PLS post processing by similarity transformation (PLS+ST): a simple alternative to OPLS Theoretical properties and proofs

Rolf Ergon
Telemark University College Porsgrunn, Norway
Email: rolf.ergon@hit.no

This Supplementary Appendix gives the details and proofs of properties and results in the paper PLS post-processing by similarity transformation $(P L S+S T)$: A simple alternative to OPLS [9]. For the readers convenience, the OPLS algorithm [2] is also included.

Property 1 The Martens factorization (2) has the special property that all score vectors except the first one are orthogonal to both \mathbf{y} and $\hat{\mathbf{y}}$.

Proof: Since \mathbf{w}_{1} is given by $\mathbf{w}_{1}=\frac{\mathbf{X}^{T} \mathbf{y}}{\left\|\mathbf{X}^{T} \mathbf{y}\right\|}$ and $\mathbf{T}_{2: A}=\mathbf{X} \mathbf{W}_{2: A}$, and since $\mathbf{W}^{T} \mathbf{W}=\mathbf{I}$, it follows that $\mathbf{T}_{2: A}^{T} \mathbf{y}=\mathbf{W}_{2: A}^{T} \mathbf{X}^{T} \mathbf{y}=\left\|\mathbf{X}^{T} \mathbf{y}\right\| \mathbf{W}_{2: A}^{T} \mathbf{w}_{1}=\mathbf{0}$. From the prediction formula (3) further follows $\hat{\mathbf{y}}=\mathbf{X W}\left(\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}$ and thus

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
\mathbf{t}_{1} & \mathbf{T}_{2: A}
\end{array}\right]^{T} \hat{\mathbf{y}}} & =\mathbf{T}^{T} \hat{\mathbf{y}}=\mathbf{W}^{\mathbf{T}} \mathbf{X}^{\mathbf{T}} \mathbf{X} \mathbf{W}\left(\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}=\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y} \\
& =\left\|\mathbf{X}^{\mathbf{T}} \mathbf{y}\right\| \mathbf{W}^{T} \mathbf{w}_{1}=\left[\left\|\mathbf{X}^{\mathbf{T}} \mathbf{y}\right\| \quad \mathbf{0}\right. \tag{17}
\end{array}\right]^{T},
$$

i.e. $\mathbf{T}_{2: A}^{T} \hat{\mathbf{y}}=\mathbf{0}$.

Property 2 The residual \mathbf{E} in the Martens factorization (2) is also orthogonal to \mathbf{y}.
Proof: From $\mathbf{X}^{T} \mathbf{y}=\left\|\mathbf{X}^{\mathbf{T}} \mathbf{y}\right\| \mathbf{w}_{1}, \mathbf{w}_{1}^{T} \mathbf{w}_{1}=1$ and $\mathbf{y}^{T} \mathbf{T}_{2: A}=0$ follows $\mathbf{y}^{T} \mathbf{E}=\mathbf{y}^{T}\left(\mathbf{X}-\mathbf{T W}^{T}\right)=$ $\mathbf{y}^{T} \mathbf{X}-\mathbf{y}^{T}\left(\mathbf{t}_{1} \mathbf{w}_{1}^{T}+\mathbf{T}_{2: A} \mathbf{W}_{2: A}^{T}\right)=\mathbf{y}^{T} \mathbf{X}-\mathbf{y}^{T} \mathbf{t}_{1} \mathbf{w}_{1}^{T}=\mathbf{y}^{T} \mathbf{X}-\mathbf{y}^{T} \mathbf{X} \mathbf{w}_{1} \mathbf{w}_{1}^{T}=\left\|\mathbf{X}^{T} \mathbf{y}\right\| \mathbf{w}_{1}^{T}-\left\|\mathbf{X}^{T} \mathbf{y}\right\| \mathbf{w}_{1}^{T}=$ 0.

Property 3 The factorizations (13) and (2) are identical, i.e. $\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W}=\mathbf{T}$.
Proof: From the two well known estimator expressions $\hat{\mathbf{b}}=\mathbf{W}\left(\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}$ and $\hat{\mathbf{b}}=\mathbf{W}\left(\mathbf{P}^{T} \mathbf{W}\right)^{-1} \mathbf{q}_{\mathrm{W}}=\mathbf{W}\left(\mathbf{P}^{T} \mathbf{W}\right)^{-1}\left(\mathbf{T}_{\mathrm{W}}^{T} \mathbf{T}_{\mathrm{W}}\right)^{-1} \mathbf{T}_{\mathrm{W}}^{T} \mathbf{y}[7]$ follows

$$
\begin{equation*}
\mathbf{W}\left(\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}=\mathbf{W}\left(\left(\mathbf{P}^{T} \mathbf{W}\right)^{T} \mathbf{T}_{\mathrm{W}}^{T} \mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W}\right)^{-1}\left(\mathbf{P}^{T} \mathbf{W}\right)^{T} \mathbf{T}_{\mathrm{W}}^{T} \mathbf{y} \tag{18}
\end{equation*}
$$

i.e. $\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W}=\mathbf{X W}=\mathbf{T}$.

Property 4 The loading matrices in the factorizations (12) and (13) are
$\mathbf{P}=\left[\begin{array}{lllll}\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{A-1} & \mathbf{p}_{A}\end{array}\right]$ and $\mathbf{W} \mathbf{W}^{T} \mathbf{P}=\left[\begin{array}{lllll}\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{A-1} & \mathbf{w}_{A}\end{array}\right]$, i.e. they are different in the last column vector only.

Proof: The orthogonalized PLS algorithm results in an upper triangular and bi-diagonal matrix $\mathbf{P}^{T} \mathbf{W}$, with ones along the main diagonal [8]. We thus have

$$
\mathbf{P}^{T} \mathbf{W} \mathbf{W}^{T}=\left[\begin{array}{ccccc}
1 & \mathbf{p}_{1}^{T} \mathbf{w}_{2} & 0 & \cdots & 0 \tag{19}\\
0 & 1 & \mathbf{p}_{2}^{T} \mathbf{w}_{3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & 1 & \mathbf{p}_{A-1}^{T} \mathbf{w}_{A} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{w}_{1}^{T} \\
\mathbf{w}_{2}^{T} \\
\vdots \\
\vdots \\
\mathbf{w}_{A}^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{w}_{1}^{T}+\mathbf{p}_{1}^{T} \mathbf{w}_{2} \mathbf{w}_{2}^{T} \\
\mathbf{w}_{2}^{T}+\mathbf{p}_{2}^{T} \mathbf{w}_{3} \mathbf{w}_{3}^{T} \\
\vdots \\
\mathbf{w}_{A-1}^{T}+\mathbf{p}_{A-1}^{T} \mathbf{w}_{A} \mathbf{w}_{A}^{T} \\
\mathbf{w}_{A}^{T}
\end{array}\right]
$$

From this follows that \mathbf{p}_{A} in \mathbf{P} is replaced by \mathbf{w}_{A}, as stated. For a complete proof we must also show that for $2 \leq i \leq A$ we have $\mathbf{w}_{i-1}^{T}+\mathbf{p}_{i-1}^{T} \mathbf{w}_{i} \mathbf{w}_{i}^{T}=\mathbf{p}_{i-1}^{T}$, or equivalently that $\mathbf{w}_{i}^{T}=\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right)$. Forming $\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right) \mathbf{w}_{j}$ we find the following possibilities for $2 \leq i \leq A$:

$$
\begin{array}{rlc}
j<i-1 & \Rightarrow & \left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right) \mathbf{w}_{j}=\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}(0-0)=0 \\
j=i-1 & \Rightarrow & \left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right) \mathbf{w}_{j}=\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}(1-1)=0 \tag{20}\\
j=i & \Rightarrow & \left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right) \mathbf{w}_{j}=\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}-0\right)=1 \\
j>i & \Rightarrow & \left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right) \mathbf{w}_{j}=\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}(0-0)=0
\end{array}
$$

Since \mathbf{p}_{i} and thus also $\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}-\mathbf{w}_{i-1}\right)$ belong to the span of $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots \mathbf{w}_{A}$, and since $\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right) \mathbf{w}_{j}=1$ for $j=i$ and 0 for $j \neq i$, it finally follows from the orthonormality of \mathbf{W} that $\left(\mathbf{p}_{i-1}^{T} \mathbf{w}_{i}\right)^{-1}\left(\mathbf{p}_{i-1}^{T}-\mathbf{w}_{i-1}^{T}\right)=\mathbf{w}_{i}^{T}$, and thus that $\mathbf{w}_{i-1}^{T}+\mathbf{p}_{i-1}^{T} \mathbf{w}_{i} \mathbf{w}_{i}^{T}=$ \mathbf{p}_{i-1}^{T} for $2 \leq i \leq A$.

Property 5 Using a predetermined loading weights matrix \mathbf{W}, the deflation order in the algorithm resulting in the non-orthogonlized factorization (2) is of no importance for the residual and predictions. A loading weights matrix $\tilde{\mathbf{W}}$ with permuted column vectors will thus give $\mathbf{X}=\tilde{\mathbf{T}} \tilde{\mathbf{W}}^{T}+\mathbf{E}$ with $\tilde{\mathbf{T}} \tilde{\mathbf{W}}^{T}=\mathbf{T} \mathbf{W}^{T}$, and $y_{\text {new }}=\mathbf{x}_{\text {new }}^{T} \hat{\mathbf{b}}$ according to Eq. (3).

Proof: Since \mathbf{W} is orthonormal the PLS algorithm giving the non-orthogonalized factorization (2) generally gives $\mathbf{t}_{i}=\left(\underset{\sim}{\mathbf{X}}-\sum_{\text {over all }}{ }_{j \neq i} \mathbf{t}_{j} \mathbf{w}_{j}^{T}\right) \mathbf{w}_{i}=\mathbf{X} \mathbf{w}_{i}$. This is true irrespective of the order of deflation, i.e. $\tilde{\mathbf{T}}=\mathbf{X} \tilde{\mathbf{W}}$. Introducing an invertible permutation matrix $\tilde{\mathbf{P}}$ with the property $\tilde{\mathbf{P}}^{-1}=\tilde{\mathbf{P}}^{T}$ and $\tilde{\mathbf{W}}=\mathbf{W} \tilde{\mathbf{P}}$, the predictions according to Eq. (3) will be $y_{\text {new }}=\mathbf{x}_{\text {new }}^{T} \tilde{\mathbf{b}}=$ $\mathbf{x}_{\text {new }}^{T} \mathbf{W} \tilde{\mathbf{P}}\left(\tilde{\mathbf{P}} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W} \tilde{\mathbf{P}}\right)^{-1} \tilde{\mathbf{P}} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}=\mathbf{x}_{\text {new }}^{T} \mathbf{W}\left(\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}=\mathbf{x}_{\text {new }}^{T} \hat{\mathbf{b}}$.

Property 6 Using a predetermined loading weights matrix \mathbf{W}, the deflation order in the algorithm resulting in the orthogonlized factorizations (12) and (13) is of no importance for the residuals and predictions. A loading weights matrix $\hat{\mathbf{W}}$ with permuted column vectors will thus give $\mathbf{X}=\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T}+\mathbf{E}_{\mathrm{W}}$ and $\mathbf{X}=\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T} \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{T}+\mathbf{E}$ respectively, with $\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T}=\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T}$ and $\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T} \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{T}=\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W} \mathbf{W}^{\mathbf{T}}$.

Proof: According to Property 3 the relation between the orthogonalized and non-orthogonalized PLS algorithms is $\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W} \mathbf{W}^{\mathbf{T}}=\mathbf{T} \mathbf{W}^{T}$. Use of the same algorithms with the predetermined and permuted matrix $\tilde{\mathbf{W}}$ must then necessarily result in $\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T} \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{T}=\tilde{\mathbf{T}} \tilde{\mathbf{W}}^{T}$. Since $\tilde{\mathbf{W}} \tilde{\mathbf{W}}^{T}=\mathbf{W} \mathbf{W}^{\mathbf{T}}$ and $\tilde{\mathbf{T}} \tilde{\mathbf{W}}^{T}=\mathbf{T} \mathbf{W}^{T}$ (Property 5) it also follows that $\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T} \mathbf{W} \mathbf{W}^{\mathbf{T}}=\mathbf{T} \mathbf{W}^{T}=\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W} \mathbf{W}^{\mathbf{T}}$ and thus $\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T}=\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T}$. From this follow unaltered residuals and predictions.

The OPLS algorithm Following [2], the OPLS algorithm is as follows:

1. Set $i=1, \mathbf{E}_{i-1}=\mathbf{E}_{0}=\mathbf{X}$, and $\mathbf{W}_{\text {ortho }}, \mathbf{T}_{\text {ortho }}$ and $\mathbf{P}_{\text {ortho }}$ to empty matrices
2. $\mathbf{w}_{i}^{\text {OPLS }}=\frac{\left(\mathbf{E}_{i-1}\right)^{T} \mathbf{y}}{\left\|\left(\mathbf{E}_{i-1}\right)^{T} \mathbf{y}\right\|}=\mathbf{w}_{1}$
3. $\mathbf{t}_{i}^{\text {OPLS }}=\mathbf{E}_{i-1} \mathbf{w}_{i}$
4. $\mathbf{p}_{i}^{\text {OPLS }}=\frac{\left(\mathbf{E}_{i-1}\right)^{T} \mathbf{t}_{i}^{\text {OPLS }}}{\left(\mathbf{t}_{i}^{\text {OPLS }}\right)^{T} \mathbf{t}_{i}^{\text {OPLS }}}$
5. $\mathbf{w}_{i}^{\text {ortho }}=\frac{\mathbf{p}_{i}^{\text {OPLS }}-\mathbf{w}_{i}}{\left\|\mathbf{p}_{i}^{\text {OPLS }}-\mathbf{w}_{i}\right\|}$ and $\mathbf{W}_{\text {ortho }}=\left[\begin{array}{ll}\mathbf{W}_{\text {ortho }} & \mathbf{w}_{i}^{\text {ortho }}\end{array}\right]$
6. $\mathbf{t}_{i}^{\text {ortho }}=\mathbf{E}_{i-1} \mathbf{w}_{i}^{\text {ortho }}$ and $\mathbf{T}_{\text {ortho }}=\left[\begin{array}{ll}\mathbf{T}_{\text {ortho }} & \mathbf{t}_{i}^{\text {ortho }}\end{array}\right]$
7. $\mathbf{p}_{i}^{\text {ortho }}=\frac{\left(\mathbf{E}_{i-1}^{\text {OpLS }}\right)^{T} \mathbf{t}_{i+1}^{\text {ortho }}}{\left(\mathbf{t}_{i+1}^{\text {ortho }}\right)^{T} \mathbf{t}_{i+1}^{\text {ortho }}}$ and $\mathbf{P}_{\text {ortho }}=\left[\begin{array}{ll}\mathbf{P}_{\text {ortho }} & \mathbf{p}_{i}^{\text {ortho }}\end{array}\right]$
8. $\mathbf{E}_{i}=\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}$
9. Let $i=i+1$ and return to step 2 for additional orthogonal components, otherwise go to step 10
10. End.

The resulting \mathbf{E}_{i} are the filtered \mathbf{X} data, and a one component PLS factorization after removal of $i=A-1$ components further gives

$$
\begin{equation*}
\mathbf{E}_{A-1}=\mathbf{t}_{A}^{\mathrm{OPLS}}\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T}+\mathbf{E}_{\mathrm{OPLS}} \tag{21}
\end{equation*}
$$

Note that all steps give $\mathbf{w}_{i}^{\text {OPLS }}=\mathbf{w}_{1}$.
Property 7 The OPLS loading weights matrix may be found from the ordinary PLS loading weights matrix as $\mathbf{W}_{\text {ortho }}=-\mathbf{W}_{2: A}$.

Proof: From Property 6 follows that orthogonalized PLS regression with the permuted loading weights matrix $\tilde{\mathbf{W}}=\left[\begin{array}{ll}\mathbf{W}_{2: A} & \mathbf{w}_{1}\end{array}\right]$ gives the same fitted response vector $\hat{\mathbf{y}}$ as with use of \mathbf{W}. Since the sign of a \mathbf{w}_{i} vector has nothing to say for the products $\mathbf{t}_{i} \mathbf{p}_{i}^{T}$ and $\mathbf{t}_{i}^{\text {ortho }}\left(\mathbf{p}_{i}^{\text {ortho }}\right)^{T}$, this is true also for $\tilde{\mathbf{W}}=\left[\begin{array}{ll}-\mathbf{W}_{2: A} & \mathbf{w}_{1}\end{array}\right]$. We use induction in the parameter i related to $\mathbf{W}_{\text {ortho }}$ to show that the OPLS algorithm uses $\mathbf{W}_{\text {ortho }}=-\mathbf{W}_{2: A}$.

For $i=1$, i.e. one \mathbf{y}-orthogonal component, the OPLS algorithm gives

$$
\begin{equation*}
\mathbf{w}_{1}^{\text {ortho }}=\frac{\mathbf{p}_{1}^{\text {OPLS }}-\mathbf{w}_{1}}{\left\|\mathbf{p}_{1}^{\text {OPLS }}-\mathbf{w}_{1}\right\|}=\frac{\mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\right)^{-1}-\mathbf{w}_{1}}{\left\|\mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\right)^{-1}-\mathbf{w}_{1}\right\|} \tag{22}
\end{equation*}
$$

while the recursive formula for the loading weights vectors developed by Helland [7] and the prediction formula (3) give (where $\hat{\mathbf{y}}_{1}$ is the fitted response vector using one PLS component)

$$
\begin{align*}
\mathbf{w}_{2} & =\frac{\mathbf{X}^{T}\left(\mathbf{y}-\hat{\mathbf{y}}_{1}\right)}{\left\|\mathbf{X}^{T}\left(\mathbf{y}-\hat{\mathbf{y}}_{1}\right)\right\|}=\frac{\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\right)^{-1} \mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{y}\right)}{\left\|\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\right)^{-1} \mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{y}\right)\right\|} \\
& =\frac{\mathbf{w}_{1}-\mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\right)^{-1}}{\left\|\mathbf{w}_{1}-\mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{1}\right)^{-1}\right\|}=-\mathbf{w}_{1}^{\text {ortho }} \tag{23}
\end{align*}
$$

Assuming the property to be true up to $\mathbf{w}_{i-1}^{\text {ortho }}$ we find according to the OPLS algorithm

$$
\begin{equation*}
\mathbf{w}_{i}^{\text {ortho }}=\frac{\mathbf{p}_{i}^{\text {OPLS }}-\mathbf{w}_{1}}{\left\|\mathbf{p}_{i}^{\text {OPLS }}-\mathbf{w}_{1}\right\|} \tag{24}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{E}_{i-1}=\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \tag{25}
\end{equation*}
$$

where $\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}$ is the factorization of the $i-1$ removed \mathbf{y}-orthogonal components. From the recursive loading weights formula [7] we also find

$$
\begin{equation*}
\mathbf{w}_{i+1}=\frac{\mathbf{X}^{T}\left(\mathbf{y}-\hat{\mathbf{y}}_{i}\right)}{\left\|\mathbf{X}^{T}\left(\mathbf{y}-\hat{\mathbf{y}}_{i}\right)\right\|}=\frac{\mathbf{w}_{1}-\frac{\mathbf{x}^{T} \hat{\mathbf{y}}_{i}}{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}}}{\left\|\mathbf{w}_{1}-\frac{\mathbf{X}^{T} \hat{\mathbf{y}}_{i}}{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}}\right\|} \tag{26}
\end{equation*}
$$

where $\hat{\mathbf{y}}_{i}$ is the fitted response vector using a total of i components.
In order to show that $\mathbf{w}_{i}^{\text {ortho }}=-\mathbf{w}_{i+1}$ we finally make use of the OPLS facts that $\mathbf{T}_{\text {ortho }}^{T} \mathbf{y}=\mathbf{0}$ and $\mathbf{T}_{\text {ortho }}^{T} \hat{\mathbf{y}}=\mathbf{0}$ (see [2] for proofs), i.e. $\mathbf{E}_{i-1}^{T} \mathbf{y}=\left(\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}\right)^{T} \mathbf{y}=\mathbf{X}^{T} \mathbf{y}$ and $\mathbf{E}_{i-1}^{T} \hat{\mathbf{y}}_{i}=$ $\left(\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}\right)^{T} \hat{\mathbf{y}}=\mathbf{X}^{T} \hat{\mathbf{y}}$. We then use the prediction formula (3) and the fact that OPLS gives the same predictions as ordinary PLS, and develop $\mathbf{p}_{i}^{\text {OPLS }}$ into (also using $\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{y}=$ $\left.\mathbf{w}_{1}^{T} \mathbf{w}_{1} \sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}=\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}\right)$

$$
\begin{align*}
\mathbf{p}_{i}^{\mathrm{OPLS}} & =\mathbf{E}_{i-1}^{T} \mathbf{E}_{i-1} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{E}_{i-1}^{T} \mathbf{E}_{i-1} \mathbf{w}_{1}\right)^{-1}=\mathbf{E}_{i-1}^{T} \frac{\mathbf{E}_{i-1} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{E}_{i-1}^{T} \mathbf{E}_{i-1} \mathbf{w}_{1}\right)^{-1} \mathbf{w}_{1}^{T} \mathbf{E}_{i-1}^{T} \mathbf{y}}{\mathbf{w}_{1}^{T} \mathbf{E}_{i-1}^{T} \mathbf{y}} \\
& =\mathbf{E}_{i-1}^{T} \frac{\hat{\mathbf{y}}_{i}}{\mathbf{w}_{1}^{T} \mathbf{E}_{i-1}^{T} \mathbf{y}}=\frac{\mathbf{X}^{T} \hat{\mathbf{y}}_{i}}{\mathbf{w}_{1}^{T} \mathbf{X}^{T} \mathbf{y}}=\frac{\mathbf{X}^{T} \hat{\mathbf{y}}_{i}}{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}} \tag{27}
\end{align*}
$$

and insertion into Eq. (24) and comparison with Eq. (26) finally shows that $\mathbf{w}_{i}^{\text {ortho }}=-\mathbf{w}_{i+1}$.
Property 8 After the removal of $A-1 \mathbf{y}$-orthogonal components, the OPLS factorization (14) results in the same residual $\mathbf{E}_{\text {OpLS }}=\mathbf{E}_{\mathrm{W}}$ and the same predictions as the original orthogonalized PLS factorization (12).

Proof: Since $\mathbf{W}_{\text {ortho }}=-\mathbf{W}_{2: A}$ the OPLS factorization is equivalent with the factorization obtained by the standard PLS NIPALS algorithm with predetermined and permuted loading weights vectors in the order $\mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{A}$ and \mathbf{w}_{1}. From Property 6 thus follows that the residuals and the predictions are the same.

Result 1 The second similarity transformation $\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}=\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\left(\mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\right)^{-1} \mathbf{P}_{\text {ortho }}^{T}$ results in the transformed OPLS score matrix $\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}=\mathbf{T}_{2: A}$.

Proof: According to Property 3 the two factorizations $\mathbf{X}=\mathbf{T} \mathbf{W}^{T}+\mathbf{E}$ and $\mathbf{X}=\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W} \mathbf{W}^{T}+$ \mathbf{E} are identical, i.e. $\mathbf{T}_{W} \mathbf{P}^{T} \mathbf{W}=\mathbf{T}$. Using a permuted loading weights matrix $\tilde{\mathbf{W}}=\left[\begin{array}{ll}\mathbf{W}_{2: A} & \mathbf{w}_{1}\end{array}\right]$ we correspondlingly have $\tilde{\mathbf{T}}=\left[\begin{array}{ll}\mathbf{T}_{2: A} & \mathbf{t}_{1}\end{array}\right]=\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T} \tilde{\mathbf{W}}$, and that is independent of the number of components used. As the OPLS algorithm gives $\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}$ by use of \mathbf{X} and $\mathbf{W}_{\text {ortho }}=-\mathbf{W}_{2: A}$ (Property 7) in exactly the same way as we find the first $A-1$ components in $\tilde{\mathbf{T}}_{\mathrm{W}} \tilde{\mathbf{P}}^{T}$, this will necessarily give

$$
\begin{equation*}
\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}=\mathbf{T}_{2: A} \tag{28}
\end{equation*}
$$

Property 9 The last OPLS component $\mathbf{t}_{A}^{\text {OPLS }}\left(\mathbf{p}_{A}^{\text {OPLS }}\right)^{T}$ multiplied with $\mathbf{W} \mathbf{W}^{T}$ becomes $\mathbf{t}_{A}^{\mathrm{OPLS}}\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T} \mathbf{W} \mathbf{W}^{T}=\mathbf{t}_{A}^{\mathrm{OPLS}} \mathbf{w}_{1}^{T}$.

Proof: We have

$$
\begin{equation*}
\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T} \mathbf{W} \mathbf{W}^{T}=\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T}\left(\mathbf{w}_{1} \mathbf{w}_{1}^{T}+\mathbf{W}_{2: A} \mathbf{W}_{2: A}^{T}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T} \mathbf{w}_{1}=\frac{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1}}{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1} \mathbf{w}_{1}} \mathbf{w}_{1}=1 \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T} \mathbf{W}_{2: A} & =\frac{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1}}{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1} \mathbf{w}_{1}} \mathbf{W}_{2: A} \\
& =\frac{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T}}{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1} \mathbf{w}_{1}}\left(\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}\right) \mathbf{W}_{2: A} \\
& =\frac{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T}}{\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1} \mathbf{w}_{1}}\left(\mathbf{T}_{2: A}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\right)=\mathbf{0} \tag{31}
\end{align*}
$$

where we in the final equality make use of Result 1.

Property 10 After the removal of $A-1 \mathbf{y}$-orthogonal components, the modified OPLS factorization (15) results in the same residual \mathbf{E} and the same predictions as the modified PLS factorization (13).

Proof: Since $\mathbf{W}_{\text {ortho }}=-\mathbf{W}_{2: A}$ the OPLS factorization is equivalent with the factorization obtained by the standard PLS NIPALS algorithm with predetermined and permuted loading weights vectors in the order $\mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{A}$ and \mathbf{w}_{1}. From Property 6 and Eqs. (13) and (14) thus follows

$$
\begin{align*}
\mathbf{X} & =\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W} \mathbf{W}^{T}+\mathbf{E}=\left(\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}+\mathbf{t}_{A}^{\mathrm{OPLS}}\left(\mathbf{p}_{A}^{\mathrm{OPLS}}\right)^{T}\right) \mathbf{W} \mathbf{W}^{T}+\mathbf{E} \\
& =\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W} \mathbf{W}^{T}+\mathbf{t}_{A}^{\mathrm{OPLS}} \mathbf{w}_{1}^{T}+\mathbf{E} \tag{32}
\end{align*}
$$

where the final equality making use of Property 9 results in equality with Eq. (15).
Result 2 The final modified OPLS component is identical with the first PLS+ST component, i.e. $\mathbf{t}_{A}^{\mathrm{OPLS}} \mathbf{w}_{1}^{T}=\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}} \mathbf{w}_{1}^{T}$.

Proof: When $A-1$ y-orthogonal components are subtracted from \mathbf{X}, it follows from the OPLS algorithm that the remaining score vector is

$$
\begin{equation*}
\mathbf{t}_{A}^{\mathrm{OPLS}}=\left(\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}\right) \mathbf{w}_{1}=\mathbf{E}_{A-1} \mathbf{w}_{1} . \tag{33}
\end{equation*}
$$

Using the standard prediction formula (3) we further find

$$
\begin{equation*}
\hat{\mathbf{y}}=\mathbf{E}_{A-1} \mathbf{w}_{1}\left(\mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{E}_{A-1} \mathbf{w}_{1}\right)^{-1} \mathbf{w}_{1}^{T} \mathbf{E}_{A-1}^{T} \mathbf{y}=\mathbf{E}_{A-1} \mathbf{w}_{1} d=\mathbf{t}_{A}^{\mathrm{OPLS}} d \tag{34}
\end{equation*}
$$

where d is a scalar. This confirms that $\mathbf{t}_{A}^{\mathrm{OPLS}}$ is in the direction of $\hat{\mathbf{y}}$, which according to Property 6 is also identical with the fitted response vector using ordinary PLS regression.

From the PLS+ST factorization (5) follows $\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}}=q_{1}^{-1} \hat{\mathbf{y}}$, where q_{1} is found as the first component in $\mathbf{q}=\left(\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{X}^{T} \mathbf{y}$. Since \mathbf{y} is orthogonal to both $\mathbf{T}_{2: A}$ (Property 1) and \mathbf{E} (Property 2) we may also find q_{1} by use of the PLS+ST factorization (6) and

$$
\begin{align*}
\mathbf{y}^{T} \mathbf{X} & =\mathbf{y}^{T}\left(\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}} \mathbf{w}_{1}^{T}+\mathbf{T}_{2: A}\left(\mathbf{P}_{2: A}^{\mathrm{PLS}+\mathrm{ST}}\right)^{T}+\mathbf{E}\right)=\mathbf{y}^{T} \mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}} \mathbf{w}_{1}^{T} \\
& =\mathbf{y}^{T} q_{1}^{-1} \hat{\mathbf{y}} \mathbf{w}_{1}^{T}=\frac{q_{1}^{-1} \mathbf{y}^{T} \hat{\mathbf{y}}}{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}} \mathbf{y}^{T} \mathbf{X}, \tag{35}
\end{align*}
$$

i.e. $\frac{q_{1}^{-1} \mathbf{y}^{T} \hat{\mathbf{y}}}{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}}=1$ and

$$
\begin{equation*}
\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}}=q_{1}^{-1} \hat{\mathbf{y}}=\frac{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}}{\mathbf{y}^{T} \hat{\mathbf{y}}} \hat{\mathbf{y}} . \tag{36}
\end{equation*}
$$

Since $\mathbf{y}^{T} \mathbf{T}_{\text {ortho }}=\mathbf{0}$ we find $\mathbf{y}^{T} \mathbf{E}_{A-1}=\mathbf{y}^{T}\left(\mathbf{X}-\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T}\right)=\mathbf{y}^{T} \mathbf{X}=\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}} \mathbf{w}_{1}^{T}$, and from the $\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}}$ expression (36) using $\mathbf{y}^{T} \mathbf{X} \mathbf{w}_{1}=\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}} \mathbf{w}_{1}^{T} \mathbf{w}_{1}=\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}$ and $\hat{\mathbf{y}}$ according to Eq. (34) thus follows

$$
\begin{align*}
\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}} & =\frac{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}}}{\mathbf{y}^{T} \hat{\mathbf{y}}} \hat{\mathbf{y}}=\frac{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y}} \mathbf{E}_{A-1} \mathbf{w}_{1} d}{\mathbf{y}^{T} \mathbf{E}_{A-1} \mathbf{w}_{1} d} \\
& =\frac{\sqrt{\mathbf{y}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{y} \mathbf{t}_{A}^{\mathrm{OPLS}}}}{\mathbf{y}^{T} \mathbf{X} \mathbf{w}_{1}}=\mathbf{t}_{A}^{\mathrm{OPLS}} \tag{37}
\end{align*}
$$

Result 3 The first modified and then transformed OPLS loading matrix is identical with the PLS+ST loading matrix, i.e. $\mathbf{W} \mathbf{W}^{T} \mathbf{P}_{\text {ortho }}\left(\mathbf{W}_{2: A}^{T} \mathbf{P}_{\text {ortho }}\right)^{-1}=\mathbf{P}_{2: A}^{\text {PLS }+ \text { ST }}$.

Proof: According to Property 3 the two factorizations $\mathbf{X}=\mathbf{T} \mathbf{W}^{T}+\mathbf{E}$ and $\mathbf{X}=\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W} \mathbf{W}^{T}+$ \mathbf{E} are identical with $\mathbf{T}_{\mathrm{W}} \mathbf{P}^{T} \mathbf{W}=\mathbf{T}$. According to Property 10 these factorizations are also identical with the modified OPLS factorization $\mathbf{X}=\mathbf{T}_{\text {ortho }} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W} \mathbf{W}^{T}+\mathbf{t}_{A}^{\text {OPLS }} \mathbf{w}_{1}^{T}+\mathbf{E}$ and thus the transformed factorization $\mathbf{X}=\mathbf{T}_{\text {ortho }}\left(\mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\right)\left(\mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\right)^{-1} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W} \mathbf{W}^{T}+\mathbf{t}_{A}^{\mathrm{OPLS}} \mathbf{w}_{1}^{T}+\mathbf{E}$, while the PLS + ST method gives $\mathbf{X}=\mathbf{T}_{2: A}\left(\mathbf{P}_{2: A}^{\mathrm{PLS}+\mathrm{ST}}\right)^{T}+\mathbf{t}_{A}^{\mathrm{PLS}+\mathrm{ST}} \mathbf{w}_{1}^{T}+\mathbf{E}$. Since Result 1 shows that $\mathbf{T}_{\text {ortho }}\left(\mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\right)=\mathbf{T}_{2: A}$, while Result 2 shows that $\mathbf{t}_{A}^{\mathrm{OPLS}} \mathbf{w}_{1}^{T}=\mathbf{t}_{A}^{\mathrm{PLS}+\mathrm{ST}} \mathbf{w}_{1}^{T}$, it follows that $\left(\mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}\right)^{-1} \mathbf{P}_{\text {ortho }}^{T} \mathbf{W} \mathbf{W}^{T}=\left(\mathbf{P}_{2: A}^{\text {PLS+ST }}\right)^{T}$.

Property 11 The modified loading matrix $\mathbf{W} \mathbf{W}^{T} \mathbf{P}_{\text {ortho }}$ is different from $\mathbf{P}_{\text {ortho }}$ in the last column vector only, with $\mathbf{p}_{A-1}^{\text {ortho }}$ replaced by $\left(\mathbf{p}_{A-1}^{\text {ortho }}\right)^{T} \mathbf{w}_{1} \mathbf{w}_{1}-\mathbf{w}_{A}$.

Proof: The ordinary PLS algorithm results in an upper triangular and bi-diagonal matrix $\mathbf{P}^{T} \mathbf{W}$, with 1 along the main diagonal [8]. Since $\mathbf{P}_{\text {ortho }}$ in the OPLS algorithm according to Property 7 is found from $\mathbf{W}_{\text {ortho }}=-\mathbf{W}_{2: A}$ in the same way as \mathbf{P} is found from \mathbf{W}, the matrix $\mathbf{P}_{\text {ortho }}^{T} \mathbf{W}_{2: A}$ must also be bi-diagonal with -1 along the main diagonal. We thus have (with $\tilde{\mathbf{p}}_{i}=\mathbf{p}_{i}^{\text {ortho }}$)
$\mathbf{P}_{\text {ortho }}^{T}\left[\begin{array}{ll}\mathbf{w}_{1} & \mathbf{W}_{2: A}\end{array}\right]\left[\begin{array}{c}\mathbf{w}_{1}^{T} \\ \mathbf{W}_{2: A}^{T}\end{array}\right]=\left[\begin{array}{cccccc}\tilde{\mathbf{p}}_{1}^{T} \mathbf{w}_{1} & -1 & \tilde{\mathbf{p}}_{1}^{T} \mathbf{w}_{3} & 0 & \cdots & 0 \\ \tilde{\mathbf{p}}_{2}^{T} \mathbf{w}_{1} & 0 & -1 & \tilde{\mathbf{p}}_{2}^{T} \mathbf{w}_{4} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ \tilde{\mathbf{p}}_{A-2}^{T} \mathbf{w}_{1} & \vdots & & \ddots & -1 & \tilde{\mathbf{p}}_{A-2}^{T} \mathbf{w}_{A} \\ \tilde{\mathbf{p}}_{A-1}^{T} \mathbf{w}_{1} & 0 & \cdots & \cdots & 0 & -1\end{array}\right]\left[\begin{array}{c}\mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \vdots \\ \vdots \\ \mathbf{w}_{A}^{T}\end{array}\right]$

$$
=\left[\begin{array}{c}
\tilde{\mathbf{p}}_{1}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{2}^{T}+\tilde{\mathbf{p}}_{1}^{T} \mathbf{w}_{3} \mathbf{w}_{3}^{T} \tag{38}\\
\tilde{\mathbf{p}}_{2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{3}^{T}+\tilde{\mathbf{p}}_{2}^{T} \mathbf{w}_{4} \mathbf{w}_{4}^{T} \\
\vdots \\
\tilde{\mathbf{p}}_{A-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{A-1}^{T}+\tilde{\mathbf{p}}_{A-2}^{T} \mathbf{w}_{A} \mathbf{w}_{A}^{T} \\
\tilde{\mathbf{p}}_{A-1}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{A}^{T}
\end{array}\right]
$$

From this follows that $\tilde{\mathbf{p}}_{A-1}^{T}$ in $\mathbf{P}_{\text {ortho }}^{T}$ is replaced by $\tilde{\mathbf{p}}_{A-1}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{A}^{T}$, as stated. For a complete proof we must also show that for $3 \leq i \leq A$ we have $\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{i-1}^{T}+\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i} \mathbf{w}_{i}^{T}=\tilde{\mathbf{p}}_{i-2}^{T}$, or equivalently that $\mathbf{w}_{i}^{T}=\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}\left(-\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}+\mathbf{w}_{i-1}^{T}+\tilde{\mathbf{p}}_{i-2}^{T}\right)$. Forming
$\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}\left(-\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}+\mathbf{w}_{i-1}^{T}+\tilde{\mathbf{p}}_{i-2}^{T}\right) \mathbf{w}_{j}$ we find the following possibilities for $3 \leq i \leq A$:

$$
\begin{array}{ccc}
j=1 & \Rightarrow & \left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(\cdot) \mathbf{w}_{j}=\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}\left(-\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1}+0+\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1}\right)=0 \\
1<j<i-1 & \Rightarrow & \left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(\cdot) \mathbf{w}_{j}=\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(-0+0+0)=0 \\
j=i-1 & \Rightarrow & \left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(\cdot) \mathbf{w}_{j}=\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(-0+1-1)=0 \tag{39}\\
j=i & \Rightarrow & \left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(\cdot) \mathbf{w}_{j}=\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}\left(-0+0+\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)=1 \\
j>i & \Rightarrow & \left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(\cdot) \mathbf{w}_{j}=\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}(-0+0+0)=0
\end{array}
$$

For ordinary PLS we know that \mathbf{p}_{i} belongs to the span of $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots \mathbf{w}_{A}$, and from Property 7 and the OPLS algorithm then follows that this must be the case also for $-\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}+\mathbf{w}_{i-1}+\tilde{\mathbf{p}}_{i-2}$. Since
$\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}\left(-\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}+\mathbf{w}_{i-1}^{T}+\tilde{\mathbf{p}}_{i-2}^{T}\right) \mathbf{w}_{j}=1$ for $j=i$ and 0 for $j \neq i$, it finally follows that $\left(\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i}\right)^{-1}\left(-\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}+\mathbf{w}_{i-1}^{T}+\tilde{\mathbf{p}}_{i-2}^{T}\right)=\mathbf{w}_{i}^{T}$, and thus that $\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{1} \mathbf{w}_{1}^{T}-\mathbf{w}_{i-1}^{T}+\tilde{\mathbf{p}}_{i-2}^{T} \mathbf{w}_{i} \mathbf{w}_{i}^{T}=$ $\tilde{\mathbf{p}}_{i-2}^{T}$.

Result 4 For a single y-relevant component the relation between the post-processing PCP method [5] and PLS+ST is that $\mathbf{t}_{1}^{\mathrm{PCP}} \rightarrow \mathbf{t}_{1}^{\mathrm{ST}}=\mathbf{t}_{A}^{\mathrm{OPLS}}$ and $\mathbf{w}_{1}^{\mathrm{PCP}} \rightarrow \mathbf{w}_{1}$ when $\hat{\mathbf{y}} \rightarrow \mathbf{y}$, i.e. with good predictions.

Proof: PCP uses the factorization (with normalized loadings)

$$
\begin{equation*}
\mathbf{X}=\mathbf{t}_{1}^{\mathrm{PCP}}\left(\mathbf{w}_{1}^{\mathrm{PCP}}\right)^{T}+\mathbf{E}_{\mathrm{PCP}}, \tag{40}
\end{equation*}
$$

with $\mathbf{t}_{1}^{\mathrm{PCP}}=\frac{\sqrt{\hat{\mathbf{y}}^{T} \mathbf{X X} \mathbf{X}^{T}} \hat{\mathbf{y}}}{\hat{\mathbf{y}}^{T} \hat{\mathbf{y}}} \hat{\mathbf{y}}$ instead of $\mathbf{t}_{1}^{\mathrm{PLS}+\mathrm{ST}}=\frac{\sqrt{\mathbf{y}^{T} \mathbf{X X} \mathbf{X}^{T} \mathbf{y}}}{\mathbf{y}^{T} \hat{\mathbf{y}}} \hat{\mathbf{y}}$ as in Eq. (36) and $\mathbf{w}_{1}^{\mathrm{PCP}}=\frac{\mathbf{x}^{T} \hat{\mathbf{y}}}{\sqrt{\hat{\mathbf{y}}^{T} \mathbf{X} \mathbf{X}^{T} \hat{\mathbf{y}}}}$ instead of $\mathbf{w}_{1}=\frac{\mathbf{x}^{T} \mathbf{y}}{\sqrt{y^{T} X X^{T} y}}$ as in the PLS algorithms.

References

[1] Svensson O, Kourti T, MacGregor JF. An investigation of orthogonal signal correction algorithms and there characteristics. J. Chemometrics 2002; 16: 176-188.
[2] Trygg J, Wold S. Orthogonal projections to latent structures, O-PLS. J. Chemometrics 2002; 16: 119-128.
[3] Martens H, Næs T. Multivariate Calibration. Wiley: New York, 1989.
[4] Verron T, Sabatier R, Joffre R. Some theoretical properties of the O-PLS method. J. Chemometrics 2004; 18: 62-68.
[5] Langsrud \emptyset, Næs T. Optimised score plot by principal components of prediction. Chemometrics Intell. Lab. Syst. 2003; 68: 61-74.
[6] Yu H, MacGregor JF. Post processing methods (PLS-CCA): simple alternatives to preprocessing methods (OSC-PLS). Chemometrics Intell. Lab. Syst. 2004; 73: 199-205.
[7] Helland IS. On the structure of partial least squares regression. Communications in statistics 1988; 17: 581-607.
[8] Manne R. Analysis of two partial-least-squares algorithms for multivariate calibration. Chemometrics Intell. Lab. Syst 1987; 2: 187-97.
[9] Ergon R. PLS post processing by similarity transformation: A simple alternative to OPLS. J. Chemometrics 2005; 19: 1-4

