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Abstract: The Smith-predictor is a well-known control structure for industrial time delay
systems, where the basic idea is to estimate the nondelayed process output by use of a
process model, and to use this estimate in an inner feedback control loop combined with an
outer feedback loop based on the delayed estimation error. The model used may be either
mechanistic or identified from recorded data. The paper discusses improvements of the
Smith-predictor for systems where additional secondary process measurements without
time delay are available as a basis for the estimation. The estimator may then be identified
from recorded data also in the common case when the primary outputs are sampled at a
lower rate than the secondary outputs. A simulation example demonstrates the feasibility
and advantages of the suggested control structure.
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1. Introduction

Time delay systems are frequently encountered in industrial control practice, and use
of a Smith-predictor structure may be the best known strategy to follow [1]. The basic idea
is then to use a process model to obtain an estimate of the nondelayed system output to be
used in an inner feedback loop, combined with an outer feedback loop based on the delayed
estimation error. The model used may be either mechanistic or identified from recorded
data.

In many industrial cases the process under control has one primary output
measurement y1 (k) and several secondary measurements y2(k). As indicated in Fig. 1, the
measurements y2(k) may together with the controller output u(k) be used as inputs to an
estimator for the primary property z(k) without time-delay. The estimator thus replaces the
traditional Smith-predictor model. Since the secondary measurements may carry valuable
information about the process disturbance v(k), the estimate of z(k) may be considerably
improved by use of the additional y2(k) information. The estimator may be designed on the



basis of a mechanistic process model, including known noise covariances. It may, however,
be more conveniently identified from experimental process data. Feedback or feedforward
of y2(k) may also be incorporated in the control structure.

In Fig. 1 the noise sources v(k), wi(k) and w2(k) are assumed to be white. This is often
a reasonable assumption for the measurement noise, while the process noise v(k) may have
to be modeled as filtered white noise, with the filter included in the process model.

Fig. 1. Modified Smith-predictor multirate control utilizing secondary process
measurements

As also indicated in Fig. 1 the primary output will in many cases be sampled at a low
rate, i.e. yi (j) may be just some of the high sampling rate yl (k) values. This is typically the
case for product quality measurements, where physical sampling and e.g. chemical analysis
are necessary. A low primary output sampling rate makes it necessary with a hold function
in the outer feedback loop. Alternatively, the yl (j) measurements may be compared with the
corresponding r(j) reference values in an outer feedback loop with integral action.

2. Estimator identification

Identification of the estimator from experimental data with both y2(k) and u(k) as
inputs may be performed by use of a prediction error method based on an underlying
Kalman filter [2]. The time delay is then simply removed by appropriate data shifting. In
order to obtain a theoretically optimal solution an output error (OE) structure must be
specified [3], although also an ARMAX structure or a subspace identification method may
give good enough results for practical use. The argument for an OE structure is that neither
past nor present nondelayed yl (k) values will be available during normal operation, and in
order to obtain correct Kalman gains they should thus not be used in the identification
stage. The identification is straightforward when y,(k) values are available at the same high
rate as y2(k) and u(k), and the prediction error method can also be modified to handle the
low and even irregular primary output sampling rate case [4]. We then minimize the
criterion function
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where N is the number of y l (j) samples in the modeling set.
In the low primary output sampling rate case it is still required that y2(k) and u(k) are

sampled often enough in order to capture the dynamics of the process, and we thus have a
multirate sampling identification problem. The standard initial value procedure based on a
least squares identification of an ARX model cannot then be used, and we have to resort to
some ad hoc initial value method [5]. It is also required that the yi(j) data are
representative, with the same statistical distribution as y1 (k). Further note that minimization
of (1) in the multirate case is possible only for the OE structure, i.e. theoretical optimality
coincides with practical feasibility.

3. Simulated system

Fig. 2 shows a two-stage stirred-tank mixing process where the feed flow rate qy=2
m3/min is constant, while the feed concentration cF(t) [kg/m3 ] varies around 50 kg/m3 . The
flow rate qA(t)=u(t) [m3/min] is the manipulated input from the controller, while cA=800
kg/m3 is constant. The volumes are V1=4 m3 and V2=3 m3, and x i (t) and x2(t) are the
concentrations in the tanks. The primary output concentration x 1 (t) is measured by a high
quality analytical instrument, causing a time delay D=10 min, while x2(t) is measured by an
instrument without time delay, but with more measurement noise. The transportation time
between the tanks is considered negligible.
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Fig. 2. Two-stage stirred-tank mixing process in simulation example

The time varying feed concentration is modeled as

5C 3 (t)= —a[x3 (t) — 50] + v(t),	 (2)

where a=0.05 min 1 and v(t) is white noise. After an Euler discretization with sampling
interval T, the discrete-time nonlinear process model is
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Y, (k) = x,(k) + wi(k)

Y2 (k) = x2 (k) + w2 (k),

where the sample rate is chosen to T=0.5 min, and where v(k), w1 (k) and w2(k) are white
and independent noise sequences with variances chosen to r„0.02, r 1 =0.0001 and r2=0.01.

The process was controlled as shown in Fig. 1, using a proportional-integral controller
given by

e(k) = r(k) — yi (k) +Y^ (k) — 2(k)

u(k) = uo + Kp[e(k)+ 
T	

k e(i)],

T,.

where u0=0.1429, and where the controller parameters were chosen as KP 0.004 and T;=34
min, based on some trial and error starting with the Ziegler-Nichols continuous cycling
method [1]. For simplicity of notation, (4) assumes high rate sampling of the primary
output, and must thus be appropriately altered in the multirate case.

4. Identification of estimator

The process in Fig. 2 was simulated according to (3), and the estimator in Fig. 1 was then
identified from input-output data. An ordinary second-order Smith-predictor using only
u(k) as input and yi(k) as output was identified by use of the armax function in the System
Identification Toolbox (SITB) for use with Matlab [2], and the deterministic part of the
model was subsequently used as estimator. The number of samples in the modeling set was
N=400. A modified second-order Smith-predictor using both u(k) and y2(k) as inputs and
y1 (k) as output was identified by use of the SITB function pem, with an OE model
specified, and with N=400. Finally, a modified second-order Smith-predictor using low
sampling rate data yi(j) as output was identified by a modified pem function minimizing
(1). The yi(j) sampling interval was in this case T1 =20T=10 min, i.e. the same as the time
delay D=10. The number of u(k) and y2(k) samples was N2=8000, i.e. the number of y1(k)
samples was N=400. In all cases the input was a filtered pseudo-random binary sequence
(PRBS) with autocovariance r„(p)=0.0016(0.8) Iv'. The initial value problem in the multirate
sampling case was solved by first identifying an ARMAX model with u(k) as input and
y2(k) as output, and then finding the static relation between the model state x(j) and the
primary output yi (j) by an ordinary least squares (LS) method. After an appropriate
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similarity transformation, this gives an initial model for the OE estimator to be identified.
Typical validation responses for this procedure are shown in Fig. 3.

Fig. 3. Segment of yi (k) validation responses (centered data) for initial ARMAX+LS
estimator (dotted weak line) and final OE estimator (solid line). The ideal response is

shown by dotted line with o-markings at the j sampling instants.

5. Simulation results

Simulation results for the control structure in Fig. 1 with the process in Fig. 2 and the
identified estimators are shown in Fig. 4. Each typical RMSE value is based on 100 Monte
Carlo runs, and computed according to (5). Note that in the simulation yi(k) is known also
in the low sampling rate case.

RMSE = .J0.001E o

0
0[N(k) - yi(k)]2

For the specific process in Fig. 2, the control can also be based on feeding back the
y2(k) signal instead of the z(k) estimate, and holding only yi (j). The best result is in fact
achieved by feedback of both y2(k) and the z(k) estimate. These control structures using
feedback of y2(k) requires 2r(k) as set point.

6. Conclusions

The modified Smith-predictor using also the secondary measurement information
results in a considerably improved control performance, as compared with an ordinary
Smith-predictor control structure. The primary output estimator may be identified from
recorded data also in the multirate case with low primary output sampling rate. The
modified Smith-predictor control structure in the simulation example essentially keeps its
good performance also when the primary output sampling interval is twenty times the
ordinary sampling interval, and much longer than what is apparently necessary in order to
capture the dynamics in the system. In the specific simulation example, additional
improvement was achieved by also feeding back the secondary measurement.
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Fig. 4. Step responses for (with typical RMSE values based on 100 Monte Carlo runs):
a) ordinary Smith-predictor control (0.52),
b) modified Smith-predictor control (0.23),
c) modified Smith-predictor control with low primary output sampling rate (0.25),
d) same as c) but feedback of y2(k) instead of the z(k) estimate and holding only

y1 (k) (0.19), and
e) modified Smith-predictor control with low primary output sampling rate

plus feedback of y2(k) (0.14).
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