
“On the integration of object-based and field-based models in GIS” Page 1 of 22
 2006_PGO_Postprint.doc

KJENSTAD, K., 2006, On the integration of object-based models and
field-based models in GIS.

This is an electronic version of an article published in the
International Journal of Geographical Information Science, Vol. 20,
No. 5, May 2006, 491–509, available online at:
http://www.informaworld.com/smpp/content~content=a747921911

Copyright of International Journal of Geographical Information
Science is the property of Taylor & Francis Ltd and its content may
not be copied or emailed to multiple sites or posted to listserv without
the copyright holder’s express written permission. However, users
may print, download, or email articles for individual use.

“On the integration of object-based and field-based models in GIS” Page 2 of 22
 2006_PGO_Postprint.doc

On the integration of object-based models

and field-based models in GIS

Abstract

This paper proposes a common base-model for the classical object-based and field -based conceptual
models in GIS. The model which is called the PGOModel or “Parameterised Geographic Object
Model” is given formal definition by using the UML modeling language. Within the scope of the paper
it has been shown that the PGOModel encompasses the classical object-based and field -based models.
Two extensive examples demonstrate the application of the PGO model. The PGOModel seems
ontologically well founded except for the so-called PGOAtom concept.

1 Introduction

Over the last 10-15 years the object-based and field-based conceptual modeling approach has
gradually generalized the old time vector and raster data structure modeling approach in GIS.
This change of approach has had an important impact on the development of Geographic
Information Science from an exotic tool to be used by map producers and geographers into an
integrated and specialized part of Information Science. However, for a long time there has
been an increasing demand for further integration of the object-based and field-based models
(Bian 2000, Cova & Goodchild 2002, Egenhofer et al. 1999, Peuquet 1988, Peuquet et al.
1999, Winter 1998). These early works have focused on describing the co-existence and
interactions of the two models. The present paper discusses integration of the two models in
terms of searching for a common base-model.

The object and field concepts as such predate the ir explicit use in a GIS context (Angel &
Hyman 1976, Sachs 1973, Tobler 1978). They were introduced in GIS in the early nineties
(Burrough 1996, Couclelis 1992, Frank 1992, 1996, Goodchild 1989, 1992, Kemp 1997) and
subsequently included in textbooks (Burrough & McDonnell 1998, Worboys 1995). This
process was triggered in part by the introduction of the concept of object-orientation into GIS
(Worboys 1994, Egenhofer & Frank 1987, 1992, Frank & Egenhofer 1992, Oosterom &
Vanderbos 1989, Worboys et al. 1990).

The object-based model has been used as a means of conceptual structuring of geographic
information, in particular in the modeling of real world objects (or entities) with a precise and
“crisp” spatial location and extent. However, with the introduction of object-oriented methods
and models (Rumbaugh et al. 1991), object-based modeling has been given a more prominent
formal foundation, for instance in modeling tools and languages like UML (Unified Modeling
Language) (Rumbaugh et al. 1998).

“On the integration of object-based and field-based models in GIS” Page 3 of 22
 2006_PGO_Postprint.doc

The field-based model concept originates from classical physics and has been used for
modeling physical properties (e.g. gravity) whose magnitude is dependent on its spatial
location. In Geographic Information Science, the field concept has been extended to include
any (physical or non-physical) properties whose magnitude (value) is dependent on its spatial
location. This definition has turned the field into a useful generalization of “field- like” spatial
data structures such as TIN models and raster models.

The present paper is investigating the possibility for the object-based and field-based model
being both derived from a common model using a UML modeling approach. This type of
generalized source model for derived models is called a base-model. The criterion for a model
being a common base-model for two given models is that both of them are proven to be
special cases of the base-model. We are not necessarily searching for the base-model, but
rather a base-model, as there may in theory be several possible base-models. The motivation
for the search for a common base-model is the potentia l of revealing additional characteristics
of the relationship between the object-based and field-based models. Our conceptualization of
the geographic space will benefit from a more integrated view of the two models, and every
aspect of this integration will contribute. As an additional bonus, a common base-model has
the potential of being useful by its own.

A model is a simplified description of the structural and behavioral patterns for a subset of the
reality. In GIS the actual subset of the reality is restricted to entities and properties having
well-defined location in the geographic space. Moreover, models can be refined according to
our actual needs. This refinement process defines models at different modeling levels, each
with well-defined common characteristics. The conceptual model level, the data model level,
the implementation model level, and the storage model level represent examples of such
model levels. This paper is primarily restricted to models on the conceptual level. In other
words, we will focus on modeling as a tool for describing and understanding our real world,
and at this stage we are less concerned about the realization of the models in different types of
information systems. The latter may potentially be the topic for further research.

Object-based models on the conceptual level are sometimes called entity-based models
because they are focusing on modeling real world entities. However, in this paper is focusing
on the representation on such models in a language (i.e. UML) where the term object is
crucial. Hence, the term object is preferred over entity when characterizing the type of model
as well as its representation (i.e. object-based). However, the class representing the generic
entity in the object-based model will be called Entity in order to avoid too much confusion
with the concept of object as a UML modeling element. Furthermore, the UML modeling
language distinguishes between the concepts of object class (as the model element) and object
instance (as its physical realization). We will subsequently use the terms class and instance
for these concepts.

A specific modeling process is restricted to concepts from a well-defined application domain.
This paper however, describes conceptual models in general, acting as hosts for application
domain models. Such models are called pattern-models and they acts as a common base-
model for a certain type of application domain models. For instance, the pattern model for the
classical object-based model in GIS acts as a base-model for GIS object-based models in
general, and the pattern model for the classical field-based model in GIS acts as a base-model
for GIS field-based models in general.

“On the integration of object-based and field-based models in GIS” Page 4 of 22
 2006_PGO_Postprint.doc

The model to base-model relationship can be studied formally in the framework of a meta-
model. A meta-model is formally defined as a model of a model. Modeling element such as
classes and relations of any model are instances of meta-model classes with well-defined
relations. In this framework the model to base-model relationship is established and proven
formally by deriving all modeling elements and concepts of the former from meta-model
classes which inherits meta-model classes deriving all modeling elements and concepts of the
latter. This approach is complex and hard to understand because it involves a mixture of
modeling elements at several levels of abstractions.

A simpler and more intuitive approach is to compare every part of the two models directly
and investigate if all subsets of a model (for instance the subset consisting of a class including
all its relations to other classes) are specializations of a well-defined subset of the base-model.
Proving this “specialization” relationship includes comparing the properties of the class
including the type and cardinality of its immediate relations. This approach is highly
simplified by using the UML modeling approach as a graphical tool, because UML depicts
the model as a visible graphical pattern.

The model to base-model relationship between each of the two classical pattern-models and
their common base-model could easily use this approach because all three models involved
may be explicitly formulated in UML. This is the approach used in the subsequent sections of
this paper. However, the model to base-model relationship between any GIS application
domain model and one of the two classical pattern-models is more difficult to justify because
we are not able to demonstrate this relationship for all possible application domain models.
This means that this particular relationship cannot be proven formally, but must be justified
by professional experience and motivating examples. This means that the conclusions of this
paper relay on the acceptance of the “correctness” of the pattern-models. This type of
axiomatically based logical approach is still valid as a scientific method.

2 The search for a candidate base-model

The search for a candidate base-model requires a formal description of the object-based and
field-based pattern models. These descriptions will be formalized using standard UML. They
will contribute to our search for similarities and differences between the two models. We will
begin by extending each of the pattern-models and subsequently attempt to associate similar
concepts in the two models. A candidate base-model can then be suggested and described
using UML formalism. The proof of this candidate model being a common base-model can
subsequently be based on the comparison of the different UML-models involved.

Class names will be capitalized and typed in italic typeface in the subsequent description of
UML models. Furthermore, the UML term relation will be used when describing formal class
relationships and their name will also be capitalized and typed in italic typeface.

2.1 Formal description of the object-based model

Shaded classes and bold line relations in fig. 1 depicts a UML diagram of a pattern-model for
a standard object-based model. The diagram tells us that the class called Entity is an

“On the integration of object-based and field-based models in GIS” Page 5 of 22
 2006_PGO_Postprint.doc

aggregation of the class called Attribute. Real life object-based models include other concepts
such as the concept of relation or methods of entities, but we do not need to include them at
the current stage.

Fig. 1: Conceptual UML class diagram of a standard object-based model. Shaded classes and bold line
relations represent the core object-based model, and the remainder represents extensions made in this paper.

2.2 Extension of the core object-based model

Furthermore, fig. 1 describes a proposed extension of the UML model. Two trivial and
redundant helper classes have been added and the basic aggregation relation has been
supplemented by two derived aggregation relations (represented formally by a ”/”-prefix in
UML). The class called AttributeSet represents the aggregation of all instances of class
Attribute related to one instance of class Entity. Consequently, Entity aggregates exactly one
AttributeSet . The class called Geometry is modeled as a sub-class of class Attribute because
entities in GIS have a well-defined location formally described by an attribute of class
Geometry, or more precisely, by one of its sub-classes. It must be emphasized that these
helper classes are solely introduced in order to facilitate model pattern matching in the
subsequent sections.

2.3 Formal description of the field-based model

Field models in GIS define a field as a value varying over a subset of the geographical space.
A geometry bounds this subset. Hence, a field in GIS can be defined as a value varying over a
geometry. In mathematical terms a field is a function from the geographical space (defined as
the domain of the function), to a value space (defined as the range of the function). The
concepts of domain and range will be defined mathematically in subsequent sections.

Let us formulate the field definition in an object-oriented framework using UML. This
approach is also proposed by Bian (2000). Shaded classes and bold line relations in fig. 2
depicts a UML diagram of a pattern-model for a standard field-based model. The class called
Field aggregates exactly one instance of a class called Geometry defining its domain, and
exactly one instance of a class called Values defining its range. The Geometry class is
furthermore defined as an aggregation of its atomic parts represented by a class called
Location. The term location is preferred over point because the term Point is traditionally
used when representing the 0-dimensionality Geometry sub-type. This aggregation relation is

Entity

Attribute Geometry AttributeSet

/Location

1 1 *
*

/Attributes

Location and
extent of Entity

“On the integration of object-based and field-based models in GIS” Page 6 of 22
 2006_PGO_Postprint.doc

of infinite cardinality because geometries normally consist of an infinite number of locations.
Similarly, the Values class is an aggregation of objects of a class called Value. The relation
between the Location and Value classes describes the basic property of a field, i.e. the many-
to-one association of a unique value to each location. Hence, the relation between the
Geometry and Values classes is a derived relation representing the previously mentioned
FieldFunction. This model leads to the initial basic definition of a Field: “A field is defined as
an UML class representing a function from a Euclidian space to a value space”.

Fig. 2: Conceptual UML class diagram of a standard field-based model. Shaded classes and bold line relations
represent the core field-based model, and the remainder represents extensions made in this paper.

2.4 First extension of the core field-based model

Fig. 2 describes several proposed extensions of the basic UML model. A one-to-one
association between class Location and a class called GeometryParameterSet is introduced
motivated by the fact that geometries may be described mathematically as parameter

Field

Values

ValuesSet
1

*

/FieldFunctions

FieldSet

ValueSet

Value

ParameterSet

0..1

8

1 Ranges

Range 1

* Domain

/FieldFunction

1

1 1

1

1 1

0..1

8

*

*

*
1

1

GeometryParameterSet

Geometry

Location

1

Domain

1

1

“On the integration of object-based and field-based models in GIS” Page 7 of 22
 2006_PGO_Postprint.doc

functions. A parametric representation of a Geometry class is defined as a function from a
parameter space to the Euclidian space. Therefore each combination of parameters (i.e. each
instance of GeometryParameterSet) is associated with at most one Location. Furthermore, the
dimensionality of the parameter space (i.e. the number of parameter attributes of the
GeometryParameterSet) is equal to the dimensionality of the geometry (i.e. point geometries
being 0-dimensional, curve geometries being 1-dimensional, etc.), and being equal or inferior
to the dimensionality of the Euclidian space. There are an infinite number of possible
functions representing the same geometry. Hence, an GeometryParameterSet instance
contains all parameters associated with one particular Location on a Geometry instance The
fact that one Location instance is associated with exactly one GeometryParameterSet instance
and exactly one Value instance, enables the derived association of the GeometryParameterSet
class with the relation between the Value and Location classes. Such types of relations are
valid in UML and may often be useful. This first extension of the field model leads to the
following alternative formal definition of a field: “A field is defined as an UML class
representing a function from an n-dimensional parameter space to a value space”.

2.5 Second extension of the core field-based model

So far we have avoided discussing the dimensionality of the value space. Normally it is 1, but
2 and 3 are also common (e.g. a gravity field has a 3-dimensional value space). This
observation suggests the possibility of defining the geometry itself as a new field over the
same geometry (i.e. a trivial one-to-one field function), and therefore, over the same
parameter space. Thus, fields defined by this approach belong to a family of fields over the
same parameter space representing any phenomena. Thus, the field definition can be
generalized to an m-dimensional value space. Let us introduce the concept (and class)
FieldSet to represent this family of fields over the same geometry.

This second extension of the field definition is represented in UML by the classes and
relations on the left hand side of fig. 2. The classes called ValuesSet and ValueSet are defined
accordingly as aggregates of the Values and Value classes respectively, and with similar
relations to the other classes in the diagram. Similarly, each instance of Values associated to
an instance of ValuesSet have their own FieldFunction, and the collection of all
FieldFunction relations is represented by the derived relation between the Geometry and
ValuesSet classes called FieldFunctions. The “many-cardinality” of the Values to Value
relation has been extended to an infinity-cardinality of the ValuesSet to ValueSet relation
motivated by the previously-mentioned fact that the Geometry itself can be modeled as a
field.

2.6 Third extension of the core field-based model

The concept (and class) called ParameterSet introduces one final extension of the UML
diagram of fig. 2 motivated by the fact that we do not need to restrict the parameters to only
those required for defining the Geometry. Hence, the ParameterSet is a specialization of the
GeometryParameterSet including possible additional parameters. The second and third
extensions lead to the following general definition of the FieldSet (as an extension of the

“On the integration of object-based and field-based models in GIS” Page 8 of 22
 2006_PGO_Postprint.doc

definition of the Field): “A FieldSet is defined as an UML class representing a function from
an n-dimensional parameter space to an m-dimensional value space”.

2.7 A preliminary candidate base model

A candidate base-model is steadily appearing in terms of a model generalizing the object-
based and field-based models. We must now focus on describing the candidate common base-
model and trying to prove that the two models are specializations of the candidate base-
model. It must be emphasized that we are not using the term specialization and generalization
to describe class inheritance, but rather to describe model specialization in terms of
restrictions to class relation type and cardinality.

It seems clear that the Entity class from fig. 1 resembles a conceptual specialization of the
FieldSet class from fig. 2, provided that the AttributeSet class is considered as a conceptual
specialization of the ValuesSet class. This is true if an AttributeSet class is considered as a
ValuesSet class that is independent of parameters. This is equivalent to associating a ValueSet
class with the special case ParameterSet class having 0 parameters. This association is valid
and equivalent to the infinity-cardinality relation between the ValuesSet and the ValueSet
degenerating to the special case 0-cardinality relation, i.e. no relation at all.

It is evident that the Field class from fig. 2 represents a conceptual specialization of a FieldSet
class in the special case of an instance of FieldSet aggregating exactly one instance of Field.
This is true because the associated instance of ValuesSet also aggregates exactly one instance
of Values. This means that the Field and FieldSet classes will be merged because they have
both exactly the same set of one-to-one aggregation relations to other classes in the model.

Hence, the FieldSet class represents a key class in a candidate base model because it has the
potential of representing both the Entity and the Field classes in a generalized model. In
addition, all four classes on the left hand side of fig. 2 must be included into this candidate
base model because they are all included in the chain of arguments used for proving model
specialization.

In order to neutralize the concept, the names of the classes will be changed. The name
ParameterizedGeographicObject (abbreviated PGObject) will be introduced in order to
replace FieldSet. All classes belonging to the common base-model will be given names
prefixed by the abbreviation PGO, and the model itself will be called the PGOModel. As an
exception to this rule, the name PGObject will be used instead of PGOObject. The terms field
and entity will be completely omitted from the PGOModel in order to avoid mixing its
concepts with those of the classical models.

“On the integration of object-based and field-based models in GIS” Page 9 of 22
 2006_PGO_Postprint.doc

3 ParameterizedGeographicObject or PGO

3.1 Definitions of the PGOModel concepts

In fig. 2, it can be observed that the FieldSet and the ValuesSet classes may be merged into
one class because of the one-to-one cardinality. In the PGOModel framework, represented by
UML in fig. 3, this merged class is called PGObject. For similar reasons, the ValueSet and the
ParameterSet classes have been merged into a class called PGOAtom.

Fig. 3: Conceptual UML class diagram of the PGOModel.

With this merging, the member attributes A1 to Am of the ValueSet and the member attributes
P1 to Pn of the ParameterSet classes from fig. 2 have become ordinary member attributes of
the PGOAtom class. On the other hand, the ValuesSet class from fig. 2 has no ordinary
attributes of its own, only derived attributes from its relation to the ValueSet and
ParameterSet classes. These derived attributes /A1 to /Am are functionally dependent on the
attributes A1 to Am of the associated ValueSet class and the attributes P1 to Pn of the
associated ParameterSet class. Hence, the merged PGObject class must include derived
attributes /A1 to /Am in order to maintain its position as a candidate base model.

The FieldFunction and FieldFunctions concepts of fig. 2 are generalized into the functional
relationship from the attributes A1 to Am and P1 to Pn of ValueSet and ParameterSet to the
derived attributes /A1 to /Am of the ValuesSet in the extension of the Field model.
Consequently, this functional relationship is directly linked to the relation between the
PGObject and PGOAtom classes in the generalized PGOModel, and the relation is called
PGOFunction. This relation is defined as a strong aggregation in UML, which means that the
PGObject incorporate all associated PGOAtom objects.

3.2 Mathematical description of the PGOFunction

The PGOFunction can alternatively be considered a mathematical function from an n-
dimensional parameter space to an m-dimensional value space and is represented informally
and graphically in fig. 4. The entire value space is often called the codomain (Weisstein et al.
2004: Topic “Codomain”) of a function, and the subset of the codomain representing legal

PGOAtom

A1
:
Am
P1
:
Pn

PGObject

/A1(P1,…,Pn)
:
/Am(P1,…,Pn)

0 .. 8
PGOFunction

“On the integration of object-based and field-based models in GIS” Page 10 of 22
 2006_PGO_Postprint.doc

value space va lues is called the range (Weisstein et al. 2004: Topic “Range”) of the
PGOFunction. The subset of the parameter space including parameters with a defined
mapping in the attribute-space represents the domain (Weisstein et al. 2004: Topic “Domain”)
of the PGOFunction. The range of the PGOFunction will normally represent a subset of the
codomain. Therefore, the PGOFunction is normally non-surjective (Weisstein et al. 2004:
Topic “Surjection”). In order for the PGOFunction to be mathematically injective (Weisstein
et al. 2004: Topic “Injection”), it must represent a one-to-one relationship from the domain to
the range. This property reflects our choice of PGOFunction, but it is easy to find examples of
non-injective PGOFunctions. For this reason, the PGOFunction is usually non-bijective
(Weisstein et al. 2004: Topic “Bijection”). The dimensionality n of the parameter space
represents and may be defined as the degree of freedom (Weisstein et al. 2004: Topic “Degree
of Freedom”) for the associated PGObject.

Fig. 4: Informal drawing of the PGOFunction as an injective function from a domain in the parameter space to
a range in the codomain of the value space.

3.3 Formal definitions of the main elements of the PGOModel

The main elements of the core PGOModel of fig. 3 are defined as follows:

A PGOModel is a UML class model conceptualizing a geographic object with attributes
dependent on a set of n parameters varying over an n-dimensional domain where n=0.

A PGObject is a UML class conceptualizing a geographic object in a PGOModel. The
PGObject has m derived attributes, each being dependent on all or a subset of the n
parameters defined in the PGOModel. The value n is defined as the “degree of freedom” of
the PGObject.

A PGOAtom is an UML class conceptualizing the set of values of a PGObject class linked to
one specific combination of values of the n parameters defining the PGObject. Hence, the n
parameter values of the PGObject may also be considered attributes of the PGOAtom class.

Domain Range

Parameter space Value space

Codomain

PGOFunction

“On the integration of object-based and field-based models in GIS” Page 11 of 22
 2006_PGO_Postprint.doc

A PGOFunction is an UML class relation conceptualizing the strong aggregation of a
possible infinite number of PGOAtom objects into a PGObject. A PGOFunction is defined
mathematically as a function from a domain in an n-dimensional parameter space to a range
in an m-dimensional value space.

4 Extensions of the PGOModel

The core PGOModel from fig. 3 must be elaborated in order to resolve our initial challenge.
Some of the extensions are not necessary in the development of a conceptual model but are
included in order to make the PGOModel more easily applicable and understandable. In a few
instances we may exceed the limits of the pure conceptual modeling level.

4.1 PGObject tessellation

The first extension of the PGOModel is the result of a possible practical (but not conceptual)
problem concerning the one-to- infinity cardinality of the PGOFunction relation. The solution
is to split the PGObject into a set of smaller sub-PGObjects in such a way that each instance
of PGOAtom class of fig. 3 is associated with “one and only one” sub-PGObject. This
solution is analogous to and generalizes the concept of tessellation of geometry objects as
described by Egenhofer and Herring (1991) and restated by Bian (2000). This sub-PGObject
will subsequently be called PGOPatch. Similarly, the complete tessellation relation will be
called a PGOTessellation, and the relation between the PGOPatch and PGOAtom classes will
be called a PGOPatchFunction. The introduction of the PGOPatch class modifies the UML
model of fig. 3 to an extended UML model presented in fig. 5. The challenge of the
tessellation process is normally to make each PGOPatch small enough to be able to formulate
an explicit PGOPatchFunction for each PGOPatch.

Fig. 5: Conceptual UML class diagram of the alternative tessellated PGOModel.

PGObject

/A1(P1,…,Ik)
:
/Am(P1,…,Ik) PGOPatch

Function
PGO

Tessellation

PGOAtom

A1
:
Am
P1
:
Pn

PGOPatch

/A1(P1,…,Pn)
:
/Am(P1,…,Pn)
I1
:
Ik

0…q

/PGOFunction

0 … 8

0…r

0 … 8

“On the integration of object-based and field-based models in GIS” Page 12 of 22
 2006_PGO_Postprint.doc

The following comments are connected to elements of fig. 5:

? The PGOFunction relation of fig. 3 is replaced in fig. 5 by the combination of the
PGOTessellation relation of finite cardinality and the PGOPatchFunction relation of
infinite cardinality. Hence, the PGOFunction relation of fig. 3 has turned into a UML
derived relation in fig. 5.

? Practical problems connected to the infinite upper cardinality of the PGOPatchFunction
relation is solved by defining it as an explicit mathematical function. This means that the
PGOPatchFunction relation (and consequently the derived PGOFunction relation)
becomes an implicit relation.

? The tessellation process produces a PGOTessellation relation between a PGObject and a
finite number of q PGOPatch objects, and each of them can be assigned a unique set of
index values (I1, ..., Ik). The indexes of the PGOPatch class can be considered an
extension of the parameter concept by additional discrete parameters representing the
indexes.

? The PGOTessellation relation may in some cases also be defined as an implicit relation by
an explicit mathematical function. This is the case of a regular grid type of
PGOTessellation.

? The “self- relation” of the PGOPatch class represents a possible tessellation of PGOPatch
instances enabling hierarchic structures of PGOPatch instances. This option may be
utilized to mix explicit and implicit PGOTessellations.

4.2 PGOPatch generic subclasses

There are no restrictions on how to define PGOPatch objects, except for the requirement that
their attributes (i.e. PGOPatchFunction) may be formulated explicitly as a function of the
parameters. It is useful to search for generic (i.e. a standardized mathematical type) sub-
classes to the PGOPatch class to be reused in different PGOModel objects. There are three
obvious candidates chosen on the basis of simplicity, and their class inheritance is presented
by a UML class diagram in fig. 6:

? A PGOPatchConstant represents a PGOPatch of constant value. Thus, the
PGOPatchConstant is independent of parameters.

? A PGOPatchHyperCube is defined over a domain in the parameter space of hyper-cube
and axis-parallel geometric shape. This is a generalization into a parameter space of
arbitrary dimension of the rectangular shaped geometry in a parameter domain of
dimension n=2. 2n hypercube corner points with known values fix each instance in the
parameter space. Values linked to parameters in the hyper-cube interior are computed by a
simple low-order polynomial interpolation function, for example a bilinear polynomial
interpolation function in the n=2 case as shown in fig. 7.

? A PGOPatchSimplex is defined over a domain in the parameter space of simplex
geometric shape (Frank & Egenhofer 1992). This is a generalization into a parameter
space of arbitrary dimension of the triangular shaped geometry in a parameter domain of
dimension n=2. n+1 simplex corner points with known values fix each instance in the

“On the integration of object-based and field-based models in GIS” Page 13 of 22
 2006_PGO_Postprint.doc

parameter space. Values linked to parameters in the simplex geometry interior are
computed by a simple linear interpolation function as shown in fig. 8.

Fig. 6: Conceptual UML class diagram of PGOPatch subclasses.

Fig. 7: Example of a 2-parameter PGOPatch object of type PGOPatchHyperCube with two attributes A1 and
A2.

Fig. 8: Example of a 2-parameter PGOPatch object of type PGOPatchSimplex with two attributes A1 and A2.

Parameter space

P2

P1

Value space

A1

A2

Parameter space Value space

A1

A2 P2

P1

PGOPatch

PGOPatchConstant PGOPatchHyperCube PGOPatchSimplex

“On the integration of object-based and field-based models in GIS” Page 14 of 22
 2006_PGO_Postprint.doc

4.3 PGObject derived-attributes

The PGOModel includes possible implicit definition of PGObject attributes as a function of
other attributes of the same PGObject or attributes of other PGObjects. Such attributes are
called derived -attributes in UML. The derived-attribute concept of PGObjects may
generalize the overlay concept of GIS.

4.4 PGObject parameter projections

It is useful to consider the possibility of giving a subset of the PGObject parameters fixed
values, while allowing a derived PGObject to be dependent on the remainder of the
parameters. This option is useful in describing snapshots or subsets of an entire PGObject.
Such derived PGObjects represent an analogy to projections in geometry, hence, can be
called a PGOProjection.

4.5 PGObject partitioning

The PGOModel (fig. 5) requires that the PGObject, PGOPatch and PGOAtom objects all
have the same full set of m attributes. This is impractical if the PGOModel prefers different
PGOTessellation for different attributes. This option can be supported by splitting the
attributes of the PGObject over a specific number of PGOPart instances as shown in fig. 9.
The PGObject then becomes a strong aggregation (called PGOPartition relation) of
PGOPart, each having their own tessellation called PGOPartTessellation.

Fig. 9: Conceptual UML class diagram of PGObject partitioning.

PGObject

/A1(P1,…,Ik)
:
/Am(P1,…,Ik)
 PGOPart

Tessellation
PGO

Partition

PGOPatch

/Aj1(P1,…,Pn)
:
/Ajm(P1,…,Pn)
I1
:
Ik

PGOPart

/Aj1(P1,…,Ik)
:
/Ajm(P1,…,Ik)

0…s

/PGOTessellation

0…r

0…t

0…q

“On the integration of object-based and field-based models in GIS” Page 15 of 22
 2006_PGO_Postprint.doc

5 Proof of the PGOModel being a common base-model

The proof of the PGOModel according to the initial requirements is its ability to encompass
the classic object-based and field-based model of GIS. Several underlying arguments for this
proof have already been noted in the previous development in this paper of the PGOModel.
The letters n, m, etc. in this section refer to fig. 3, fig. 5 and fig. 9.

The classic object-based model is described by the PGOModel by setting n=0. The infinity-
cardinality of the PGOFunction is consequently degenerated into a 0-cardinality. Thus, there
is nothing to tessellate and partition, and therefore k=q= r= s=t=0. In other words, the
PGOPart, PGOPatch and PGOAtom classes are not involved in this special case. The case of
an object-based model attribute of type geometry may represent a possible exception, because
we have to set n>0 if we define the geometry attributes mathematically using a parametric
representation and a standard geometry tessellation. Furthermore, we have to define k>0,
q>0 and r=s=t=0.

The classic field-based model is described by a PGOModel where m=1. Thus, there is no
PGOPartition involved, and hence, s=t=0. The field function is furthermore represented by
the PGOFunction, and the number of parameters of the PGOAtom (i.e. the degree of freedom
of the PGObject) is set to n where 0<n<4, depending on the dimensionality of the geometry
defining the domain of the field. If the geometry is defined by a standard geometry
tessellation, then k>0, q>0 and r=0.

6 Discussions

6.1 PGObject attributes of type object-reference

The model presented by Cova & Goodchild (2002) defines the concept of “object field” as a
method for integrating the two classical models. Their approach proposes a solution to the
model integration problem by defining one of the classical models in the context of the other.
The “object field” approach basically links object instances to any field location, and hence
represents a model with both field- like and object- like properties. The “object field” is
formally established by augmenting the field concept with attributes of type object-reference.
This augmentation is similarly possible in the PGOModel framework by allowing PGObject
attributes of type object-reference. For both models this augmentation is restricted to
tessellations having patches of constant value because there is in general no valid algebra
defined for object-references. This means in PGOModel terms that an “object field” is
restricted to PGOPatch objects of sub type PGOPatchConstant. All four cardinality types in
the object/field relation of the “object field" model (one-to-one, etc.) are possible in both
models by allowing an additional augmentation of field or PGObject attributes respectively
with the type “container-of-object-references”. Hence, the “object field” model intuitively
maps to the PGOModel.

“On the integration of object-based and field-based models in GIS” Page 16 of 22
 2006_PGO_Postprint.doc

The opposite is not true because the object concept of the “object field” model is not
explicitly augmented with the general possibility to allow attributes being dependent on
parameters. Hence, the “object field” model is a special case of the PGOModel.

6.2 PGOModel considered as a hybrid model

The model presented by Winter 1998 proposes a hybrid representation model for the object-
based and field-based concepts. There is basically no significant difference between the
concept of common base-model and hybrid representation model. This means that the model
of Winter 1998 and the PGOModel are both developed for the purpose of trying to bridge the
two classical models of GIS even if the hybrid representation model is much more focused on
developing an implementable model. However, the two models are developed using different
tools, and the two models have significant differences.

The model of Winter 1998 presents a hybrid representation model for the traditional raster
and vector representation models to be used as a common representation model for the entity-
based and field-based conceptual models in GIS. The model is developed using strict
mathematical formalism. The atomic part of the hybrid representation model consists of the
topological 0-, 1- and 2- cells forming a discrete regular and axis-parallel topological pattern
with a finite user-defined resolution. The model is basically limited to 2D, but could easily be
generalized to higher dimensions. The model has no parameter concept. One particular 2-cell
with its associated 0- and 1- cells maps nicely to the PGOPatch subclass
PGOPatchHypeCube of dimension n=2. Seen from this point of view the hybrid
representation model could be regarded as a special case of the PGOModel because it does
not include other types of PGOPatch objects and it does not explicitly include any concept
mapping the PGOAtom concept. However, the hybrid representation model is enriched with
the necessary formal topological concepts missing in the current version of the PGOModel.
These issues are classified as a topic for further work in the conclusion section of this paper.
The methodology of Winter 1998 is a promising approach for such a work.

6.3 Ontology of the PGOModel

The formulation of the PGOModel requires reflection on its ontological foundations and
potential consequences.

The ontological foundation of the classical field-based model is still subject to debate (Bian
2000, Peuquet el. al. 1999, Smith & Mark 1998). The controversy is primarily linked to the
nature and origin of a field, and especially to a field which is possibly the modeling result of
so-called fiat-objects (Smith & Mark 1998). Fiat-objects are defined as the result of “human
reasoning and language”, and hence, exist beyond the physical world. Fiat-objects are more
likely to be “field- like” than “object-like” according to Peuquet et. al. (op.cit.).

The alternatives, which represent features in the physical world, are defined as so-called bona
fide objects. The previous argument on fiat-objects leads to a possible inverse statement of
bona fide objects being more likely “object-like” than “field- like”. Hence, the classical object-
based model, generally representing bona fide objects, poses no major ontological problem

“On the integration of object-based and field-based models in GIS” Page 17 of 22
 2006_PGO_Postprint.doc

because the objects of this model generally represent physical features located in geographic
space, if we exclude the problem of representing bona fide objects with fuzzy extent.

However, even fiat-objects represented in an object-oriented framework as the core field-
based model of fig. 2 should not pose any major ontological problem. This is because object-
oriented modeling as such can easily transform abstract (i.e. non-physical) objects into quasi-
physical objects on the modeling level. Furthermore, there is no ontological conflict related to
our extensions of the Field object into a FieldSet object introduced in fig. 2 (and hence the
PGObject of fig. 3) because the extension simply introduces the option of defining a FieldSet
object as an “aggregation of Field objects over the same geometry”.

However, our extension of the field model connected to the ParameterSet object introduced in
fig. 2 (and hence the PGOAtom object of fig. 3) is ontologically more challenging.
Mathematically the PGOAtom represents the smallest element aggregating the entire
PGObject. However, the fact that many PGOFunctions can construct the same PGObject is
ontologically problematic. This means that the relationship between a PGObject and a
PGOAtom is ontologically more complex than the normal relationship between physical
objects and physical atoms. We conclude that the PGOAtom object clearly cannot be
reasonably ontologically founded beyond the pure abstract mathematical level.

7 Examples

7.1 Glacier example

A glacier is a well-defined physical object subject to GIS modeling. It has a clear extent, and
its attributes could be defined either as independent (size and glacier type) or as dependent
(velocity and thickness) on the specific location on the glacier.

A glacier is easily modeled by the object-based model provided that we restrict attributes to
those being independent of location, such as the size and glacier type.

The field-based model can be used in the modeling of the individual attributes of a glacier, in
particular those being dependent on location, such as the velocity and thickness. Glaciologists
are also using the concept of velocity field when describing the dynamic behavior of a glacier.

The modeling of the glacier as a PGObject enables the integration of the velocity and
thickness attributes into an object-based model. A FEM (Finite Element Method) based on the
glacier flow-line structure, represents a candidate PGOTessellation often used by
glaciologists. Each PGOPatch is of the PGOPatchHyperCube subtype if we model
continuously varying attributes or the PGOPatchConstant subtype if we model discretely
varying attributes. In the velocity attribute case, known velocity values are associated with
PGOPatchHyperCube object corner points or entire PGOPatchConstant objects. The
dimension n of the PGOPatch object is 3 in a static model or 4 in a model describing glacier
variations over time. The first parameter P1 may represent the distance along the center flow-
line of the glacier. The second parameter P2 may represent the signed depth perpendicular to
the glacier center flow-line. The third parameter P3 may represent the signed horizontal

“On the integration of object-based and field-based models in GIS” Page 18 of 22
 2006_PGO_Postprint.doc

distance from and perpendicular to the center flow-line. The alternative fourth parameter P4
may represent the distance in time from a defined time origin. The word distance does not
necessarily refer to a Euclidian distance, but rather a parameter with mathematical metric
properties (Weisstein et al. 2004: Topic “Metric”). Neutralized parameter values varying in
the range from 0 (or -1) to 1 over the entire glacier may be a better choice. This
PGOTessellation has a topologically regular “hyper-raster” type of structure and each
PGOPatch object can be indexed accordingly. Consequently, k=n and the number of
PGOPatches in all k directions can be set constant. The flow-line tessellation model enables
ignoring the topology of merging lateral glaciers.

The PGOAtom object represents a physical ice-molecule at a particular point in time and
space with its set of constant value attributes and unique set of constant value parameters. The
PGOModel enables the modeling of the location in time and space of each PGOAtom, and
hence each PGOPatch and PGObject, by including x, y, z and time in their list of attributes.

The thickness attribute is not directly dependent on a “3D” tessellation of the glacier and can
be modeled by aggregating all PGOPatches which are “vertically stabled on top of each
other” into a new PGOPatch object using the PGOPatch class “self- relation”. The word
vertically in this FEM type of tessellation model does not imply vertical in a strict sense, but
instead perpendicular to the surface of the glacier, i.e. PGOPatch objects with the same I2
index value. Hence, the velocity and thickness attributes will have different
PGOTessellations, and it is necessary to introduce a PGOPart object into the model in order
to model them as sister attributes. An alternative to modeling the thickness attribute as an
explicit attribute is to model it as a derived-attribute computed as the distance between the top
and bottom surfaces of corresponding parts of a glacier. The top and bottom surface attributes
both have the same PGOTessellation as the thickness attribute. These attributes can
alternatively be modeled as two PGOProjection objects of the glacier PGObject where P2 is
equal to 0 and 1 respectively.

7.2 Railway network example

Utility networks such as railway networks, have traditionally been modeled using an object-
based model. A network is first decomposed into its smallest elements, each characterized by
a uniform set of attributes, called track sections, and then each of them is modeled as a class.
The complete network topology can subsequently be modeled by introducing a set of
topological relations between track section objects, by introducing an imaginary track node
object. A sequence of connected track sections between two neighboring track junction nodes
is called a track connection. Discretely varying railway network attribute information, such as
track quality, is modeled as attributes of the track section object. However, the same approach
is not possible for continuously varying attribute information, such as possible top-speed.
Attribute information connected to points on the network, such as a security installation, can
be related to track node objects. The latter may require introducing artificial track nodes into
the network.

The quality and security installation attributes can in theory be subject to a field-based
modeling approach by considering a track section and track node based constant value
tessellation of the field. This approach is however never applied because it is equivalent to the

“On the integration of object-based and field-based models in GIS” Page 19 of 22
 2006_PGO_Postprint.doc

object-based model of the network. In contrast, the top-speed attribute is better suited to a
field-based approach because it can take advantage of a non-constant value tessellation. This
is a field over a curve geometry domain usually represented parametrically as curvilinear
coordinates by railway authorities. Curvilinear coordinates are represented by a continuous
measure (for instance distance) along the track from a well-defined starting-point.

The latter approach is a natural starting-point for introducing the PGOModel to the railway
network example. One PGObject may represent the entire network and it may be subject to a
PGOTessellation of PGOPatch objects analogous to the splitting of the object-based model of
the network. A track section is represented by a PGOPatch object and track connections are
represented by an aggregated PGOPatch object. In the quality attribute case, known track
quality values are associated with PGOPatchConstant objects, while in the top-speed attribute
case, known speed values are associated with PGOPatchHyperCube object corner points. The
dimension n of the PGOPatch object is 1 in a static model, 2 if we wish to describe variations
over time and 3 if we also wish to describe scale-dependent variations. The first parameter P1
may represent the curvilinear coordinate along the track from a well-defined reference point.
The alternative second parameter P2 may represent the distance in time from a defined time
origin. The alternative third parameter P3 may represent scale. The indexing scheme for the
PGOPatch objects is necessarily complex due to the topology of the network. Moreover, the
PGOModel presented in this paper has not yet defined any mechanisms for explicit modeling
of the PGOPatch topology. This means that the current PGOModel is restricted to implicit
(i.e. “spaghetti”) modeling of PGOPatch topology. An alternative approach is to model each
track connection as a separate PGObject and treat network topology as topological relations
between PGObjects. The latter case requires an explicit PGObject representing the track
node.

The PGOAtom represents a physical location of the network at a particular point in time,
space and resolution with its set of constant value attributes and unique set of constant value
parameters. The PGOModel enables the modeling of the location in time and space of each
PGOAtom, and hence each PGOPatch and PGObject, by including x, y, z, time and scale in
their list of attributes. This definition allows two PGOAtom objects with the same parameter
P1 and a different parameter P2 representing two different locations in space in the case of a
track relocation project. If we let x, y and z depend on the P3 parameter, then we are able to
represent a scale-dependent network layout which vary from a precise network layout to an
overall schematic layout. This example also allows a continuous derived-attribute
representation of travel time from the start of the track connection as the multiplication of the
top-speed and the parameter P1. Security installation may be modeled as separate PGObjects
which are related to the network PGObject(s) using the object reference PGObject attribute
type.

8 Conclusions

This paper presents a candidate base-model called PGOModel for the classical object-based
and field-based conceptual models in GIS. The PGOModel, the object-based model and field-
based model are formally defined as pattern-models by using the UML modeling language.

“On the integration of object-based and field-based models in GIS” Page 20 of 22
 2006_PGO_Postprint.doc

Within the scope of this paper, the proof of validity of the PGOModel is linked to its
demonstrated ability to encompass the classical object-based and field-based models.

Except for the ontological problem of the PGOAtom concept, we have seen that the
PGOModel does not represent additional ontological problems compared to the classical
object-based and field-based models in GIS. The ontological problem of the PGOAtom is
related to the way PGOAtom parameters are considered. However, this does not represent any
major ontological problem if we maintain that the parameters represent pure mathematical
tools used in the construction of a PGObject from PGOAtoms.

There are several issues connected to the PGOModel which are beyond the scope of this
paper. These issues provide appropriate topics for further research. Several have already been
mentioned, such as PGObject relations and topology, others include the important concept of
methods in object-orientated modeling. Furthermore, the question of application of the
PGOModel to non-conceptual modeling levels has not been challenged. In particular the
applicability of the PGOModel on the implementation level is of special interest.

Regarding the potential usefulness of the PGOModel, it is to be hoped that the model offers
greater insights into the nature of geographic information. It may help us understand the
relationship between the two classical models while revealing the ir strengths, weaknesses and
limitations. It is, however, important to keep in mind that both the classical object-based and
field-based models are highly adequate for solving most current GIS conceptual modeling
issues.

It is believed that the major contribution of the PGOModel beyond playing the role as a
common base-model for the two classical models is linked to its alternative formulation and
definition of the field concept. The traditional view of a field as a mathematical function from
a geometry space domain to a value space could be supplemented by the alternative and
generalized view of a field defined as a set of mathematical functions from a parameter space
domain to a multidimensional value space. Another contribution of the PGOModel may be
the demonstrated usefulness of including attributes whose value is dependent on parameters
into the classical object-based model.

9 Acknowledgments

The author is particularly appreciative for the helpful comments of Dr. Tor Lønnestad, and
our discussions connected to several draft versions, and also to the anonymous referees for
their valuable comments on earlier versions of this paper. I am grateful also to Mrs. Judith
McGuiness Torvik for assistance with improving the English language.

10 Literature

Angel, S., and Hyman, G. M., 1976, Urban Fields: a geometry of movement for regional
science (London: Pion Limited).

“On the integration of object-based and field-based models in GIS” Page 21 of 22
 2006_PGO_Postprint.doc

Bian, Ling 2000, Object-oriented representation for modeling mobile objects in an aquatic
environment. International Journal of Geographical Information Science, vol. 14, no. 7, 603-
623

Burrough, P. A., 1996, Natural objects with indeterminate boundaries. In Geographic
Objects with Indeterminate Boundaries, edited by P. A. Burrough and A. U. Frank (London:
Taylor and Francis), pp. 2–28.

Burrough, P. A., and McDonnell, R. A., 1998, Principles of Geographical Information
Systems (Oxford: Oxford University Press).

Couclelis, H., 1992, People manipulate objects (but cultivate Fields): beyond the raster-vector
debate in GIS. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space,
Lecture Notes in Computer Science 639, edited by A. U. Frank and I. Campari (Berlin:
Springer-Verlag), pp. 65–77.

Cova, T. J. and Goodchild, M. F. 2002, Extending geographical representation to include
”Fields of spatial objects. International Journal of Geographical Information Science, vol. 16,
no. 6, 509-532

Egenhofer, M. J., and Frank, A. U., 1987, Object-oriented databases: database requirements
for GIS. In Proceedings of the International GIS Symposium: The Research Agenda, Volume
1 (Washington, DC, US Government Printing Office), pp. 189–211.

Egenhofer, M., and Frank, A., 1992, Object-oriented modeling for GIS. Journal of the
Urban and Regional Information Systems Association, 4, 3-19.

Egenhofer, M. J., and Herring, J. R., 1991, High- level spatial data structures for GIS. In
Geographical Information Systems: Principles and Applications, edited by D. J. Maguire,
M. F. Goodchild and D. W. Rhind (London: Longman), pp. 227–237.

Egenhofer, M. J., Glasgow, J., Gunther, O., Herring, J. R., Peuquet, D. J., 1999, Progress
in computational methods for representing geographical concepts. International Journal of
Geographical Information Science, vol. 13, no. 8, 775-796

Frank, A. U., 1992, Spatial concepts, geometric data models, and geometric data structures.
Computers and Geosciences, 18, 409–417.

Frank, A. U., 1996, The prevalence of objects with sharp boundaries in GIS. In Geographic
Objects with Indeterminate Boundaries, edited by P. A. Burrough and A. U. Frank (London:
Taylor and Francis), pp. 29–40.

Frank, A. U., and Egenhofer, M., 1992, Computer cartography for GIS: an object-oriented
view on the display transformation. Computers & Geosciences, 18, 975–987.

Goodchild, M. F., 1989, Modeling error in objects and Fields. In Accuracy of spatial
databases, edited by M. F. Goodchild, and S. Gopal (London: Taylor & Francis).

“On the integration of object-based and field-based models in GIS” Page 22 of 22
 2006_PGO_Postprint.doc

Goodchild, M. F., 1992, Geographical data modeling. Computers & Geosciences, 18, 401–
408.

Kemp, K. K., 1997, Fields as a framework for integrating GIS and environmental process
models. part 1: representing spatial continuity. Transactions in GIS, 1, 219–234.

Oosterom, P.v., and Vanderbos, J., 1989, An object-oriented approach to the design of
geographic information systems. Computers and Graphics, 13, 409–418.

Peuquet, D. 1988, Representations of Geographic Space: Toward a Conceptual Synthesis,
Annals of the Association of American Geographers 98 (3): 375.

Peuquet, D., Smith, B., and Brogaard, B., 1999, The ontology of ”Fields: report of a
specialist meeting held under the auspices of the Varenius Project (Santa Barbara: National
Center for Geographic Information and Analysis).

Rumbaugh, J., Blaha, W., and Premerlani, F., 1991, Object-Oriented Modeling and
Design (Englewood Cliffs, New Jersey: Prentice Hall) .

Rumbaugh, J., Jacobson, I., Booch, G., 1998, The unified modeling language reference
manual. (Reading, Mass.: Addison-Wesley).

Sachs, M., 1973, The Field concept in contemporary science (SpringField: Charles C.
Thomas).

Smith, B., and Mark, D., 1998, Ontology and geographic kinds. In Proceedings of
International Symposium on Spatial Data Handling (SDH ’98): Vancouver, B.C., pp. 308–
318.

Tobler, W. R., 1978, Migration fields. In Clark, W., and Moore, E., eds., Population Mobility
and Residential Change, Studies in Geography No. 25 (Evanston: Department of
Geography), pp. 215–232.

Weisstein, E. W. et al., 2004, MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com

Winter, S., 1998, Bridging Vector and Raster Representation in GIS. In Proceedings of the
6th International Symposium on Advances in Geographic Information Systems (ACM-GIS
’98): Washington, D.C., pp. 57-62.

Worboys, M. F., 1994, Object-oriented approaches to georeferenced information.
International Journal of Geographical Information Systems, 3, 385–399.

Worboys, M. F., 1995, GIS: a computing perspective (London: Taylor & Francis).

Worboys, M., Hearnshaw, H., and Maguire, D., 1990, Object-oriented data modeling for
spatial databases. International Journal of Geographical Information Systems, 4, 369-383.

