the present paper, where it is

also shown that a simple re-interpretation of the results from the NIPALS algorithm solves

the problem. This is valid for cases with both one and several response variables (PLS1 and

PLS2). It is also shown, however, that the price to pay for this solution is that the latent

variables in the model will no longer be completely independent of the residual noise. Since the

original PLSR model with non-orthogonal score vectors does not have the same inconsistency,

a method for orthogonalization of this model is also included.
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1 Introduction

As described by Martens [2], the two original algorithms for partial least squares regression (PLSR)

were developed in parallel, in close cooperation between the two originators. Wold et al. [3]

developed a solution with orthogonal score vectors and non-orthogonal loading vectors, and for that

purpose they used the well known nonlinear iterative partial least squares (NIPALS) algorithm.

Martens (see , e.g., [4]), on the other hand, developed an algorithm resulting in non-orthogonal

score vectors and orthogonal loading vectors. In practice, the �rst of these algorithms is usually

preferred, based on more or less realistic assumptions of independent latent variables. A nice

property of the Wold solution is also that the latent variables are completely independent of the

residual noise, which is not the case for the Martens solution. In some applications, however, as for

example in correspondence analysis [5], orthogonal loading vectors are to be preferred. As shown

below, it is an easy task to go from one resulting model to the other.

Helland [6] proved formally that the two algorithms are equivalent in the sense that the score

vectors span the same space. However, based on Moore-Penrose generalized inverse formalism,

Pell et al. [1] have recently claimed that the NIPALS results are inconsistent with respect to

model spaces for residual-based outlier detection and prediction purposes. This is supported by

the present paper. The problem is that the traditional NIPALS interpretation results in one model

space for computation of the regression vector, and another model space for representation of the

reconstructed data and thus for outlier detection based on residuals. When using the alternative

algorithm of Martens, giving non-orthogonal score vectors, we do not have this problem.

As a conclusion of their �ndings, Pell et al. [1] seem to indicate that commercial programs

based on the NIPALS algorithm ought to be replaced by programs based on the bidiagonalization

(Bidiag2) algorithm of Golub and Kahan [7], which gives the same model as the Martens algorithm.

This conclusion is far too dramatic. As indicated in several papers by Ergon [5,8,9,10], a simple

re-interpretation of the NIPALS results will solve the problem. One of these papers is in fact

referred to by Pell et al.. Another possibility is to orthogonalize the score vectors from the Bidiag2
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or Martens algorithms, or some other equivalent non-orthogonalized PLSR solution.

The present paper shows that the residual inconsistency is present also when predictions are

computed without explicit use of regression coe¢ cients. It also presents the theoretical basis for

the re-interpreted NIPALS (RE-NIPALS) solution to the problem, both in single response and

multiresponse cases (PLS1 and PLS2). A simple procedure for orthogonalization of models with

non-orthogonal score vectors is also included. Finally, orthogonality properties of the di¤erent

models are investigated, and it is shown that when the residual inconsistency problem is solved,

the complete independence between latent variables and residual noise is at the same time lost.

2 A re-interpretation of the NIPALS algorithm

The traditional NIPALS algorithm

As a starting point for further discussions a short summary and simpli�cation of the well known

NIPALS PLS1 algorithm for centered X and y data follows (see, e.g., [11] for a more detailed for-

mulation, although for simplicity we here make use of the fact that de�ation of y is not necessary):

1. Let X0 = X. For a = 1; 2; � � � ; A perform steps 2 to 6 below.

2. Compute wa = XT
a�1y=



XT
a�1y



 (with length 1).
3. Compute ta = Xa�1wa.

4. Compute qa = yT ta(tTa ta)
�1

5. Compute pa = XT
a�1ta(t

T
a ta)

�1

6. Compute the residual Xa = Xa�1 � tapTa :

7. The resulting latent variables model is

y = TWqW + f (1)

X = TWP
T +EW ; (2)
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whereTW =

�
t1 t2 � � � tA

�
is orthogonal, P =

�
p1 p2 � � � pA

�
, qW =

�
q1 q2 � � � qA

�T
and EW = XA, and where the subscript W indicates the orthogonalized PLSR model of Wold

et al. [3]. The matrix W =

�
w1 w2 � � � wA

�
resulting from the algorithm is ortho-

normal.

Remark 1 In what follows we assume A < N , where N is the number of rows in X. Otherwise

important properties of the results from the algorithm will break down, for example will W no

longer be orthonormal, and PTW not bidiagonal (see Appendix A). Since Xp = 0, where p is the

number of variables in X, we must also assume A � p.

The traditional regression coe¢ cients

The traditional formula for computation of the regression coe¢ cients based on the NIPALS

results is [11]

b̂ =W(PTW)
�1
qW ; (3)

and the major claim by Pell et al. [1] is that this is not consistent with the factorization (2).

This result is supported by results developed below, where a simple solution to the problem is also

presented.

Non-orthogonalized PLSR

The orthogonalized PLSR model (1,2) may be compared with the non-orthogonalized PLSR

model of Martens [4], given by

y = TMqM + f (4)

X = TMW
T +EM ; (5)

where TM= XW and qM =
�
TTMTM

��1
TTMy. Note here that the �nal model spaces X̂W = TWP

T

and X̂M = TMW
T ; and thus the residuals EW and EM are generally di¤erent. Also note that
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the model (4,5) can be established once W is found by use of the NIPALS algorithm, i.e. no

special algorithm is needed. The regression coe¢ cient vector follows as a simple least squares (LS)

solution from the model (4,5),

b̂ =W
�
WTXTXW

��1
WTXTy: (6)

As shown in Appendix B this will give the same coe¢ cients as the traditional formula (3).

A re-interpretation of the NIPALS results (PLS1)

The re-interpretation is based on the fact that steps 5 to 6 in the NIPALS algorithm above serves

the purpose of preparing for computation of the next orthogonal score vector. When the last score

vector has been found, we may give up this orthogonality requirement, and stop after step 4 in the

algorithm. The residual may thus be computed as E = XA�1 � tAwT
A, and the decomposition of

X will then become

X = t1p
T
1 + t2p

T
2 + � � �+ tA�1pTA�1 + tAwT

A +E; (7)

where as shown in Appendix A E = EM in Eq. (5). In Appendix A it is also shown that the matrix

formulation of this RE-NIPALS factorization results in the model (where Eq. (1) is repeated for

clarity)

y = TWqW + f (8)

X = TWP
TWWT +EM : (9)

From this follows the LS solution TW = XW
�
PTW

��1
and thus

ŷ = Xb̂ = TWqW= XW
�
PTW

��1
qW : (10)
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This is consistent with the traditional regression coe¢ cients b̂ in Eq. (3). It is also trivial to

show that b̂ in Eq. (3) follows from Eq. (9) according to the Moore-Penrose generalized inverse

formalism given in [1]. The simple solution to the inconsistency problem is thus to replace the

factorization (2) in step 7 of the algorithm above with the factorization (9). Note, however, that we

by this interpretation of the NIPALS algorithm give up the orthogonality requirement regarding the

last score vector tA and the residual EM (see Section 4 for a discussion of orthogonality properties).

Special case with maximum number of components

It is of special interest to study the case with A = p components, where p < N is the

number of x-variables. Since W in this case is invertible, we �nd from Eq. (6) that b̂ =

W
�
WTXTXW

��1
WTXTy =

�
XTX

��1
XTy, i.e. the ordinary LS solution, as must be ex-

pected. This also means that all data in X is utilized, such that EM = 0. From Eq. (5)

then follows X = XWWT , and thus WWT = I. This means according to Eq. (9) that

X = TWP
TWWT + EM = TWP

T . According to Eq. (7) we must then have pp = wp, and

from the �nal residual EM = Xp = Xp�1 � tpwT
p = 0 we thus �nd Xp�1 = tpw

T
p . The NIPALS

algorithm will accordingly give pp = XT
p�1tp(t

T
p tp)

�1 = wpt
T
p tp(t

T
p tp)

�1 = wp. For A = p the

traditional NIPALS and the proposed RE-NIPALS interpretations will thus give the same result.

Alternative way of �nding predictions

When parameter values in qW ,W and P have been determined by use of the NIPALS algorithm

and modeling data X and y, new score vectors for new data Xnew with one or several objects can

be found by again using the NIPALS algorithm, but now with these parameters �xed. The score

vectors then found will according to Eq. (1) give

ŷnew = TnewqW ; (11)
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i.e. without explicit use of the regression coe¢ cients. As shown in Appendix C, however, one is

then implicitly using regression coe¢ cients according to Eq. (3), based on the factorization (9),

i.e. Tnew = XnewW
�
PTW

��1
. This result is mentioned without details in Pell et al. [1], and it

is in agreement with their inconsistency claim.

The multiresponse case (PLS2)

In the NIPALS algorithm for multiresponse data (PLS2), wa, ta and pa are found in an inner

iterative loop, together with an appropriate combination ua of the y-variables (see, e.g., [11] for

details). The regression coe¢ cients will be given by Eq. (6), with the vector y replaced by a

matrix Y =

�
y1 y2 � � � ym

�
. The inconsistency problem will be the same as for PLS1, and

a simple solution is also here a NIPALS re-interpretation as described above.

3 Conversion from one model to the other

Since the two models (4,5) and (8,9) have the same residuals they are equivalent, and it should

therefore be possible to convert one of the models into the other. A comparison of the factorizations

shows that

TM = TWP
TW; (12)

i.e. conversion from the modi�ed orthogonalized form to the non-orthogonalized form is straight-

forward, since TW , P andW are then known. Conversion the other way around is somewhat more

complicated, since P is then not known, but using for example Matlab it is easily done by the QR

factorization [12]

TM = QR = QZ�1ZR: (13)

Here Z is a diagonal scaling matrix giving ZR = PTW as an upper triangular matrix with ones

along the main diagonal, where we make use of the known bidiagonal structure of PTW [13] (see

also Appendix A). From Eqs. (12) and (13) then also follows the orthogonalized score matrix

7



TW = TM
�
PTW

��1
= QZ�1. As an alternative to the NIPALS algorithm, with re-interpretation

as shown above, we may thus start by using the algorithm of Martens [4] for non-orthogonalized

PLSR, and then perform an orthogonalization of the score matrix. We may also start by using the

Bidiag2 algorithm [7], or, e.g., the alternative algorithm of Ergon and Esbensen [14]. When the

model (8,9) is found, the original orthogonalized model (1,2) is obtained by removal ofWWT .

4 Orthogonality properties

One aim of orthogonalized PLSR is obviously to obtain orthogonal score vectors, corresponding

to independent latent variables. The same orthogonal score vectors are obtained also with the

consistent model (8,9), using TW as score matrix andWWTP as loading matrix.

Another aim of the orthogonalized PLSR model (1,2) is presumably to obtain independence

between latent variables and noise in the residuals, and this is in fact obtained since TTWEW = 0

(which follows trivially from the NIPALS algorithm). Using TW as score matrix in the consistent

model (8,9), on the other hand, we obtain TTWEM = TTW
�
EW + tA

�
pTA �wT

A

��
, where we make

use of Eq. (7). Since the score vectors are orthogonal, all rows except the last one, tTAEM , will

here be zero. The residual noise is thus independent of all latent variables except the last one.

5 Discussion

Looking at both residual inconsistency and noise independence properties following from the NI-

PALS algorithm, it appears that no ideal solution is available, assuming continued use of the

traditional regression coe¢ cients formula b̂ =W
�
PTW

��1
qW :

� When using the traditional interpretation and the model (1,2), one obtains TTWEW = 0, i.e.

complete independence between score vectors and noise in the residuals. The price to pay for

this is the residual inconsistency found by Pell et al. [1], which as shown by their example

may cause considerable errors in residual based outlier detection. It should be mentioned,
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however, that common outlier detection methods based on the score vectors will not be

a¤ected by this.

� When using a re-interpretation of the NIPALS results as presented above, the residual incon-

sistency problem is solved. The price to pay is then that tTAEM 6= 0, i.e. the independence

between latent variables and noise in the residuals will no longer be complete. The impor-

tance of this in di¤erent applications is left as an open question.

From this follows that one has to make a choice between residual inconsistency using X =

TWP
T +EW , or latent variable and residual noise covariance using X = TWP

TWWT +EM . The

best choice to make might well be application dependent.

6 Conclusion

The well known NIPALS algorithm for computation of PLSR components with orthogonalized

score vectors, is recently claimed to give mathematically inconsistent results with respect to model

spaces for residual-based outlier detection and prediction purposes. Results in the present paper

support this inconsistency result. It is also shown that the inconsistency problem is easily solved

by a simple re-interpretation of the results from the NIPALS algorithm, and this is valid for cases

with both one and several response variables (PLS1 and PLS2). The price to pay for this is that the

last latent variable will no longer be completely independent of the residual noise. A corresponding

modi�cation of commercial programs using the NIPALS algorithm should be easy to perform.

Alternative algorithms giving models with non-orthogonal score vectors do not give the same

inconsistency problem, and a procedure for orthogonalization of such models is therefore included.

The results will then be the same as after the described re-interpretation of the NIPALS results,

including the last latent variable and residual noise covariance.
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A Detailed RE-NIPALS results

Comparing the two factorizations (5) and (9), we must show that TWPTW = TM = XW. Making

use of the known bidiagonal structure of the product PTW [13], we �nd

TWP
TW =

�
t1 t2 � � � ta ta+1 � � � tA

�

�

266666666666666666666664

1 pT1w2 0 � � � 0 � � � 0

0 1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . pTawa+1
. . .

...

0
. . . 1

. . . 0

...
. . .

. . . pTA�1wA

0 0 � � � � � � � � � 0 1

377777777777777777777775
=

�
t1 t1p

T
1w2 + t2 � � � tap

T
awa+1 + ta+1 � � � tA�1p

T
A�1wA + tA

�
:(14)

In addition to the fact that step 3 in the NIPALS algorithm gives t1 = Xw1, we must thus also

show that tapTawa+1 + ta+1 = Xwa+1. Also this can be shown by use of the bidiagonal structure

of PTW, which in step 3 of the NIPALS algorithm generally gives

ta+1 = Xawa+1 =
�
X� t1pT1 � � � � � tapTa

�
wa+1 = Xwa+1 � tapTawa+1; (15)

and thus

tap
T
awa+1 + ta+1 = Xwa+1: (16)

B Two formulas for the regression coe¢ cients

We here show that the two formulas (3) and (6), b̂ =W(PTW)
�1
qW and b̂ =W

�
WTXTXW

��1
WTXTy,

give the same regression coe¢ cients. Using the LS solution of Eq. (1), qW =
�
TTWTW

��1
TTWy,
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and the relation TW = TM
�
PTW

��1
shown in Appendix A, together with TM = XW, we �nd

b̂ = W
�
PTW

��1
qW =W

�
PTW

��1 �
TTWTW

��1
TTWy

= W
�
PTW

��1 ��
WTP

��1
TTMTM

�
PTW

��1��1 �
WTP

��1
TTMy

= W
�
TTMTM

��1
TTMy =W

�
WTXTXW

��1
WTXTy: (17)

C Prediction using implicit regression coe¢ cients

Based on qW , W and P from the NIPALS algorithm applied on modeling data X and y, new

score vectors and predictions for new data Xnew with one or several objects can be found by the

following procedure:

1. Let X0 = Xnew . For a = 1; 2; � � � ; A perform steps 2 to 3 below.

2. Compute tnewa = Xa�1wa.

3. Compute the residual Xa = Xa�1 � tnewa pTa :

This gives

tnewa+1 =
�
Xnew � tnew1 pT1 � � � � � tnewa pTa

�
wa+1 = Xnewwa+1 � tnewa pTawa+1; (18)

where we again make use of the bidiagonal structure of PTW. This is the same relation as in Eq.

(16) in Appendix A above, and from the main result in Appendix A thus follows that

TnewW = TnewM (PTW)
�1
= XnewW(PTW)

�1
; (19)
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which further gives the predictions

ŷnew = TnewW qW = XnewW(PTW)
�1
qW ; (20)

and thus as with explicit use of regression coe¢ cients

b̂ =W(PTW)
�1
qW : (21)
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