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The noise handling capabilities of principal component regression (PCR) and
partial least squares regression (PLSR) are somewhat disputed issues, especially
regarding regressor noise. In an attempt to indicate an answer to the question,
this article presents results from Monte Carlo simulations assuming a multivariate
mixing problem with spectroscopic data. Comparisons with the best linear
unbiased estimator (BLUE) based on Kalman filtering theory are included. The
simulations indicate that both PCR and PLSR perform comparatively well even
at a considerable regressor noise level. The results are also discussed in relation
to estimation of pure spectra for the mixing constituents, i.e. to identification of
the data generating system. In this respect solutions to well-posed least squares
problems serve as references.

1. Introduction
The noise handling capabilities of principal component regression (PCR) and

partial least squares regression (PLSR) are somewhat disputed issues, especially
regarding regressor noise (X-noise). In an attempt to indicate an answer to the
question, this article presents results from Monte Carlo simulations assuming a
typical multivariate calibration problem, where several constituents with unknown
spectroscopic properties are mixed.

The performances of PCR and PLSR are certainly noise dependent, but to which
degree? A more specific question is how well these methods handle noise of different
levels, as compared with theoretically best possible prediction results, which in the
simulations are found by use of the best linear unbiased estimator (BLUE) based on
Kalman filtering theory. The results are also discussed in relation to estimation of
pure constituent spectra, i.e. to identification of the data generating system. In this
respect solutions to well-posed least squares (LS) problems are used for comparisons.

The theoretical background based on latent variables (LV) modeling is summar-
ized in Section 2, with references to more detailed treatments of PCR and PLSR.
The simulated mixing problem and the simulation results are presented in Section 3,
and conclusions are given in Section 4. Some details concerning PLSR modeling and
constituent profile estimation are collected in Appendix A and B.

2. Theoretical background

Model assumptions and problem statement

Assume centered data generated according to the LV model

Yk = C 1 Zk f 

Xk = C 2 Zk + ek>



where zk 	 is a random vector of latent variables, i.e. the expectation Ezi z,T = 0
for all j k, and where yk 1 is a vector of response variables, while x k E ^P 1

is a vector of regressor variables. C 1 E 11 m " A and C2 e fåP " A are time-invariant
matrices, while fk and ek are independent and random noise vectors of appropriate
dimensions.

Also assume m A and independent components of z and y, i.e. diagonal
expectations Ezk z,T and Eyk y,T. Without loss of generality we may then assume an
LV representation such that

C 1 = [Im oh (3)

i.e. we assume that each response variable is a latent variable plus some random
noise. Collection of data from N observations in matrices Y and X E 11 N " P
thus gives

Y =ZCi +F =[ZY Zosci []+F=ZY+F

X = ZC ZT + E = ZY CY + Zosc Cosc + E = YCY — FCY + Zosc Cosc + E,	 (5)

where it is a part of the assumptions that A < < N <p. The OSC notation is borrowed
from recent articles on orthogonal signal correction (Wold et al. (1998), Fearn (2000),
Trygg and Wold (2001), Westerhuis et al. (2001), Trygg (2001)). The matrix
ZoscCosc thus contains the structured but Y-orthogonal information in X. With the
assumptions given the columns of C2 may typically be scaled versions of pure
constituent spectral profiles.

The assumption A < <N < p makes it natural to use PCR or PLSR for calibration
purposes, and we will in the following focus on the PCR and PLSR noise sensitivity
in relation to two problems:

• The multivariate calibration problem of finding an estimator B for prediction of
new responses from new regressor observations according to

J new= x1ew.'	 (6)

• The problem of estimating the pure constituent profiles in C 2 , i.e. the problem of
identifying the data generating system.

B from ordinary least squares regression

The ordinary LS solution for B obtained from the data is (e.g. Johnson and
Wichern, 1998)

BLS= (X TX) 1X TY.	 (7)

Under the present assumptions with a large number p of x variables relative to the
number N of observations, the underlying LS problem will be ill-posed. In this case
there is a need for regularization, which can be based on LV modeling and PCR or
PLSR as summarized below.

(4)



C2 from ordinary least squares regression

The columns Cy of C 2 that are directly related to the responses Y can be found
from (5) using LS regression according to

CY = XTY(Y T Y) -1 • 	 (8)

Under the assumptions given the underlying LS problem is well-posed. We will later
discuss this result in relation to the PCR and PLSR methods.

Multivariate calibration model

Multivariate calibration using PCR or PLSR assumes a model

Y=TQT+F

X=TLT+E,

resulting from (4,5) through an unknown similarity transformation. Here, T is the
matrix of scores, while L is the matrix of loadings. For the two problems under study
we may note the following:

• PCR and PLSR use different factorizations of ZCi and ZCZ, as summarized
below.

• The pure constituent profiles in C 2 = [Cy Cosc] may be confounded and scaled
in L.

The Helland predictor

The PCR and PLSR regularizations are based on the latent variables model
(9, 10) above. The LS solution of (10) is

T = XL(L TL) - 1 ,	 (11)

and from (9) and (11) we thus find the LS predictor related to the latent variables

Q T = (TTT) -1 T TY = ((L 
TL) -1 LT X T XL(LTL) -1) - 1 (LTL) - 

1 LTX TY, (12)

which after some simplifications results in fitted experimental responses according
to (9)

= TQ T = XL(L T X T XL)- 1 LTX TY.	 (13)

The regularized LV predictor B to be used in (6) thus becomes

BLV = L(LT X T XL) - lLTX TY. 	 (14)

This predictor was first presented by Helland (1988), although there not explicitly
based on an LV model.

The problem now is to find L, or more realistically good estimates L. A simple
choice is L = IP , which brings us back to the LS solution (7). Other choices give the
PCR and PLSR solutions.



The PCR predictor
In PCR the loading matrix is L = P, where P is found from a principal component

analysis (PCA) of X (e.g. Johnson and Wichern, 1998). We may also find T = U1S1
and P = V 1 from the singular value decomposition (SVD)

r T
X = USV T = [U1 U2] ^1 S LVz 1	 (15)

a 

= U i S 1 Vi + u2 s2v = 'P T + E.

The LV represented by the score matrix T are thus based on X information only.

The PLSR predictor
Regarding PLSR we will discuss two algorithms:

• The original method (Wold et al., 1982) with an orthogonal score matrix I.
• The alternative method (e.g. Martens and Næs, 1989) with a non-orthogonal score

matrix TM .

Some of the latent variables represented in the PCR score matrix T may often be
very weakly correlated with the response variable in y. The PLSR solution to this is
to use both X and y information in order to find improved versions of T and L. In
the Wold and Martens algorithms this is done by step-wise computations (e.g.
Martens and Næs, 1989), but a one-step procedure is also available (Di Ruscio, 2000).
The original orthogonal PLSR algorithm of Wold is based on the factorization

X=TW PWWW T + E, (16)

where PW is a special non-orthogonal loading matrix. Both T om, and the loading
weight matrix W are orthogonal, and W TW = IA (see Appendix A for a detailed
discussion).

The non-orthogonal PLSR algorithm of Martens is based on the factorization

X = TMWT + E,

where TM is non-orthogonal, while * is the same as in the Wold algorithm. Since
KW is a low dimensional and invertible matrix, application of (14) with
L = WWTPw and L = W give the same result,

b = W(WTXTXW) - 1 WT XTy.	 (18)eLSR 

See e.g. Martens and Næs (1989) for detailed descriptions of the algorithms, and
Ergon and Esbensen (2001) for a new didactic version.

The optimal predictor
In order to obtain a basis for comparisons we need an optimal predictor

formulation. The optimal predictor may be found by use of general Kalman filtering
theory (e.g. Grewal and Andrews, 1993). We will, however, derive the optimal solution
directly by introduction of the optimal state estimate related to the LV model (1,2),

(17)

Zk = Kxk, (19)



where K is chosen such that the expectation	
77R = E(zk — 2k)(zk — zk ) T = E[Zk — K(C 2 Zk + ek)] [Zk — K(C 2 Zk + ek)]T

= (I — KC2)E(zk zk) (I — KC 2 ) T + KE(ek e,T )K

is minimized. Using Ezk z /T = R Z and Eek e,T = R e we find (e.g. Gelb, 1974)

trace (R) = —2(I — KC 2 )R Z Cz + 2KRe ,	 (21)

Sr k = C1 KXk,	 (23)

i.e. the optimal predictor is

BKF = K TCT = (C2 R e CT + Re) -1 C 2 RZ Ci • (24)

Optimality here means that (24) gives the best linear unbiased estimate (BLUE), and
the best possible estimate whatsoever assuming Gaussian noise distribution (e.g.
Grewal and Andrews, 1993). This predictor will be used as a source of reference in
the simulations in Section 3.

Pure spectra estimation from PLSR and PCR results

Pure Spectra estimates may be found from the well-conditioned L,S solution (8),
and there is thus no need for use of the PCR and PLSR results for this purpose. It
is, however, a central part of the PLSR algorithms that the first loading weight vector
with a single response variable yj is found as (e.g. Martens and Næs, 1989)

TX yj
Wjl	 /	 T

TTXXyj

From (8) thus follows that the column of C 2 corresponding to yi is estimated as

C2j — 3yj XXTyj(yT yj) 1W l•	 (26)

With the representation used in (4), i.e. Y = Zy + F, the first loading weight vector
thus gives a scaled LS estimate of C2j . In relation to the noise handling capabilities

it is reassuring to know that a single response PLSR (PLS1) under the given
assumptions results in a pure spectrum estimate that is identical with the result from
a well-posed LS problem (see also simulation results in Section 3). For PCR the
situation is more involved (see Appendix B).

Isolation of Y-orthogonal components

From (5) follows

(20)

OK

i.e. 0(trace(R))/8K) = 0 gives the optimal solution

K= RZ CZ(C 2 R Z CZ +R e) 1 .	 (22)

This intermediate result, derived from general Kalman filtering theory, was first
presented by Berntsen (1988).

The resulting optimal response estimate is

(25)

X — YCY = Zosc Cosc — FCYT + E.	 (27)
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Using CY from (8) we may compute X — YCY, and PCA/SVD of the result gives

X —YCY = USVT = [Uosc
E

U 1 [Sosc

O

T
0 VOSC

E	 VE 
= Uosc Sosc Vosc + E. (28)
S 

Choosing 43SC = Uosc we will thus find the confounded and scaled profiles of the )(-
orthogonal interferants in

Cosc = VOSCSosC•	 (29)

Note that the scaled and sign indeterminate profile of a single unknown interferant
will be found directly from (29). For correct scaling we would need additional
information.

Consequences of data centering and standardization

Centering of the data, i.e. using X4— X — X and Y — Y — V where X and V are
column mean values, has no effect on the C2 estimate according to (8) and (29).
However, standardization of the columns of X and Y to unit variance does affect C2,
and must thus be properly accounted for.

3. Monte Carlo simulation

The practical case behind the following simulation example could be a spectro-
scopic measurement of a solution with three different chemical constituents. A typical
simulation result is shown in Fig. 1. Note the overlapping peaks and considerable X-
noise.

Figure 1. Mean spectrum and standard deviations (Fig. a — dashed lines) plus a typical
realization of a noise free original spectrum (Fig. a — solid line), and corresponding centered
and noise corrupted spectra (Fig. b) of a mixture of three chemical constituents. The X-noise
covariances are here rue = 10 (Fig. b — solid line) and ree = 100 (Fig. b — dotted line) (see
relation to signal-noise-ration below). The centred noise free spectrum is shown by dashed line

in Fig. b.



The simulations are based on assumed discrete frequency spectra in the range
0 <f s 500 frequency units (f.u.),

xk(J
{ )	 2	 Zf 	 2 (3 -i- Z l  k) + 	 2	 2f2f  2 (3 + Z2

^ k )^(f i -ff2 ) 2 + (2(fif)	 ^(f z -f) + (2Cf2f)

+ 	 2	 f2 	 y {^2 (3 + z3,k) + ek(f)	 (30),\/(f
3 —f ) + (2u3J J

= 3C2(f)[l 1 11T + C2(f)zk + ek(f),

with resonance frequencies f1 = 200 f.u., f2 = 250 f.u., f3 = 300 f.u. and relative
dampings Ci =  = S3 = 0.05, and with C2(f) E R ix 3 . It is also assumed that the
variations in the concentration of Constituent 1, Constituent 2 and Constituent 3,
denoted Z i,k, Z2,k and z3,k , are independent and randomly generated zero mean
numbers with normal distributions and variances rzz = Ez ,k = Ezik = Ez3 ,k = 1. The
noise terms ek(f) are independent and randomly generated zero mean numbers with
normal distribution and equal variances ree = Ed (f). Several ree values were used in
the simulations.

Signal-noise-ratio for the X-data

The total signal-noise-ratio (total SNR) for the X-data used in the simulations
can be defined as the ratio between the total variances in the centered matrices ZCz
and E in (5). This gives the expectation (e.g. Johnson and Wichern, 1998)

E{total SNR} = E
trace(C 2 ZTZC2)	 trace(C2CZ)

trace(ETE)	 pr„
(31)

The expected total SNR for the different values of r ee used in the simulations are
given in Table 1. Note the very low total SNR for ree = 100. Also note, however, that
the signal-to-noise ratio in the central part of the spectrum is better than that. The
highest expected column SNR value is found at the frequency f= 250 as (in Matlab
notation)

trace(C2(250, :) CZ (250, :))
E{max. column SNR} — 	 	 (32)

ree

and is also included in Table 1.

Case with a single response variable

It was initially assumed a single response variable

Yk—Z2k= [0 1 O]Zk +fk. 	(33)

Table 1. Expected total and maximum column SNR for different
values of X-noise variance ree.

ree 1	 3.2	 10	 32	 100

total SNR	 22.6	 7.06	 2.26	 0.71	 0.23
max. column SNR	 111.6	 34.8	 11.16	 3.49	 1.12
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In a practical case this would mean that the primary response of interest would be
the concentration of one of the three chemical constituents, while the others would
be treated as interferants.

The total model with centered data is then

Yk = [O 1 O[ zk + J k

Xk = C 2Zk + ek>	 (35)
where k = 1,2, ... , N indicates sequences of y and x observations corresponding to
different concentrations of the three constituents, and where C 2 e R5" x 3

Ezk zk =I3i rff =Efk = 0.0001 and Re =Eek ek =reel,"

Prediction ability. Based on a modeling set with N= 100 and a validation set with
Nva1 = 1000 centered observations, M = 100 Monte Carlo runs gave the mean root
mean square errors of prediction (RMSEP) as shown in Fig. 2. Mean RMSEP values
based on the theoretical Kalman predictor (24) are also plotted.

PLSR results at different noise levels and the corresponding results for PCR and
the theoretical Kalman predictor (24) are shown in Table 2.

(34)

Figure 2. Mean validation RMSEP values for different numbers of PLSR components, based
on M= 100 Monte Carlo runs using N= 100 observations in the modeling set. Two different
X-noise levels, r„= 10 and r„-= 100 are used. The mean validation RMSEP values based on

the theoretical Kalman predictor (24) for A = 3 components are included.

Table 2. Mean validation PCR, PLSR and Kalman predictor
results from M= 100 Monte Carlo runs using N= 100 observa-
tions in the modeling set, A = 3 components and different values

of reC.

ree RMSEPpcR RMSEPPLSR RMSEPKF

1 0.0251 0.0251 0.0244
3.2 0.0460 0.0461 0.0436
10 0.0866 0.0862 0.0770
32 0.1799 0.1751 0.1357
100 0.3718 0.3393 0.2343
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Figure 3. Mean validation PCR and PLSR results from M = 100 Monte Carlo runs using
r„= 10, 32 and 100 (expected total SNR = 2.26, 0.71 and 0.23), A = 3 and different numbers

N of modeling observations. The Kalman predictor results are shown by solid lines.

The corresponding PCR and PLSR results at different noise levels ree and with
different numbers N of modeling observations are shown in Fig. 3. Not surprisingly,
the predictors deteriorate for small values of N, especially at high noise levels. Note
that the difference between PCR and PLSR is more pronounced at high noise levels,
and that for large values of N the predictions seems to approach the theoretical
Kalman predictions.

From Table 2 and Fig. 3 it may be concluded that both PCR and PLSR in this
case handles X-noise well, as compared with the theoretical Kalman predictor,
especially at noise levels up to ree = 10 (total SNR = 2.26), where for both PLSR and
PCR the relative RMSEP increase due to noise is 12% for N = 100. For N= 400 the
relative RMSEP increase due to noise is 9 to 10% at r„= 100 (total SNR = 0.23).
See also Fig. 1 for an illustration of the noise levels.

Spectra estimation. An LS estimation according to (8) resulted in a typical case with
A = 3, N = 200 and r„=- 10 in the estimated spectral profile for Constituent 2 shown
in Fig. 4a, while the profile estimates according to (29) for the unknown constituents
1 and 3 are shown in Fig. 4b and 4c (sign indeterminate and assuming the same
scaling factor (yTy) -1 as for Constituent 2). As can be seen, the known constituent
profile is estimated fairly well, while the profiles of the two unknown constituents are
confounded.

Case with two response variables

The output model (33) was in this case replaced by

Cyl'kJ_rl 

0 01

Yz k	 L0 1 0
+ 1,k I.

L 

f
Z2,k	 {

J 2,k
Z 3,k

(36)

Two separate PLSR models with C 1 = [1 0 0] and C 1 = [0 1 0] , and with A = 3
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Figure 4. Estimated spectral profiles for a single known constituent (Fig. a) and for two
unknown constituents (Fig. b and c), using A= 3 components, noise variances r„= 10 and
N= 200 observations in the modeling set. The known reference profiles are shown by dashed

lines.
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Figure 5. Estimated profiles for two known constituents (Fig. a and b) and for a third
unknown constituent (Fig. c), using noise variances ree = 10 and N= 200 observations in the

modeling set. The known reference profiles are shown by dashed lines.

components, gave in a typical case with N = 200 and r„= 10 the individually
estimated profiles shown in Fig. 5a and b, while the profile for the unknown
Constituent 3 is shown in Fig. 5c (assuming the same scaling factor (y Ty) -1 as for
Constituent 1). In this case all constituent profiles are estimated fairly well, including
the unknown interferant profile.

Conclusions

The noise handling capabilities of PCR and PLSR have been tested by simulations
of a typical multivariate mixing problem, using spectra with p = 500 discrete frequen-



dies and different X-noise levels. Comparisons with optimal Kalman predictors show
that both PCR and PLSR perform well even at a considerable noise level (ca. 12%
relative increase in RMSEP for N= 100 observations at a total signal-to-noise ratio
SNR = 2.26%, and ca. 10% relative increase in RMSEP for N = 400 observations at
a total SNR = 0.23). Prediction errors due to X-noise as functions of total SNR and
N are presented in Fig. 3. Corresponding tests on constituent profile LS + PCA/SVD
estimation show similar good noise handling capabilities.

Appendix A

Latent variables PLSR models

In Section 2 a new latent variables representation of the orthogonal PLSR
factorization was presented. This calls for further discussion and argumentation.

The two PLSR algorithms of Wold and Martens may use LV models as starting
points. The Martens algorithm is in this respect quite straightforward. Using the
model

Y = TM Q T, + F	 (37)

X= TOY' +E,	 (38)

and following the derivation of the He lland predictor (14), the predictor is

B^LSR = W(W T X TXW) -1W TX TY,	 (39)

where W is found from the modeling data through a step-wise procedure (e.g.
Martens and Næs, 1989). Since W TW = IA , (38) gives the LS estimate TM = X*, and
the estimate

XM = TM W T = XWW T .	 (40)

The Wold algorithm is normally associated with the model (e.g. Trygg, 2001)

Y=TW QW+F	 (41)

X = TW PW + E,	 (42)

although the step-wise algorithm also finds the same loading weight matrix W as in
the Martens algorithm, and thus an identical predictor (Ergon, 1998). This model is
unfortunate in that the resulting XN, = TW PW is different from X M according to (40),
in spite of the fact that the predictors are identical. This is corrected by use of the
model

Y=TWQW+F (43)

X=TWPWWWT+E,

from which follows the LS estimate

tw =X1V(P1;,W)-1

and

(44)

(45)

Xw=T
W PWWW T = XW(PWW)- 1 PWWW T =XWW T =XM . (46)

Note that (45) is used also in connection with the model (41, 42), although this is



less obvious (e.g. Helland, 1988). Another argument for use of (43,44) follows from
the equations for profile estimation derived in Appendix B. It is there shown that the
models (37, 38) and (43,44) give the same CY estimate, while (41, 42), on the other
hand, gives a different result. Considering that the Wold and Martens algorithms
give the same predictor, a different CY seems quite illogical. A closer look at the two
alternative Wold models reveals that (42) gives

X = TwPw+ E= tiPi +12P2+...+tA 1PA 1 + LAPA+ E I, 	 (47)

while (44) gives

X=TwPWWW T + E =t 1 Åi + t2Pi+... + iA-1PÅ-1+ tA WÅ+ E2,	 (48)

i.e. there is a difference in the last component only. This is due to the bi-diagonal
structure of PwW (Manne, 1987). It is also a result of the step-wise PLSR algorithm
(e.g. Martens and Næs, 1989), where i s for each component is found from the local
model Xa _ 1 = to wq + E, while Pa is used only to find X, used for computation of ta+ 1
and VVa +1 etc.

Appendix B

Constituent profile estimation from PCR and PLSR results

As shown in (25, 26), the first loading weight vector w jl related to a specific single
response y; gives an LS optimal estimate (possibly scaled) of the corresponding pure
constituent spectrum C2 . As shown below, this result may also be found by
reconstruction of the similarity transformation from the model (4, 5) to (9, 10). This
may also be applied to PCR, although the result is then not LS optimal.

Reconstruction of similarity transformation

Assume that (9, 10) are obtained from (4, 5) through the similarity transformation

Y =ZS T S TCi +F=TQT+F

X=ZS -TS T CZ +E=TLT+E,

i.e. ZS' = T, C I S = Q and C 2S = L. From (3) thus follows that

Q= C I S = LIm OlL S ]=sY,
S ,,osc

i.e. Sy = Q. The first m rows in S are thus given by the m rows in Q. From (49)
follows further that an LS estimate of SY = Q T is found from

SY = Q T = 
(TTT)-1fTy	 (52)

Pure constituent profile estimation

It further follows from (49, 50) that

STTTS T (Z T Z) - I = ZTZ(ZT Z) - I = I
A>	 (53)

(49)

(50)

(51)



and thus by use of (4)

C 2 = ^Cr Cosa ^ C2 ST T TS T (Z T Z) -1  LT T TS T

L
YTY T
	

J 
1 (54)

L 0 Zosc Zosc

= LTTT[T 
ST ] C(Y

TY) 

1	  - J
Y	 osc	 0	 (ZoscZosc) 1

The pure constituent profile estimate is thus by use of (52) found as
"Cy =LT TTSY(Y T Y) -1 = LT T TQ T(Y TY) -1 = LT TY(Y TY) - 1 ,	 (55)

where the columns of CY are scaled estimates of the pure constituent profiles
corresponding to y l, Y2, • • • , y,

The matrix L will depend on the specific multivariate calibration method used. A
PCR model uses L = P and the LS estimate T = XP from (15), and (55) then results in

t‘ 	 =PP TX TY(YTY) - 1 	 (56)

The Martens PLSR algorithm uses L = W and the LS estimate TM = XW from (17),
where W is the loading weight matrix, and (55) then results in

PLSR = WTY(YTY)-1 = *IV TXTY(YTY) - 1 .	 (57)

The Wold PLSR algorithm uses L = WW' W TPW and TW = XW(PWW)- 1 (see Appendix
A), which results in

PLSR = WW T PW TTY(YTY) - 1 = WWTX TY(YTY) - 1 	 (58)

i.e. the same estimate as for the Martens algorithm. This is natural, since the two
PLSR algorithms give the same predictor B (see a detailed discussion of the two
PLSR methods in Appendix A). For both PCR and PLSR the estimates of the
columns of CY may be found jointly (PCR or PLS2), or separately (PCR or PLS1).
This will give identical results for PCR, while the PLS1 and PLS2 results normally
are different.

Comparison of PCR and PLSR results

The pure constituent profile estimates (56) and (57, 58) should be compared with
the estimate (8), which is optimal in the LS sense. Starting with PLSR we find for a
single response variable yj (PLS1)

C2j
sR 

= WjWj XTYj(Yj Yj) -1 
= [Aril

Wj2 ... *JA] X TYj(YjY) - 1 • 	 (59)

However, it is a part of the PLSR algorithms that XTy j = ./yj XXTyj Wjl and that
WT W. = I (e.g. Martens and Næs, 1989), and we thus find

1
0

C2J
SR 

= V Yj XX T yj [Wjl Wj2 • .. W'A J (YjYj)- 1=X T Yj(Yj y) 1 .	 (60)



Using this for all the columns of Cy we will find the total estimate ty given by the
LS solution (8). The PSLR algorithms are thus optimal in the sense that the first
loading weight vectors for the different single responses provide LS estimates of the
corresponding pure constituent profiles. The PCR estimate (56), on the other hand,
results in

2 R PjPj X Tyj(yj yj) -1 =	 Pj2 • . • PjA l

T
Pjl

T
Pj2

XTyj(yT yj) -1 ,	 (61)

T
PjA

from which follows that the LS solution (8) is obtained for A =p only, i.e. when
Pj PT = Ii,. When it comes to estimation of Cy, the PCR estimate is thus generally
not optimal in the LS sense.

The difference between PLSR and PCR based constituent profile estimation may
be small. As a test the PCR based results corresponding to Fig. 5 were computed by
use of (61), and the differences from the PLSR results were hardly visible.

There is, however, a difference when it comes to the number of components
necessary for constituent profile estimation. As shown in (26), the first PLSR
component only is actually used, and the rest are thus unnecessary in this respect.
When using PCR for this purpose, however, the optimal or a larger number of
components must be used. As an example, Fig. 6 shows results corresponding to Fig.
5, but now with use of A= 2 PLSR and PCR components only.

The PCR results for A= 2 show confounded spectra for the two known constitu-
ents, while the PCR and PLSR estimates for the unknown constituent are quite
similar. As pointed out above, the LS solution (8) is obtained for A =p, and
simulations using the present mixing example with three constituents show very good
results for A r 3.
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Figure 6. Estimated profiles for two known constituents (Fig. a and b) and for a third
unknown constituent (Fig. c), using N= 200 modeling observations and A= 2 PLSR and

PCR components. The X-noise variances are re = 10.
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