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Summary

The theoretical connection between principal component regression (PCR) and partial least squares
regression (PLSR) on one hand, and Kalman ¯ltering (KF) on the other, is known from earlier work.
In the present paper we investigate the possibilities to use latent variables modeling and KF theory
as means for optimization of ordinary PLSR and PCR predictors, based on the prerequisite of prior
X-noise covariance estimates facilitated e.g. by more X- than y-observations. The result is a new
PLSR optimization method, while the PCR optimization turns out to be identical with an earlier known
method. A simulation example and two real-world data examples supporting the theoretical development
are presented. The treatment is limited to cases with only one response variable, although an extension
to multiresponse cases is also possible.
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1 Introduction
The theoretical connection between static (timewise non-dynamical) multivariate calibration - principal
component regression (PCR) and partial least squares regression (PLSR) - and Kalman ¯ltering (KF)
was ¯rst recognized by Berntsen1, and further developed by Ergon2. In the present paper we investigate
the possibilities to use KF theory as a basis for optimization of ordinary PLSR and PCR predictors. In
this endeavour we use latent variables modeling and the Helland predictor form3, which is summarized
in Section 2. In Section 3 we present the theory for KF-based optimal regularization, and in Section 4
this theory is used to ¯nd optimized PLSR and PCR predictor algorithms. This is based on the prior
estimation of the X-noise covariance matrix, facilitated by more X- than y-observations. The PCR
method actually turns out to be identical with a method proposed by Isaksson and N½s4 and further
discussed by Thomas5, while the PLSR method to the best of our knowledge is new. A simulation
example is given in Section 5, and two real-world data examples follow in Section 6. Conclusions are
drawn in Section 7, while some theoretical details are given in an Appendix. We will limit the treatment
to cases with only one response variable, although an extension to multiresponse cases is also possible.

2 Latent variables modeling and regularization
Ordinary least squares regression

Assuming experimental data from N observations, X =
£

x1 x2 ¢ ¢ ¢ xN
¤T and

y =
£

y1 y2 ¢ ¢ ¢ yN
¤T , and independent observation errors, we ¯nd the ordinary least squares (OLS)

regression solution6

b̂OLS =
¡
XTX

¢¡1
XTy: (1)

With a large number p of x variables relative to the number N of observations, this solution will be ill-
conditioned , i.e. very noise and collinearity sensitive (for p > N the OLS solution is in fact unde¯ned).
As is well-known in all practical applications, satisfactory OLS results require that p is well below N . A
general and detailed analysis of this problem for limited values of N is beyond the scope of the present
paper7. In the ill-conditioned case there is a need for regularization, and this can be based on latent
variables modeling as shown below.

Latent variables modeling
When a large number of x variables are signi¯cantly to highly collinear, the regressor information may

be compressed into a much smaller number of latent variables8;9 ¿ =
£

¿1 ¿2 ¢ ¢ ¢ ¿A
¤T . An analysis

of such data compression may be based on the underlying model

¿ k+1 = ek

yk = Q¿k + v1;k (2)
xk = W¿ k + v2;k;

where ek, v1;k and v2;k are white noise sequences with covariances Re = EekeT
k , r11 = Ev2

1;k and
R22 = Ev2;kvT

2;k (we assume centered data). This is a special case of a general dynamic model with
¿ k+1 = A¿k + Buk + Gek, where uk is a manipulated input, i.e. we use here A = 0, Buk = 0 and
G = I. We will also assume that W is orthonormal, i.e. that WTW = I.

With N observations and T =
£

¿ 1 ¿ 2 ¢ ¢ ¢ ¿N
¤T , v1 =

£
v11 v12 ¢ ¢ ¢ v1N

¤T and
V2 =

£
v21 v22 ¢ ¢ ¢ v2N

¤T , the model (2) gives the static latent variables model

y = TQT + v1 (3)
X = TWT + V2: (4)
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Remark 1 If the regressor data are actually generated from an underlying state vector zk as xk =
C2zk + v2;k, the output equation (4) will be replaced by X = ZCT

2 + V2. In the special noise free case
with V2 = 0, we may then ¯nd T and WT by a similarity transformation based on factorization of X
by a number of alternative methods, e.g. PCA and PLSR. In practice, however, we will always observe
some noise, and factorization of X then gives only estimates T̂ and ŴT .

The Helland predictor
The PCR and PLSR regularizations are based on the latent variables model (3,4) above. The LS

solution of (4) is

T̂ = XW; (5)

and from (3) and (5) we thus ¯nd the LS predictor related to the latent variables

Q̂T =
³
T̂T T̂

´¡1
T̂Ty =

¡
WTXT XW

¢¡1
WTXT y; (6)

which results in ¯tted experimental responses according to (3)

ŷ = T̂Q̂
T

= XWQ̂
T

= XW
¡
WTXTXW

¢¡1
WTXTy; (7)

and predictions of new responses

y0 = ¿̂T
0 Q̂T = xT

0 WQ̂
T

= xT
0 W

¡
WT XTXW

¢¡1
WT XTy: (8)

The regularized latent variables predictor thus becomes

b̂LV = W
¡
WTXTXW

¢¡1
WTXTy: (9)

This predictor was ¯rst presented by Helland3, although there not explicitly based on an LV model.
The problem now is to ¯nd W, or more realistically a good estimate Ŵ: In this endeavour we have

in fact a number of possibilities. A simple choice is W = Ip, which brings us back to the OLS solution
(1). Other choices give the standard statistical PCR and chemometrical PLSR solutions, or alternatively
the new, optimized versions discussed in Section 4 below.

3 Optimal regularization
Assuming a known model (3,4), including noise covariance matrices Re and R22, the optimal loading
weight matrix Wopt: to use in the Helland predictor (9) may be found by use of general Kalman ¯ltering
theory10. We will, however, derive the optimal solution directly by introduction of the optimal state
estimate related to the latent variables model (2),

¿̂k = Kxk; (10)

where K is chosen such that the expectation

Zk = E(¿ k ¡ ¿̂k)(¿k ¡ ¿̂k)T = E [¿ k ¡ K (W¿k + v2;k)] [¿k ¡ K (W¿k + v2;k)]T

= (I ¡ KW)E
¡
¿k¿T

k
¢
(I ¡ KW)T + KE

¡
v2;kvT

2;k
¢
KT (11)

is minimized. Using E¿k¿T
k = E¿k+1¿T

k+1 = EekeT
k = Re and Ev2;kvT

2;k = R22 we ¯nd11

@
@K

trace(Zk) = ¡2(I ¡ KW)ReWT + 2KR22; (12)
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i.e. @
@K trace(Zk) = 0 gives the optimal solution

K = ReWT ¡
WReWT + R22

¢¡1
: (13)

This intermediate result, derived from general Kalman ¯ltering theory, was ¯rst presented by Berntsen1.
The resulting optimal response estimate is

ŷk = QKxk; (14)

i.e.

yk = QKxk + ´k; (15)

where it can be shown that ´k is white noise2. Optimality here means that (14) gives the best lin-
ear unbiased estimate (BLUE), and the best possible estimator whatsoever assuming Gaussian noise
distribution10.

Making use of (15) with the assumptions that K is known and Q unknown, we may from experimental
data ¯nd the LS estimate corresponding to (6)

Q̂T =
³
KXTXKT

´¡1
KXTy; (16)

and thus the ¯tted primary outputs corresponding to (7)

ŷ = XKT Q̂T = XKT
³
KXTXKT

´¡1
KXT y: (17)

The optimal choice of W in the Helland predictor (9) is thus in theory Wopt: = KT , resulting in

b̂KF+LS = KT
³
KXTXKT

´¡1
KXTy: (18)

4 Optimized PCR and PLSR
As was alluded to above measuring X data may often be much easier and less expensive than to obtain
the corresponding y responses. In many practical situations we may thus obtain a large number of X
observations, while the practically available number of y observations may be much lower. We emphasize
here that this will always be an easily obtainable option regarding multivariate calibration8;12. These
extra X observations may then be used for estimation of the X-noise covariance R22, which together
with an estimate of the latent variables covariance Re may be used to improve the predictor according
to the underlying Kalman ¯ltering theory presented above. Note that if the extra X observations are
not available at the time when the predictor is ¯rst determined, they will gradually appear during the
normal use of the predictor, as long as the covariance structure of the data is unaltered.

In the development below we will use the notation Xlong for all modeling observations and Xshort for
the observations corresponding to the available y = yshort data only.

Optimized PLSR predictor
An optimized PLSR predictor based on the Kalman ¯ltering theory presented above has the form given

by (18), i.e.

b̂PLSRopt = K̂T
PLS

³
K̂PLSXT

shortXshortK̂T
PLS

´¡1
K̂PLSXT

shorty; (19)

where K̂PLS is found from (13) as

K̂PLS = R̂eŴT
PLS

³
ŴPLSR̂eŴT

PLS + R̂22

´¡1
: (20)
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Here the covariance estimates may be found as

R̂e =
1

Nshort ¡ 1
T̂T

PLST̂PLS =
1

Nshort ¡ 1
ŴT

PLSX
T
shortXshortŴPLS (21)

and

R̂22 =
1

Nlong ¡ 1

³
Xlong ¡ T̂longP̂T

long

´T ³
Xlong ¡ T̂longP̂T

long

´
; (22)

where T̂long is given by the principal component analysis (PCA) factorization6;8

Xlong = T̂longP̂T
long + Elong: (23)

The number of PCA components APCA to use must here be determined through validation of the PCR
predictor (24) presented below, preferentially using a test set12. Subsequently the number A of PLSR
components to use must also be determined through proper validation, and it may well be that A < APCR
should be used. Also note that the inversion in (22) is ill-conditioned, such that a pseudo-inverse has to
be used. The reason for this is that rank(ŴT

PLSR̂eŴPLS) = A, and that also R̂22 according to (20) has
a large condition number.

Optimized PCR predictor
Optimization of a PCR predictor may be performed along the lines of PLSR optimization discussed

above. This will, however, result in the straightforward solution

b̂PCRopt = P̂long

³
P̂T

longX
T
shortXshortP̂long

´¡1
P̂T

longX
T
shorty; (24)

where P̂long is given by the factorization (23) (see Appendix for details). This is the same way of using
extra X-observations for stabilization of the loading matrix as proposed by Isaksson and N½s4 and further
discussed by Thomas5.

5 Monte Carlo simulation example
The practical case behind the following Monte Carlo simulation example could for example be a spectro-
scopic measurement of a solution with three di®erent chemical substances. A typical simulation result is
shown in Fig. 1. Note the overlapping peaks.
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Figure 1. Simulation of noise free (dotted line) and noise corrupted spectrum (solid line) of three chemical
species in solution. Note considerable overlap between peaks.
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The Monte Carlo simulation is based on an assumed discrete frequency spectrum in the range 0 <
f · 100 frequency units (f.u.),

x(f) =
f1fq

(f2
1 ¡ f2)2 + (2³f1f)2

(3 + z1) +
f2fq

(f2
2 ¡ f2)2 + (2³f2f)2

(3 + z2) (25)

+
f3fq

(f2
3 ¡ f2)2 + (2³f3f)2

(3 + z3) + v2(f) = 3C2(f)
£

1 1 1
¤T + C2(f)z + v2(f);

with resonance frequencies f1 = 40 f.u., f2 = 50 f.u., f3 = 60 f.u. and relative dampings ³1 = ³2 =
³3 = ³ = 0:05, and with C2(f) 2 R1£3. It is also assumed that z1, z2 and z3 are randomly generated
zero mean numbers with normal distribution and variances re = 1, 1 and 0:5, while v2(f) are randomly
generated zero mean numbers with normal distribution and equal variances r22 = Ev2

2 = 25:
It is further assumed a response

y = z2 =
£

0 1 0
¤
z + v1; (26)

with r11 = Ev2
1 = 0:01: In the practical case this would mean that the primary response of interest

would be the concentration of one of the three chemical substances, while the others would be treated as
interferants.

The total model with centered data is then

zk+1 = ek

yj =
£

0 1 0
¤
zj + v1;j (27)

xk = C2zk + v2;k;

where k = 1; 2; : : : ; Nlong indicates a sequence of X observations corresponding to di®erent concentra-
tions of the three chemical substances, while the number of corresponding yj observations is Nshort <
Nlong, and where C2 2 R100£3, Re = EekeT

k =diagf 1 1 0:5 g, r11 = Ew2
k = 0:01 and R22 =

Ev2;kvT
2;k =diagf 25 25 ¢ ¢ ¢ 25 g.

Based on a modeling set with Nlong = 200 and Nshort = 40 (every 5th observation) the average
root mean square error of prediction (RMSEP) results from 100 Monte Carlo runs using independent
validation sets with Nval = 200 (for both X and y) are shown in Fig. 2.
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Figure 2. Simulation mean results from 100 Monte Carlo runs, based on test set validation. The mean KF
solution (*) is shown for A = 3:
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Here the covariance estimate R̂22 as given by (22) is based on a PCA of Xlong using a ¯xed number
APCA = 3 components, while R̂e as given by (21) is based on the A = 1, 2, : : : , 7 components used for
the di®erent predictors. Note the following:

² The APCA = 3 ¯xation originates from the minimum RMSEP value for the optimized PCR predictor
(24).

² A = 3 gives the best result, just as expected with the assumed sum of three independent spectra.

² The best result is fairly close to the theoretical KF result according to (17).

² The fact that A = APCA = 3 results in b̂PLSRopt = b̂PCRopt can be explained using the Kalman
¯ltering theory (see Appendix).

² The improvements using estimated covariances is clearly at hand also for A = 2, where the PLSR
predictor from the outset is much better than the PCR predictor. The PLSRopt estimator using
A = 2 components gives a 14 % increase in RMSEP as compared with the A = 3 solution, but
may still be a good choice in applications where a low number of components is preferred for
interpretational purposes.

6 Real world data examples
Metal ion mixtures

The optimization methods developed in Section 4 are tested on a data set made available from the
Wentzell Group13. The data set, labeled "inorfull", was "obtained through a carefully designed experi-
ment involving three-component mixtures of metal ions (Co(II), Cr(III), Ni(II))". The X measurements
were absorbances at p = 176 frequencies, while the concentration of Co was used as the response variable
y, and the subsets used had Nlong = 104, Nshort = 20 (every 5th observation) and Nval = 26. The data
were autoscaled and the results are shown in Fig. 3.
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Figure 3. Results for predicted Co concentration from absorbance spectrum, based on test set validation.

The R22 estimate used in the optimized PLSR solution was here based on APCA = 5 components
(the PCRopt minimum). The relative improvement from ordinary to optimized PLSR predictor at A = 3
components is 46 %, while the corresponding result at A = 2 is 22 %. Note that the overall result has a
lot in common with the previous simulation result.
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Acoustic °ow measurement
Acoustic chemometrics is based on signals from an acoustic sensor (accelerometer) placed for example

on, or slightly downstream of, a standard ori¯ce plate. Observations of the power spectrum of the
sensor signal is collected in the X matrix, and calibrated against physical y primary quantities like
multi-component mixture concentrations, density etc., using for example a standard PLSR method14.

In an experiment on a test rig at Telemark University College, the °ow rate of ordinary drinking water
was measured by use of an ultrasonic °owmeter and used as the response variable y, while the acoustic
power spectral densities at 512 frequencies originating from an accelerometer placed on a standard ori¯ce
plate were used as x variables. The °ow rate was varied by means of a control valve with a control signal
generated as ¯ltered white noise. Each power spectrum representing an X observation was formed as the
mean value of 100 consecutive power spectra in the sampling interval, and the resulting y and X signals
were recorded for Nlong = 230 observations. This standard procedure in static multivariate calibration
based on acoustic data is necessary in order to obtain a reasonable noise level. Only every 10th y sample
was used in the estimator identi¯cation procedure, and the number of y observations in the modeling set
were accordingly Nshort = 23. The calibration was based on centered data.

The resulting predictors were validated against a separate data set with 170 X and y observations,
with normalized RMSEP results as shown in Fig. 4.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Prediction results for flow rate from acoustic data

Number of components

R
M

S
E

P

PCR
PCRopt
PLSR
PLSRopt

Figure 4. Results for °ow prediction from acoustic power spectrum, based on test set validation.

The R22 estimate used in the optimized PLSR solution was in this case based on A22 = 3 components
(the PCRopt minimum). The relative RMSEP reduction from ordinary PLSR with A = 2 to the optimized
PLSR and PCR solutions with A = A22 = 3 components is 8 %. The relative PLSR improvement at
A = 2 is 1 %.

7 Conclusions
Methods for KF based PLSR and PCR optimizations utilizing estimated covariance matrices have been
derived. The PCR method turns out to be identical with an earlier proposed method for stabilization of
the loading matrix4;5, while the PLSR method to the best of our knowledge is new. The theoretical results
have been substantiated by both a Monte Carlo simulation and two applications on real-world calibration
data sets. The results show clearly reduced RMSEP values at the optimal number of components, and in
some cases also at a lower number of components. The basis for these improvements is only that more X-
than y-observations are obtained, a trivial option for most multivariate calibration situations. However,
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further tests on real-world data sets with extra X-observations are needed before a ¯nal judgement on
the practical value of this methodology can be drawn.

Appendix

We give here some details concerning the optimized PCR and PLSR predictors.

Optimized PCR predictor
The optimized PCR predictor is given by (18), with K replaced by

K̂PCR = R̂eP̂T
long

³
P̂longR̂eP̂T

long + R̂22

´¡1
; (28)

where PCA of Xlong gives

R̂e =
1

Nlong ¡ 1
T̂T

longT̂long =
1

Nlong ¡ 1
P̂T

longX
T
longXlongP̂long (29)

and from (22) and (5)

R̂22 =
1

Nlong ¡ 1

³
I ¡ P̂longP̂T

long

´
XT

longXlong

³
I ¡ P̂longP̂T

long

´
: (30)

Since P̂T
longP̂long = I it follows from (30) that P̂T

longR̂22 = 0, and (28) therefore gives

K̂PCR = P̂T
longP̂longR̂eP̂T

long

³
P̂longR̂eP̂T

long + R̂22

´¡1

= P̂T
long

³
P̂longR̂eP̂T

long + R̂22 ¡ R̂22

´³
P̂longR̂eP̂T

long + R̂22

´¡1

= P̂T
long ¡ P̂T

longR22

³
PlongR̂ePT

long + R̂22

´¡1
= P̂T

long: (31)

The optimized predictor is thus given by (24).

Optimized PLSR predictor
In the results in Section 5 and 6 it may be noticed that the optimized PLSR predictor at the number of

components used for ¯nding R̂22 is equal with the optimized PCR predictor (24). In order to prove that
this is always the case we thus assume that the estimates R̂e and R̂22 are based on the same number of
components, i.e. A = APCR. From (20) follows

K̂PLS

³
ŴPLSR̂eŴT

PLS + R̂22

´
= R̂eŴT

PLS; (32)

and thus

K̂PLSŴPLSR̂eŴT
PLSP̂long + K̂PLSR̂22P̂long = R̂eŴT

PLSP̂long: (33)

Since R̂22P̂long = 0 and since R̂eŴT
PLSP̂long is invertible it follows that K̂PLSŴPLS = I. From (32) then

follows

R̂eŴT
PLS + K̂PLSR̂22 = R̂eŴT

PLS; (34)

such that also R22K̂T
PLS = 0:

Both P̂long; R̂22 and K̂T are determined by use of Xlong, and thus have bases which are subspaces
of the row space of Xlong. From (22) further follows that rank(R̂22) = min(Nlong; p) ¡ A, and since
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R̂22K̂T = 0 and R̂22P̂long = 0, while rank(P̂) = rank(K̂T ) = A, the columns of both K̂T and P̂ spans
the nullspace of R̂22. From this ¯nally follows that K̂ = M̂P̂

T
long, where M̂ is an invertible matrix that

rotates the P̂long column vectors without a®ecting the predictor. The optimized PLSR predictor at the
number of components A = APCR used for ¯nding R̂22 is thus equal with the optimized PCR predictor
(24).
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