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This Supplementary Appendix gives the details and proofs of properties and results in the
paper PLS post-processing by similarity transformation (PLS+ST): A simple alternative to OPLS
[9]. For the readers convenience, the OPLS algorithm [2] is also included.

Property 1 The Martens factorization (2) has the special property that all score vectors except
the first one are orthogonal to both y and y.
T

Proof: Since wy is given by w; = H%YLH and Ta.4 = XWy. 4, and since WTW =1, it follows
that TZ ,y = W1, XTy = ||XTyH W1 ,wi = 0. From the prediction formula (3) further follows
§ = XW (WIXTXW) ' WXy and thus
"y = T79 = WIXTXW (WIXTXW) ' WXy = WXy

T T

IXTy[|Wwe = [ [ XTy] o], (17)

[t1 Taa

i.e. TgAy == 0.

Property 2 The residual E in the Martens factorization (2) is also orthogonal to y.

Proof: From XTy = HXTyH w, wlw; =1and yTTs.4 = 0 follows y'E = y* (X — TWT> =
YyIX—yT (taw] + ToaW1 ) = y"X—yTtyw] = y"X —y" Xwiw] = || XTy|| wi—[| X y| w] =
0.

Property 3 The factorizations (13) and (2) are identical, i.e. TwPTW =T .
Proof: From the two well known estimator expressions b=W (WTXTXW) ! WTXTy and
b=W (PTW) 'qw = W (PTW) " (T Tw) ' Thy [7] follows

. -1
W (WIXTXW) " WTXTy = W ((P"W)' T{TwPW)  (PTW) Thy, (18)
ie. TwPTW =XW =T.
Property 4 The loading matrices in the factorizations (12) and (13) are

P=[p1 p2 - Pa-1 pa|and WW'P = [p; py -+ pa-1 Wwa |, ie. they are
different in the last column vector only.



Proof: The orthogonalized PLS algorithm results in an upper triangular and bi-diagonal matrix
PTW, with ones along the main diagonal [8]. We thus have

M1 Tw 0 0 1 T
b1 w2 - _ W% wi + plwowl
0 1 plwsy . : W2 wl + plwswl
PTWWT = | : - 0 Col =
. T T T
. Wi 1 TPA_1WAW
: . 1 p£,1WA T A-l W‘Z« 1 A
0 .- 0 1 Wy

) _ (19)
From this follows that ps in P is replaced by w4, as stated. For a complete proof we
must also show that for 2 < i < A we have wl ; + pl ;w;w! = pl ,, or equivalently that

wl = (pgllwi)_l (p_; —w/l ;). Forming (pgllwi)_l (p_; —w! ;) w; we find the following

i =

possibilities for 2 < ¢ < A:

j<i-1 = (pz_lwi)j (pry —wl)w; = (p?_lwi)j (0-0)=0
j =i—-1 = (pzllwll) (pzll - Wz?ll) Wi = (PZTAVE) (1 - 1) =0 (20)
i=i = (pliwi) Egll —wl ) w;=(plwi) (EiTqu -0)=1
J>i = (pliwi) (Pl —wl)wj=(pywi) (0-0)=0
Since p; and thus also (pfflwi)fl (Pi—1 — W;—1) belong to the span of wi, wa, ... w4, and

since (pf_lwi)_l (ply —wl)w; = 1for j =i and O for j # 4, it finally follows from the
orthonormality of W that (pfflwi)fl (pf_; —w/ ) = w/, and thus that w’_ , + p/_,w,w] =
pZT_1 for 2 <i < A.

Property 5 Using a predetermined loading weights matrix W, the deflation order in the al-
gorithm resulting in the non-orthogonlized factorization (2) is of no importance for the resid-

ual and predictions. A loading weights matrix W with permuted column vectors will thus give
-~ T -~ T ~
X =TW +E with TW =TW7, and yney = x.,,,b according to Eq. (3).
Proof: Since W is orthonormal the PLS algorithm giving the non-orthogonalized factoriza-

tion (2) generally gives t; = (X — 37 o, an j4i t;w])w; = Xw;. This is true irrespective of the
order of deflation, i.e. T = XW. Introducing an invertible permutation matrix P with the prop-
erty P~1= P’ and W = WP , the predictions according to Eq. (3) will be ynew = xL, b =
xI WP (f’WTXTXWf’>_1 PW' X7y = xT, W (WTXTXW) ' WX Ty = xT, b

new new new ‘

Property 6 Using a predetermined loading weights matrix W, the deflation order in the al-
gorithm resulting in the orthogonlized factorizations (12) and (13) is of no importance for the
residuals and predictions. A loading weights matrix W with permuted column vectors will thus

give X = ’i‘w PT + Ew and X = ’i‘w PTWWT + E respectively, with ’i‘w PT = TwPT and
TwPTWW' = TywPTWWT,

Proof: According to Property 3 the relation between the orthogonalized and non-orthogonalized
PLS algorithms is TwPTWWT = TW' . Use of the same algorithms with the predetermined and
permuted matrix W must then necessarily result in vaf’TWWT: ’TVVT Since WWT =WwT
and TW' = TW” (Property 5) it also follows that Tyw PTWWT = TW' = Ty PTWWT and
thus TwP7? = TwP?. From this follow unaltered residuals and predictions.

The OPLS algorithm Following [2], the OPLS algorithm is as follows:



1. Set i =1, E;—1 = Eg = X, and Wytho, Tortho and Porgne to empty matrices

OPLS _ _(Bi-))Ty

2. w = =W
’ [@®:i-0)Ty]|
3. t?PLS = Eiflwi
4 pOPLS o (Bi_)TEQPS
B = T :
i (t?PLS) tOPLS
OPLS
ortho _ _ Py —Wi _ ortho
5. w; = prpr.s_W:H and Wriho = [ Wortho w; ]
6. t%)rtho = Eiflw(i)rtho and Tortho = [ Tortho t;_)rtho ]
EOPLS YT jortho
tho _ —1 +1 _ th
7. p(i)r °= ( - ) - and Porino = [ Porino p(i)r © ]

tho )T torth
(ko) e

8. Ei =X- Torthopcq)ltho

9. Let ¢« = ¢+ 1 and return to step 2 for additional orthogonal components, otherwise go to step
10

10. End.

The resulting E; are the filtered X data, and a one component PLS factorization after removal
of i = A — 1 components further gives

! T
Ej_y =tQFs (pgpr) + EopLs. (21)

Note that all steps give wlQPLS = Wj.

Property 7 The OPLS loading weights matrix may be found from the ordinary PLS loading
weights matrix as Woiho = —Wa. 4.

Proof: From Property 6 follows that orthogonalized PLS regression with the permuted loading
weights matrix W = [ Woua wy ] gives the same fitted response vector § as with use of W.
Since the sign of a w; vector has nothing to say for the products t;p? and t¢r*he (p‘i’rtho)T, this
is true also for W = [ —Wo.4 wy ] . We use induction in the parameter i related to W 4y to
show that the OPLS algorithm uses W tho = —Wa. 4.

For ¢ = 1, i.e. one y-orthogonal component, the OPLS algorithm gives

wortho PP —wy _ XTXwq(wiXTXwy)™t —wy
1 Hp?PLS B H HXTX"Vl(W{XTXWl)*l — w1|

; (22)

while the recursive formula for the loading weights vectors developed by Helland [7] and the pre-
diction formula (3) give (where §; is the fitted response vector using one PLS component)

XT(y -9, XT (y — le(waTle)_lwaTy)

W = =

IXT(y =3)l  [[XT(y — Xw, (W] XTXw) lw{ XTy)||
_ XTX TXTX —1
_ W1 W1 (Wl Wl) _ —WTrthO. (23)

le — XTle(W?XTle)*ln B

Assuming the property to be true up to w9™'!® we find according to the OPLS algorithm

OPLS
ortho __ u
Wi = ||p?PLS — w1|| ) (24)



with
E,_1=X- TorthoPg;tho’ (25)

where TOTthOPZ;tho is the factorization of the ¢ — 1 removed y-orthogonal components. From the
recursive loading weights formula [7] we also find

_ X'y
XT(y B yz) _ Wi V yITXXTy (26)

Wii11 = — =
X Ty -, H X7y,

Wi — —X2Fi
! VyTXXTy

where ¥; is the fitted response vector using a total of ¢ components.

In order to show that wo™*h° = —w, 1 we finally make use of the OPLS facts that T, y =10
and T2 | § =0 (see [2] for proofs), i.e. E ;y = (X — TonoPL )Ty = X'y and ET |9, =

ortho

(X — TorthOPZ;tho)Ty = XT9. We then use the prediction formula (3) and the fact that OPLS
gives the same predictions as ordinary PLS, and develop ploPLS into (also using wi XTy =

wlwi/y"XXTy = /yTXX"y)

TRT -1 TRT
Ei,1W1 (Wl Ei_lEiflwl) Wi Ei—ly

OPLS T TRT -1 T
: = ET E,_ ET \E;,_ —ET
b; i—1Hi—1W1 (W1 i—1 1W1) 1 wIE! |y
Vi X"y X"y
= E, TyT T WIXTv ' (27)
wiEi_y wiX'y [yTXX"y
and insertion into Eq. (24) and comparison with Eq. (26) finally shows that w{*'h® = —w, 4.

Property 8 After the removal of A — 1 y-orthogonal components, the OPLS factorization (14)
results in the same residual Egprs = Ew and the same predictions as the original orthogonalized
PLS factorization (12).

Proof: Since Wi 1ho = —Wa. 4 the OPLS factorization is equivalent with the factorization ob-
tained by the standard PLS NIPALS algorithm with predetermined and permuted loading weights
vectors in the order wo, ws, ... , w4 and wi. From Property 6 thus follows that the residuals and
the predictions are the same.

Result 1 The second similarity transformation Torthopgrtho = TorthoPZrthOWQ:A (PgrthOWQZA) -t Pgrtho
results in the transformed OPLS score matrix TorthoPg;thOWM =Ts.4.

Proof: According to Property 3 the two factorizations X = TW? +E and X = Tw PTWW7 +
E are identical, i.e. TwPTW =T. Using a permuted loading weights matrix W = [ Waoa wy ]
we correspondlingly have T = [ To.a t ] = ’i‘wf’TW, and that is independent of the number
of components used. As the OPLS algorithm gives Toytno Patho by use of X and Wtho = —Wa. 4
(Property 7) in exactly the same way as we find the first A — 1 components in TywP7, this will

necessarily give
TorthopgrthOWQ:A = T2:A- (28)

Property 9 The last OPLS component tgPLS (pgpLS)T multiplied with WW? becomes
. T .
t%PLb (ngLb) WWT _ tgPLbW’{_
Proof: We have

(PS748) T WWT = (pG759) T (wiw! + W s WE ) (29)



where

TRT
opLs\T wiEy (Ea

o) Wy, = wp =1 30
( A ) W,{Eg_lEA—lwl ( )

and

TRT
T wiE, Ea_;
(ngLS) VVZ:A 1HA-1

Wo. 4
W?EgilEAflwl '
TeT
wiEy
= X-T PI Wo.
T=T ( orthoX ortho 2:A
W1 EAilEAflwl

= T “;{Ezil (TQ:A - TorthOPz;thoWQ:A) = 07 (31)
W1 EA_lEA—lwl

where we in the final equality make use of Result 1.

Property 10 After the removal of A—1 y-orthogonal components, the modified OPLS factoriza-
tion (15) results in the same residual E and the same predictions as the modified PLS factorization
(13).

Proof: Since Wi tho = —Wa. 4 the OPLS factorization is equivalent with the factorization ob-
tained by the standard PLS NIPALS algorithm with predetermined and permuted loading weights

vectors in the order wa, ws, ... , w4 and wi. From Property 6 and Eqgs. (13) and (14) thus follows
X = TwP"WW' +E = (ToinoPhy, + 37 (p375)" ) WW' +E
= TorthoPorthoWWT tOPstl + Ea (32)

where the final equality making use of Property 9 results in equality with Eq. (15).

Result 2 The final modified OPLS component is identical with the first PLS4+ST component,
ie. tOPLST — ¢PLS+ST T
€.ty 1 1 1-

Proof: When A — 1 y-orthogonal components are subtracted from X, it follows from the OPLS
algorithm that the remaining score vector is
tQS = (X = TormoPhino) W1 = Ea_1wi. (33)
Using the standard prediction formula (3) we further find

. -1
y=Es 1w (W EL_Esyw;) w{E] y=E, ;wid=t{""q, (34)
where d is a scalar. This confirms that tgPLS is in the direction of §, which according to Property
6 is also identical with the fitted response vector using ordinary PLS regression.

From the PLS+ST factorization (5) follows tPLb‘LbT = ql_ly, where ¢; is found as the first

component in q = (WTXTXVV)_1 WTXTy. Since y is orthogonal to both Ta.4 (Property 1)
and E (Property 2) we may also find ¢; by use of the PLS+ST factorization (6) and

yIX = T (tPLb+bT T 4Ty 4 (Pg:quS+ST) —|—E> yTPLS+ST T

1 a'y'y
= ylglywi = A=——y"X, (35)

VyTXX "y
VYTXX"y
tli)LS+ST — qflA A~ (36)

y=—"——y.
yT'y

: a'y"y
je. —AX Y —1 and

VyTXXTy



Since YT Torho = 0 we find y"Eq_; = y (X TorthoPortho) =yT'X = \/yTXXTny,

and from the tY*575T expression (36) using y?Xw; = /y?’XXTywTw; = 1/y7XXTy and y

according to Eq. (34) thus follows

(PLSHST \/yTXXTyy _ \/yTXXTyEA—lwld
! yTy yTEA_lwld
/T T +OPLS
_ y XX yty _ tOPLS (37)
- yTXw1 = la .

Result 3 The first modified and then transformed OPLS loading matrix is identical with the
PLS+ST loading matrix, i.c. WW7 Py (WL, Porno) = PEISHST,
Proof: According to Property 3 the two factorizations X = TW? +E and X = Tw PTWW7 +

E are identical with TywPTW = T. According to Property 10 these factorizations are also identical
with the modified OPLS factorization X = TorthoPorthOWWT tOPLS T+ E and thus the

T oWaa) ' P WWT+tOPL5wT—|—E
while the PLS+ST method gives X = Ta.4 (PPLHST)T + tPL5+bT T + E. Since Result 1 shows
that Torino ( orthoW2 A) Ts. 4, while Result 2 shows that tOPL5 T tPLS+STW1 , it follows
that (PT,, Wa.a) ' P, WWT — (PLLSHST)".

transformed factorization X = T tho ( orthoW2 A) ( Ortho

Property 11 The modified loading matrix WWTP, 10 is different from P, in the last
column vector only, with p%™° replaced by (p Orth") WIW] — Wa.

Proof: The ordinary PLS algorithm results in an upper triangular and bi-diagonal matrix PTW,
with 1 along the main diagonal [8]. Since Py, in the OPLS algorithm according to Property 7

is found from Wgtho = —Wa.4 in the same way as P is found from W, the matrix PorthOWQ;A
must also be bi-diagonal with -1 along the main diagonal. We thus have (with p; = p$*th©)
_ f){Wl -1 f)ffws 0 e 0 1 - W,{ -
T
T prw 0 —-1  plwy : W2
T w . . . . . :
Portho [ w; Waa ] |: ngjA :| = : : .. - .. 0
ﬁ£_2W1 . -1 f)?;_QWA :
=T wl
[ Pa_yw1 0 0 -1 | LWal
[ Pl wiw{ —wj +Bf wawy
Py wiw{ — wj + Pj waw]
= : (38)
P 2W1W1T wh %4‘13?4;:2“’14“’5
L Ph_ wiw] —w})

From this follows that p%,_; in PL | “is replaced by p%,_;wiw{ — w1, as stated. For a complete
proof we must also show that for 3 < i < A we have pX wiyw{ — wl | +pl ,w;w! =pl,, or

equivalently that w! = (f)gLQWi)fl (—pLowiw! +wl | +p/ ;). Forming



(f)ZT_Qwi)_l (—pL,wiw! +wl | +pl ;) w; we find the following possibilities for 3 < i < A:

j=1 = (ﬁ?—zwi)_l (')Wg = (f)z 2Wi)_1 (_f)zT—le +0+ f’zT—zwl) =0
1<j<i-1 = (BT i) (Ywj = (BLowi)  (—0+0+0) =0
j=i-1 = (BLowi) T ()wy = (BLowi) T (=0+1—1)=0 (39)
j=i = (f’zT—zwi)7 (- )Wa = (PzT—2Wi)71 (_0 +0+ f’zT—QWi) =1
i>i = (BT ow:) " ()wj = (BLows)  (~0+0+0) =0

For ordinary PLS we know that p; belongs to the span of wy, wa, ... w4, and from Property 7
and the OPLS algorithm then follows that this must be the case also for —p7_ oW1 w1 +W;_1+Pi_2
Since
(f)ZT 2Wi)_1 (—f)ZT_lewf +wl + f)zT—z) w; =1 for j =4 and 0 for j # ¢, it finally follows that

1, - - - -
(pZ 2wl) (—pZT_lewT + WZ-T_1 + PzT—z) = W;-T, and thus that pf_zwlwf —WZT_1 —l—pzT_QwiwiT =
pz 2°

Result 4 For a single y-relevant component the relation between the post-processing PCP
method [5] and PLS+ST is that t{¢F — ¢$T = tGPLS and wi" — w; when § — vy, ie.
with good predictions.

Proof: PCP uses the factorization (with normalized loadings)

T
X =" (wi")" +Epcp, (40)

with tVCP = 32(:?(y instead of t{L5 5T = @y as in Eq. (36) and wi¢F = Xy
1 y yT 1 [9TXXTy

instead of wy = — XY _ a5 in the PLS algorithms.
yTXXTy
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