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The intention of this paper is to develop an easily understood PLS prediction
algorithm, especially for the control community. The algorithm is based on an
explicit latent variables model, and is otherwise a combination of the previously
published Martens and Helland algorithms. A didactic connection to Kalman
filtering theory is provided for a methodological overview.

1. Introduction

The partial least squares regression (PLSR) algorithms of Wold and Martens
provide alternative, powerful tools for handling ill-conditioned multivariate regression
data, see e.g. Martens and Nees (1989) and Höskuldson (1996) for overviews of the
fundamental multivariate calibration concept, in which are presented the above two
slightly different versions of the PLSR method. Both algorithms assume collinear
regressor variables generated by underlying latent variables, and although they are
different with respect to the score and loading matrices involved, they give identical
predictors.

There is certainly no practical need for yet another algorithm that provide the
same predictor as the well-known algorithms of Wold and Martens. However, these
algorithms, as presented in the chemometrical literature, make no use of the dynamic
systems theory available for readers from the control community, and the main aim
of the present paper is therefore to provide a predictor derivation at first especially
for this category of readers.

This actually also results in a simplified version of the Martens prediction
algorithm making use of the so-called loading weight vectors only, which would
appear to be of general interest (see Esbensen (2000) for a discussion of loadings
and loading weights). The score vectors, which are also essential elements of
chemometrics, are easily computed once a preliminary predictor is found.

The new algorithm has a lot in common with an algorithm developed by Helland
(1988), and a similar algorithm by Di Ruscio (2000). Again, the reason behind the
present modifications is mainly didactic. The key step in the simplification is the use
of an explicit latent variables model, which facilitates an early introduction of the
Helland predictor form using only loading weight vectors. The present exposition,
we believe, constitute a novel, easy, and complete introduction to the prediction
aspect of multivariate calibration.

2. The multivariate calibration problem

Assuming a standard regression problem with a scalar response variable y and
multivariate regressor variables x, the PLS1 setting in chemometrics, the object is to



find a predictor b from empirical or experimental data, that may be used to predict
a new response yo from new observations xo according to

r	 (1)Yo = xo b	 1

The specific multivariate calibration problem arises when the number of x variables
is larger than the number of observations in the available data, which calls for
regularized solutions.

Remark 1 In typical chemometric applications the regressor variables represent more
or less noisy measurements. From a strict systems engineering point of view the notation
y 1 for the response and y2 for the regressors would then be more natural. However, here
we shall use the well-established chemometrical notation.

Martens and Næs (1989) give an abundance of didactic multivariate calibration
problems as seen from the chemometric point-of-view when dealing with what might
be called static multivariate calibration (see Ergon (1998, 1999) for discussions of
dynamic counterparts). One illustrative archetypal example of modern analytical
instrument multivariate calibration is that of prediction of protein content in whole
wheat kernels based on near infrared (NIR) spectroscopy (Norris, 1993). Here, the
protein content is the response variable y, while the instrumental NIR reflectance at
a large number of frequencies serve as the x variables. This example actually represents
a modern breakthrough for practical chemometric multivariate calibration, allowing
rapid NIR to replace the traditional slow, wet-chemical determinations. The funda-
mental problem in such cases is that the number of x variables may be much larger
than the actual number of observations in the calibration (training) data, which gives
rise to well-known statistical degrees-of-freedom problems. Also, the X data matrix
typically is made up of significantly collinear variables, each of which is usually also
fraught with a non-trivial measurement error. This case clearly will spell disaster for
e.g. a multivariate linear regression (MLR) approach.

3. Theory

Least squares estimation

Assuming experimental data from N observations, y= [ Y1 y2 ... yN] T and
X = [x 1 x2 ... xN ] T , and independent observation errors, we find the least squares
(LS) regression solution (e.g. Johnson and Wichern, 1992)

bis = (X TX) —1 XTy
	

(2)

With a large number p of x variables, this solution will be very noise and collinearity
sensitive, and in practical applications the LS method will give satisfactory results
only when p is well below N. A general and detailed analysis of this problem for
limited values of N is beyond the scope of the present paper (see e.g. Belsley (1991),
but the issue is also well dealt with in the chemometrical literature).

Latent variables model

When, as indeed in very many practical multivariate calibration situations, the
large number of x variables are significantly to highly collinear, the regressor
information may be compressed into a much smaller number of latent variables



T = [ii 12 ... Tar' (e.g. Burnham et al. (1999), Martens and Næs (1989) and Høskuld-
son (1996)). The model underlying such data compression is

Tk +1 = ek

Yk = C l tk+ V1,k
	 (3)

xk= Wrk+VZk

where ek , v 1,k and v2,1 are white noise sequences with covariances Re , r11 and R22,
and where we assume centered data. This is a special case of a more general dynamic
model with Tk+ 1 = ATk + ek , i.e. we use here A = 0. We will also assume that W is
orthonormal, i.e. that W TW = I.

With N observations and T = [T 1 T2 ... TN] , v1 = [v1 1 v12 ... v 1N] T and
V2 = [v21 v22 . . . v2N] T , the latent variables model (3) gives the output equations

y = TCi + v 1	 (4)

X = TWT +V2 	 (5)

Remark 2 If the regressor data are actually generated from an underlying state vector
zk as xk = C2zk + v2,1, the output equation (5) will be replaced by X = ZCZ + V2 . In the
special noise free case with V2 = 0, and with 1\ oo, we may then find T and W T by a
similarity transformation based on factorization of X by a number of alternative
methods, e.g. PCA and PLSR as described below. In practice we will always observe
some noise and have a limited N and factorization of X then gives only estimates T
and WT.

Regularized solutions

The LS solution of (5) is

T = XW	 (6)

and from equations (4) and (6) we thus find the LS predictor related to the latent
variables

Ci (TTT) -1TTy = (WTXTXW) -1WTXTy

which results in fitted experimental responses according to equation (4)

= TCi = XWCi = XW(WTXTXW) - 1WTXTy

and predictions of new responses

y0 = io Ci = x1 WCi = xo W(W

The regularized latent variables predictor thus becomes

bLV = W(WTXTXW) - 1WTX Ty

This predictor is also given in Helland (1988), although not directly based on an LV
model.

The problem now is to find W or more realistically good estimates W, and in this
endeavour we have in fact a number of possibilities. A simple choice is W = Ii,, which
brings us back to the LS solution (2). Other choices give the standard statistical PCR
and standard chemometrical PLSR solutions as discussed below. The interested

TXTXW) - 1WTXTy

(7)

(8)

(9)

(10)



reader might note that the theoretically optimal regularization is given by a Kalman
gain (see Appendix A for details).

Principal component regression

In PCR the weighting matrix estimate is W = WPCR = P, where P is the loading
matrix related to a principal components decomposition of X (Johnson and Wichern,
1989). We may find T = TPCR = U1S1 and P = V1 from the singular value
decomposition

X= USV T = U 1 U2 
S1 0

[	 ]	 0 S2	
'i
VZT

= U1 S 1 Vi + U2 S2 V = TPCRPT + E

The latent variables represented by the score matrix TPCR are thus based on only X
information.

In chemometrics there is a strong tradition for using the NIPALS algorithm for
this decomposition (e.g. Martens and Næs, 1989). In the expression

X = TPCRP T + E = t1 P1 + t2 P2 + ... + 1a Pa + Ea	 (12)

we then successively maximize the sample variances tits/(N— 1), 02 /(N— 1) under
the constraint that i2 is orthogonal to 1 1i 0 3 /(N— 1) under the constraints that 13
is orthogonal to t l and 12 etc.

Partial least squares regression

Some of the latent variables represented in TpcR = [i i t2 ... ia ] may be weakly
correlated with the response variable in y. This is where the PLSR solution suggests
to use both X and y information in order to find an improved version of
W = [W 1 W2 ... *a ], the so-called loading weight matrix. In the Wold and Martens
algorithms this is done by a step wise computation of w l , w 2 , ..., *a (e.g. Martens
and Næs, 1989), but a one-step procedure is also available (Di Ruscio, 2000).

The so-called Martens algorithm is based on the factorization

X — TpLs W ks + E = t 1 wi + i2 wz + ... + ta *å + Ea	 (13)

and the following modified algorithm has the same starting point.

Remark 3 The Martens algorithm uses a non-orthogonal score matrix, i.e. TP stPLS
is non-diagonal, while the alternative Wold algorithm makes use of an orthogonal score
matrix (e.g. Martens and Næs, 1989).

In the first step we try to explain y by use of only one component in equation
(13), i.e. by using

=tl wi + E1 (14)



where it follows from equation (6) that

t l = Xw l 	 (15)

We then maximize the sample covariance ii y/(N— 1) = wi Xy l (N— 1) under the
constraint that * 1 has the length /* w 1 = 1 (instead of maximizing iT ii /(N— 1) as
in PCR). We find the maximum when * 1 has the same direction as X Ty, i.e.

wl = c 1 XTY	 (16)

where c 1 = (yTXX Ty) -1/2•

Remark 4 The scaling of r' i is not absolutely necessary, i.e. we may use c,= 1
(Helland, 1988), but it is very often carried out for practical reasons, and it furthers the
most comprehensive interpretation possibilities according to the chemometric tradition.

Remark 5 Maximization of the sample covariance is the favored ad hoc chemometric
solution. The theoretically optimal solution assuming known covariances R, and R22 is
to let W be a transposed Kalman gain (see Appendix A).

The result of this first step is WPLS = W l =*,, and the fitted responses according
to equation (8)

Y1 = XW1(Wi XTXW1) 11,171: XTy	 (17)

We also obtain the residual (this step is often called "updating" or "deflation")

E1=Y—Y1=y—XW1(*TXTXW1)-1WiXTy.
	 (18)

What has just been completed for the first PLSR component can now be iterated,
resulting in the next, orthogonal component. Thus in the second step we try to
explain the residual El by using the second component in equation (13), i.e. by
maximizing the sample covariance i 2T, E 1 /(N— 1) = w2T X TE 1/(N— 1) under the
constraints Vw2 w 2 = 1 and w 2T * 1 = 0. The result now is

w2 = C2  Tg 1 (19)

where c 2 = (ef XXTE 1 ) -1/2 Here is remains to prove that *I * 1 = 0 (taken care of in
Appendix B).

After this second step we have WPLS = W2 = [w 1 w2 ], the fitted responses
according to equation (8)

Y2 = xW2 (W2 XTxW2 ) - l* XTy
	

(20)

and the residual

E 2 = Y — Y2 (21)

This contemporary residual, E 2 , is used as input to the third step etc. We thus use
more and more detailed factorizations of X (adding new PLSR components) in order
to explain consecutive residuals of y.



4. A new didactic prediction algorithm

The algorithm developed above is as follows (where the scaling in equation (23)
may be omitted):

1. Set a = 1 and co = y.

2. Compute

r= 	 Ea-1

wa 	
T ^^wa wa

Wa = [wl w2 . . . wa]

wa

(22)

(23)

(24)

ba = wa å XTXWa) — 1Wa XTy	 (25)

and

Ea = y — Xba 	 (26)

3. Let a F- a + 1 and go to step 2.

The algorithm thus produces a sequence of predictors b l , b2 etc. The appropriate
number of column vectors * 1 , *2 , ... , wA to use is of critical importance. In general
it would be unavoidable to either underfit or overfit this modeling without an
unambiguous stopping rule, i.e. the "optimal number of PLSR components" must
be decided upon by a suitable evaluation of "the modeling fit". As Höskuldson
(1996) has pointed out, this optimization criterion must include terms which reflect
both the X-modeling fit as well as prediction error minimization 	 in fact he devised
a new compound principle, the H-principle, for nhtaining the optimal balance
between these two terms, ibid.

In the chemometric practise, there has been developed a tradition for using an
empirical test for finding the "optimal prediction strength" via a suitable validation
procedure, which is often of the cross-validation form, e.g. Martens and Næs (1989).
But Esbensen (2000) and Esbensen and Huang (2001) have been adamant in pointing
out many deficiencies regarding cross-validation, while demonstrating the almost
universal need for validation against an independent, so-called "test data set" (the
test set validation imperative). A proper validation is an essential part of any
multivariate data modeling, not just prediction modeling, ibid.

Remark 6 The new algorithm utilizes residuals of y in order to find consecutive loading
weight vectors *a . The Wold and Martens algorithms use residuals of X as well, and
this may also be included here. However, this may seen somewhat contrived and
confusing when the goal is to explain y in more and more detail by use of the information
available in X, and in the present algorithm it is in any case unnecessary.

A very significant part of practical chemometrics is interpretation based on
graphical modeling, viz. the score and loading weight matrices etc., Esbensen (2000).
These model results must also be computed, either as a part of the algorithm (for
the entire series of components calculated), or separately, i.e. for specific values of a



(29)

(30)

(the optimal number of PLS-components). We can find the non-orthogonal score
matrix for X as

Ta = XWa	 (27)

and the loading vector for y (see Martens and Næs (1989)) as

q{a =(WåXTXWa) -1* XTy
	

(28)

5. Conclusion

A combined version of the Martens and Helland PLSR algorithms based on an
explicit latent variables model and making use of only loading weight vectors * a is
developed from a novel didactic perspective. The resulting predictor is identical to
the Helland predictor, and it is furthermore equivalent with the Wold and Martens
predictors. Estimates of the non-orthogonal score matrix T and the loading vector q

may also be computed as desired.
It is emphasized that we are here exclusively dealing with the so-called non-

orthogonal PLSR algorithms, which does not allow a similar insight into the specific
PLSR models as can be achieved by using the alternative so-called Wold-models, in
which T is indeed orthogonal, as is W (Appendix B). It has been pointed out in
chemometrics, that exclusion of this latter information may at times severely cripple
the usefulness of the PLSR models with respect to all other aspects than mere
prediction, Esbensen (2000). While this may not appear to be of specific importance
to the control community, it certainly is in the static chemometric realm. We shall
address these aspects in a companion paper.

A connection to Kalman filtering theory is given in Appendix A.

Appendix A

Basis in Kalman filtering theory

The general static case

In the latent variables model (3) the transition matrix is A = 0, and there is no
manipulated input uk . The Kalman filter prediction (a priori) state estimate is
therefore tick _ 1 = 0 and thus E(ik — k^k _ 1) (2k — iklk _ 1) T = Eikik = Re . Thus, in a
Kalman filter driven by xk the updated (a posteriori) state estimate is

tkIk =

where

K2 = ReWT(WRe WT + R22) - 
1

(e.g. Grewal and Andrews, 1993). This intermediate result was first presented in
Berntsen (1988).

The resulting response estimate is

.yk — C1K2xk (31)

i. e.

.yk —C 1 K2 xk + rik 	 (32)

K2 Xk

where it can be shown that Ilk is white noise (Ergon 1998, 1999). Assuming K2 known,



W = WPLS•

(35)

C 1 unknown and experimental data available, we may from this find the LS estimate
corresponding to equation (7)

= (K2XTXKT) -1K2XTy	 (33)

and thus the fitted primary outputs corresponding to equation (8)

y= XK 2T C1 = XK2(K2 XTXK Z) -1K 2 X Ty	 (34)

The optimal choice of W in the Helland predictor equation (10) is thus in theory
W =KT. This connection between the regularized least squares solution and Kalman
filtering appears to be a parallel to the connection between a regularized solution of
a convolution integral and Wiener filtering presented by Tikhonov and Arsenin
(1977). However, in practice we must be content with e.g.

Special noise free case

An estimate of Re is

_ 1  
'T TTRe 

N -1
which may be inserted in equation (30). With R22 = 0 and after multiplication with
WTW = I we then obtain

K 2 = WTWTTTWT(WTTTWT) - 1 = WT	 (36)

In this special case the loading weight matrix W thus represents the best approxi-
mation of the Kalman gain that can be obtained from from the available data. In the
general case an improved estimate K 2 would require some information concerning
the covariance matrix R22 (Ergon and Esbensen, 2001).

Appendix B

Proof of orthogonality of weighting vectors

It is necessary to prove that wa+1 is orthogonal to Wa, Wa_1, ..., *1i i.e. that
Wawa+1 = 0. From equations (22) to (26) follows

Wa
T 

Wa+1 = Wa ca+1XTEa

= Wå XTCa+1 [Y — XWa(Wå XTXWa) 
1Wå 

XTy]	
(37)

= ca  1 WQ X TY — Ca + 1 Wa XTXWa 
(10V,7: 

XTXWa ) — 1W7: XTY

=Ca+1WåXTy—ca+1WaXTY=0
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