
PLS post-processing by similarity transformation
(PLS+ST): a simple alternative to OPLS

Rolf Ergon
rolf.ergon@hit.no

Telemark University College, Porsgrunn, Norway

Published in Journal of Chemometrics 2005; 19: 1-4

Abstract
Several methods for orthogonal signal correction (OSC) based on pre-processing of the

modeling data have been developed in recent years, and OPLS (orthogonal projections to
latent structures) is a well known algorithm. The main result from these methods is a reduc-
tion in the number of …nal components in partial least squares (PLS) regression, while the
predictions are virtually unchanged (identical for OPLS). This raises the question whether the
same or similar results can be obtained in a more direct way using an ordinary PLS model as
starting point, and as shown in the present paper this can indeed be done by use of a simple
similarity transformation. This post-processing PLS+ST method is compared with OPLS,
assuming a single response variable. The PLS+ST factorization of the data matrix X is just
a similarity transformation of the non-orthogonalized PLS factorization, while OPLS is a sim-
ilarity transformation of the orthogonalized PLS factorization. The predictions are therefore
identical, but the residuals are somewhat di¤erent. A theoretically founded modi…cation of
the orthogonalized PLS factorization, and a corresponding modi…cation of OPLS, leads to
identical factorizations for all these methods, within similarity transformations. The PLS+ST
vs. OPLS comparison also leads to an alternative post-processing method, using the ordinary
PLS algorithm twice, with predetermined and permuted loading weights vectors in the second
step. A limited comparison with post-processing using principal components of predictions
(PCP) or canonical correlation analysis (CCA) is included.
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1 Introduction
Several methods for orthogonal signal correction (OSC) have been developed in recent years, see
e.g. Svensson et al. [1] for an overview and investigation. The basic OSC idea is to use a pre-
processing procedure for identi…cation and removal of variation in the regressor matrix X that
is orthogonal to the response vector y (assuming the single response case), before the corrected
X matrix is used in e.g. partial least squares (PLS) regression. As found in [1], the main result
from these methods is a reduction in the number of …nal PLS components, while the prediction
capability is virtually unchanged. This raises the question whether the same or similar results can
be obtained in a more direct way using an ordinary PLS model as starting point. As shown in the
paper, this can indeed be done by use of a simple similarity transformation.

A comparison with all the more or less di¤erent OSC algorithms is beyond the scope of the
present paper. Instead, the OPLS (orthogonal projections to latent structures) algorithm of Trygg
and Wold [2] is used as an OSC example, and the study is also limited to the single response case.
Assuming an optimal number A of ordinary PLS components, we are thus concerned with the
identity between
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² the PLS+ST post-processing method, extracting one y-relevant component from A original
PLS components, and

² the OPLS pre-processing method, removing A¡ 1 y-orthogonal components and leaving one
y-relevant component only.

It is shown that the PLS+ST factorization of X is just a similarity transformation of the
non-orthogonalized PLS factorization [3], while OPLS is a similarity transformation of the or-
thogonalized PLS factorization [3]. The predictions are therefore identical, but the residuals are
somewhat di¤erent. A theoretically founded modi…cation of the orthogonalized PLS factorization,
and a corresponding modi…cation of OPLS, leads to identical factorizations for all these methods,
within similarity transformations. The PLS+ST vs. OPLS comparison also leads to an alterna-
tive post-processing method, using the ordinary PLS algorithm twice, with predetermined and
permuted loading weights vectors in the second step.

The fact that OPLS and ordinary PLS predictions are identical has also been shown by Verron
et al. [4]. A post-processing method called principal components of prediction (PCP) has earlier
been presented by Langsrud and Næs [5]. Another post-processing method based on canonical
correlation analysis (CCA) was recently presented by Yu and MacGregor [6], where general advan-
tages of post-processing methods are also discussed. These PLS+PCP and PLS+CCA methods
give similar although not quite the same results as the proposed PLS+ST and modi…ed OPLS
methods.

The PLS+ST method is developed in Section 2, and a comparison with OPLS is given in
Section 3. A limited comparison with PLS+PCP and PLS+CCA is presented in Section 4. Details
are given in a Supplementary Appendix (http://www.....).

2 The PLS+ST method
Non-orthogonalized PLS regression model

In the following we will make use of the so-called non-orthogonalized PLS factorization of Martens
[3], based on modeling data in X 2Rn£p and y 2Rn£1. Assuming A components and using the
orthonormal loading weights matrix W =

£
w1 W2:A

¤
2Rp£A, the non-orthogonal score matrix

T =
£

t1 T2:A
¤

= XW 2Rn£A, and q =
£

q1 qT
2:A

¤T 2RA£1, the underlying latent variables
(LV) model is

y = Tq + f = t1q1 + T2:Aq2:A + f (1)
X = t1wT

1 + t2wT
2 + ¢ ¢ ¢ + tAwT

A + E = t1wT
1 + T2:AWT

2:A + E, (2)

where f and E are unmodeled residuals. A simple least squares solution results in the prediction
formula [7]

ŷnew = xT
new b̂ = xT

newW
¡
WTXT XW

¢¡1
WTXT y, (3)

and since T = XW and ŷ = Tq also in

q =
¡
WTXT XW

¢¡1
WTXT y. (4)

Model transformation
The Martens factorization (2) has the special property that all score vectors except the …rst one

are orthogonal to both y and ŷ (see Supplementary Appendix for proofs). This is desirable in the
present context, in that the …rst component only contains information regarding y. However, as
shown in Fig. 1 the …rst score vector itself has a component orthogonal to ŷ, and that has to be
subtracted in order to …nd a …rst score vector in the direction of ŷ. A simple way to do this is
described below.
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Figure 1 Score vectors in relation to ŷ for non-orthogonalized PLS factorization.

Introducing M =
·

1 0
q¡1
1 q2:A I

¸
, a similarity transformation applied to the LV model (1,2)

gives

y =
£

t1 T2:A
¤
MM¡1

·
q1

q2:A

¸
+ f = tPLS+ST

1 q1 + f (5)

X =
£

t1 T2:A
¤
MM¡1

·
wT

1
WT

2:A

¸
+ E = tPLS+ST

1 wT
1 + T2:A

¡
PPLS+ST

2:A
¢T

+ E, (6)

where
tPLS+ST
1 = t1 + q¡1

1 T2:Aq2:A, (7)

and where
PPLS+ST

2:A = W2:A ¡ q¡1
1 w1qT

2:A (8)

is non-orthogonal. This representation of the LV model also implies that the …tted prediction
vector in accordance with Eq. (5) is ŷ = tPLS+ST

1 q1, i.e. tPLS+ST
1 has the same direction as ŷ, as

also indicated in Fig. 1.

Prediction
Predictions may as in ordinary PLS regression be found from the formula (3). Analogously to

OPLS predictions and based on T2:A = XW2:A, we may also remove the y-orthogonal parts of X
and xnew and compute

XPLS+ST = X ¡ XW2:A
¡
PPLS+ST

2:A
¢T

(9)

and ¡
xPLS+ST

new
¢T

= xT
new ¡ xT

newW2:A
¡
PPLS+ST

2:A
¢T

, (10)

and then use the formula (3) to …nd

ŷnew =
¡
xPLS+ST

new
¢T

w1
¡
wT

1 XT
PLS+STXPLS+STw1

¢¡1
wT

1 XT
PLS+STy. (11)

3 Comparison with OPLS
Since the proofs of properties and results discussed below are rather technical, they are given in
a Supplementary Appendix (http://www.....). In the discussion we refer to di¤erent similarity
transformations of the type used in Eqs. (5) and (6).
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Orthogonalized PLS regression models
The OPLS algorithm is based on the orthogonalized PLS factorization according to Wold [3]

X = tW
1 pT

1 + tW
2 pT

2 + ... + tW
A pT

A + EW = TWPT + EW , (12)

where TW 2 Rn£A is orthogonal, while P 2 Rp£A is not. The residual EW is here slightly di¤erent
from the residual E in the Martens factorization (2). This may be corrected by using

X = tW
1 pT

1 + tW
2 pT

2 + ... + tW
A¡1p

T
A¡1 + tW

A wT
A + E = TWPTWWT + E, (13)

where TWPTW = T. This factorization may be considered more correct, since use of A = p
components (the number of variables) results in E = 0, while Eq. (12) then gives EW 6= 0.
From Eq. (13) also the well known estimator expression b̂ = W

¡
PT W

¢¡1 qW [7] follows as a
simple least squares solution. Note that also Eq. (13) follows directly from the step-wise NIPALS
algorithm [3], it is just a matter of where to end the last step. Also note that the only di¤erence
between TWPT and TWPTWWT is that pT

A is replaced by wT
A.

Permuted de‡ations
As discussed below, the OPLS algorithm makes use of a permuted loading weights matrix ~W.

With a predetermined loading weights matrix W it is possible to alter the de‡ation order in the
algorithm resulting in Eq. (2), and it is rather obvious that this will not a¤ect the …nal residual
and predictions. A matrix ~W with permuted column vectors will thus give X = ~T ~W

T
+ E, i.e.

~T ~W
T

= TWT . The corresponding is true also for Eqs. (12) and (13), i.e. a permuted loading
weights matrix ~W results in X = ~TW ~PT + EW and X = ~TW ~PT ~W ~W

T
+ E respectively, where

~TW ~PT = TWPT and ~TW ~PT ~W ~W
T

= TWPTWWT . The di¤erences between ~T and T etc. are
thus similarity transformations only.

Original OPLS method
The OPLS method of Trygg and Wold [2] uses the factorization (assuming A ¡ 1 y-orthogonal

components)
X = TorthoPT

ortho + tOPLS
A

¡
pOPLS

A
¢T

+ EOPLS , (14)

where the score vectors in Tortho are orthogonal and also orthogonal to y, ŷ and tOPLS
A . The

pre-processing algorithm for …nding Tortho and Portho also …nds w1 and an OPLS loading weights
matrix Wortho , and the key for understanding is that Wortho = ¡W2:A. The OPLS algorithm
thus gives the same results as ordinary orthogonalized PLS with permuted loading weights vectors
in the order w2, w3, ... wA, w1. The di¤erence from Eq. (12) is thus also here a similarity
transformation only, i.e. EOPLS = EW .

Modi…ed OPLS method
The PLS+ST method is based on the non-orthogonalized factorization (2), and before a com-

parison the OPLS method must be modi…ed accordingly into

X = TorthoPT
orthoWWT + tOPLS

A wT
1 + E, (15)

where TorthoPT
ortho still may be found using the original OPLS algorithm. This is the same result

as from ordinary orthogonalized PLS using permuted loading weights vectors in the order w2, w3,
... wA, w1, followed by multiplication with WWT as in Eq. (13). Note that EOPLS is replaced
by E, and as argued above this modi…ed OPLS may thus be considered more correct than original
OPLS. Also note that the OPLS algorithm gives also w1 and W =

£
w1 ¡Wortho

¤
, and the

modi…cation (15) is thus possible without use of the ordinary PLS algorithm.
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Comparison with PLS+ST
The factorizations (2), (13) and (15) are all identical within similarity transformations, and so

is the PLS+ST factorization (6). A detailed comparison leads to the following results:

Result 1 The second similarity transformation
TorthoPT

ortho = TorthoPT
orthoW2:A

¡
PT

orthoW2:A
¢¡1 PT

ortho results in the transformed OPLS score
matrix TorthoPT

orthoW2:A = T2:A.

Result 2 The …nal modi…ed OPLS component is identical with the …rst PLS+ST component,
i.e. tOPLS

A wT
1 = tPLS+ST

1 wT
1 .

Result 3 The …rst modi…ed and then transformed OPLS loading matrix is identical with the
PLS+ST loading matrix, i.e. WWT Portho

¡
WT

2:APortho
¢¡1 = PPLS+ST

2:A .

Conclusion The di¤erence between PLS+ST and modi…ed OPLS is thus a similarity transfor-
mation only, i.e. TorthoPT

orthoWWT = T2:A
¡
PPLS+ST

2:A
¢T

. Note that the score identities in Results
1 and 2 are valid also for the original OPLS. Also note that the OPLS modi…cation involves the
loading vectors only, changing

£
portho

1 ¢ ¢ ¢ portho
A¡2 portho

A¡1 pOPLS
A

¤
intoh

portho
1 ¢ ¢ ¢ portho

A¡2
¡
portho

A¡1
¢T w1w1 ¡ wA w1

i
. Since the corresponding di¤erence between

Eqs. (12) and (13) is only that pT
A is replaced by wT

A, this is a minor change that may be of little
practical interest.

Alternative OPLS algorithm
From the development above follows an alternative two-step OPLS algorithm:

1. Determine the loading weights matrix W using e.g. the orthogonalized PLS algorithm.

2. Use the orthogonalized PLS algorithm once more, but now with permuted loading weights
vectors in ~W =

£
W2:A w1

¤
=

£
¡Wortho w1

¤
.

The second step will directly give Tortho , Portho , tOPLS
A and pOPLS

A , and thus the OPLS results,
either the original factorization (14) or the modi…ed factorization (15). Another natural choice
would be to remove the least in‡uential components …rst, i.e. to use the permutation ~W =£

wA wA¡1 ¢ ¢ ¢ w2 w1
¤

in the second step.

4 Comparison with PLS+PCP and PLS+CCA
In the single response case, the PLS+PCP and PLS+CCA methods give identical scores [6], and
a comparison with PLS+PCP is thus to some extent relevant also for PLS+CCA. The PLS+PCP
method [5] uses a factorization (with normalized loadings)

X = tPCP
1

¡
wPCP

1
¢T

+ EPCP . (16)

Result 4 For a single y-relevant component the relations between the PLS+PCP and PLS+ST
methods are that tPCP

1 ! tPLS+ST
1 = tOPLS

A and wPCP
1 ! w1 when ŷ ! y, i.e. with good

predictions.
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5 Conclusions
A simple post-processing method for separation of y-relevant and y-orthogonal variation in the
X matrix is developed, using a non-orthogonalized PLS regression model and a similarity trans-
formation. The method is at present restricted for use in single response cases. Within similarity
transformations, the PLS+ST factorization of X is shown to be identical both with a modi…ed
version of the orthogonalized PLS factorization and with a correspondingly modi…ed version of the
OPLS factorization. The single extracted y-relevant PLS+ST component based on a PLS model
with A components is thus identical with the single remaining modi…ed OPLS component after
removal of A ¡ 1 y-orthogonal components. The minor PLS and OPLS modi…cations involved are
based on a theoretically founded interpretation of the results from the ordinary NIPALS algorithm.
The original OPLS factorization, on the other hand, is within a similarity transformation shown
to be identical with the ordinary orthogonalized PLS factorization. All these factorizations have
common score and loading weights spaces, and they thus result in identical predictions. Both the
original and modi…ed OPLS factorizations can also be obtained by using the ordinary NIPALS
algorithm twice, the second time with the predetermined but permuted loading weights vectors.

As pointed out in [2], the obvious advantages with OPLS are more parsimonious PLS represen-
tations and easier interpretation. Analysis of the y-orthogonal part of X may also be valuable. As
shown in the present paper, however, an identical y-relevant score vector and just as informative
y-orthogonal components can be obtained in a more direct and thus more transparent way by use
of PLS+ST. Another simple alternative is to use the ordinary PLS algorithm twice, the second
time with predetermined and permuted loading weights vectors.

Supplementary information with proofs is available at
(http://www.interscience.wiley.com/jpages/0886-9883/supmat/)
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