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Abstract

Principal component regression (PCR) based on principal component analysis (PCA) and
partial least squares regression (PLSR) are well known projection methods for analysis of
multivariate data. They result in scores and loadings that may be visualized in a score-
loading plot (biplot) and used for process monitoring. The difficulty with this is that often
more than two principal or PLS components have to be used, resulting in a need to monitor
more than one such plot. However, it has recently been shown that for a scalar response
variable all PLSR/PCR models can be compressed into equivalent PLSR models with two
components only. After a summary of the underlying theory, the present paper shows how
such two-component PLS (2PLS) models can be utilized in informative score-loading biplots
for process understanding and monitoring. The possible utilization of known projection model
monitoring statistics and variable contribution plots is also discussed, and a new method for
visualization of contributions directly in the biplot is presented. An industrial data example
is included.

Keywords: PLS, score-loading correspondence, biplot, process understanding and monitoring

1 Introduction

Partial least squares regression (PLSR) and principal component regression (PCR) are well known
methods for prediction of e.g. a scalar response variable y from multivariate regressor variables
zT according to ŷnew = zTnew b̂ [1]. In these methods the estimator b̂ is found from modeling data
collected in a regressor matrix X =

£
x1 x2 · · · xp

¤
=
£
z1 z2 · · · zN

¤T
and a response

vector y =
£
y1 y2 · · · yN

¤T
, where the basic idea in PLSR is to maximize the covariance

betweenX and y, while PCR is based on principal component analysis (PCA) ofX [1]. The reason
for use of PLSR, PCR or some other regularization method is that an ordinary least squares (LS)
problem becomes ill-posed due to a large p (many variables) relative to N (few samples in the
modeling set) or/and strongly collinear variables in X. An important result of PLSR/PCR is also
a compression of X into a few components, as in the PLS factorization

X = t̂1ŵ
T
1 + t̂2ŵ

T
2 + · · ·+ t̂AŵT

A + Ê = T̂Ŵ
T
+ Ê, (1)

where A << p, and the interpretation of these components is a central part of PLSR/PCR mod-
eling. The underlying assumption is here that the X and y data are generated by a few latent
variables (plus noise), which has been shown to be true in a vast number of practical applications.
In a process monitoring application the response y is typically a product quality that cannot be

measured on-line, while zT is made up by easily accessible process measurements [2], and possibly

1



also by manipulated inputs. An important part of the PLSR/PCR modeling is visualization by use
of score and loading plots, and the interpretation of these plots for e.g. product quality estimation,
and fault detection and diagnosis [3,4]. Most multivariate monitoring techniques also use squared
prediction error (SPE) plots (also known as Q plots) and Hotelling’s T 2 plots that summarize the
information, give a statistical basis for the interpretation and preserve the time sequence of the
data [3,4]. As part of trend and fault diagnoses, specific process samples may also be analyzed by
use of variable contribution plots [3,4]. The overall monitoring problem is, however, increasingly
difficult with more that two PLSR/PCR components, as is often necessary also in the scalar
response case. For example will the use of four components make it necessary to monitor either a
T 2 plot (and lose some details) or three score plots (e.g. t̂2, t̂3 and t̂4 vs. t̂1). And as shown in an
industrial data example in Section 6, some important process understanding that can be gained
from a two-component model, is very much lost for models with more than two components.
In a recent work [5] it has been shown that for a scalar response variable, all PLSR/PCR models

can be reduced to an equivalent model with two components only (2PLS), while at the same time
the estimator b̂ is unchanged. The 2PLS factorization is

X = t̂1ŵ
T
1 + t̃2 ewT

2 + Ẽ = T̃fWT + Ẽ, (2)

i.e. all y-relevant variation in X is captured in one score plot (̃t2 vs. t̂1) and one loading plot (ew2
vs. ŵ1). An attractive feature with this factorization is also that t̃2 is orthogonal to both y and
ŷ = Xb̂. Note that the first component in (2) is the same as in (1). Also note that the residual
Ẽ in (2) generally is different from Ê in (1), because more y-orthogonal variation in X may be
captured in Ẽ.
The main focus of the present paper is on the utilization of 2PLS realizations in process mon-

itoring applications based on correspondence between scores and loadings, and use of combined
score-loading plots (biplots) [6,7]. Such plots will make it possible for a process operator monitor-
ing a single plot to detect a deviation from normal plant operation, to evaluate the importance of
this with regard to the response y, and to get some indications on which process variables that
may cause the deviation. The standard techniques for use of SPE, T 2 and contribution plots are
applicable also for a 2PLS model, although they may to some extent be less necessary. With two
components only, a statistical T 2 upper limit may be shown as a confidence ellipse in the score
plot, while the contributions from the different variables may be shown directly in the score-loading
plot (see Section 5 for theory and Section 6 for an industrial data example).
Some background in PCR and PLSR modeling is given in Section 2, followed by a short pre-

sentation of the 2PLS algorithm in Section 3. The score-loading correspondence is discussed in
Section 4, followed by a summary of multivariate monitoring statistics and variable contribution
analyses in Section 5, the industrial data example in Section 6, and conclusions in Section 7.

2 PCR and PLSR modeling

Multivariate calibration using PCR/PLSR directly or implicitly assumes a latent variables (LV)
model

y = TQT+f (3)

X = TLT+E, (4)

which assuming LTL = I and using the LS solutions Q̂T =
¡
TTT

¢−1
TTy and T̂ = XL results in

ŷ = T̂
³
T̂T T̂

´−1
T̂Ty and thus the estimator

b̂LV = L
¡
LTXTXL

¢−1
LTXTy. (5)
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The PCR and PLSR algorithms use different factorizations ofX as summarized below, and thus also
different factorizations of y. PCR is based on the PCA factorization or singular value decomposition

X = USVT =
£
U1 U2

¤ · S1 0
0 S2

¸ ·
VT
1

VT
2

¸
=U1S1V

T
1 + ÊPCA (6)

= T̂PCAP̂
T
PCA + ÊPCA = t̂

PCA
1

¡
p̂PCA1

¢T
+ t̂PCA2

¡
p̂PCA2

¢T
+ · · ·+ t̂PCAA

¡
p̂PCAA

¢T
+ ÊPCA ,

where T̂PCA = U1S1 ∈ RN×A and P̂PCA = V1 ∈ Rp×A, and where both T̂PCA and P̂PCA are
orthogonal, with P̂PCA also orthonormal. The estimator is determined by (5), with L replaced by
P̂PCA. The number of components to include is based on either cross-validation or independent
test set validation [1]. In the established terminology the columns of T̂PCA are called score vectors,
where the elements are scores, while the columns of P̂PCA are called loading vectors, where the
elements are loadings.
The basic idea in PLSR is that the covariance between X and y should be maximized. The

original so-called orthogonalized PLSR algorithm of Wold is based on a factorization with orthog-
onal score vectors and non-orthogonal loading vectors [1,5]. In the present context it is, however,
more relevant to refer to the Martens factorization [1]

X = t̂1ŵ
T
1 + t̂2ŵ

T
2 + . . .+ t̂Aŵ

T
A + Ê = T̂Ŵ

T
+ Ê, (7)

where the loading weight matrix Ŵ =
£
ŵ1 ŵ2 · · · ŵA

¤
is orthonormal, while the score

matrix T̂ = XŴ is non-orthogonal. The common estimator in the Wold and Martens PLSR
algorithms is [8]

b̂ = Ŵ
³
ŴTXTXŴ

´−1
ŴTXTy. (8)

3 Compression into two PLS components

3.1 Basic insight

The basic insight behind the 2PLS algorithm is illustrated in Fig. 1. The estimator b̂ is found in
the space spanned by the loading weight vectors in Ŵ =

£
ŵ1 ŵ2 · · · ŵA

¤
, i.e. it is a linear

combination of these vectors. It is, however, also found in the plane defined by ŵ1 and a vectorew2 orthogonal to ŵ1, which is a linear combination of the vectors ŵ2, ŵ3, . . . , ŵA. The matrixfW =
£
ŵ1 ew2 ¤ is thus the loading weight matrix in a two-component PLS solution (2PLS)

giving exactly the same estimator b̂ as the original solution using any number A components [5].

b̂ew2

ŵ3

ŵ2

ŵ1

Figure 1. Illustration of basic insight behind the 2PLS factorization, assuming A = 3 original compo-
nents. The PLSR estimator b̂ is found in the space spanned by ŵ1, ŵ2 and ŵ3, but also in the shadowed
plane spanned by ŵ1 and ew2.
What matters in the original PLS model is not the matrix Ŵ as such, but the space spanned by

ŵ1, ŵ2, · · · ŵA [8], and in the 2PLS model it is the plane spanned by ŵ1 and ew2 that is essential.
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The reason for keeping ŵ1 is discussed in [5]. Note that all samples in X (row vectors) in the
original PLS model are projected onto the space spanned by ŵ2, ŵ3, . . . , ŵA. They may thus be
further projected onto the plane spanned by ŵ1 and ew2, and form a single score plot containing all
y-relevant information. If for some reason e.g. ŵ2 is more informative than ŵ1, a plane through
ŵ2 and b̂ may be a better alternative. It will in any case result in a 2PLS model that gives the
estimator b̂, as will in fact all planes through b̂ that are at the same time subspaces of the column
space of Ŵ.

3.2 Algorithm

As illustrated in Fig. 1, the central problem is to find a second vector that together with ŵ1 spans
the shadowed plane that includes b̂. One way of doing this follows from the estimator formulation

(8), in that
³
ŴTXTXŴ

´−1
ŴTXTy =

£
â1 â2 · · · âA

¤T
, and thus

b̂ = â1ŵ1 +
£
ŵ2 ŵ3 · · · ŵA

¤ £
â2 â3 · · · âA

¤T
= â1ŵ1 + ea2 ew2. (9)

We summarize the 2PLS compression and its properties in Theorem 1 below (see [5] for proof
and Matlab code). The second vector spanning the shadowed plane in Fig. 1 is not necessarilyew2, but it is convenient to make use of the orthogonal vectors ŵ1 and ew2 in the theorem and its
proof.

Theorem 1 The original PLSR estimator (8) can be written as

b̂ = fW³fWTXTXfW´−1 fWTXTy, (10)

where fW =
£
ŵ1 ew2 ¤ is the new orthonormal loading (weight) matrix. The corresponding

factorization of X is
X = T̃fWT + Ẽ = t̂1ŵ

T
1 + t̃2 ewT

2 + Ẽ, (11)

and ew2 is
ew2 = £

ŵ2 ŵ3 · · · ŵA

¤ £
â2 â3 · · · âA

¤T°°°£ ŵ2 ŵ3 · · · ŵA

¤ £
â2 â3 · · · âA

¤T°°° . (12)

Here
£
â2 â3 · · · âA

¤T
is extracted from

£
â1 â2 · · · âA

¤T
=
³
ŴTXTXŴ

´−1
ŴTXTy,

while t̂1 = Xŵ1 is the same as in the factorization (7), and t̃2 = Xew2. Furthermore, t̃2 is orthog-
onal to both y and ŷ = Xb̂, i.e. yT t̃2 = 0 and ŷT t̃2 = 0.

Note that this theorem is valid for any number A of original PLS components. Also note
that the residual Ẽ may be different from the original residual Ê, i.e. some extra y-orthogonal
structured variation in X may be captured in Ẽ (see theoretical example in Subsection 3.3 below).

Remark 1 Since Ŵ in the estimator (8) may be replaced by ŴM, where M is any invertible
transformation matrix, it follows from Theorem 1 that any plane containing b̂ that is also a subspace
of the column space of Ŵ may be used instead of the shadowed plane in Fig. 1. The theorem may
thus be given a more general formulation.

3.3 Theoretical example

Assume an ordinary non-orthogonalized PLS factorization according to (7) with three components,
i.e.
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X = t̂1ŵ
T
1 + t̂2ŵ

T
2 + t̂3ŵ

T
3 + Ê, (13)

and the corresponding score matrix T̂ =
£
t̂1 t̂2 t̂3

¤
= X

£
ŵ1 ŵ2 ŵ3

¤
. Also assume a

new sample zTnew such that t̂new,1 = z
T
newŵ1 = 0. The predicted response is then

ŷ = zTnewŴ
³
ŴTXTXŴ

´−1
ŴTXTy = zTnew

£
ŵ1 ŵ2 ŵ3

¤ â1
â2
â3


= â2z

T
newŵ2 + â3z

T
newŵ3 = â2t̂new,2 + â3t̂new,3. (14)

From this follows that it is possible to have scores t̂new,2 6= 0 and t̂new,3 6= 0, and at the same time
have ŷ = 0.
After the compression into two components according to Theorem 1, the factorization is

X = t̂1ŵ
T
1 + t̃2 ewT

2 + Ẽ, (15)

and the corresponding score matrix T̃ =
£
t̂1 t̃2

¤
= X

£
ŵ1 ew2 ¤, while the predicted response

with zTnewŵ1 = 0 as above is

ŷ = zTnew
£
ŵ1 ew2 ¤ · â1

ã2

¸
= ã2z

T
new ew2 = ã2t̃new,2. (16)

If now ŷ = 0 we must also have t̃new,2 = 0, i.e. we will not see any deviation from the origin in the
t̃2 vs. t̂1 score plot. This also illustrates how some y-orthogonal variation in X may be captured
in Ẽ.
Note, however, that it is generally possible to have deviations from the origin in the t̃2 vs. t̂1

score plot also when ŷ = 0. The general expression for ŷ is

ŷ = zTnew
£
ŵ1 ew2 ¤ · â1

ã2

¸
= â1z

T
newŵ1 + ã2z

T
new ew2 = â1t̂new,1 + ã2t̃new,2, (17)

which may give ŷ = 0 also when t̂new,1 6= 0 and t̃new,2 6= 0. In such cases, however, it will
be possible to see that ŷ = 0 directly in the score plot, as demonstrated in the industrial data
example in Section 6.

4 Score-loading correspondence

Score-loading correspondence for process monitoring is discussed in [7], and a short summary
only is given here. A convenient starting point is then the PCA/SVD (6), where the number of
components to include is both data and application dependent. The essential fact in the present
context is that both T̂PCA and P̂PCA are orthogonal, with P̂PCA also orthonormal, resulting in
the LS estimate

T̂PCA =
£
t̂PCA1 t̂PCA2 · · · t̂PCAA

¤
=
£
τ̂PCA1 τ̂PCA2 · · · τ̂PCAN

¤T
=XP̂PCA . (18)

Assuming the same covariance matrix as for the row vectors in the modeling data matrix X, a new
row vector zTnew thus results in ³

τ̂PCAnew

´T
= zTnewP̂PCA . (19)
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If in addition zTnew =
£
0 · · · 0 xnew,j 0 · · · 0

¤
we obtain

³
τ̂PCAnew

´T
=
£
0 · · · 0 xnew,j 0 · · · 0

¤


¡
p̂PCA1

¢T
...¡

p̂PCAj

¢T
...¡

p̂PCAp

¢T


= xnew,j

¡
p̂PCAj

¢T
. (20)

This means that the scores τ̂PCAnew =
£
t̂new,1 t̂new,2 · · · t̂new,A

¤T
correspond to the loadings

p̂PCAj =
£
p̂j,1 p̂j,2 · · · p̂j,A

¤T
of the variable j in X that causes the score to deviate from

zero, with xnew,j as a scaling coefficient. When several variables in combination causes τ̂
PCA
new , the

scores correspond to weighted sums of loadings.
For the 2PLS factorization (11) it follows that T̃ =XfW, where fW just as P̂ in PCA is

orthonormal, and the score-loading correspondence requirements are thus fulfilled. When one
variable only in zTnew is different from zero, the new score in the single 2PLS score plot will
thus be found in exactly the same direction as the corresponding loading in the single 2PLS
loading plot (see industrial data example in Section 6). Note that b̂ = fW £

â1 ea2 ¤T just as
znew = fW £

t̂new,1 etnew,2 ¤T can be plotted in the score plot, while the loadings £ â1 ea2 ¤ in
ŷ = T̃

£
â1 ea2 ¤T just as the loadings £ ŵj,1 ewj,2

¤
in a variable vector xj = T̃

£
ŵj,1 ewj,2

¤T
can be plotted in the loading plot. From this follows that b̂ and ŷ (based on the modeling data)
in a score-loading biplot will have identical positions.
Finally note that the PLS factorization according to Wold, with orthogonal score vectors, does

not fulfill the score-loading correspondence requirements (although the deviation may in some cases
be small) [7].

5 Monitoring statistics and contribution plots for projection
methods

5.1 Squared prediction error

Process and product monitoring based on projection methods like PLS and 2PLS, rely on an in-
control model developed by use of a reference or modeling data set, which defines an A-dimensional
projection space. It is therefore first of all necessary to check if the perpendicular distance of a new
sample zTnew from this projection space is within acceptable limits. As a measure of this distance
it is common to use the squared prediction error

SPEzn ew =

pX
j=1

(xnew,j − x̂new,j)
2 . (21)

The SPE will detect the occurrence of a totally new type of process development. This is also
applicable when using the 2PLS data compression, the only special thing being that the projection
space is the plane illustrated in Fig. 1. If statistical limits for such a detection of special events
are of interest, x̂new,j in (21) may be computed by use of a PCA model. Upper control limits can
then be computed using approximate results for the distribution of quadratic forms, often referred
to as Q-statistic [2,3,4].

5.2 Hotelling’s T 2 statistic

T 2 plots for many PLS components Assuming that the SPE for a new sample zTnew is accept-
able, a meaningful comparison with the reference data set is possible. Further assuming normal
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distributions, this may be done using the Hotelling’s T 2 statistic [9] based on the estimated score
covariance matrix, which with centered data and use of the PLS factorization (7) is

S =
1

N − 1T̂
T T̂. (22)

With centered data the T 2 statistic for a new observation zTnew is

T 2 = τ̂TnewS
−1τ̂ new , (23)

where τ̂Tnew = z
T
newŴ, i.e.

£
t̂new,1 t̂new,2 · · · t̂new,A

¤
=
£
xnew,1 xnew,2 · · · xnew,p

¤
Ŵ.

The upper control limit for T 2 based on N past multivariate data and A PLS components is

T 2UCL =
(N2 − 1)A
N(N −A)

Fα(A,N −A), (24)

where Fα(A,N − A) is the upper 100α % critical point of the F distribution with (A,N − A)
degrees of freedom [3,4]. For a sequence of new samples, the T 2 value may thus be plotted and
compared with T 2UCL, and a fault alarm signal given according to some more or less conservative
rule.

Confidence ellipse for two PLS components Since the 2PLS algorithm results in two com-
ponents only, the T 2UCL limit may be replaced by a confidence ellipse in a score plot, based on
the eigenvalues (direction of axes) and eigenvectors (length of axes) of S and using the same F
distribution limit as in (24) [9]. Such a confidence ellipse may also be included in the score-loading
biplot discussed in Section 4, as shown in the industrial data example in Section 6. In addition to
the information of a violated upper limit, such a biplot also gives information on which variables
or group of variables that are involved, as discussed below.

5.3 Contribution plots

SPE contribution plots When the SPE or T 2 plots indicate that the process is operating
outside the normal region, it is of interest to see which variables that contribute the most to this.
For a specific sample of interest this can be done by plotting variable contribution plots. The SPE
contribution plot is simply a plot (often a bar plot) showing how the different variables contribute
to the sum (21) for a specific observation.

Contribution plots on the scores The contribution plots on a score t̂new,a could in the same
way show the variable contributions to

t̂new,a =

pX
j=1

xnew,jŵj,a. (25)

Since the different scores have different influence on T 2 according to (23), and in order to minimize
ambiguity, it is common practice [3,4] to use the following procedure:

1. Compute

contnewj,a =
t̂new,a
s2a

xnew,jŵj,a, (26)

where s2a is the score vector variance based on the modeling data.

2. Set contnewj,a = 0 if it is negative, i.e. if the sign of the contribution xnew,jŵj,a is opposite to
the sign of the score t̂new,a.
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3. Compute and plot

CONT newj =
AX
a=1

contnewj,a , (27)

for j = 1, 2, . . ., p.

Alternative 2PLS contribution plot on the scores With one score plot only, an alternative
approach is to plot the weighted loadings in

W̃weighted =


xnew,1ŵ1,1 xnew,1 ew1,2
xnew,2ŵ2,1 xnew,2 ew2,2

...
...

xnew,pŵp,1 xnew,p ewp,2

 = £ ŵweighted1 ewweighted2

¤
(28)

directly in the score-loading biplot. The original loadings
£
ŵj,1 ewj,2

¤
will after multiplication

by xnew,j be moved radially, indicating the strength by which they attract (positive xnew,j) or repel
(negative xnew,j) the scores. These weighted loadings will thus indicate how the contributions from
different variables vary with time, as illustrated in the industrial data example in Section 6.

6 Industrial data example

The following example uses multivariate regression data from a mineral processing plant [10] (the
’cleaner’ data, originally published in [11]). The problem considered here is to predict a given
quality ynew,4 from twelve known process variables zTnew =

£
xnew,1 xnew,2 · · · xnew,12

¤
. For

the purpose of finding an initial PLS factorization, samples 1 to 120 in the data sets xce and yce
[10] were used for modeling, while samples 151 to 240 in the same data sets were used for validation.
The data were centered and scaled to unit variance (autoscaled), and the result was a PLSR model
with A = 6 components, resulting in a validation root mean square error RMSEP = 0.15 (as
compared with RMSEP = 1 for A = 0). The PLS factorization of the autoscaled data matrix
Xmodeling was finally compressed into a 2PLS factorization (11), resulting in the loading matrixfW.

6.1 Score-loading plot for process understanding

To illustrate the use of 2PLS for process understanding, newX data were introduced asXtest = I12,
i.e.

Xtest =


1 0 · · · 0 0
0 1 · · · 0 0
...
...

. . .
...
...

0 0 · · · 1 0
0 0 · · · 0 1

 . (29)

The 2PLS loadings in fW,
£
ŵj,1 ewj,2

¤
j=1,2,...,12

, and scores
£
t̂i,1 t̃i,2

¤test
i=1,2,...,12

= (ztesti )
T fW

were then plotted together with the estimator b̂ according to (10) (see Fig. 2).
Fig. 2 also shows lines for constant ŷ based on (using (10) with XfW = T̃)

ŷi =
£
t̂i,1 t̃i,2

¤ ³
T̃T T̃

´−1
T̃Ty =

£
t̂i,1 t̃i,2

¤ · â1
ã2

¸
= â1t̂i,1 + ã2t̃i,2, (30)

and an axis for ŷ and b̂ perpendicular to those lines. Note that ŷ (based on the modeling data)
in the loading plot and b̂ in the score plot have the same position in the biplot. For an operator
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support application, the entire plot can easily be rotated such that the ŷ axis becomes horizontal
pointing to the right.
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Figure 2. Score-loading correspondence plot with loadings from loading matrix fW (o-marked) and
scores from test matrix Xtest according to (29) (×-marked), together with the estimator b̂ (marked with
arrow). Parallel dashed lines indicate constant predictions ŷ. Note the total score-loading correspondence,
and the nearly y-orthogonal deviations for scores no. 4, 5 and 6 (see comparison with ordinary PLS score
plots below).

The plot in Fig. 2 can be used to gain process understanding. As can be seen the estimator
b̂ and thus the predicted response ŷ is strongly correlated with variable 3 and to some extent
also with variables 1 and 2, while the other variables have little to do with ŷ (as indicated by the
o-marked loadings close to the line for ŷ = 0). This can also be seen by inspection of

b̂ =



0.0805
0.2588
0.8772
−0.0092
0.0033
−0.0030
−0.0055
−0.0636
−0.0257
0.0286
−0.0226
0.0120



, (31)

but Fig. 2 also gives information on y-orthogonal properties (variable 4 gives larger y-orthogonal
score movements than variable 5 etc.). Given sufficient process knowledge also the y-orthogonal
scores may be informative.
For a comparison score plots for the ordinary PLS factorization are shown in Fig. 3, where

projections of b̂ are also included. Note that e.g. score no. 5 shows considerable deviations from
the origin, although the deviation for this score in Fig. 2 is very small. This illustrates that some
y-orthogonal variations in X that in the ordinary PLS factorization are part of X̂, in the 2PLS
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factorization are captured in Ẽ. Also note that it cannot be seen in Fig. 3 that the scores no. 4, 5
and 6 are nearly y-orthogonal, i.e. that the estimator b̂ is perpendicular to a plane through these
scores. Finally note that the t̂i,1 scores are the same in both Fig. 2 and Fig. 3, as follows from the
2PLS factorization (11) as compared with the PLS factorization (7).
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Figure 3. Score plots for test matrix Xtest and projected estimator b̂ using ordinary PLS factoriza-
tion. Note that although the scores 4, 5 and 6 are nearly y-orthogonal, i.e. located in a plane perpendicular
to b̂, this cannot be seen from these projections.

6.2 Plots for process monitoring

As part of a process monitoring system, it is necessary to evaluate the SPE value according to
(21), based on X̂ = T̃fWTaccording to (11). As a basis for comparison, we may first analyze the
modeling data by plotting SPE (Fig. 4, top) and both y and ŷ (Fig. 4, middle). The predictions
are quite good also for samples with an SPE peak, i.e. the peaks do not indicate very special
events. We then plot SPE for the new validation data (Fig. 4, bottom), and conclude that these
values are in no way extreme, i.e. not located further away from the 2PLS projection plane than
for the modeling data. We can thus draw meaningful conclusions regarding the new samples from
the score-loading plot.
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Figure 4 Squared prediction error (SPE) for modeling data (top), the corresponding values for ŷ and
y (middle), and SPE for the new validation data (bottom).

After appropriate scaling and definition of the normal operating region based on historical data,
the plot in Fig. 2 may also be used for process monitoring purposes. The last few of the new scores
at each time instant may then be shown, indicating how the process conditions are developing,
while older scores must fade away in order to give room for new information. A confidence ellipse
based on the modeling data and corresponding to the T 2UCL limit (24) may also be included, as
shown in Fig. 5.
In order to give as clear a picture as possible the o-marked loadings based on the modeling

data are here plotted using a common scaling constant 7, as compared to Fig. 2. The loadings will
in any case indicate the direction and relative strength of the variable attractions on the scores.
A large deviation from the origin thus not only signals a special plant operation situation, but
the direction also indicates which regressor variable or variables that cause the deviation. It is for
example rather obvious that observation 209 outside of the normal operating region is very much
influenced by an especially high positive value of variable 3. The deviations of samples 191, 201
and 210 may more clearly be caused by several variables. All of this will be clarified by use of a
weighted loading plot, as shown in Fig. 6 below. Note that sample 191 has the maximal SPE value
in Fig. 4, but that the 2PLS projection is well within the T 2UCL ellipse.
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Figure 5 Score-loading plot with new scores (×-marked) and fixed loadings from the modeling data
with scaling constant 7 (o-marked). The ellipse shows T 2UCL according to (24) for α = 0.01.

In order to clarify the information contained in the score-loading plot in Fig. 5, the alternative
2PLS contribution plot according to (28) utilizing weighted loadings may be used, as shown in Fig.
6 for four samples. This shows that

• the deviation of sample 201 perpendicular to the ŷ axis (i.e. ŷ ≈ 0) is mainly caused by a
high positive value of variable 6, and not a high positive value of variable 7 or a high negative
value of variable 4, as may be concluded from Fig. 5

• for sample 202 all variables have small values, keeping the score close to the origin
• the deviation of sample 209 in the direction of the ŷ axis (i.e. a high positive value of ŷ)
is mainly caused by a high positive value of variable 3, although variable 4 also has a high
negative value, and some other variables are also involved
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• the deviation of sample 210 is clearly caused by a high positive value of variable 3 and a high
negative value of variable 4.
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Figure 6 Score-loading plots with scores (×-marked) and weighted loadings (solid vector lines) ac-
cording to (28). Note that the score at each sample is the exact sum of the weighted loadings (the most
influential ones are numbered).

From a single plot with process scores and weighted loadings it will thus be possible

• to see a deviation from normal process operation, and the eventual violation of the upper
control limit T 2UCL

• to see whether and to which degree the deviation gives a change in predicted response ŷ
• to get some information on which variables are causing the deviation, as well as sign and
magnitude.

The corresponding traditional contribution plots according to (27) are shown in Fig. 7. These
plots give no new information, at least not when the number of variables is as low as in this
example, and it is in fact obscured that variable 4 influences the samples 209 and 210 by having
a high negative value. This is caused by both the scaling factor t̂n ew ,a

s2a
in (26), and that negative

contributions are set equal to zero.
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Figure 7 Contribution plots according to (27).

7 Conclusions
Background theory on PLS modeling, compression into two-component PLS (2PLS) realizations,
score-loading correspondence, monitoring statistics and contribution plots is presented. The 2PLS
data compression makes it possible to construct a single dynamic and informative score-loading
biplot, utilizing score-loading correspondence, as illustrated in an example using mineral processing
plant data (Fig. 6).
One potential use of this is to gain understanding of how and to which extent different process

variables affect a specific response variable. When used in process monitoring the biplot will make
it possible to see a deviation from normal process operation and when the T 2UCL upper control limit
is violated, to see whether and to which degree such a deviation gives a change in the predicted
response, and to judge which process variables are contributing to the deviation. In the same
biplot it is also possible to see the sign and magnitude of the variables that contribute to a given
deviation. Another result of the 2PLS data compression is that more of the response-orthogonal
variations in the process data are captured in the residuals, and thus a more response-relevant
model is obtained.
Further research will investigate fault diagnosis based on fault signatures in the score-loading

biplot. It might be that some specific process faults will give scores that result in a specific trace
or pattern, such that the underlying problem can be revealed at a glance.
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