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Abstract

Primary output variables from industrial processes can

be estimated from known input variables and secondary

process measurements. As a basis for this, the dynamic

predictor has to be identi�ed from data collected during

a calibration experiment. In this paper, the theoretical

basis for this is investigated, and a systematic experimental

method is proposed.

1 Introduction

In many industrial process plants, vital output variables

are not available on-line. In such cases, an indirect meas-

ure may be used to infer the process variables of interest,

see e.g. [1]. Typically, product qualities y1 are inferred

from process measurements y2. In some cases, several

collinear secondary measurements and multivariable cal-

ibration methods are used to estimate primary variables

[2]. The success of these inferential methods depends on

a good knowledge of the static relation between the meas-

ured and estimated variables. That relation can be estab-

lished either through �rst principle modeling or by use of

data from a calibration/identi�cation experiment, or pos-

sibly by a combination of both these methods.

In this paper we study the use of inferential methods

covering also dynamical relations, focusing on the empir-

ical approach and use of system identi�cation methods.

The purpose, then, is to infer primary process variables

y1 from known inputs u (manipulated or measured) and

secondary process measurements y2. That is, given input-

output measurements from controlled experiments where

also y1 is available, we want to establish the dynamical

model that is necessary for estimation of vital output vari-

ables that are not available on-line during normal opera-

tion. In such an inferential method, also y2 is used as an

input signal, and could thus be included in u. For theor-

etical analysis and clarity of presentation, though, we will

separate between the input vector u and the measurement

vector y2.

The speci�c problem dealt with in the paper, is the use

of both independent variables u and dependant variables

y2 as inputs in a system identi�cation procedure. From a

system identi�cation point of view, that is a very natural

idea, and certainly not new [3]. The basic idea is that

for output estimation purposes, knowledge of the system

model as such is not necessary. What is needed are the

dynamical relations between the known input signals u, the

availablemeasurements y2 and the output variables y1, and

these relations can often be identi�ed with better accuracy

than the relations between u and y1 alone. The reason for

this is that process disturbances and noise entering early

in the process, will be indirectly measured by available

process measurements later in the process.

The aim of the present work is to investigate the e�ects

of utilizing the available y2 measurements as input signals

in order to estimate the primary variables y1, and this is

carried out by use of a Kalman �ltering approach. In order

to �nd the appropriate Kalman gains, it is then necessary

to specify an output error model. This also means that

the feedback path from y1 to y2 is broken, resulting in

an open loop identi�cation problem. A systematic exper-

imental method for optimal utilization of the y2 measure-

ments is also proposed. The theoretical analysis and the

proposed experimental method are limited to stable sys-

tems. Thus, for unstable processes, stabilizing controllers

have to be included in the system model.

The proposed method can be seen as a calibration pro-

cedure, that relates the available process inputs u and

measurements y2 to the output variables y1. Since the sys-

tem generally is dynamic in nature, it seems appropriate

to use the term "dynamic system calibration". It should

be emphasized though, that this calibration is based on

well established system identi�cation theory, see e.g. [4].

The paper is organized in the following way: In section

2 the theoretical basis is established, a bias analysis is per-

formed and deterministic and perfect measurement cases

are discussed. In section 3 an experimental calibration

method is proposed, while section 4 gives some simulation

results. Concluding remarks are given in section 5.



2 Theory

2.1 Theoretical model

Consider the discrete system model

xk+1 = Axk +Buk + Gvk (1a)

y1;k = C1xk +D1uk +w1;k (1b)

y2;k = C2xk +D2uk +w2;k; (1c)

where v, w1and w2 are white and independent process and

measurement noise vectors. The reason why w1 and w2
must be independent is given below.

The model (1) can be expressed in the ordinary innov-

ation form [4], given by the following equations, where

K =
�
K1 K2

�
is the Kalman gain:

�xk+1 = A�xk + Buk +
�
K1 K2

� � e1
e2

�
k

(2a)

y1;k = C1�xk +D1uk + e1;k (2b)

y2;k = C2�xk +D2uk + e2;k: (2c)

The classical optimal predictor with all measurements

available will then be

�xk+1 = (A�K1C1 �K2C2) �xk

+(B �K1D1 �K2D2)uk

+K1y1;k +K2y2;k (3a)

�y1;k = C1�xk +D1uk (3b)

�y2;k = C2�xk +D2uk: (3c)

When only the y2 measurements are available, the op-

timal predictor for y1 is

�xk+1 =
�
A �KOE

2 C2
�
�xk

+
�
B �KOE

2 D2

�
uk +KOE

2 y2;k (4a)

�y1;k = C1�xk +D1uk: (4b)

Note that we here assume K1 = 0 by de�nition, which

with y2 used as input signal results in an output error

(OE) model. When this predictor is to be based on system

identi�cation, we have two choices. One is �rst to identify

(2) with K1 = 0, and then construct the predictor (4).

For complex systems with a number of secondary meas-

urements y2, that is a di�cult task [3]. The other and

more appealing choice, especially with only one or a few

primary measurements y1, is to set K1 = 0 and reorganize

(2) in the following way before identi�cation:

�xk+1 =
�
A �KOE

2 C2
�
�xk

+
�
B �KOE

2 D2

�
uk +KOE

2 y2;k (5a)

y1;k = C1�xk +D1uk + e1;k: (5b)

This partitioned output error innovation form then gives

the estimation relation that has to be identi�ed through

the calibration experiment. Note, however, that we now

must require that e1 is independent of the input y2, and

this is why we earlier speci�ed that w1 and w2 must be

independent.

For theoretical considerations, we can determine KOE
2

by �rst solving the algebraic Riccati equation

P = APAT +GRvG
T�APCT

2 (C2PC
T
2 +Rw2

)�1C2PA
T ;

(6)

where P = Ef(xk� �xk)(xk� �xk)
T g while Rv and Rw2

are

the process and measurement noise covariance matrices

[5]. We then �nd the Kalman gain as

KOE
2 = APCT

2 (C2PC
T
2 +Rw2

)�1: (7)

Example 1 Consider the following pure delay system:

x1;k+1 = x2;k

x2;k+1 = uk + vk (8)

y1;k = x1;k + w1;k

y2;k = x2;k + w2;k:

The theoretical predictor can be determined by �rst �nding

KOE
2 from (6) and (7). Due to the pure delay structure,

the predictor (4) can then be reorganized into the input-

output form

�y1;k =
1=rv

1=rv + 1=r2
uk�2 +

1=r2

1=rv + 1=r2
y2;k�1 (9)

where rv and r2 are the variances of v and w2.

This shows that the information in u and y2 is utilized

in an optimal way, considering the noise levels.

Example 2 Consider the 2. order system

x1;k+1 = a11x1;k + a12x2;k + b1uk
x2;k+1 = a21x1;k + a22x2;k + b2uk + vk
y1;k = x1;k +w1;k
y2;k = x2;k +w2;k:

(10)

Two simple cases can be easily calculated:

a) No process noise, i.e. rv=r2 ! 0, will result in

KOE
2 = 0. With u as input and y1 as output, we will then

be able to identify the 2. order predictor

�x1;k+1 = a11�x1;k + a12�x2;k + b1uk
�x2;k+1 = a21�x1;k + a22�x2;k + b2uk
�y1;k = �x1;k:

(11)

b) With perfect measurements y2, i.e. rv=r2 ! 1, the

optimal predictor �y1 will be found by ignoring the inform-

ation in �x2, and rely on y2 and the direct coupling from u

to �x1(see Theorem 1 in section 2.4). We will therefore get

KOE
2 =

�
a12 kOE22

�T
and from (5) the 2. order system

�x1;k+1 = a11�x1;k + b1uk + a12y2;k

�x2;k+1 = a21�x1;k + (a22 � kOE22 )�x2;k (12)

+b2uk + kOE22 y2;k

y1;k = �x1;k + e1;k:



From this we see that the inuence on y1 from u and

y2 through �x2 is decoupled, and we can therefore only

identify the 1. order predictor

�x1;k+1 = a11�x1;k + b1uk + a12y2;k
�y1;k = �x1;k:

(13)

Other values of rv=r2 will give intermediate results.

2.2 Bias analysis

The system (2) could be identi�ed by use of a prediction

error identi�cation method. We would then employ the

predictor (3), and assuming that the model structure is

rich enough to cover the true system the result would be

asymptotically (when the number of samples N ! 1)

unbiased parameter estimates, including the parameters

in K1 and K2 as theoretically given by the Kalman �lter

formalism [6]. Theoretically, we would then �nd the op-

timal predictor (4) with K1 ! 0 when r1 = Ew2
1 !1 (or

ri ! 1, i = 1; 2; � � �m with a m dimensional y1 signal),

and the parameter estimates would still be asymptotically

unbiased. The practical way of doing this is to specify

K1 = 0, and utilize (4) instead of (3) during the identi�c-

ation.

When we are identifying (5), we will employ exactly the

same predictor (4) as when identifying (2) with K1 = 0.

The only di�erences are that we use a simpler criterion

function V1 = f1(y1 � �y1) instead of V2 = f2(y1 � �y1; y2 �
�y2), and that we treat A � KOE

2 C2 and B � KOE
2 D2 as

single matrices. Identi�cation of (5) by use of a predic-

tion error method will therefore result in asymptotically

unbiased parameter estimates, including KOE
2 as given by

(6) and (7). A more formal proof of this is given in [15].

2.3 Feedback and identi�ability analysis

Using transfer functions G(q�1) and H(q�1), were q�1 is

the unit delay operator, the model (2) can be expressed as

y1 = G1u+H11e1 +H12e2 (14a)

y2 = G2u+H21e1 +H22e2: (14b)

This gives

y2 = G2u+H21H
�1
11 (y1 � G1u�H12e2) +H22e2; (15)

which means that we will generally have feedback from

y1 to y2, with some possible identi�ability problems as a

consequence [6]. In the present case, however, we identify

(5) with K1 = 0, and we will then also have H21 = 0.

The feedback is therefore broken, and the system is then

basically identi�able as long as u is persistently exciting

of appropriate order. We must, however, also require that

the Kalman gain KOE
2 theoretically can be determined by

(6) and (7), and that the underlying Kalman �lter is stable.

This is always the case when we have some process noise,

i.e. when Rv > 0, and at the same time (A;G
p
Rv) is

stabilizable and (A;C2) is detectable [7].

2.4 The deterministic case

It is well known [7], that the Kalman gain K in (2) cannot

be determined in a pure deterministic case, that is when

both the process noise v and the measurement noise w1
and w2 are zero. In the present case, this means that the

Kalman gain KOE
2 in (5) cannot be identi�ed.

In such a case, there is no need to utilize the information

in the y2 measurements, and the natural solution is then to

identify a model with u as input and y1 as output signals.

Without noise, this can be solved as an ordinary linear

regression problem using a least sum of squares method,

that is, by identifying an ARX model [8].

Overlooking that we have a noise free case at hand, we

would in the present context attempt to identify a model

with both u and y2 as input signals, resulting in a rank

de�cient data matrix. There are two general solutions to

this problem:

a) Identify a model with only u as input signal.

b) Identify an appropriately reduced model, possibly

with only y2 as input signal. An experimental method

for �nding such a model is proposed in section 3.

A general treatment of the deterministic case is given in

[15].

2.5 The asymptotic perfect measurement

case

In the ideal situation, we have noise free y2 measurements.

In order to analyze such an asymptotic perfect measure-

ment case, we use the model (1), partitioned in the follow-

ing way:

2
4 x1
x2
x3

3
5
k+1

=

2
4 A11 A12 A13

A21 A22 A23

A31 A32 A33

3
5
2
4 x1
x2
x3

3
5
k

+

2
4 B1

B2

B3

3
5uk +

2
4 G1

G2

G3

3
5 vk (16a)

�
y1
y2

�
k

=

�
C11 0 0

0 I 0

�24 x1
x2
x3

3
5
k

+

�
D1

D2

�
uk +

�
w1
w2

�
k

: (16b)

Here x2 represents the state variables that give the avail-

able y2 measurements, while the state variables x1 via C11
give the primary variables y1 that are to be estimated

based on the identi�ed input-output relations.

The partitioned innovation form (5) now becomes

2
4 �x1

�x2
�x3

3
5
k+1

=

2
4 A11 A12 �K12 A13

A21 A22 �K22 A23

A31 A32 �K32 A33

3
5
2
4 �x1

�x2
�x3

3
5
k



+

2
4 B1 �K12D2

B2 �K22D2

B3 �K32D2

3
5uk

+

2
4 K12

K22

K32

3
5 y2;k (17a)

y1;k =
�
C11 0 0

�
2
4 �x1

�x2
�x3

3
5
k

+D1uk + e1;k: (17b)

We then focus on the speci�c case where A13 = 0 and

G1 = 0, which means that the process noise v a�ects the

state variables x1 only through the measured state vari-

ables x2. This is a realistic assumption in many continuous

systems, which will hold approximately also after discret-

ization, provided a high sampling rate.

The asymptotic properties of the Kalman gain are then

governed by the following theorem:

Theorem 1 Consider the linear discrete time-invariant

model (16) with A13 = 0 and G1 = 0, or the corresponding

continuous model with the same structure. Let v be a sta-

tionary or non-stationary multivariable stochastic process,

and let w =
�
wT
1 wT

2

�T
be a stationary multivariable

stochastic process with zero mean and diagonal covariance

matrices

Ew(k + p)wT (k) = Rd
w�(p) =

�
Rd
w1

0

0 Rd
w2

�
�(p) (18)

or

Ew(t+ � )wT (t) = Rc
w�(t) =

�
Rc
w1

0

0 Rc
w2

�
�(t); (19)

where �(p) and �(� ) are the discrete-time and continuous

unit impulse functions.

Assume near perfect measurements, with small but pos-

sibly di�erent variances �i in the measurements. Also as-

sume that all state variables in x2 are inuenced by the

process noise v, either directly via G2 or via the non-

measured states x3 and A23. When all variances �i ! 0,

the Kalman gain will then asymptotically include the mat-

rix A12 in the following way:

K =

2
4 K11 A12

K21 K22

K31 K32

3
5 : (20)

Furthermore, the K11 matrix, corresponding to the

measurements y1, is for a discrete system determined by

the solution of the algebraic Riccati equation

P11 = A11P11A
T
11 + A12R

d
w2
AT
12 (21)

�A11P11C
T
11

�
C11P11C

T
11 +RT

w1

��1
C11P11A

T
11

and

K11 = A11P11C
T
11

�
C11P11C

T
11 + RT

w1

��1
: (22)

For a continuous system with the same assumptions

concerning A13 and G1, the K11 matrix is determined by

the solution of the algebraic Riccati equation

0 = A11P11 + P11A
T
11 + A12R

c
w2
AT
12

�P11CT
11

�
Rc
w1

�
�1

C11P11 (23)

and

K11 = P11C
T
11

�
Rc
w1

�
�1

: (24)

For proof of Theorem 1 and some remarks, see [15]. The

theorem is also valid for the special case of an OE model.

We will then have K1 = 0, K22 = KOE
22 and K32 = KOE

32 .

The result in Theorem 1 can be combined with the fact

that a continuous square system C (sI � A)
�1

G which is

nonsingular in Re s � 0 and has covariance matrices Rc
v =

I and Rc
w = �I, approximately has the asymptotic Kalman

gain

K =
lim

�! 0

h
��

1

2G
i
V (25)

where V is some orthogonal matrix [9]. The result (25)

ignores, however, that also other elements in K than those

determined by G will asymptotically approach constant

though relatively small values. A combination with The-

orem 1 will thus give a more complete solution in the

asymptotic perfect measurement case, although restricted

to the case where A13 = 0 and G1 = 0. Two examples of

this are given in [15].

A consequence of Theorem 1 is, that given the system

(16) with A13 = 0, G1 = 0 and near perfect noise free y2
measurements, a reduced model not utilizing all u and y2
signals may have to be used. Otherwise, numerical prob-

lems may occur when the parameter estimates are sought.

This is due to decoupling, as illustrated in Example 2. Nu-

merical problems may in fact occur as soon as we have two

or more near perfect y2 measurements. A more import-

ant consequence in practice may be that a parsimonious

reduced model, even if it is not absolutely necessary from

a numerical point of view, may result in less variance in

the predictions. In such a case only part of the model will

be identi�ed, and as long as there is some noise in one

or several of the y2 signals used as inputs, the parameter

estimates will then be biased [10].

3 Experimental dynamic system

calibration method

The theoretical analysis in section 2 has shown that nu-

merical identi�cation problems may occur as a result of

perfect noise free y2 measurements. This is not a very

likely problem in a practical situation, especially not in

an industrial process environment. If it turns out to be

a problem, the solution is to leave some of these perfect

measurements out, and use a more parsimonious model.



A more important task seen from a practical point of

view is to settle for a good set of y2 measurements to

be used as inputs to the identi�cation procedure. This

is similar with the problem of �nding regressor variables

in ordinary least-squares estimation [4]. The inclusion of

noisy measurements will give only a limited contribution

to the prediction of y1, and at the same time the number

of unknown parameters to be identi�ed will increase. The

total contribution from one or a group of y2 variables can

be explored by use of some added arti�cial measurement

noise or some equivalent method. With a high level of

arti�cial noise on a given y2 measurement, the inuence

will be very limited. Gradual reduction of the arti�cial

noise will therefore tend to improve the prediction until

the physical noise level is reached.

The �nal result also depends on choosing a suitable

model structure. The optimal choice of input variables

and model structure can only be found through proper

validation. The following method for identi�cation of the

calibration relation (5) is therefore proposed:

1. Perform an informative calibration experiment with

only u as input signal and y1 and y2 as output sig-

nals [11]. Separate the data in one part for identi�ca-

tion/calibration and one part for validation.

2. Choose model order and a suitable model structure,

possibly by use of a subspace system identi�cation

method [12], with u as input and y1 as output sig-

nals. Identify and validate the model, using e.g.

the scalar case root mean square error RMSE =q
1

N

PN

k=1(y1;k � �y1;k)2 as a validation criterion.

3. Use one of the y2 measurements at a time as an input

signal together with u, and note the validation im-

provements for all y2 signals as expressed by e.g. the

RMSE value. Arti�cial measurement noise reduced

in steps may be used for explorative purposes.

4. Include the most informative y2 measurements as in-

put signals together with u. Choose the number of y2
measurements to use through validation.

5. Low natural noise levels in some of the y2 measure-

ments may result in numerical problems causing dra-

matic changes in the estimation model. If this should

occur, remove the last introduced y2 signal and con-

tinue with the next one.

6. Explore the possibilities to use a reduced order model,

relying on some or all of the y2 signals and some of

the inputs u, and possibly direct coupling from some

other inputs to y1. Again, a subspace identi�cation

method may be helpful.

7. Repeat (2) to (6) several times, and use the y2 inputs

and model structure that give the best validation res-

ults.

Here, it is in order to point to an inherent di�culty in

this and similar procedures that uses the same data set

for validation and comparison of di�erent models. Due to

the randomness of both the modelling and the validation

data set, local minima problems and randomized initial

parameter values, some models may give better validation

results than others in a way that is not generally justi�ed.

Extensively repeated use of the same validation set may

therefore lead to a model that is speci�cally adjusted to �t

the validation set, which then becomes a part of the total

modelling set [13]. We must therefore look for validation

di�erences that can be considered as signi�cant, and extra

independent validation sets will certainly be helpful.

4 Simulation results

Simulation studies are undertaken, using dlsim.m in the

Matlab Control System Toolbox [14], and the prediction

error method implemented in pem.m in the Matlab System

Identi�cation Toolbox [8]. The pem.m function identi�es

the system matrices and the Kalman gain, based on the

general innovation model (2), or the partitioned innovation

model (5) when the measurements y2 are also used as input

signals. The experimental calibration method in section 3

was tested by simulations based on a continuous system2
66664

_x1
_x2
_x3
_x4
_x5

3
77775 =

2
66664

�2 1 1 0 0

2 �6 2 2 0

1 1 �3 0 1

0 2 0 �4 0

0 0 1 0 �2

3
77775

2
66664

x1
x2
x3
x4
x5

3
77775

+

2
66664

0 0

0 0

0 0

2 0

0 1

3
77775
�
u1
u2

�
(26a)

2
664

y1
y22
y23
y24

3
775 =

2
664

�
1 0 0 0 0

�
2
4 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

3
5

3
775x: (26b)

The system was converted to discrete-time assuming

zero order hold elements on the inputs, with a sampling

time T = 0:1, and discrete process and measurement

noise was added. The process noise v1 and v2 were in-

dependent and normally distributed random signals with

zero mean and variance rv = 0:1 directly added to the

inputs. The measurements y1, y22, y23 and y24 were as-

sumed to have independent and normally distributed ran-

dom noise with zero mean and variances r1 = 10�4 and

r22 = r23 = r24 = 0:01. The prediction model (5)

was identi�ed based on simulated time series of length

N = 1000, using the model (with choosen order n)

nn = [0; [n; � � � ; n]; 0; 0; [n; � � � ; n]; [1; � � �; 1]] (27)

adjusted to the number of inputs used (see [8] for de�n-

ition of nn). The procedure in section 3 was followed,



except that each identi�cation was repeated in M = 10

Monte Carlo runs with independent data sets. In order to

avoid local minima, each identi�cation and validation with

a given data set was repeated �ve times with randomized

initial parameter values. The calibration experiment in

step 1 was performed with the controlled inputs u1 and u2
as independent �ltered PRBS signal with autocovariance

ruu(p) = 0:5jpj (see [6], example 5.11 with � = 0:5).

Steps 2 to 4 and step 6 using the marked (x) signals as

inputs can be summarized as follows:

step n u1 u2 y22 y23 y24 104 �RMSE

2 1 x x 566� 93

2 2 x x 294� 41

2 3 x x 278� 34

2 4 x x 303� 45

2 5 x x 289� 60

3 3 x x x 185� 18

3 3 x x x 196� 24

3 3 x x x 212� 30

4 3 x x x 181� 36

4 3 x x x x x 161� 31

6 3 x x x x 204� 15

6 3 x x x x 139� 16

6 2 x x x x 153� 23

6 2 x x x 212� 13

The conclusion from this is that we should use u2, y22,

y23 and y24 as inputs and system order n = 3 or possibly

n = 2. As a comparison, the best result with the y22 and

y23 noise levels reduced to r22 = r23 = 0:0001 was found

to be RMSE = 0:0041� 0:0003, with n = 1 and only y22
and y23 as input signals.

With a short sampling time, the system in this example

will be of the type considered in Theorem 1, and numerical

problems should therefore be expected with near perfect

measurements. However, in order to encounter such prob-

lems in step 5 with N = 1000; all measurement noise levels

had to be decreased to r = 10�15 at the same time as the

sampling time was reduced to T = 0:001.

Identi�cation with only u1 and u2 as inputs and y22, y23
and y24 as outputs was also performed, with the function

canstart.m in the System Identi�cation Toolbox used for

initialization. The results after construction of the pre-

dictor (4) were in this case quite discouraging, with fre-

quent failures to �nd a model, and very inferior validation

results when a model was found.

5 Conclusion

The theoretical basis for optimal estimation of nonmeas-

ured primary system outputs y1 from known inputs u and

secondary measurements y2 is established by use of a parti-

tioned innovation form, with an underlying Kalman �lter

structure. Identi�cation by use of a rich enough model

structure will give an unbiased predictor. Simulations

show that use of y2 measurements as a basis for estim-

ation of y1 may give a greatly reduced prediction error.

A systematic experimental method is proposed and illus-

trated by simulation results. The natural next steps in the

investigations, will be tests on real industrial data.
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