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On the integration of object-based models 

and field-based models in GIS 

 

Abstract 

This paper proposes a common base-model for the classical object-based and field -based conceptual 
models in GIS. The model which is called the PGOModel or “Parameterised Geographic Object 
Model” is given formal definition by using the UML modeling language. Within the scope of the paper 
it has been shown that the PGOModel encompasses the classical object-based and field -based models. 
Two extensive examples demonstrate  the application of the PGO model. The PGOModel seems 
ontologically well founded except for the so-called PGOAtom concept. 

 

1 Introduction 

Over the last 10-15 years the object-based and field-based conceptual modeling approach has 
gradually generalized the old time vector and raster data structure modeling approach in GIS. 
This change of approach has had an important impact on the development of Geographic 
Information Science from an exotic tool to be used by map producers and geographers into an 
integrated and specialized part of Information Science. However, for a long time there has 
been an increasing demand for further integration of the object-based and field-based models 
(Bian 2000, Cova & Goodchild 2002, Egenhofer et al. 1999, Peuquet 1988, Peuquet et al. 
1999, Winter 1998). These early works have focused on describing the co-existence and 
interactions of the two models. The present paper discusses integration of the two models in 
terms of searching for a common base-model. 

The object and field concepts as such predate the ir explicit use in a GIS context (Angel & 
Hyman 1976, Sachs 1973, Tobler 1978). They were introduced in GIS in the early nineties 
(Burrough 1996, Couclelis 1992, Frank 1992, 1996, Goodchild 1989, 1992, Kemp 1997) and 
subsequently included in textbooks (Burrough & McDonnell 1998, Worboys 1995). This 
process was triggered in part by the introduction of the concept of object-orientation into GIS 
(Worboys 1994, Egenhofer & Frank 1987, 1992, Frank & Egenhofer 1992, Oosterom & 
Vanderbos 1989, Worboys et al. 1990). 

The object-based model has been used as a means of conceptual structuring of geographic 
information, in particular in the modeling of real world objects (or entities) with a precise and 
“crisp” spatial location and extent. However, with the introduction of object-oriented methods 
and models (Rumbaugh et al. 1991), object-based modeling has been given a more prominent 
formal foundation, for instance in modeling tools and languages like UML (Unified Modeling 
Language) (Rumbaugh et al. 1998).  
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The field-based model concept originates from classical physics and has been used for 
modeling physical properties (e.g. gravity) whose magnitude is dependent on its spatial 
location. In Geographic Information Science, the field concept has been extended to include 
any (physical or non-physical) properties whose magnitude (value) is dependent on its spatial 
location. This definition has turned the field into a useful generalization of “field- like” spatial 
data structures such as TIN models and raster models. 

The present paper is investigating the possibility for the object-based and field-based model 
being both derived from a common model using a UML modeling approach. This type of 
generalized source model for derived models is called a base-model. The criterion for a model 
being a common base-model for two given models is that both of them are proven to be 
special cases of the base-model. We are not necessarily searching for the base-model, but 
rather a base-model, as there may in theory be several possible base-models. The motivation 
for the search for a common base-model is the potentia l of revealing additional characteristics 
of the relationship between the object-based and field-based models. Our conceptualization of 
the geographic space will benefit from a more integrated view of the two models, and every 
aspect of this integration will contribute. As an additional bonus, a common base-model has 
the potential of being useful by its own. 

A model is a simplified description of the structural and behavioral patterns for a subset of the 
reality. In GIS the actual subset of the reality is restricted to entities and properties having 
well-defined location in the geographic space. Moreover, models can be refined according to 
our actual needs. This refinement process defines models at different modeling levels, each 
with well-defined common characteristics. The conceptual model level, the data model level, 
the implementation model level, and the storage model level represent examples of such 
model levels. This paper is primarily restricted to models on the conceptual level. In other 
words, we will focus on modeling as a tool for describing and understanding our real world, 
and at this stage we are less concerned about the realization of the models in different types of 
information systems. The latter may potentially be the topic for further research.  

Object-based models on the conceptual level are sometimes called entity-based models 
because they are focusing on modeling real world entities. However, in this paper is focusing 
on the representation on such models in a language (i.e. UML) where the term object is 
crucial. Hence, the term object is preferred over entity when characterizing the type of model 
as well as its representation (i.e. object-based). However, the class representing the generic 
entity in the object-based model will be called Entity in order to avoid too much confusion 
with the concept of object as a UML modeling element. Furthermore, the UML modeling 
language distinguishes between the concepts of object class (as the model element) and object 
instance (as its physical realization). We will subsequently use the terms class and instance 
for these concepts. 

A specific modeling process is restricted to concepts from a well-defined application domain. 
This paper however, describes conceptual models in general, acting as hosts for application 
domain models. Such models are called pattern-models and they acts as a common base-
model for a certain type of application domain models. For instance, the pattern model for the 
classical object-based model in GIS acts as a base-model for GIS object-based models in 
general, and the pattern model for the classical field-based model in GIS acts as a base-model 
for GIS field-based models in general. 
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The model to base-model relationship can be studied formally in the framework of a meta-
model. A meta-model is formally defined as a model of a model. Modeling element such as 
classes and relations of any model are instances of meta-model classes with well-defined 
relations. In this framework the model to base-model relationship is established and proven 
formally by deriving all modeling elements and concepts of the former from meta-model 
classes which inherits meta-model classes deriving all modeling elements and concepts of the 
latter. This approach is complex and hard to understand because it involves a mixture of 
modeling elements at several levels of abstractions. 

A simpler and more intuitive approach is to compare every part of the two models directly 
and investigate if all subsets of a model (for instance the subset consisting of a class including 
all its relations to other classes) are specializations of a well-defined subset of the base-model. 
Proving this “specialization” relationship includes comparing the properties of the class 
including the type and cardinality of its immediate relations. This approach is highly 
simplified by using the UML modeling approach as a graphical tool, because UML depicts 
the model as a visible graphical pattern.  

The model to base-model relationship between each of the two classical pattern-models and 
their common base-model could easily use this approach because all three models involved 
may be explicitly formulated in UML. This is the approach used in the subsequent sections of 
this paper. However, the model to base-model relationship between any GIS application 
domain model and one of the two classical pattern-models is more difficult to justify because 
we are not able to demonstrate this relationship for all possible application domain models. 
This means that this particular relationship cannot be proven formally, but must be justified 
by professional experience and motivating examples. This means that the conclusions of this 
paper relay on the acceptance of the “correctness” of the pattern-models. This type of 
axiomatically based logical approach is still valid as a scientific method. 

2 The search for a candidate base-model 

The search for a candidate base-model requires a formal description of the object-based and 
field-based pattern models. These descriptions will be formalized using standard UML. They 
will contribute to our search for similarities and differences between the two models. We will 
begin by extending each of the pattern-models and subsequently attempt to associate similar 
concepts in the two models. A candidate base-model can then be suggested and described 
using UML formalism. The proof of this candidate model being a common base-model can 
subsequently be based on the comparison of the different UML-models involved.  

Class names will be capitalized and typed in italic typeface in the subsequent description of 
UML models. Furthermore, the UML term relation will be used when describing formal class 
relationships and their name will also be capitalized and typed in italic typeface. 

2.1 Formal description of the object-based model 

Shaded classes and bold line relations in fig. 1 depicts a UML diagram of a pattern-model for 
a standard object-based model. The diagram tells us that the class called Entity is an 
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aggregation of the class called Attribute. Real life object-based models include other concepts 
such as the concept of relation or methods of entities, but we do not need to include them at 
the current stage. 

 

Fig. 1:  Conceptual UML class diagram of a standard object-based model. Shaded classes and bold line 
relations represent the core object-based model, and the remainder represents extensions made in this paper. 

2.2 Extension of the core object-based model 

Furthermore, fig. 1 describes a proposed extension of the UML model. Two trivial and 
redundant helper classes have been added and the basic aggregation relation has been 
supplemented by two derived aggregation relations (represented formally by a ”/”-prefix in 
UML). The class called AttributeSet represents the aggregation of all instances of class 
Attribute related to one instance of class Entity. Consequently, Entity aggregates exactly one 
AttributeSet . The class called Geometry is modeled as a sub-class of class Attribute because 
entities in GIS have a well-defined location formally described by an attribute of class 
Geometry, or more precisely, by one of its sub-classes. It must be emphasized that these 
helper classes are solely introduced in order to facilitate model pattern matching in the 
subsequent sections. 

2.3 Formal description of the field-based model 

Field models in GIS define a field as a value varying over a subset of the geographical space. 
A geometry bounds this subset. Hence, a field in GIS can be defined as a value varying over a 
geometry. In mathematical terms a field is a function from the geographical space (defined as 
the domain of the function), to a value space (defined as the range of the function). The 
concepts of domain and range will be defined mathematically in subsequent sections. 

Let us formulate the field definition in an object-oriented framework using UML. This 
approach is also proposed by Bian (2000). Shaded classes and bold line relations in fig. 2 
depicts a UML diagram of a pattern-model for a standard field-based model. The class called 
Field aggregates exactly one instance of a class called Geometry defining its domain, and 
exactly one instance of a class called Values defining its range. The Geometry class is 
furthermore defined as an aggregation of its atomic parts represented by a class called 
Location. The term location is preferred over point because the term Point is traditionally 
used when representing the 0-dimensionality Geometry sub-type. This aggregation relation is 
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/Attributes 

Location and  
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of infinite cardinality because geometries normally consist of an infinite number of locations. 
Similarly, the Values class is an aggregation of objects of a class called Value. The relation 
between the Location and Value classes describes the basic property of a field, i.e. the many-
to-one association of a unique value to each location. Hence, the relation between the 
Geometry and Values classes is a derived relation representing the previously mentioned 
FieldFunction. This model leads to the initial basic definition of a Field: “A field is defined as 
an UML  class representing a function from a Euclidian space to a value space”.  

 

 

Fig. 2:  Conceptual UML class diagram of a standard field-based model. Shaded classes and bold line relations 
represent the core field-based model, and the remainder represents extensions made in this paper. 

2.4 First extension of the core field-based model 

Fig. 2 describes several proposed extensions of the basic UML model. A one-to-one 
association between class Location and a class called GeometryParameterSet is introduced 
motivated by the fact that geometries may be described mathematically as parameter 
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functions. A parametric representation of a Geometry class is defined as a function from a 
parameter space to the Euclidian space. Therefore each combination of parameters (i.e. each 
instance of GeometryParameterSet) is associated with at most one Location. Furthermore, the 
dimensionality of the parameter space (i.e. the number of parameter attributes of the 
GeometryParameterSet) is equal to the dimensionality of the geometry (i.e. point geometries 
being 0-dimensional, curve geometries being 1-dimensional, etc.), and being equal or inferior 
to the dimensionality of the Euclidian space. There are an infinite number of possible 
functions representing the same geometry. Hence, an GeometryParameterSet instance 
contains all parameters associated with one particular Location on a Geometry instance  The 
fact that one Location instance is associated with exactly one GeometryParameterSet instance 
and exactly one Value instance, enables the derived association of the GeometryParameterSet 
class with the relation between the Value and Location classes. Such types of relations are 
valid in UML and may often be useful. This first extension of the field model leads to the 
following alternative formal definition of a field: “A field is defined as an UML  class 
representing a function from an n-dimensional parameter space to a value space”.  

2.5 Second extension of the core field-based model 

So far we have avoided discussing the dimensionality of the value space. Normally it is 1, but 
2 and 3 are also common (e.g. a gravity field has a 3-dimensional value space). This 
observation suggests the possibility of defining the geometry itself as a new field over the 
same geometry (i.e. a trivial one-to-one field function), and therefore, over the same 
parameter space. Thus, fields defined by this approach belong to a family of fields over the 
same parameter space representing any phenomena. Thus, the field definition can be 
generalized to an m-dimensional value space. Let us introduce the concept (and class) 
FieldSet to represent this family of fields over the same geometry.  

This second extension of the field definition is represented in UML by the classes and 
relations on the left hand side of fig. 2. The classes called ValuesSet and ValueSet are defined 
accordingly as aggregates of the Values and Value classes respectively, and with similar 
relations to the other classes in the diagram. Similarly, each instance of Values associated to 
an instance of ValuesSet have their own FieldFunction, and the collection of all 
FieldFunction relations is represented by the derived relation between the Geometry and 
ValuesSet classes called FieldFunctions. The “many-cardinality” of the Values to Value 
relation has been extended to an infinity-cardinality of the ValuesSet to ValueSet relation 
motivated by the previously-mentioned fact that the Geometry itself can be modeled as a 
field. 

2.6 Third extension of the core field-based model 

The concept (and class) called ParameterSet introduces one final extension of the UML 
diagram of fig. 2 motivated by the fact that we do not need to restrict the parameters to only 
those required for defining the Geometry. Hence, the ParameterSet is a specialization of the 
GeometryParameterSet including possible additional parameters. The second and third 
extensions lead to the following general definition of the FieldSet (as an extension of the 



“On the integration of object-based and field-based models in GIS” Page 8 of 22  
 2006_PGO_Postprint.doc 

definition of the Field): “A FieldSet is defined as an UML class representing a function from 
an n-dimensional parameter space to an m-dimensional value space”. 

2.7 A preliminary candidate base model 

A candidate base-model is steadily appearing in terms of a model generalizing the object-
based and field-based models. We must now focus on describing the candidate common base-
model and trying to prove that the two models are specializations of the candidate base-
model. It must be emphasized that we are not using the term specialization and generalization 
to describe class inheritance, but rather to describe model specialization in terms of 
restrictions to class relation type and cardinality. 

It seems clear that the Entity class from fig. 1 resembles a conceptual specialization of the 
FieldSet class from fig. 2, provided that the AttributeSet class is considered as a conceptual 
specialization of the ValuesSet class. This is true if an AttributeSet class is considered as a 
ValuesSet class that is independent of parameters. This is equivalent to associating a ValueSet 
class with the special case ParameterSet class having 0 parameters. This association is valid 
and equivalent to the infinity-cardinality relation between the ValuesSet and the ValueSet 
degenerating to the special case 0-cardinality relation, i.e. no relation at all. 

It is evident that the Field class from fig. 2 represents a conceptual specialization of a FieldSet 
class in the special case of an instance of FieldSet aggregating exactly one instance of Field. 
This is true because the associated instance of ValuesSet also aggregates exactly one instance 
of Values. This means that the Field and FieldSet classes will be merged because they have 
both exactly the same set of one-to-one aggregation relations to other classes in the model.  

Hence, the FieldSet class represents a key class in a candidate base model because it has the 
potential of representing both the Entity and the Field classes in a generalized model. In 
addition, all four classes on the left hand side of fig. 2 must be included into this candidate 
base model because they are all included in the chain of arguments used for proving model 
specialization.  

In order to neutralize the concept, the names of the classes will be changed. The name 
ParameterizedGeographicObject (abbreviated PGObject) will be introduced in order to 
replace FieldSet. All classes belonging to the common base-model will be given names 
prefixed by the abbreviation PGO, and the model itself will be called the PGOModel. As an 
exception to this rule, the name PGObject will be used instead of PGOObject. The terms field 
and entity will be completely omitted from the PGOModel in order to avoid mixing its 
concepts with those of the classical models. 
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3 ParameterizedGeographicObject or PGO 

3.1 Definitions of the PGOModel concepts 

In fig. 2, it can be observed that the FieldSet and the ValuesSet classes may be merged into 
one class because of the one-to-one cardinality. In the PGOModel framework, represented by 
UML in fig. 3, this merged class is called PGObject. For similar reasons, the ValueSet and the 
ParameterSet classes have been merged into a class called PGOAtom.  

 

 

 

 

 

Fig. 3:  Conceptual UML class diagram of the PGOModel. 

With this merging, the member attributes A1 to Am of the ValueSet and the member attributes 
P1 to Pn of the ParameterSet classes from fig. 2 have become ordinary member attributes of 
the PGOAtom class. On the other hand, the ValuesSet class from fig. 2 has no ordinary 
attributes of its own, only derived attributes from its relation to the ValueSet and 
ParameterSet classes. These derived attributes /A1 to /Am are functionally dependent on the 
attributes A1 to Am of the associated ValueSet class and the attributes P1 to Pn of the 
associated ParameterSet class. Hence, the merged PGObject class must include derived 
attributes /A1 to /Am in order to maintain its position as a candidate base model.  

The FieldFunction and FieldFunctions concepts of fig. 2 are generalized into the functional 
relationship from the attributes A1 to Am and P1 to Pn of ValueSet and ParameterSet to the 
derived attributes /A1 to /Am of the ValuesSet in the extension of the Field model. 
Consequently, this functional relationship is directly linked to the relation between the 
PGObject and PGOAtom classes in the generalized PGOModel, and the relation is called 
PGOFunction. This relation is defined as a strong aggregation in UML, which means that the 
PGObject incorporate all associated PGOAtom objects.  

3.2 Mathematical description of the PGOFunction 

The PGOFunction can alternatively be considered a mathematical function from an n-
dimensional parameter space to an m-dimensional value space and is represented informally 
and graphically in fig. 4. The entire value space is often called the codomain (Weisstein et al. 
2004: Topic “Codomain”) of a function, and the subset of the codomain representing legal 
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value space va lues is called the range (Weisstein et al. 2004: Topic “Range”) of the 
PGOFunction. The subset of the parameter space including parameters with a defined 
mapping in the attribute-space represents the domain (Weisstein et al. 2004: Topic “Domain”) 
of the PGOFunction. The range of the PGOFunction will normally represent a subset of the 
codomain. Therefore, the PGOFunction is normally non-surjective (Weisstein et al. 2004: 
Topic “Surjection”). In order for the PGOFunction to be mathematically injective (Weisstein 
et al. 2004: Topic “Injection”), it must represent a one-to-one relationship from the domain to 
the range. This property reflects our choice of PGOFunction, but it is easy to find examples of 
non-injective PGOFunctions. For this reason, the PGOFunction is usually non-bijective 
(Weisstein et al. 2004: Topic “Bijection”). The dimensionality n of the parameter space 
represents and may be defined as the degree of freedom (Weisstein et al. 2004: Topic “Degree 
of Freedom”) for the associated PGObject. 

 

 

 

 

 

 

Fig. 4:  Informal drawing of the PGOFunction as an injective function from a domain in the parameter space to 
a range in the codomain of the value space. 

3.3 Formal definitions of the main elements of the PGOModel 

The main elements of the core PGOModel of fig. 3 are defined as follows: 

A PGOModel is a UML class model conceptualizing a geographic object with attributes 
dependent on a set of n parameters varying over an n-dimensional domain where n=0. 

A PGObject is a UML class conceptualizing a geographic object in a PGOModel. The 
PGObject has m derived attributes, each being dependent on all or a subset of the n 
parameters defined in the PGOModel. The value n is defined as the “degree of freedom” of 
the PGObject. 

A PGOAtom is an UML class conceptualizing the set of values of a PGObject class linked to 
one specific combination of values of the n parameters defining the PGObject. Hence, the n 
parameter values of the PGObject may also be considered attributes of the PGOAtom class.  

  

Domain Range 

Parameter space Value space 

Codomain 

PGOFunction 



“On the integration of object-based and field-based models in GIS” Page 11 of 22  
 2006_PGO_Postprint.doc 

A PGOFunction is an UML class relation conceptualizing the strong aggregation of a 
possible infinite number of PGOAtom objects into a PGObject. A PGOFunction is defined 
mathematically as a function from a domain in an n-dimensional parameter space to a range 
in an m-dimensional value space. 

4 Extensions of the PGOModel 

The core PGOModel from fig. 3 must be elaborated in order to resolve our initial challenge. 
Some of the extensions are not necessary in the development of a conceptual model but are 
included in order to make the PGOModel more easily applicable and understandable. In a few 
instances we may exceed the limits of the pure conceptual modeling level. 

4.1 PGObject tessellation 

The first extension of the PGOModel is the result of a possible practical (but not conceptual) 
problem concerning the one-to- infinity cardinality of the PGOFunction relation. The solution 
is to split the PGObject into a set of smaller sub-PGObjects in such a way that each instance 
of PGOAtom class of fig. 3 is associated with “one and only one” sub-PGObject. This 
solution is analogous to and generalizes the concept of tessellation of geometry objects as 
described by Egenhofer and Herring (1991) and restated by Bian (2000). This sub-PGObject 
will subsequently be called PGOPatch. Similarly, the complete tessellation relation will be 
called a PGOTessellation, and the relation between the PGOPatch and PGOAtom classes will 
be called a PGOPatchFunction. The introduction of the PGOPatch class modifies the UML 
model of fig. 3 to an extended UML model presented in fig. 5. The challenge of the 
tessellation process is normally to make each PGOPatch small enough to be able to formulate 
an explicit PGOPatchFunction for each PGOPatch. 

 

 

 

 

 

 

Fig. 5:  Conceptual UML class diagram of the alternative tessellated PGOModel. 
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The following comments are connected to elements of fig. 5:  

? The PGOFunction relation of fig. 3 is replaced in fig. 5 by the combination of the 
PGOTessellation relation of finite cardinality and the PGOPatchFunction relation of 
infinite cardinality. Hence, the PGOFunction relation of fig. 3 has turned into a UML 
derived relation in fig. 5. 

? Practical problems connected to the infinite upper cardinality of the PGOPatchFunction 
relation is solved by defining it as an explicit mathematical function. This means that the 
PGOPatchFunction relation (and consequently the derived PGOFunction relation) 
becomes an implicit relation.  

? The tessellation process produces a PGOTessellation relation between a PGObject and a 
finite number of q PGOPatch objects, and each of them can be assigned a unique set of 
index values (I1, ..., Ik). The indexes of the PGOPatch class can be considered an 
extension of the parameter concept by additional discrete parameters representing the 
indexes.  

? The PGOTessellation relation may in some cases also be defined as an implicit relation by 
an explicit mathematical function. This is the case of a regular grid type of 
PGOTessellation.  

? The “self- relation” of the PGOPatch class represents a possible tessellation of PGOPatch 
instances enabling hierarchic structures of PGOPatch instances. This option may be 
utilized to mix explicit and implicit PGOTessellations.  

4.2 PGOPatch generic subclasses 

There are no restrictions on how to define PGOPatch objects, except for the requirement that 
their attributes (i.e. PGOPatchFunction) may be formulated explicitly as a function of the 
parameters. It is useful to search for generic (i.e. a standardized mathematical type) sub-
classes to the PGOPatch class to be reused in different PGOModel objects. There are three 
obvious candidates chosen on the basis of simplicity, and their class inheritance is presented 
by a UML class diagram in fig. 6: 

? A PGOPatchConstant represents a PGOPatch of constant value. Thus, the 
PGOPatchConstant  is independent of parameters.  

? A PGOPatchHyperCube is defined over a domain in the parameter space of hyper-cube 
and axis-parallel geometric shape. This is a generalization into a parameter space of 
arbitrary dimension of the rectangular shaped geometry in a parameter domain of 
dimension n=2. 2n hypercube corner points with known values fix each instance in the 
parameter space. Values linked to parameters in the hyper-cube interior are computed by a 
simple low-order polynomial interpolation function, for example a bilinear polynomial 
interpolation function in the n=2 case as shown in fig. 7.  

? A PGOPatchSimplex is defined over a domain in the parameter space of simplex 
geometric shape (Frank & Egenhofer 1992). This is a generalization into a parameter 
space of arbitrary dimension of the triangular shaped geometry in a parameter domain of 
dimension n=2. n+1 simplex corner points with known values fix each instance in the 
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parameter space. Values linked to parameters in the simplex geometry interior are 
computed by a simple linear interpolation function as shown in fig. 8.  

 

 

 

 

 

Fig. 6:  Conceptual UML class diagram of PGOPatch subclasses. 

 

 

 

 

 

Fig. 7:  Example of a 2-parameter PGOPatch object of type PGOPatchHyperCube with two attributes A1 and 
A2. 

 

 

 

 

 

Fig. 8:  Example of a 2-parameter PGOPatch object of type PGOPatchSimplex with two attributes A1 and A2. 
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4.3 PGObject derived-attributes 

The PGOModel includes possible implicit definition of PGObject attributes as a function of 
other attributes of the same PGObject or attributes of other PGObjects. Such attributes are 
called derived -attributes in UML. The derived-attribute concept of PGObjects may 
generalize the overlay concept of GIS. 

4.4 PGObject parameter projections 

It is useful to consider the possibility of giving a subset of the PGObject parameters fixed 
values, while allowing a derived PGObject to be dependent on the remainder of the 
parameters. This option is useful in describing snapshots or subsets of an entire PGObject. 
Such derived PGObjects represent an analogy to projections in geometry, hence, can be 
called a PGOProjection.  

4.5 PGObject partitioning 

The PGOModel (fig. 5) requires that the PGObject, PGOPatch and PGOAtom objects all 
have the same full set of m attributes. This is impractical if the PGOModel prefers different 
PGOTessellation for different attributes. This option can be supported by splitting the 
attributes of the PGObject over a specific number of PGOPart instances as shown in fig. 9. 
The PGObject then becomes a strong aggregation (called PGOPartition relation) of 
PGOPart, each having their own tessellation called PGOPartTessellation.  

 

 

 

 

 

 

Fig. 9:  Conceptual UML class diagram of PGObject partitioning. 
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5 Proof of the PGOModel being a common base-model 

The proof of the PGOModel according to the initial requirements is its ability to encompass 
the classic object-based and field-based model of GIS. Several underlying arguments for this 
proof have already been noted in the previous development in this paper of the PGOModel. 
The letters n, m, etc. in this section refer to fig. 3, fig. 5 and fig. 9. 

The classic object-based model is described by the PGOModel by setting n=0. The infinity-
cardinality of the PGOFunction is consequently degenerated into a 0-cardinality. Thus, there 
is nothing to tessellate and partition, and therefore k=q= r= s=t=0. In other words, the 
PGOPart, PGOPatch and PGOAtom classes are not involved in this special case. The case of 
an object-based model attribute of type geometry may represent a possible exception, because 
we have to set n>0 if we define the geometry attributes mathematically using a parametric 
representation and a standard geometry tessellation. Furthermore, we have to define k>0, 
q>0 and r=s=t=0. 

The classic field-based model is described by a PGOModel where m=1. Thus, there is no 
PGOPartition involved, and hence, s=t=0. The field function is furthermore represented by 
the PGOFunction, and the number of parameters of the PGOAtom (i.e. the degree of freedom 
of the PGObject) is set to n where 0<n<4, depending on the dimensionality of the geometry 
defining the domain of the field. If the geometry is defined by a standard geometry 
tessellation, then k>0, q>0  and r=0. 

6 Discussions 

6.1 PGObject attributes of type object-reference 

The model presented by Cova & Goodchild (2002) defines the concept of “object field” as a 
method for integrating the two classical models. Their approach proposes a solution to the 
model integration problem by defining one of the classical models in the context of the other. 
The “object field” approach basically links object instances to any field location, and hence 
represents a model with both field- like and object- like properties. The “object field” is 
formally established by augmenting the field concept with attributes of type object-reference. 
This augmentation is similarly possible in the PGOModel framework by allowing PGObject 
attributes of type object-reference. For both models this augmentation is restricted to 
tessellations having patches of constant value because there is in general no valid algebra 
defined for object-references. This means in PGOModel terms that an “object field” is 
restricted to PGOPatch objects of sub type PGOPatchConstant. All four cardinality types in 
the object/field relation of the “object field" model (one-to-one, etc.) are possible in both 
models by allowing an additional augmentation of field or PGObject attributes respectively 
with the type “container-of-object-references”. Hence, the “object field” model intuitively 
maps to the PGOModel.  
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The opposite is not true because the object concept of the “object field” model is not 
explicitly augmented with the general possibility to allow attributes being dependent on 
parameters. Hence, the “object field” model is a special case of the PGOModel. 

6.2 PGOModel considered as a hybrid model 

The model presented by Winter 1998 proposes a hybrid representation model for the object-
based and field-based concepts.  There is basically no significant difference between the 
concept of common base-model and hybrid representation model. This means that the model 
of Winter 1998 and the PGOModel are both developed for the purpose of trying to bridge the 
two classical models of GIS even if the hybrid representation model is much more focused on 
developing an implementable model. However, the two models are developed using different 
tools, and the two models have significant differences.  

The model of Winter 1998 presents a hybrid representation model for the traditional raster 
and vector representation models to be used as a common representation model for the entity-
based and field-based conceptual models in GIS. The model is developed using strict 
mathematical formalism. The atomic part of the hybrid representation model consists of the 
topological 0-, 1- and 2- cells forming a discrete regular and axis-parallel topological pattern 
with a finite user-defined resolution. The model is basically limited to 2D, but could easily be 
generalized to higher dimensions. The model has no parameter concept. One particular 2-cell 
with its associated 0- and 1- cells maps nicely  to the PGOPatch subclass 
PGOPatchHypeCube of dimension n=2. Seen from this point of view the hybrid 
representation model could be regarded as a special case of the PGOModel because it does 
not include other types of PGOPatch objects and it does not explicitly include any concept 
mapping the PGOAtom concept. However, the hybrid representation model is enriched with 
the necessary formal topological concepts missing in the current version of the PGOModel. 
These issues are classified as a topic for further work in the conclusion section of this paper. 
The methodology of Winter 1998 is a promising approach for such a work. 

6.3 Ontology of the PGOModel 

The formulation of the PGOModel requires reflection on its ontological foundations and 
potential consequences. 

The ontological foundation of the classical field-based model is still subject to debate (Bian 
2000, Peuquet el. al. 1999, Smith & Mark 1998). The controversy is primarily linked to the 
nature and origin of a field, and especially to a field which is possibly the modeling result of 
so-called fiat-objects (Smith & Mark 1998). Fiat-objects are defined as the result of “human 
reasoning and language”, and hence, exist beyond the physical world. Fiat-objects are more 
likely to be “field- like” than “object-like” according to Peuquet et. al. (op.cit.).  

The alternatives, which represent features in the physical world, are defined as so-called bona 
fide objects. The previous argument on fiat-objects leads to a possible inverse statement of 
bona fide objects being more likely “object-like” than “field- like”. Hence, the classical object-
based model, generally representing bona fide objects, poses no major ontological problem 
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because the objects of this model generally represent physical features located in geographic 
space, if we exclude the problem of representing bona fide objects with fuzzy extent.  

However, even fiat-objects represented in an object-oriented framework as the core field-
based model of fig. 2 should not pose any major ontological problem. This is because object-
oriented modeling as such can easily transform abstract (i.e. non-physical) objects into quasi-
physical objects on the modeling level. Furthermore, there is no ontological conflict related to 
our extensions of the Field object into a FieldSet object introduced in fig. 2 (and hence the 
PGObject of fig. 3) because the extension simply introduces the option of defining a FieldSet 
object as an “aggregation of Field objects over the same geometry”. 

However, our extension of the field model connected to the ParameterSet object introduced in 
fig. 2 (and hence the PGOAtom object of fig. 3) is ontologically more challenging. 
Mathematically the PGOAtom represents the smallest element aggregating the entire 
PGObject. However, the fact that many PGOFunctions can construct the same PGObject is 
ontologically problematic. This means that the relationship between a PGObject and a 
PGOAtom is ontologically more complex than the normal relationship between physical 
objects and physical atoms. We conclude that the PGOAtom object clearly cannot be 
reasonably ontologically founded beyond the pure abstract mathematical level.  

7 Examples 

7.1 Glacier example 

A glacier is a well-defined physical object subject to GIS modeling. It has a clear extent, and 
its attributes could be defined either as independent (size and glacier type) or as dependent 
(velocity and thickness) on the specific location on the glacier. 

A glacier is easily modeled by the object-based model provided that we restrict attributes to 
those being independent of location, such as the size and glacier type. 

The field-based model can be used in the modeling of the individual attributes of a glacier, in 
particular those being dependent on location, such as the velocity and thickness. Glaciologists 
are also using the concept of velocity field when describing the dynamic behavior of a glacier. 

The modeling of the glacier as a PGObject enables the integration of the velocity and 
thickness attributes into an object-based model. A FEM (Finite Element Method) based on the 
glacier flow-line structure, represents a candidate PGOTessellation often used by 
glaciologists. Each PGOPatch is of the PGOPatchHyperCube subtype if we model 
continuously varying attributes or the PGOPatchConstant subtype if we model discretely 
varying attributes. In the velocity attribute case, known velocity values are associated with 
PGOPatchHyperCube object corner points or entire PGOPatchConstant objects. The 
dimension n of the PGOPatch object is 3 in a static model or 4 in a model describing glacier 
variations over time. The first parameter P1 may represent the distance along the center flow-
line of the glacier. The second parameter P2 may represent the signed depth perpendicular to 
the glacier center flow-line. The third parameter P3 may represent the signed horizontal 
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distance from and perpendicular to the center flow-line. The alternative fourth parameter P4 
may represent the distance in time from a defined time origin. The word distance does not 
necessarily refer to a Euclidian distance, but rather a parameter with mathematical metric 
properties (Weisstein et al. 2004: Topic “Metric”). Neutralized parameter values varying in 
the range from 0 (or -1) to 1 over the entire glacier may be a better choice. This 
PGOTessellation has a topologically regular “hyper-raster” type of structure and each 
PGOPatch object can be indexed accordingly. Consequently, k=n and the number of 
PGOPatches in all k directions can be set constant. The flow-line tessellation model enables 
ignoring the topology of merging lateral glaciers.  

The PGOAtom object represents a physical ice-molecule at a particular point in time and 
space with its set of constant value attributes and unique set of constant value parameters. The 
PGOModel enables the modeling of the location in time and space of each PGOAtom, and 
hence each PGOPatch and PGObject, by including x, y, z and time in their list of attributes. 

The thickness attribute is not directly dependent on a “3D” tessellation of the glacier and can 
be modeled by aggregating all PGOPatches which are “vertically stabled on top of each 
other” into a new PGOPatch object using the PGOPatch class “self- relation”. The word 
vertically in this FEM type of tessellation model does not imply vertical in a strict sense, but 
instead perpendicular to the surface of the glacier, i.e. PGOPatch objects with the same I2 
index value. Hence, the velocity and thickness attributes will have different 
PGOTessellations, and it is necessary to introduce a PGOPart object into the model in order 
to model them as sister attributes. An alternative to modeling the thickness attribute as an 
explicit attribute is to model it as a derived-attribute computed as the distance between the top 
and bottom surfaces of corresponding parts of a glacier. The top and bottom surface attributes 
both have the same PGOTessellation as the thickness attribute. These attributes can 
alternatively be modeled as two PGOProjection objects of the glacier PGObject where P2 is 
equal to 0 and 1 respectively. 

7.2 Railway network example 

Utility networks such as railway networks, have traditionally been modeled using an object-
based model. A network is first decomposed into its smallest elements, each characterized by 
a uniform set of attributes, called track sections, and then each of them is modeled as a class. 
The complete network topology can subsequently be modeled by introducing a set of 
topological relations between track section objects, by introducing an imaginary track node 
object. A sequence of connected track sections between two neighboring track junction nodes 
is called a track connection. Discretely varying railway network attribute information, such as 
track quality, is modeled as attributes of the track section object. However, the same approach 
is not possible for continuously varying attribute information, such as possible top-speed. 
Attribute information connected to points on the network, such as a security installation, can 
be related to track node objects. The latter may require introducing artificial track nodes into 
the network.  

The quality and security installation attributes can in theory be subject to a field-based 
modeling approach by considering a track section and track node based constant value 
tessellation of the field. This approach is however never applied because it is equivalent to the 
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object-based model of the network. In contrast, the top-speed attribute is better suited to a 
field-based approach because it can take advantage of a non-constant value tessellation. This 
is a field over a curve geometry domain usually represented parametrically as curvilinear 
coordinates by railway authorities. Curvilinear coordinates are represented by a continuous 
measure (for instance distance) along the track from a well-defined starting-point.  

The latter approach is a natural starting-point for introducing the PGOModel to the railway 
network example. One PGObject may represent the entire network and it may be subject to a 
PGOTessellation of PGOPatch objects analogous to the splitting of the object-based model of 
the network. A track section is represented by a PGOPatch object and track connections are 
represented by an aggregated PGOPatch object. In the quality attribute case, known track 
quality values are associated with PGOPatchConstant objects, while in the top-speed attribute 
case, known speed values are associated with PGOPatchHyperCube object corner points. The 
dimension n of the PGOPatch object is 1 in a static model, 2 if we wish to describe variations 
over time and 3 if we also wish to describe scale-dependent variations. The first parameter P1 
may represent the curvilinear coordinate along the track from a well-defined reference point. 
The alternative second parameter P2 may represent the distance in time from a defined time 
origin. The alternative third parameter P3 may represent scale. The indexing scheme for the 
PGOPatch objects is necessarily complex due to the topology of the network. Moreover, the 
PGOModel presented in this paper has not yet defined any mechanisms for explicit modeling 
of the PGOPatch topology. This means that the current PGOModel is restricted to implicit 
(i.e. “spaghetti”) modeling of PGOPatch topology. An alternative approach is to model each 
track connection as a separate PGObject and treat network topology as topological relations 
between PGObjects. The latter case requires an explicit PGObject representing the track 
node. 

The PGOAtom represents a physical location of the network at a particular point in time, 
space and resolution with its set of constant value attributes and unique set of constant value 
parameters. The PGOModel enables the modeling of the location in time and space of each 
PGOAtom, and hence each PGOPatch and PGObject, by including x, y, z, time and scale in 
their list of attributes. This definition allows two PGOAtom objects with the same parameter 
P1 and a different parameter P2 representing two different locations in space in the case of a 
track relocation project. If we let x, y and z depend on the P3 parameter, then we are able to 
represent a scale-dependent network layout which vary from a precise network layout to an 
overall schematic layout. This example also allows a continuous derived-attribute 
representation of travel time from the start of the track connection as the multiplication of the 
top-speed and the parameter P1. Security installation may be modeled as separate PGObjects 
which are related to the network PGObject(s) using the object reference PGObject attribute 
type. 

8 Conclusions 

This paper presents a candidate base-model called PGOModel for the classical object-based 
and field-based conceptual models in GIS. The PGOModel, the object-based model and field-
based model are formally defined as pattern-models by using the UML modeling language. 
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Within the scope of this paper, the proof of validity of the PGOModel is linked to its 
demonstrated ability to encompass the classical object-based and field-based models.  

Except for the ontological problem of the PGOAtom concept, we have seen that the 
PGOModel does not represent additional ontological problems compared to the classical 
object-based and field-based models in GIS. The ontological problem of the PGOAtom is 
related to the way PGOAtom parameters are considered. However, this does not represent any 
major ontological problem if we maintain that the parameters represent pure mathematical 
tools used in the construction of a PGObject from PGOAtoms. 

There are several issues connected to the PGOModel which are beyond the scope of this 
paper. These issues provide appropriate topics for further research. Several have already been 
mentioned, such as PGObject relations and topology, others include the important concept of 
methods in object-orientated modeling. Furthermore, the question of application of the 
PGOModel to non-conceptual modeling levels has not been challenged. In particular the 
applicability of the PGOModel on the implementation level is of special interest. 

Regarding the potential usefulness of the PGOModel, it is to be hoped that the model offers 
greater insights into the nature of geographic information. It may help us understand the 
relationship between the two classical models while revealing the ir strengths, weaknesses and 
limitations. It is, however, important to keep in mind that both the classical object-based and 
field-based models are highly adequate for solving most current GIS conceptual modeling 
issues.  

It is believed that the major contribution of the PGOModel beyond playing the role as a 
common base-model for the two classical models is linked to its alternative formulation and 
definition of the field concept. The traditional view of a field as a mathematical function from 
a geometry space domain to a value space could be supplemented by the alternative and 
generalized view of a field defined as a set of mathematical functions from a parameter space 
domain to a multidimensional value space. Another contribution of the PGOModel may be 
the demonstrated usefulness of including attributes whose value is dependent on parameters 
into the classical object-based model. 
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