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Abstract

It is established industrial practice to use the correspondence between partial least square (PLS)
scores and loadings or loading weights as a means for process monitoring and control. Deviations
from the normal operating point in a score plot is then related to the in�uences from major process
variables as shown in a loading or loading weight plot. These relations are often presented in a
bi-plot, i.e. appropriately scaled scores and loadings or loading weights are displayed in the same
plot. As shown in the present article, however, the orthogonal PLS algorithm of Wold gives no
direct theoretical and graphical correspondence, i.e. the bi-plot will show an angle deviation that
causes an interpretational problem. The alternative non-orthogonal PLS algorithm of Martens gives
direct correspondence, but the correlated latent variables may then cause another interpretational
problem. As a solution to these problems the article presents a PLS factorization where both scores
and loadings are orthogonal (BPLS), and we show how the Wold and Martens factorizations can
easily be transformed to this solution. The result is independent latent variables as well as direct
score and loading correspondence. It is also shown that the transformations involved do not a¤ect
the predictor found by PLS regression. The score-loading correspondence properties for the di¤erent
PLS factorizations are discussed using principal component analysis (PCA) as a reference case. An
example using industrial paper plant data is included.
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1 Introduction and problem statement

It is established industrial practice to use the correspondence between partial least squares (PLS) scores
and loadings or loading weights as a means for process monitoring and control.1 Deviations from the
normal operating point in a score plot is then related to the in�uences from major process variables as
shown in a loading or loading weight plot. This is normally done in a bi-plot, i.e. appropriately scaled
scores and loadings or loading weights are displayed in the same plot. Such correspondence is of interest
also in a number of other application areas2;3

The existing PLS algorithms4 are, however, not ideally suited for this purpose:

� The orthogonal algorithm of Wold uses independent latent variables, which in many cases re�ects
the underlying sources of variation. However, as shown in Section 3 the theoretical and graphical
correspondence between scores and the variable representations in the loading plots is obscured by
the fact that the loadings are non-orthogonal. It is also shown that the alternative use of loading
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weight plots is no solution to this problem. In both cases there will be an angle deviation and thus
a certain lack of interpretability.

� The non-orthogonal algorithm of Martens uses correlated latent variables, which may be in con�ict
with a natural and simple interpretation. However, as shown in Section 3 this algorithm results in
a direct graphical correspondence between scores and loading weights.

Each of the Wold and Martens factorizations thus have both good and less satisfying interpretational
properties. A possible solution to this problem is to use a principal component analysis (PCA) factor-
ization of the data matrix X instead of the PLS factorization, but this will in some cases give a less
parsimonious model using more components, which in itself reduces the correspondence interpretabil-
ity. A central problem of the present article is therefore to �nd how the two PLS factorizations can be
transformed to a uni�ed bi-orthogonal solution (BPLS), where the scores are orthogonal and the load-
ings orthonormal, just as in PCA. Simple transformations for this purpose based on a singular value
decomposition (SVD) are presented in Section 2, and it is also shown that these transformations do not
a¤ect the �nal PLS regression predictor. As indicated in Section 2, the BPLS factorization might also
have interesting properties other than the ones used in the correspondence context. However, a general
investigation of these properties is beyond the scope of the present article.
Section 3 discusses correspondence properties of the di¤erent factorizations, using PCA as a reference

case, Section 4 presents an industrial data example, and conclusions follow in Section 5.

2 A bi-orthogonal PLS factorization

Data matrix factorizations
A rather general factorization of a data matrix X 2 RN�p appearing in regression is

X = ÛR̂V̂
T
+E = T̂V̂

T
+E; (1)

where Û 2 RN�A and V̂ 2 Rp�A are matrices with orthonormal columns and R̂ 2 RA�A is an invertible
matrix.
In SVD/PCA the matrix R̂ is diagonal, resulting in

X = ÛPCAR̂PCAV̂
T
PCA +EPCA = T̂PCAP̂

T
PCA +EPCA ; (2)

where the score matrix T̂PCA = ÛPCAR̂PCA 2 RN�A has orthogonal columns, while the loading matrix
P̂PCA = V̂PCA 2 Rp�A has orthonormal columns.
In PLS1 (a single response variable) R̂ is right bi-diagonal5. The Wold factorization is

X = ÛWold�̂
1
2

WoldP̂
T
WoldŴŴ

T
+EPLS = T̂WoldP̂

T
WoldŴŴ

T
+EPLS ; (3)

where �̂Wold = T̂TWoldT̂Wold 2 RA�A is diagonal, the score matrix T̂Wold 2 RN�A has orthogonal
columns, the loading matrix P̂Wold 2 Rp�A is non-orthogonal and the loading weight matrix Ŵ 2
Rp�A has orthonormal columns. Note that V̂Wold = ŴŴ

T
P̂Wold also is non-orthogonal. The Martens

factorization is
X = ÛWold�̂

1
2

WoldP̂
T
WoldŴŴ

T
+EPLS = T̂MartensŴ

T +EPLS ; (4)

where TMartens = ÛWold�̂
1
2

WoldP̂
T
WoldŴ 2 RN�A is non-orthogonal.

Unifying transformations
As pointed out in the introduction there is a need for a PLS factorization with an orthogonal score

matrix and an orthonormal loading matrix, just as in PCA. Such a bi-orthogonal PLS factorization
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(BPLS) may be found by use of SVD. After decomposition of T̂Martens , the Martens factorization (4) can
be transformed according to

X = T̂MartensŴ
T +EPLS = USVDSSVDV

T
SVDŴ

T +EPLS

=
�
U1 U2

� � S1
0

�
VT
SVDŴ

T +EPLS = (U1S1)
�
ŴVSVD

�T
+EPLS = T̂BV̂

T
B +EPLS ; (5)

resulting in T̂B = U1S1 and V̂B = ŴVSVD . The Wold factorization (3) can �rst be transformed to a
Martens factorization according to

X = T̂WoldP̂
T
WoldŴŴ

T
+EPLS = T̂MartensŴ

T +EPLS ; (6)

which may then be transformed to a bi�orthogonal factorization according to (5). Alternatively we may

obtain T̂B and V̂B directly by an SVD of X̂ = T̂WoldP̂
T
WoldŴŴ

T
= T̂MartensŴ

T taken to the speci�ed
number of components.
Note that after the unifying transformations above the loading weight matrix Ŵ is replaced by the

loading (weight) matrix V̂B , i.e. there is no longer a need to distinguish between loadings and loading
weights.

Permutations
As a result of the SVD decomposition used in (5) the ordering of components according to explaining

power may get lost. In
X̂ = t̂B;1v̂

T
B;1 + t̂B;2v̂

T
B;2 + � � �+ t̂B;Av̂TB;A (7)

the third component may for example explain more of the response variable y than the second component
etc. This does not, however, a¤ect the total explaining power of all A components, where A is determined
through validation using an ordinary PLS procedure6. The ordering according to explaining power may
be restored by augmenting (5) with a square and orthonormal permutation matrix, i.e.

X = T̂BQQ
�1V̂T

B +EPLS = T̂BQ
�
V̂BQ

�T
+EPLS = ~TB ~V

T
B +EPLS : (8)

For the common case of a very low number A of total components the permutation to use is easily found
by a systematic search (see example in Section 4). Other cases are of little interest in a correspondence
context.

Final predictor
It can be shown7 that the PLS predictor based on observations collected in an X matrix and a y vector

(assuming a scalar response) can be written as

b̂ = Ŵ
�
ŴTXTXŴ

��1
ŴTXTy; (9)

where Ŵ is found by either the Wold or the Martens algorithm. In the transformations above Ŵ is
replaced by V̂B = ŴVSVD . Since VSVD 2 RA�A is invertible we thus �nd

b̂ = V̂BV
�1
SVD

�
V�T
SVDV̂

T
BX

TXV̂BV
�1
SVD

��1
V�T
SVDV̂

T
BX

Ty = V̂B

�
V̂T
BX

TXV̂B

�
V̂T
BX

Ty: (10)

The predictor is thus unaltered after replacement of Ŵ by V̂B , and for the same reason it is also unaltered
by the permutation matrix Q in (8).
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Discussion on BPLS properties
In the same way as in PCA, the BPLS factorization results in a score matrix with orthogonal columns

and a loading matrix with orthonormal columns. This makes a comparison with PCA natural.
The PCA factorization (2) may be found from solutions of the eigenvalue problem

XTXp̂i = p̂i�̂i; (11)

associated with the spectral decomposition8

XTX = p̂1�̂1p̂
T
1 + p̂2�̂2p̂

T
2 + : : :+ p̂p�̂pp̂

T
p = P̂�̂P̂

T
; (12)

where �̂1 � �̂2 � : : : � �̂p, P̂T P̂ = I and P̂P̂
T
= I, and where �̂ is diagonal. Using A components this

results in

XTX = p̂1�̂1p̂
T
1 + p̂2�̂2p̂

T
2 + : : :+ p̂A�̂Ap̂

T
A +E

T
PCAEPCA

= P̂PCA�̂PCAP̂
T
PCA +E

T
PCAEPCA = P̂PCAT̂

T
PCAT̂PCAP̂

T
PCA +E

T
PCAEPCA ; (13)

which is also found from (2).
The BPLS factorization (5), on the other hand, uses a loading matrix V̂B that is a linear combination

V̂B = P̂LB =
�
P̂l1 P̂l2 � � � P̂lA

�
(14)

such that
V̂T
B V̂B = L

T
B P̂

T P̂LB = L
T
BLB = I; (15)

and a score matrix
T̂B = XV̂B = XP̂LB (16)

such that
T̂TB T̂B = L

T
B P̂

TXTXP̂LB (17)

is diagonal, just as T̂TPCAT̂PCA = �̂PCA . However, this does not imply that V̂B can be found as a
solution of an eigenvalue problem, except for A = p, in which case LB = I and thus V̂B = P̂.
Note that Ŵ in the ordinary PLS factorizations also is a linear combination of P̂ with LTMartensLMartens =

I, but that T̂TMartensT̂Martens is non-diagonal
9. Also V̂Wold = ŴŴ

T
P̂Wold is a linear combination of P̂,

but then with LTWoldLWold 6= I. Although in itself interesting, further relations between the BPLS and
other factorizations are beyond the scope of the present correspondence context.

3 Score and loading correspondence

General discussion
As indicated in the introduction, correspondence between PLS scores and loadings is related to corre-

spondence in several other multivariate display techniques used in PCA, correspondence factor analysis,
spectral map analysis, factor analysis in the strict statistical sense etc.2. The common step in these
methods is the factorization of the data matrix X, but the methods di¤er with respect to the processing
of the data prior to the factorization, and to the factorization method used.

Comparison of factorization methods
We will here use PCA as a reference. From the general factorization (1) and the relation V̂Wold =

ŴŴ
T
P̂Wold used in (6) follow the least squares solutions

T̂ = XV̂
�
V̂T V̂

��1
=

8>>><>>>:
XP̂PCA = XV̂PCA PCA

XŴ
�
P̂TWoldŴ

��1
6= XV̂Wold Wold PLS

XŴ = XV̂Martens Martens PLS
XV̂B BPLS,

(18)
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where the orthonormality of P̂PCA , Ŵ and V̂B is used. Using the notation X =
�
x1 x2 � � � xp

�
=�

�1 �2 � � � �N
�T
and T̂ =

�
t̂1 t̂2 � � � t̂A

�
=
�
�̂ 1 �̂ 2 � � � �̂N

�T
it follows that a given

observation �Ti results in scores

�̂Ti =

8>>><>>>:
�Ti P̂PCA PCA

�Ti Ŵ
�
P̂TWoldŴ

��1
Wold PLS

�Ti Ŵ Martens PLS
�Ti V̂B BPLS,

(19)

where P̂PCA , Ŵ, and V̂B are orthonormal, while Ŵ
�
P̂TWoldŴ

��1
is not.

Introducing the notation P̂PCA =
�
p̂1 p̂2 � � � p̂A

�
=
�
�̂1 �̂2 � � � �̂p

�T
,

Ŵ =
�
ŵ1 ŵ2 � � � ŵA

�
=
�
!̂1 !̂2 � � � !̂p

�T
, V̂B =

�
v̂B;1 v̂B;2 � � � v̂B;A

�
=
�
#̂B;1 #̂B;2 � � � #̂B;p

�T
and V̂Wold =

�
v̂Wold;1 v̂Wold;2 � � � v̂Wold;A

�
=
�
#̂Wold;1 #̂Wold;2 � � � #̂Wold;p

�T
, and assuming centered data, a speci�c observation

�Ti =
�
0 � � � 0 �xij 0 � � � 0

�
results in

�̂ i =

8<:
�xij�̂j PCA
�xij!̂j Martens PLS
�xij#̂B;j BPLS,

(20)

while
�̂ i 6= �xij#̂Wold;j Wold PLS. (21)

Assuming orthogonal coordinate systems, the vector �̂ i in the score plots thus has the same direction
as the vector �̂j , !̂j or #̂j in the corresponding loading or loading weight plots for PCA, Martens PLS
and BPLS. For �xij = 1 the vectors will coincide (see example in Section 4).
For the Wold PLS solution, on the other hand, the vector �̂ i and the corresponding vector in any

of the possible loading or loading weight plots (V̂Wold , Ŵ or P̂Wold) will not have the same directions.
The reason for this is that the V̂Wold matrix used in the factorization is not orthogonal, and plotting
projections of Ŵ or P̂Wold instead of V̂Wold does not remedy the situation (see example in Section 4).

Relation to predictive power
The correspondence discussion and results above are limited to the di¤erent factorization methods,

and are thus not related to the predictive power of the di¤erent regression methods. This means that the
good interpretational properties of PCA and BPLS to a certain extent may be undermined by prediction
errors.

4 Industrial data example

The example uses multivariate regression data from a paper production plant10;11. The problem consid-
ered here is to monitor a given paper quality yi (the second column in the �rst data set) from six known
process variables �Ti =

�
�i1 �i2 �i3 �i4 �i5 �i6

�
(columns 14 to 19 in the �rst data set), and

for the purpose of �nding PLS factorizations all N = 29 samples of �Ti and yi are used. The �rst three
process variables �i1, �i2 and �i3 were varied systematically through an experiment, taking the values 1,
0 and -1. The next three variables were constructed as �i4 = �

2
i1, �i5 = �2i2 and �i6 = �2i3. The three

constructed variables �i1�i2, �i1�i2 and �i2�i3 are also included in the data set, but for the paper quality
chosen they have little predictive power, and for clarity of presentation they are not used in the present
example.
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Prediction
Although prediction as such is not the main topic in the present context, some results are included as

a background for the correspondence results presented below. As a �rst step samples 1 to 20 were used
to �nd PLS regression (PLSR and BPLSR) and principal component regression (PCR) predictors using
di¤erent numbers of components, while the samples 21 to 29 were used for validation. Centered and
standardized data were used, and the validation results are given in Table 1. The BPLSR results were
obtained by use of three components and a permutation matrix Q such that after the permutation (8)
the ordering was 2, 3, 1 (the best possible ordering found by trial and error). The fact that the two �rst
BPLSR components explain more than the two �rst PLSR components may be due to the very limited
number of samples.

Table 1: RMSEP results for di¤erent predictors.

No. of components RMSEPPLSR RMSEPBPLSR RMSEPPCR
0 0.9428 0.9428 0.9428
1 0.6023 0.7525 0.9206
2 0.4822 0.4111 0.9168
3 0.4106 0.4106 0.7337
4 0.4220 - 0.7561

Correspondence
In a second step all N = 29 samples were used to �nd PLS and BPLS factorizations and the corre-

sponding loading and loading weight matrices using A = 3 components. In accordance with (8) the BPLS
score and loading matrices after the component permutation are denoted ~TB and ~VB . New X data were
subsequently introduced as

Xtest =

26666664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

37777775 ; (22)

and the new scores together with the predictor loadings and loading weights for the two �rst components
were plotted (Fig. 1). To ease the interpretation of the results T̂testWold and Ŵ etc. are plotted in the same

plots (bi-plots). For the Wold algorithm there is generally a distinction between V̂Wold = ŴŴ
T
P̂Wold

and P̂Wold , although V̂Wold = P̂Wold for the �rst two components (all except the last). The results are in
agreement with the theoretical discussion in Section 3 above, i.e. only the Martens PLS and the BPLS
factorizations show total correspondence between scores and loadings/loading weights.
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Figure 1. Loadings/loading weights V̂Wold , Ŵ and ~VB (o) for the modeling data, and scores T̂testWold , T̂
test
Martens

and ~TtestB (x) for the Xtest data (22) with the Wold PLS, Martens PLS and BPLS factorizations. Note the total
correspondence for the Martens PLS and BPLS factorizations only.

Since the X-variables are correlated, the test data (22) are not realistic in the present case. However,
a realistic test observation is

�Ttest =
�
1 0 0 1 0 0

�
: (23)

The result of this is shown in Fig. 2, where the de�ciency of the �̂ testWold and Ŵ plot is clearly demonstrated.
Use of �̂ testWold and V̂Wold = P̂Wold gives in fact a somewhat more correct picture of the in�uences of
variables 1 and 4, although total correspondence is found only by use of �̂ testMartens and Ŵ or ~� testB and
~VB .
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Figure 2. Loadings/loading weights V̂Wold , Ŵ and ~VB (o) for the modeling data, and scores �̂
test
Wold , �̂

test
Martens

and ~� testB (x) for the �Ttest data (23) with the Wold PLS, Martens PLS and BPLS factorizations. The parallelo-
grams indicate the target score vector for �Ttest assuming total score-loading/loading weight correspondence. Note
that the Martens PLS and BPLS scores only are on target.

5 Conclusions

The existing PLS factorizations causes some interpretational problems with respect to score-loading
correspondence (orthogonal PLS of Wold) or latent variables covariance (non-orthogonal PLS of Martens).
As a solution a new PLS factorization (BPLS) has been developed, which just as the PCA factorization
has both an orthogonal score matrix and an orthonormal loading matrix. The two well-known PLS
algorithms of Wold and Martens can easily be transformed into a BPLS algorithm, without altering the
�nal predictor for the chosen number of components. The score-loading/loading weight correspondence
properties have been analyzed for the PCA, PLSWold , PLSMartens and BPLS factorizations, and it has
been shown that all of these except the PLSWold factorization show total correspondence. The PLSMartens
solution, however, has the drawback of using correlated latent variables, while the new BPLS factorization
uses independent latent variables. An example using industrial paper plant data illustrates the potential
BPLS advantages in process monitoring applications.

References

[1] Skagerberg B, Sundin L. Multidimensional monitoring of complex industrial processes, ABB Review
1993;4/93:31-38

8



[2] Thielemans A, Lewi PJ, Massart DL. Similarities and Di¤erences among Multivariate Display Tech-
niques Illustrated by Belgian Cancer Mortality Distribution Data. Chemometrics Intell. Lab. Syst.
1988;3:277-300.

[3] Kvalheim OM, Karstang TV. Interpretation of Latent-Variable Regression Models. Chemometrics
and Intelligent Laboratory Systems 1989;7:39-51.

[4] Martens H, Næs T. Multivariate Calibration, Wiley: New York, 1989;121-125.

[5] Manne R. Analysis of two partial-least-squares algorithms for multivariate calibration. Chemometrics
Intell. Lab. Syst. 1987;2:187-197.

[6] Esbensen KH. Multivariate Data Analysis - in practice, Camo ASA: Trondheim, Norway, 2000;155-
168.

[7] Helland IS. On the structure of partial least squares regression. Communications in statistics
1988;17:581-607.

[8] Johnson AJ, Wichern DW. Applied Multivariate Statistical Analysis, Prentice-Hall: Englewood Cli¤s,
NJ, 1992;48.

[9] Kalivas JH. Interrelationships of multivariate regression methods using eigenvector basis sets. J.
Chemometrics 1999; 13:111-132.

[10] Aldrin M. Moderate projection pursuit regression for multivariate response data. Computational
Statistics and Data Analysis 1996; 21:501-531.

[11] StatLib-Datasets Archive Website. http://lib.stat.cmu.edu/datasets/papir [14 June 1999].

9


