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Abstract

The projection based multivariate data methods of principal component regression (PCR) and
partial least squares regression (PLSR) are well established in the �eld of process monitoring. Use
of score and loading plots for visualization is, however, complicated when many components are
required for good predictions, and the information is therefore often compressed into less informative
T 2 and contribution plots. The score information may, however, be further compressed by projection
onto subspaces spanned by the vectors of prediction coe¢ cients for the response variables. This is
especially attractive in the case of two response variables, i.e. when the model reduction results in
a single score-loading biplot. Contribution vectors for the process variables, as well as a con�dence
ellipse, may also be included in such a plot. As illustrated in an industrial data example, such a
score-loading-contribution plot provides means of both failure detection and fault diagnosis.
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1 Introduction

The projection based multivariate data methods of principal component regression (PCR) and partial
least squares regression (PLSR) are well established in the �eld of process monitoring [1,2]. The basic
problem is then to predict one or more primary response variables from a number of measured secondary
process variables. These response variables are typically product qualities that cannot be measured
online, and due to many correlated process measurements the regression problem is often ill-posed.
The strength of PCR and PLSR as compared with other regression methods, is the visualization possi-

bilities given by use of score and loading plots, often combined in score-loading biplots with corresponding
score and loading directions [3]. Such visualizations are absolutely essential in process monitoring ap-
plications, where causes for process upsets and not only prediction of the responses are of interest. The
interpretation of these plots are, however, often made di¢ cult by the fact that more than two PCR or
PLSR components are necessary in order to obtain good predictions. Thus many biplots may have to be
monitored simultaneously, and the coordination of this information is obviously di¢ cult. Another pos-
sibility is to compress the process data into less informative Hotelling�s T2 plots. In order to see which
process variables that are involved in detected process upsets, intricate contribution plots also have to be
designed and interpreted [1,2].
The basic insight utilized in the present paper is that the number of components for prediction and

visualization need not be the same. The reduction of number of components is the major result of the
often rather cumbersome orthogonal signal correction (OSC) methods, e.g. the OPLS algorithm [4], or

1



equivalent and more straightforward similarity transformation methods [5]. As a result of the similarity
transformation in Reference [5], the original loadings are projected onto the subspace spanned by the �tted
response vectors in Ŷ. Another possibility for model reduction is to project all original PCR or PLSR
scores onto subspaces spanned by the vectors of prediction coe¢ cients in B̂. This was suggested already
in Reference [6], and it has been used in de�nitions of the net analytic signal (NAS) [7,8,9]. An example
related to process monitoring is the 2PLS algorithm presented in Reference [10], where the projection
subplane includes b̂, and a more general treatment is given in Reference [11]. Such score projections
are especially attractive with two responses, in which case the minimum number of two components is
obtained by projection upon the plane spanned by the two coe¢ cient vectors, and the present paper
focuses on this case. A process monitoring application of the 2PLS algorithm is presented earlier [12],
and the present paper may be seen as an extension of that. A similar example, also with one response
variable only, is given in Reference [13].
In the present paper I will �rst recapitulate how any number of PCR or PLSR components can be

reduced to the number of responses, without loss of prediction capability. Speci�cally will two responses
require two �nal components only, and thus one �nal score plot and one �nal loading plot only. Using
correspondence properties [3], I will then show how these plots may be combined in an informative score-
loading biplot, where the contribution to scores from the di¤erent regressor variables can also be shown
as contribution vectors. The result is an informative score-loading-contribution plot, where also axes for
the two responses and a con�dence ellipse for the score positions may be included.
In summary the proposed monitoring method for industrial processes with two response variables

involves projections in two steps:

1. Projection of objects (rows) in the X matrix onto space de�ned by loading or loading weights
vectors found by PCR or PLSR. With more than two components, we may here have deviations
in several dimensions. As a result there is a need for a statistical T 2-plot in order to �nd out-of-
control situations, and a special contribution plot in order to see which variables that are causing
the deviations.

2. Further projections of the PCR or PLSR scores onto plane de�ned by b̂1 and b̂2. Here we will have
deviations in two dimensions only, and the T 2-plot may thus be replaced by a con�dence ellipse in
the score-loading plot, while the in�uence from the di¤erent variables may be shown by contribution
vectors in the same plot.

The theoretical development is �nally illustrated by use of industrial data from a mineral processing
plant.

2 Theory

Latent variables model
With several responses y1, y2 ... ym and any number of process variables x1, x2, ... xp, a principal

component decomposition of the calibration X data results in the latent variables PCR model

Y = TQT + F (1)

X = TPT +E: (2)

Alternatively one may use a non-orthogonalized PLSR model with di¤erent matrices T, Q, F and E, and
with P replaced by W [14]. These two models exhibit total score-loading correspondence, as opposed
to the standard PLSR model using orthogonalized scores [3]. With more than one response variable a
PLSR model must be of the PLS2 type, which will often result in inferior predictions as compared with a
PCR model. The drawback with PCR, on the other hand, is traditionally considered to be the normally
higher number of components. Since we in either case will reduce the number of components to two, we
here assume the PCR model (1,2). With few calibration samples, however, the parameter bias will be
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lower with few original components [15], and with comparable prediction capabilities a PLS2 model may
then be the best choice.
From Eqs. (1) and (2) follow the least squares (LS) solutions Q̂T =

�
TTT

��1
TTY and T̂ =

XP
�
PTP

��1
= XP, and with Ŷ = XB̂ thus follows that the regression coe¢ cients are given by

B̂ = P
�
PTXTXP

��1
PTXTY: (3)

Model reduction
We shall now focus on the speci�c case with two response variables, and thus two coe¢ cient vectors,

and use the plane spanned by b̂1 and b̂2 as projection subspace. In this plane we may de�ne two new
unit loading vectors ~p1 and ~p2, as shown in Fig. 1.

b̂1

b̂2

ep1
ep2

Figure 1. New unit loading vectors in subspace spanned by b̂1 and b̂2.

Projection of the original scores onto the plane spanned by ~P =
�
~p1 ~p2

�
results in a reduced

model with two components only,

Y = ~T~Q
T
+ F (4)

X = ~T~P
T
+E; (5)

where ~T = X~P, just as we for the original model (1,2) have T = XP. In the same way as B̂ in Eq. (3)
is found from the original model (1,2), the reduced model (4,5) gives

~B =
�
~b1 ~b2

�
= ~P

�
~PTXTX~P

��1
~PTXT

�
y1 y2

�
: (6)

It is, however, straightforward to show that ~B = B̂:

Theorem 1 The coe¢ cient matrix ~B in Eq. (6) is identical with the coe¢ cient matrix B̂ in Eq. (3).

Proof. From the de�nition of ~P according to Fig. 1 follows that ~P = B̂M, where M is an invertible
transformation matrix. From Eqs. (6) and (3), with

�
PTXTXP

��1
= (�)�1, thus follows

~B = B̂M
�
MT B̂TXTXB̂M

��1
MT B̂TXTY = B̂

�
B̂TXTXB̂

��1
B̂TXTY

= P (�)�1PTXTY
�
YTXP (�)�1PTXTXP (�)�1PTXTY

��1
YTXP (�)�1PTXTY

= P
�
PTXTXP

��1
PTXTY = B̂: (7)

Note that although the theorem is valid also for PLS2 models, it is not valid for a set of PLS1 models
for the di¤erent responses. The reason for this is that the coe¢ cient vectors then are located in di¤erent
subspaces. For the same reason the theorem is not valid for a set of individual PCR models with di¤erent
numbers of components. For a more thorough discussion and a more general theorem, see Reference [11].
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Score-loading correspondence and contribution vectors
Since ~T = X~P, where ~P is orthonormal, there is total score-loading correspondence [3]. A future

process deviation �xT =
�
0 � � � 0 �xij 0 � � � 0

�
caused by a single variable will thus result in

a score position �
�ti1 �ti2

�
= �xij

�
~pi1 ~pi2

�
: (8)

From this follows that the size of the deviation is determined by the value of �xij (including sign) and
the corresponding loadings in

�
~p1 ~p2

�
, while the direction is determined by the loadings only. This

may be visualized by use of contribution vectors in the score-loading biplot, as illustrated in the industrial
data example in Section 3.

Score statistics
A comparison of a new sample with the calibration data set can be done by use of the Hotelling�s T 2

statistic [16] based on the estimated score covariance matrix, which with centered data and use of the
model (4,5) is

S =
1

N � 1
~TT ~T: (9)

With centered data the T 2 statistic for a new sample is

T 2 = tTnewS
�1tnew; (10)

while the upper control limit for a new score based on N past samples is

T 2UCL =
2
�
N2 � 1

�
N(N � 2) F�(2; N � 2); (11)

where F�(2; N � 2) is the upper 100� % critical point of the F distribution with (2; N � 2) degrees of
freedom [1,2].
With two components only, the upper control limit can be shown as a con�dence ellipse in the score-

loading-contribution plot, as illustrated in the industrial data example in Section 3. The con�dence ellipse
and the contribution vectors thus give both failure detection and fault diagnosis.

3 Industrial data example

The following example uses multivariate regression data from a mineral processing plant [17] (the �cleaner�
data, originally published in Reference [18]). The problem considered here is to predict two given response
variables from twelve known process variables. For the purpose of �nding an initial PCR factorization,
samples 1 to 120 in the data sets xce and yce [17] were used for modeling, while samples 151 to 240 in the
same data sets were used for validation. The data were centered and scaled to unit variance (autoscaled),
and the result was a PCR model with A = 10 components, resulting in validation root mean square errors
RMSEP = 0:21 and RMSEP = 0:28 for the two responses respectively (as compared with RMSEP = 1
for A = 0). The model (1,2) was �nally compressed into the two-component model (4,5), resulting in a
new loading matrix ~P =

�
~p1 ~p2

�
according to Fig. 1.

Before proceeding with the example it is appropriate with a note on abnormal samples. When an
ordinary PCR or PLSR model is used in a process monitoring application, there is a need to check that
new objects are not too far away from the projection subspace, as compared with the modeling samples.
This is often done by use of a squared projection error (SPE) plot [12]. The situation is the same in the
reduced model case, only that the subspace is now the plane de�ned by ~P. As shown in reference [12],
no such abnormal samples are present in the data used here.
A score-loading-contribution plot as described in Section 2 is shown in Fig. 2, with skewed axes

according to the true covariance between the response variables ŷ1 and ŷ2 (the vertical axis to the left
is thus irrelevant). The directions of the loadings are here shown by asterisks placed in a normalized
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distance from the origin, while the variable contributions are shown by radial vector lines out from the
origin. In the projection plane according to Fig. 1, only variables number 1, 2, 3 and 8 give signi�cant
contributions to the score, while the rest of the twelve variables have very little to say (for clarity they
are therefore omitted in Fig. 2). The con�dence ellipse is computed according Eq. (11), with � = 0:01.
The score for sample number 207 is marked by a dot-�lled square, while older scores are shown by dots
connected by dashed lines. The asterisk-�lled circles show the response variable values for the last sample.
For this speci�c sample, variables number 1 and 3 have negative values (pushing the score away from
the loadings), while variables number 2 and 8 have positive values (attracting the score towards the
loadings). Note that the sum of the contribution vectors gives the score position (exactly when all the
twelve contribution vectors are included).
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Figure 2. Score-loading-contribution plot for in-control situation, with skewed axes according to
the true covariance between the response variables (the vertical axis to the left is irrelevant). See also
explanation in text.

The plot two samples later is shown in Fig. 3. A process operator will now see that the score is moving
outside the con�dence ellipse, and that this primarily is caused by large positive values of variables 2 and
3. If this is the situation also for scores that follow, corrective action has to be taken.
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Figure 3. Score-loading-contribution plot for potential out-of-control situation.

Finally note that the plots in Figs. 2 and 3 could be shown with orthogonal axes for the two response
variables, which might make the situation easier for a process operator. That would, however, give a false
impression of independent response variables.

4 Conclusions

For the case with two response variables, score projections onto a plane spanned by the two PCR coe¢ cient
vectors and use of two orthogonal loading vectors in that plane, result in a reduced model with two
components and single score and loading plots with exact correspondence. In the score-loading biplot the
position of the score will thus be exactly determined by contribution vectors for the regressor variables.
For the general case with m response variables, the corresponding projection subspace is spanned by the
m coe¢ cient vectors.
With two response variables, a con�dence ellipse for failure detection may be added to the score-

loading-contribution plot. When a failure is detected, the contribution vectors provide fault diagnosis.
The theory is valid also for non-orthogonalized PLS2 models, while use of separate non-orthogonalized

PLS1 models give only approximate results. The reason for this is that the two coe¢ cient vectors then
will be located in di¤erent subspaces. This is the case also for a set of individual PCR models using
di¤erent numbers of components.
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