


Fig. 1. Basic principle for estimation of primary system outputs y1
from known inputs u and measured secondary outputs y in pres-2
ence of process noise v.

the covariance of the y estimate is also given. In1
Section 4 it is shown that least squares estimation
Ž . Ž .LSE , principal component regression PCR and

Ž .partial least squares regression PLSR can be seen as
special static cases of this dynamical solution. The
relations between these data based estimators and
theoretical estimators based on known or assumed
static models and noise properties are also presented,
and the relation between two different PLSR algo-
rithms falls out as a neat result. Extensions of the PCR
and PLSR methods to cover also dynamic systems
with collinear measurements are presented in Section
4. Section 5 gives some numerical examples and
Monte Carlo simulations, and concluding remarks are
given in Section 6.

2. Background and preliminaries

Linear regression and static calibration methods
have roots in the classical least squares technique
used by Gauss around 1800. When the number of es-
timator variables is large and the number of observa-
tions is limited, the ordinary solution to the least
squares problem may have very large variance due to
overfitting. This situation requires some form of reg-

w xularization, e.g., PCR or PLSR 1,2 . In many cases
of great practical interest, the estimator variables far
outnumber the observations at hand. An example is
product quality characterization by use of near in-
frared spectroscopy, with several thousand estimator

Ž .variables frequencies and often less than 100 obser-
vations. In such cases, the estimator variables are of-
ten strongly collinear, and most of the information

can then be compressed into a few latent variables
within a subspace of the variable space. Basic tools
for this data compression are singular value decom-

Ž .position SVD and principal component analysis
Ž .PCA , and the regression method directly based on
this is PCR, while PLSR combines data compression
and regression in an iterative approach. Such tools for
multivariate data analysis are used in many scientific
fields like biometrics, chemometrics, econometrics
and psychometrics.

Linear regression can also be used to identify the
parameters in dynamic system finite impulse re-

Ž .sponse FIR models or autoregressive models with
Ž . w xexternal inputs ARX 3 . Due to lack of noise mod-

eling, this will normally result in biased parameter
estimates, and the FIR truncation error comes in ad-
dition. Identification of FIR and ARX models by PCR
and PLSR have also been investigated, see, e.g., Refs.
w x4,5 .

In parallel with the development of the PCR and
PLSR methods, the field of general dynamic SI has
been developed into a sophisticated set of methods
and practical tools. Classical SI methods are summa-

w xrized in comprehensive books, e.g., Refs. 3,6 . At
present, subspace identification methods attract a

w xgreat deal if interest, see, e.g., Ref. 7 with further
references. In all forms of SI, one finds that LSE is
used as a basic tool. It is, however, refined and in
some cases replaced by, e.g., prediction optimization
methods in order to account for the noise influence
in a proper way.

SI is also closely linked to the Kalman filtering
w xtheory 8 . This is done by use of innovation models,

where the different process and measurement noise
sources are replaced by the white noise innovations
in an underlying Kalman filter.

From a SI and Kalman filtering point of view, it
is intuitively evident that the classical linear regres-
sion and the modern multivariate calibration methods
may be seen as special static cases of the more gen-
eral parametric SI methods for dynamic systems. An
early attempt to look into these similarities was made

w xin Ref. 9 , and the present paper includes a further
and more detailed attempt to do so. When these simi-
larities are to be investigated, three basic facts have
to be acknowledged.

Ž .1 Methods of multivariate calibration are used to
find models for estimation of unknown output vari-
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ables y from both independent and dependent known
variables x. In SI terminology, this means methods
for estimation of unknown system outputs y from1
both independent system inputs u and dependent sys-
tem outputs y . The basic observation here is that also2
dependent outputs y have to be used as inputs in the2
SI procedure.

Ž .2 When the multivariate calibration models are
used for estimation, the y outputs are not known, and1
this will also be the case for the corresponding dy-
namical models found by SI. We are, therefore, lead

Ž .to consider output error OE models and not the
Žqualitatively different ARMAX autoregressive mov-
.ing average with external inputs type of models used

for, e.g., control design based on known y outputs.1
Ž .3 In order to find the optimal y estimate, the1

underlying Kalman filter must be of the predictor–
corrector form, which is normally not the case when
innovation models are used in SI.

These basic facts must be reflected in the theoreti-
cal analysis of the relations between SI and LSE, PCR
and PLSR, and this is quite independent of the spe-
cific SI methods considered. The use of both inde-
pendent inputs u and dependent y measurements as2
inputs in a SI procedure raises questions about iden-
tifiability and applications on deterministic and per-
fect measurement systems. A preliminary discussion

w xof this is given in Ref. 10 . A detailed comparison
of ARMAX and OE models for prediction of y based1

w xon u and y is given in Ref. 11 .2

3. Secondary measurements as inputs in system
identification

3.1. Statement of problem

Consider the discrete system model

x s Ax qBu qGvkq1 k k k

y s C x qD u qw 1Ž .1,k 1 k 1 k 1,k

y s C x qD u qw ,2,k 2 k 2 k 2,k

w T T xTwhere x is the state vector, while v and ws w w1 2
are white and independent process and measurement

Žnoise vectors. Also assume a stable system with A,
.G R reachable, where R is given by the expecta-( v v

tion R sEv vT. Note that some or all of the sec-v k k

ondary y measurements may be collinear with some2
or all of the primary y measurements.1

Further assume that input–output data are avail-
w xable from an informative experiment 12 , i.e., that

data records for u , y and y for ks1,2, . . . , Nk 1,k 2,k
are at hand, with u persistently exciting of appro-k

priate order and N sufficiently high. The problem is
now to identify the optimal one-step-ahead y pre-1, k

dictor based on past and present u and past y val-k 2,k
ues, and the optimal y current estimator based also1, k

on present y values.2, k

Note that it is a part of the problem that y is not1, k

available as a basis for the prediction estimate y1, k < ky1
or the current estimate y . This is a common situa-1, k < k

tion in industrial applications, e.g., in polymer ex-
truding, where product quality measurements involve
costly laboratory analyses. Product samples are then
collected at a rather low sampling rate, and product
quality estimates at a higher rate may thus be valu-
able.

3.2. Optimal one-step-ahead predictor when y is1

aÕailable

Ž Ž ..The model Eq. 1 can be expressed in the ordi-
w xnary innovation form 6 given by the following

w xequations, where AK s A K K is the gain in a1 2
predictor type Kalman filter formulation with white
innovations e and e :1 2

e1w xx s Ax qBu qA K Kkq1 k k 1 2 e2 k 2Ž .
y s C x qD u qe1,k 1 k 1 k 1,k

y s C x qD u qe .2,k 2 k 2 k 2,k

The optimal one-step-ahead y predictor with all1
measurements available and a known u will then bek

x sA IyK C yK C xŽ .kq1 1 1 2 2 k

q ByAK D yAK D uŽ .1 1 2 2 k

qAK y qAK y1 1,k 2 2,k

y sC x qD u . 3Ž .1,k 1 k 1 k

This will be the best linear one-step-ahead predic-
tor if x , v and w have arbitrary statistics, and the0 k k

optimal predictor assuming that x , v and w are0 k k
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w xnormally distributed 8 . This is also the predictor
normally used in prediction error identification meth-

w xods 3,6 .

3.3. Optimal one-step-ahead predictor when y is not1

aÕailable

When the y measurements are not available as a1
Ž Ž ..basis for prediction, the ARMAX predictor Eq. 3

w xis no longer optimal 11 . The obvious reason for this
Ž .is that Eq. 3 is based on an underlying Kalman fil-

ter driven by y in addition to u and y , and the in-1 2
formation in the y measurements will then not be2
utilized in an optimal way when y is not available.1

In a prediction error identification method, we
must instead base the prediction on an underlying
Kalman filter driven by u and only the y measure-2

Ž .ments. With the assumption that C , A is de-2
tectable, the following innovation form can then be

Ž .derived from Eq. 1 :
OEP OEP OEx s Ax qBu qAK ekq1 k k 2 2,k 4Ž .OEPy s C x qD u qe .2,k 2 k 2 k 2,k

The y output is then given by1

OEP OEPy sC x qD u qq , 5Ž .1,k 1 k 1 k k

where
OEP OEPq sC x yx qw 6Ž .Ž .k 1 k k 1,k

is colored noise.
The underlying Kalman filter is governed by the

w xwell known Kalman filter equations 8 . The Kalman
gain is determined by

y1OE OEP T OEP TK sP C C P C qR , 7Ž .Ž .2 2 2 2 22

where the prediction state estimation covariance
OEP OEP OEP TŽ .Ž .P s E x y x x y x is given by thek k k k

Riccati equation

POEP sAPOEPAT qGR GT yAKOE C POEPAT,v 2 2

8Ž .

and where R sEv vT and R sEw wT .v k k 22 2,k 2,k
Theoretically, it is possible to identify the system

Ž . Ž .determined by Eqs. 4 and 5 using y and y as1 2
Ž .outputs, i.e., to identify Eq. 2 with a simplified noise

model employing K s0. With many secondary y1 2
measurements it is, however, a simpler task to use y2

as an input signal, and identify the OE prediction
Ž .model OEP model

OEP OE OEPx sA IyK C xŽ .kq1 2 2 k

q ByAKOE D u qAKOE yŽ .2 2 k 2 2,k

OEP OEPy sC x qD u qq . 9Ž .1,k 1 k 1 k k

The corresponding input–output model is then
y1OEy sC qIyAqAK C1,k 1 2 2

OE OEP ByAK D u qAK yŽ .2 2 k 2 2,k

qD u qq OEP
1 k k

OEPsy qq , 10Ž .1,k < ky1 k

where y is the optimal prediction estimate.1, k < ky1
This model can also be expressed as

y sG qy1 u qG qy1 y qq OEP, 11Ž .Ž . Ž .1,k 1 k 2 2,k k

where qy1 is the unit delay operator. The transfer
functions are here

y1y1 OE˜G q sC qIyA ByAK D qDŽ . Ž .Ž .1 1 2 2 1

12Ž .

and
y1y1 OE˜G q sC qIyA AK , 13Ž .Ž . Ž .2 1 2

˜ OEwith AsAyAK C .2 2
In order to identify the deterministic part of the

Ž . OEPsystem 10 , i.e., G and G , we model q by1 2 k

some unknown white noise sequence and use the
prediction

ˆ y1 ˆ y1y sG q ;u u qG q ;u y . 14Ž .Ž . Ž .ˆ1,k 1 k 2 2,k

The prediction error is then

´ s y y ŷ1,k 1,k 1,k

y1 y1ˆs G q yG q ;u uŽ . Ž .1 1 k

y1 y1 OEPˆq G q yG q ;u y qq .Ž . Ž .2 2 2,k k

15Ž .

When evaluating the result of minimizing a criterion
Ž . ŽŽ . N T .function V u s tr 1rN Ý ´ ´ , we mustN ks1 1,k 1,k

now consider the fact that y and q OEP are not in-2, k k
Ž Ž ..dependent. We then note that the predictor Eq. 14
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has the form of an observer driven by u and the y2
measurements, and that the criterion function deter-

Ž Ž ..mined by the prediction error Eq. 15 under the as-
sumption of Gaussian noise therefore is minimized
when and only when both
Ø the deterministic model is correct, and

ˆØ the observer gain is a Kalman gain, i.e., K '2
KOE.2

ŽMinimization will therefore asymptotically N™
ˆ ˆ.` result in G 'G and G 'G , with G and G1 1 2 2 1 2
Ž . Ž .given by Eqs. 12 and 13 . The prediction estimate

y will thus be asymptotically unbiased.1, k < ky1

3.4. Optimal current estimator when y is not aÕail-1

able

Utilizing also current y values, the optimal esti-2
mator considering that y is not available will be1
found by identifying the following OE model based
on an underlying predictor–corrector Kalman filter
w x Ž .8 utilizing also current data OEC model :

y1OE OEy sC IyK C qIyAqAK CŽ .1,k 1 2 2 2 2

OE OEP ByAK D u qAK yŽ .2 2 k 2 2,k

qC KOE y yD u qD u qq OEC .Ž .1 2 2,k 2 k 1 k k

16Ž .

Here we introduce the colored noise
OEC OECq sC x yx qw , 17Ž .Ž .k 1 k k 1,k

based on
OEC OE OEP OEx s IyK C x qK y yD u .Ž .Ž .k 2 2 k 2 2,k 2 k

18Ž .
Ž .From Eq. 16 , we find the asymptotically unbi-

ased and optimal y current estimator1

y1OE OEy sC IyK C qIyAqAK CŽ .1,k < k 1 2 2 2 2

OE OEP ByAK D u qAK yŽ .2 2 k 2 2,k

qC KOE y yD u qD u . 19Ž . Ž .1 2 2,k 2 k 1 k

This is the central relation in the paper, showing how
past and present u and y values can be utilized in an2
optimal way to find the current estimate y . It is1, k < k

straightforward to show, however, that identification
Ž .of Eq. 19 by use of a prediction error method will

result in a correct result only when w and w are1, k 2,k
w xuncorrelated 11 .

Ž Ž ..The optimal estimator Eq. 19 is also the basis
for Section 4, where LSE, PCR and PLSR are found
as special static cases, and for the dynamic PCR and
PLS solutions presented in Section 5.

3.5. Theoretical y current estimation coÕariance1

Ž Ž ..When the OEC model Eq. 16 is identified us-
ing a large data set, i.e., N™`, the estimate y1, k < k

will be asymptotically unbiased when we use either
only u or both u and y as input signals. The asymp-2
totic covariance will, however, depend on the model
and the quality of the data. In the following we as-
sume perfect model and noise information, and de-
rive theoretical asymptotic expressions for the y1
current estimation covariance.

The underlying Kalman filter driven by u and the
Ž . Ž .y measurements is governed by Eqs. 7 and 8 . The2
Ž .current state estimate is given by Eq. 18 , and the

OEC Žcurrent state estimation covariance P s E x yk
OEC OEC T.Ž .x x yx is thusk k k

TOEC OE OEP OEP s IyK C P IyK CŽ . Ž .2 2 2 2

TOE OEqK R K . 20Ž .Ž .2 22 2

As the current estimate y is directly based on1, k < k
OECx , the theoretical asymptotic y current estima-k 1

tion covariance becomes

TCov y s E y yy y yyŽ . Ž . Ž .1,k < k 1,k 1,k < k 1,k 1,k < k

OEC Ts C P C qR ,1 1 11

21Ž .
OEC Ž . Twith P given by Eq. 20 and R sEw w .11 1,k 1,k

Assume now for convenience a scalar y mea-1
surement. When the model is identified and validated
by use of independent data sets with N™`, we will
then find the theoretical root mean square error
Ž .RMSE

N1 2
<RMSE s y yyŽ .Ýu ,y 1,k 1,k < k2 (N ks1

OEC T(™ C P C qR . 22Ž .1 1 11
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4. Multivariate calibration as special cases

4.1. Assumptions according experimental setup and
data

Ž Ž ..Consider again the system Eq. 1 with the opti-
Ž Ž ..mal y current estimator Eq. 19 , and expand the1

input u with a vector d of unknown offsets or distur-
w T T xTbances, i.e., use us d u , where u is the knownm m

vector of manipulated or measured inputs. Let the in-
put u be piecewise constant over periods that arek

much longer than both the time constants in the un-
derlying continuous system and the discretization
sampling time, and assume possibly collinear obser-
vations y and y at the of each such period. Also1, j 2, j

assume that d is a white noise sequence, i.e., that thej

unknown offsets and disturbances are independent
from one observation to the next. With a piecewise
static input vector u and enough time for settle-k

Ž Ž ..ment, it follows from Eq. 1 that the observations
will be given by

dy1y s C IyA BqDŽ .1, j 1 1 um j

j

q v g qw 23aŽ .Ý k 1, jyk 1, j
ksy`

dy1y s C IyA BqDŽ .2, j 2 2 um j

j

q v g qw , 23bŽ .Ý k 2, jyk 2, j
ksy`

where g and g stand for the impulse responses from1 2
v to y and y . All measurements are thus linear1 2
combinations of d and u plus noise, and since wem
assume a stable system with piecewise constant in-
puts and a settling time shorter than the data sam-
pling time, this noise will be approximately white.
Note, however, that since the noise terms in Eqs.
Ž . Ž .23a and 23b are partly determined by the com-
mon process noise v , they will not be independent,k

Žas required for the optimal current estimator Eq.
Ž ..19 . For calibration purposes it is also a normal
procedure to use mean values of the measurements
over a certain period of time in order to reduce the
noise, but this does not affect the theoretical analy-
sis.

4.2. Least squares estimation

If both d and u are completely known, there ism
no need to utilize the information in the y measure-2

Ž .ments, we can simply solve Eq. 23a as an ordinary
least squares problem. In our case, however, we con-
sider d as unknown, and the y measurements may2
then give valuable information about d and indirectly
also about y . In the following analysis we assume1
that u is a persistently exciting stochastic signal,m, j

and that all data are centralized, i.e., that d , u , yj m, j 1, j

and y are stochastic variables with zero mean. For2, j

details about centralization and the subsequent modi-
w xfication of the estimator, see, e.g., Ref. 1 . We also

assume observations of u , y and y fromm, j 1, j 2, j

an informative experiment with samples for j s
1,2, . . . , J.

In order to use the Kalman filter formalism, we
model d as generated by a white noise sequence ej 1, j

through a pure delay system. In the same way we
model the common noise part h in y and y asc, j 1, j 2, j

generated by a white noise sequence e . Expressing2, j
w T T xTy and y as linear combinations of zs d h and1 2 c

u , we then arrive at the following dynamic systemm

ed 1z s s sejq1 jh ec 2jq1 j
24Ž .

y sL z qL u qh1, j 11 j 12 m , j 1, j

y sL z qL u qh ,2, j 21 j 22 m , j 2, j

where the detailed expressions for the L matrices fol-
Ž . Ž .low from Eqs. 23a and 23b , and where h and1, j

h are white and independent noise sequences. This2, j
Ž .is a dynamic system as given in Eq. 1 with As0,

Ž .Bs0 and GsI, and the algebraic Riccati 8 then
results in

PsP sR sEe eT. 25Ž .z e j j

Ž .From Eq. 7 follows that the Kalman gain related
to the y measurements is2

y1OE T TK sR L L R L qR , 26Ž .Ž .2 e 21 21 e 21 22

where R sEh hT . With AsBs0 and appro-22 2, j 2, j
Ž .priate change of notation according to Eq. 26 , the
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Ž .optimal current estimator 19 now gives the theoret-
ical static estimator

OEy sL K y yL u qL uŽ .1, j < j 11 2 2, j 22 m , j 12 m , j

OE OEs L yL K L u qL K y ,Ž .12 11 2 22 m , j 11 2 2, j

27Ž .

or with

BT 1T Ty s u yŽ .1, j < j m , j 2, j B2

TOEL yL K LB Ž .12 11 2 221Bs s . 28Ž .TB OE2 L KŽ .11 2

Without known manipulated inputs, i.e., with
u s0, we have a simplified modelm, j

z sejq1 j

y sL z qh 29Ž .1, j 1 j 1, j

y sL z qh ,2, j 2 j 2, j

resulting in the simplified theoretical estimate
y1T Ty , jrjsL R L L R L qR y , 30Ž .Ž .1 1 e 2 2 e 2 22 2, j

T TŽ .or with y , jrj sy B1 2, j

y1T TBs L R L qR 2 L R L . 31Ž .Ž .2 e 2 22 2 e 1

Ž .In the same way as with the parameters in Eq. 19 ,
Ž . Ž .we can find B and B in Eq. 28 or B in Eq. 311 2

by identification of an OE model. In this special static
case, however, we can also find the parameters di-
rectly as the solution to a least squares problem. Let
us start by comparing the theoretical estimator Eq.
Ž .31 with a data based least squares solution. By
stacking the collected data yT , yT , . . . , yT in a1,1 1,2 1, N

data matrix Y and yT , yT , . . . , yT in a data ma-1 2,1 2,2 2, N

trix Y , we can express the relation between Y and2 2
Y as1

Y sY BqE, 32Ž .1 2

resulting in the least squares estimator
y11 1y1T T T TB̂s Y Y Y Y s Y Y P Y Y .Ž .2 2 2 1 2 2 2 1ž /N N

33Ž .

Ž T TFor a theoretical analysis we also stack z ,z , . . . ,1 2
T . Ž T T T . Ž T Tz , h ,h , . . . ,h and h ,h , . . . ,N 1,1 1,2 1, N 2,1 2,2
T .h in data matrices Z, E and E , and by use of2, N 1 2

Ž .Eq. 29 and for N™` we will then find
1 1 TT T TY Y s ZL qE ZL EŽ . Ž .2 2 2 2 2 2N N

™L R LT qR , 34Ž .2 e 2 22

and
1 1 TT T TY Y s ZL qE ZL qEŽ . Ž .2 1 2 2 1 1N N

™L R LT . 35Ž .2 e 1

Ž . THere, we make use of the fact that 1rN Z Z™R e
and that h and h are independent white noise se-1 2

Ž . Tquences, which means that 1rN L Z E ™ 0,2 2
Ž . T Ž . T T1rN L Z E ™ 0, 1rN E ZL ™ 0 and2 1 2 1
Ž . T1rN E E ™ 0 when N ™ `. By inserting Eqs.2 1
Ž . Ž . Ž .34 and 35 into Eq. 33 , we now find the estima-

Ž . Ž .tor 31 , showing that the estimators 31, 33 are
asymptotically equivalent. This connection between
Kalman filtering without dynamics and ordinary LSE

w xwas found also in Ref. 9 , but then without the gen-
Ž .eral dynamic estimator 19 as a basis, and also lim-

Ž .ited to the case were L sI or at least invertible and1
h s0, i.e., the case were y are noise-free measure-1 1

Žments of all states in the system possibly after a
.similarity transformation .

In a similar although somewhat more involved
way we can also show that the estimator

y1
T T1 1U Um mˆ w xBs U Y Y 36Ž .m 2 1T Tž /N NY Y2 2

Ž .is asymptotically equivalent with Eq. 28 .

4.3. Principal component regression

With a large number of y variables and a limited2
Ž .number of observations, the estimators 33, 36 may

have very large variance. In the common case with
collinear y variables, we can then make use of the2
fact that the information can be compressed into a
smaller number of latent variables determined by the
total number of independent variables in u and z.m

w xWe then collect all input data in either Xs U Ym 2
Ž . Ž .as in Eq. 36 or XsY as in Eq. 33 , dependent2
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on the problem formulation. By use of an appropriate
w xnumber of principal components 1,2 , the data is then

expressed as

XfTPT, 37Ž .
where T is the score matrix and P is the loading ma-
trix.

For convenience and due to space limitations we
now limit the treatment to the case where u s0,m, j

w xTi.e., to the case where X s y ,y , . . . ,y .2,1 2,2 2, N

We then replace the measured variables y with la-2, j

tent variables t sPT y , and make use of the factj 2, j
T Ž .that P PsI, and the system 29 is thus replaced by

z s ejq1 j

y s L z qh 381, j 1 j 1, j Ž .
T Tt f P L z qP h .j 2 j 2, j

Ž .The theoretical estimator 31 is then replaced by
y1T T T T TBsP P L R L PqP R P P L R L .Ž .2 e 2 22 2 e 1

39Ž .

Ž .By replacing y with T and inserting Eqs. 34 and2
Ž . Ž .35 into Eq. 39 , we find the corresponding data
based PCR estimator

y1 y1T T T T T TB̂sP T T T y sP P X XP P X Y .Ž . Ž .1 1

40Ž .

4.4. Partial least squares regression

The aim of PLSR is to improve PCR by finding t
variables that explain both the X and the Y data, and1
there exist at least two slightly different PLSR algo-

w xrithms 1 . Also here we limit the treatment to the case
were u s0, and it is convenient to start with them, j

PLSR method of Martens that makes use of linear
T Žcombinations t sW y where the weight matrixM 2
.W is found iteratively . The result of this is that Eq.

Ž .29 is replaced by the PLSR modelM

z s ejq1 j

y s L z qh 411, j 1 j 1, j Ž .
T Tt f W L z qW h .M , j 2 j 2, j

Ž .The theoretical PCR estimator 39 is then replaced
by the theoretical PLSR estimator

y1T T TBsW W L R L WqW R WŽ .2 e 2 22

=W T L R LT , 42Ž .2 e 1

Ž .while Eq. 40 is replaced by the data based PLSR
estimator

y1T TB̂ s W T T T YŽ .M M M 1 43Ž .
y1T T T Ts W W X XW W X Y .Ž . 1

The original PLSR method of Wold uses linear
Ž T .y 1 Tcombinations t s W P W y , with theW W 2

same W matrix as Martens and with a special load-
Ž .ing matrix P . The model 29 is then replaced byW

the PLSR modelW

z s ejq1 j

y s L z q h1, j 1 j 1, j

y1 y1T T T Tt f W P W L z q W P W h .Ž . Ž .W , j W 2 j W 2, j

44Ž .
Ž T .yTWith W W P instead of W, the theoreticalW

Ž .PLSR estimator 42 becomes
y1

y1 yTT TP W L R L W PŽ . Ž .2 e 2yTBsW PŽ . y1 yTTž /q P W R W PŽ . Ž .22

y1 T TP P W L R LŽ . 2 e 1

y1T T TsW W L R L WqW R WŽ .2 e 2 22

PW T L R LT , 45Ž .2 e 1

Ž .while the data based PLSR estimator 43 becomes
y1yT y1 yTT TB̂sW P P W X XW PŽ . Ž . Ž .Ž .

y1 T TP P W X YŽ . 1

y1 y1T T TsW P W T T T yŽ . Ž .W W W W

y1T T T TsW W X XW W X Y . 46Ž . Ž .1

We see from this that P disappears from the esti-W
mator expressions, and that the final theoretical as
well as the data based estimators are the same for the
Wold and Martens algorithms. This is, of course, well

w xknown 1 , although the relation to the underlying
Kalman filter is new.
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4.5. Dynamic system PCR and PLSR solutions

The optimal y estimator for dynamic systems1
Ž .given in Eq. 19 may also form a basis for dynamic

system solutions using PCR or PLSR. It is then natu-
ral to split the secondary measurements into y s2, k
w T T xTy y , where y are the secondary measure-21,k 22,k 21,k
ments that are linked to y only through a static sys-1
tem. The y measurements are then internally21, k

collinear, and they can thus be replaced by latent t
Ž . Ž . Ž .variables as in Eqs. 38 , 41 and 44 , i.e., both PCR

and PLSR may be used. Using, e.g., the score defini-
tion in the PLSR method of Martens, i.e., tsW T y ,2

Ž .the OEC estimator 19 will be replaced by
OE T OEy sC IyK W C yK CŽ .1,k < k 1 t 21 22 22

y1 OEP qIyA P B u qAK ttŽ . Žest est k t k

qAKOE y qC KOE t t yW T D u. Ž .22 22,k 1 t k 21 k

qC KOE y yD u qD u , 47Ž . Ž .1 22 22,k 22 k 1 k

T Ž OE Twhere t s W y , A s A I y K W C yk 21,k est t 21
O E . O E TK C and B s B y A K W D y2 2 2 2 es t t 2 1

AKOE D . The Kalman gains are here determined as22 22
Ž .the solution to the Kalman filter 7, 8 with

TTT TC s W C C andŽ .2 21 22

T T T TEW w w W EW w w21 21 21 22
R s .22 T TEw w W Ew w22 21 22 22

If we find the t variables by use of the PLSR me-
thod of Wold, we have to replace W T with
Ž T .y1 T TW P W , while the PCR method uses P in-W
stead of W T.

Ž .When the current estimator 47 is identified by
use of, e.g., a prediction error method, also past tk

values will be used as a basis for determining y ,1, k < k

with reduced variance as the expected result, and we
can in fact look at and treat the latent variables as or-
dinary measurement signals. An essential assumption
is here that the linear relations between y and t21,k k

T T Ž T .y1 Tgiven by P , W or W P W are time invari-W
ant and determined as in the static case either by PCA
or by the iterative PLSR algorithms. Note, however,
that time invariance is an essential assumption also in

Ž .the general estimator 19 .
If all or some of the y measurements follow the22

same dynamic response except for noise, and thus are

internally collinear, such measurements may also be
replaced by latent variables in order to reduce the
variance in the solution. However, since y is linked22
to y through a dynamic system, the iterative PLSR1
method cannot be expected to work, and we must be
content with using SVD or PCA to find these latent
variables. They may also then be combined with
known inputs or other measurements, and also with
other latent variables found by PCA or PLSR.

Ž .With u s0 and y s0, Eq. 47 is simplifiedk 22,k
to

OE Ty sC IyK tW CŽ .1,k < k 1 t 21

y1OE TP qIyA IyK tW CŽ .Ž .t 21

PAKOE tt qC KOE tt , 48Ž .t k 1 t k

showing the dynamic relation between the collinear
time series y represented by t and the time series21
y .1

We end this subsection with a general discussion
on dynamic system multivariate calibration methods.

Ž .The proposed estimator 47 is based on the asymp-
Ž .totically optimal estimator 19 . This is in contrast

with PCR and PLSR methods for identification of FIR
w xmodels 4 , where also the asymptotical least squares

solution is biased due to truncation as well as lack of
w xnoise modeling 3 . It is also in contrast with PLSR

w xmethods for identification of ARX models 5 , where
again the asymptotical least squares solution is bi-

w xased when the observation error is colored 3,6 .
In addition we must consider the fact that an ARX

estimator would make use of past y values that are1
not available as the present problem is formulated in
Section 3.1. As for the optimal ARMAX estimator
Ž .3 , an ARX estimator would then not utilize sec-
ondary y information in an optimal way. One obvi-2
ous effect of this would be that noisy y measure-21
ments collinear with y would be effectively ignored1
when the identification experiment gives low noise y1
information.

The fact that FIR and ARX least squares solutions
are not asymptotically optimal does not mean, of
course, that the PCR and PLSR solutions presented

w xin, e.g., Refs. 4,5 may not give good results in some
realistic cases with a limited number of observations.
An in-depth comparison between such known solu-
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Ž .tions and the proposed estimator 47 is, however,
beyond the scope of the present paper.

5. Simulation examples

Simulation studies are undertaken by use of MAT-
LAB, primarily the dlsim.m function in the control

w xsystem toolbox 13 , and the prediction error method
implemented in the pem.m function in the SI toolbox
w x14 . With an appropriate OE model specified, the
pem.m function identifies the optimal current estima-

Ž .tor 19 , where the secondary measurements y are2
also used as input signals. For validation compar-

Ž .isons, the RMSE criterion in Eq. 22 was used, with
y replaced by the appropriate estimate.1, k < k

5.1. Example 1: a second-order system with a first-
order process noise model

As a starting point, the following continuous sec-
ond-order process model with an additional first-order

Žprocess noise model was used e.g., interacting mix-
.ing tanks or thermal processes :

y1 1 0 0 0
xs xq uq v1 y2 1 1 0 

0 0 y1 0 1 49Ž .
w xy s 1 0 0 xqw1 1

w xy s 0 1 0 xqw .2 2

The system was discretized assuming zero-order
hold elements on the u and v inputs and a sampling
interval Ts0.1, and then simulated with u as a fil-k

Ž .tered PRBS signal with autocovariance r p suu
< p < Ž w x .0.8 in Ref. 3 , example 5.11 with as0.8 , e.g.,

an input that was persistently exciting of sufficient
order. The noise sources v , w and w were inde-k 1,k 2,k
pendent and normally distributed white noise se-
quences with zero mean and variances given below.

The simulated system was identified using the
Ž .OEP and OEC models 10, 16 with u and y ask 2,k

input signals and y as output signal, using Ns1, k

10 000 samples.
Ž .The OEP model 10 was specified as

w x w x w xnn s 0, 3,3 ,0,0, 3,3 , 1,1 , 50Ž .OEP

i.e., a model
B qy1 B qy1Ž . Ž .1 2 OEPy s u q y qe 51Ž .1,k k 2,k ky1 y1F q F qŽ . Ž .1 2

with

B qy1 sb qy1 qb qy2 qb qy3 52Ž .Ž .1 11 12 13

B qy1 sb qy1 qb qy2 qb qy3 53Ž .Ž .2 21 22 23

F qy1 s1q f qy1 q f qy2 q f qy3 54Ž .Ž .1 11 12 13

F qy1 s1q f qy1 q f qy2 q f qy3 . 55Ž .Ž .2 21 22 23

Ž Ž ..The OEC model Eq. 16 was specified as
w x w x w xnn s 0, 3,4 ,0,0, 3,3 , 1,0 , 56Ž .OEC

Ž . Ž y1 .i.e., the same model as Eq. 51 , but with B q2
altered to

B qy1 sb qb qy1 qb qy2 qb qy3 . 57Ž .Ž .2 20 21 22 23

As the main purpose of the simulations was to
verify the theory, no attempt was made to find the
model order and model structure from the data. The
model order can, however, be found by ordinary use
of one of the several available subspace identifica-

w xtion methods 7 , and a systematic method for find-
w xing the structure is presented in Ref. 10 . For the OEP

and OEC models, no attempt was made to force
Ž y1 . Ž y1 .F q and F q to be identical, which they the-1 2

oretically should be.
As a basis for comparisons given a specific exper-

imental condition, each model was identified and
validated in Ms100 Monte Carlo runs using inde-
pendent data sets. In order to limit the influence of
local minima problems, each identification and vali-
dation given a specific data set was repeated Js5

Žtimes with randomized initial B parameters b il, jq1
Ž .sb = 1q0.5e , with e as a normal random vari-il, j

.able with zero mean and variance 1 .
The mean RMSE values and RMSE standard de-

viations for N s 10 000, r s 0.1, r s 0.01 andv 22
varying r values are given in Table 1, showing an11
obvious agreement between results based on simula-
tion and theory. Table 1 also includes theoretical

OEP T(RMSE values Var y s C P C qrŽ .( 1,k < ky1 1 1 11

Table 1
Validation RMSE mean values and standard deviations and theo-

Ž .retical mean values for OE models multiplied with 10000

r OEP OEP OEC OEC11 th. th.
y810 177"5 177 173"6 173
y610 177"5 177 173"5 173
y410 204"6 203 200"5 200
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ŽFig. 2. Segment of validation responses for the OEP model Eq.
Ž .. Ž .51 using both u and y as inputs dashed, RMSEs0.0273 and2

Ž w xan OE model using only u as input nn s 0,3,0,0,3,1 , dotted,OEU
.RMSEs0.0906 . The experimental conditions are given by r sv

1, r s0.0001, r s0.01 and Ns200, and the ideal validation11 22
response is shown by solid line.

OEC T OEP(and Var y s C P C q r with PŽ .( 1 ,k < k 1 1 11
OEC Ž . Ž .and P computed according to Eqs. 8 and 20 .

The results in Table 1 were obtained from Ns
10 000 samples. To indicate expected results for a
more realistic number of samples, and at the same
time visualize the degree of model misfit behind the
RMSE values in Table 1, specific validation re-
sponses for models based on Ns200 samples are
shown in Fig. 2. Fig. 2 also gives a representative
picture of the improvement achieved by including y2
as an input signal in addition to u.

5.2. Example 2: dynamic system PCR and PLSR
solutions

For simulations of the dynamical DPCR and
DPLSR solutions in Section 5, three independent fil-
tered white noise sequences were generated. The fol-
lowing continuous system of three independent sec-

Žond order systems was used as a starting point with
.asy1 :

0a 0 0 1 0 0
00 a 0 0 1 0
00 0 a 0 0 1x s xq v10 0 0 a 0 0
v0 0 0 0 a 0 2

0 0 0 0 0 a v3

w xy s 1 1 1 0 0 0 xqw1 1

w xy s L 0 xqw .2 21 2

58Ž .

Here, L was a 200=3 matrix with uniformly21
Ž .distributed random parameters in the interval 0,1 .

The system was discretized assuming zero-order hold
elements on the v inputs and a sampling interval T
s0.1. The system was then simulated with v, w and1
w as independent and normally distributed white2
noise sequences with zero mean. The R and Rv 22
covariance matrices were diagonal, with uniformly

Ž .distributed random parameters in the intervals 0,1
Ž .and 0,r , respectively, while the y variance was22 1

r s0.0001. Different values of r were used as11 22
described below.

The simulations started with r s0.01 and Ns22
200. In order to find the appropriate number of com-

Ž .ponents, the static PCR and PLSR estimators 40, 46
were first determined for different numbers of com-
ponents A. In addition the dynamical DPCR and

Ž .DPLSR estimates according to Eq. 48 were identi-
Ž w xfied using the OE model see Ref. 14 for definition

.of nn

w x w x w xnns 0, 2, . . . ,2 ,0,0, 2, . . . ,2 , 0, . . . ,0 . 59Ž .
Each model was identified in Ms10 Monte Carlo
runs, with validation against independent data sets
with Ns200 samples. The resulting mean RMSE
values are plotted in Fig. 3, and there we find the op-
timal number of components As3. This is not sur-
prising since the system has three independent noise
sources. Fig. 3 also indicates that PLSR is slightly
better than PCR, and that the dynamic solutions are
better than the static ones.

Fig. 3. RMSE mean values as function of number of components
used in PCR, PLSR, DPCR and DPLSR models for r s0.01,22
based on 10 Monte Carlo runs with Ns200 samples.
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Table 2
Validation RMSE mean values and standard deviations, based on
Ns200 samples and A s3 components

r RMSE RMSE22 PLSR DPLSR

0.001 0.00301"0.00028 0.00305"0.00020
0.01 0.0097"0.0006 0.0086"0.0007
0.1 0.0318"0.0035 0.0257"0.0054

The simulations were repeated using also r s22
0.001 and r s 0.1. Mean validation results and22
standard deviations based on Ms100 Monte Carlo
runs with As3 are given in Table 2, indicating that
the improvement obtained by using the dynamical
model increases with increasing y noise level. At the2
same time the explained proportion of sample vari-

Žance decreases from 0.95 with r s0.001 to 0.1922
.with r s0.1 . For r s0.1 the optimal number of22 22

PLSR components are in fact As2, with slightly re-
duced RMSE values as compared with use of As3.

6. Concluding remarks

An optimal estimator for nonmeasured primary
output variables y from, e.g., an industrial plant is1
developed. The estimator utilizes all available infor-
mation, also in secondary output measurements y ,2
and the theoretical results are verified through simu-
lation of a simple system. Industrial applications in,
e.g., polymer extruding are now investigated, with
promising preliminary results.

It is further shown that the general dynamic opti-
mal estimator in the special static case results in a
least squares estimator valid for problems were the
estimator variables includes noisy measurements.
This is also extended to cover PCR and PLSR, and
as a result it is shown how the PLSR methods of
Wold and Martens are related to each other. The
practical usefulness of this is not further investigated.

Finally, it is indicated how dynamic system PCR
Ž . Ž .DPCR and PLSR DPLSR solutions can be

achieved as special cases of the general dynamic sys-
tem estimator. As demonstrated in a simple simula-
tion example, this may result in a considerable reduc-
tion of the y estimation covariance, compared with1
ordinary PCR and PLSR. The full potential of this,
theoretically and in practical applications, are open
questions. A comparison with known PCR and PLSR
methods for identification of dynamical FIR and ARX
models is left for further research.
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