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Abstract 
 

 

Polymeric and particulate organic carbon (POM) are fundamental compounds in the global 

cycling of carbon, and constitute significant amounts of BOD in municipal wastewater. 

The main objective of this work is to study molecular size effects on degradation dynamics 

in biofilm systems. Specifically, the effect of substrate molecular weight on degradation 

kinetics and transport dynamics, location of depolymerisation enzyme activity and 

depolymerisation  intermediate formation dynamics are assessed. A mathematical model 

for biofilm degradation dynamics is presented, and used for data interpretation and 

simulations. 

Dextran, an α-1,6 Glucan, was used as model substrate during batch degradation in a 

Rototorque biofilm reactor, in addition to batch tests on biofilm sub samples retrieved from 

the Rototorque, and during pure endo- and exo-Dextranase studies. Oxygen utilisation rate 

(OUR) estimates and bulk phase TOC mass balances were used to evaluate the effect of 

variable initial molecular weight on the observed half order removal coefficient 

(Harremoës, 1978; Rittmann and McCarty, 1980). Size exclusion-HPLC analysis for 

determination of bulk phase depolymerisation intermediates, and specific enzyme assays 

were used to evaluate transport dynamics of polymers and location of enzyme activity in 

the enhanced mixed population biofilm system. 

Dextran removal rate decrease with increasing Dextran molecular weight. The observed 

areal half order removal rate coefficient, k1/2,A, demonstrate an approximate 10-fold 

decrease in the 1-500 kDa range, showing  negative logarithmic correlation to the initial 

MW of Dextran. A less distinct correlation is observed above this transition limit (1-10 

MDa). Evaluation of the Thiele moduli, from one step depolymerisation modelling, 

suggests that the logarithmic reduction in observed removal rate is caused by combined 

reaction rate and transport limitations. Transport limitations dominates as the polymeric 

substrate size increase and hinders biofilm matrix diffusion, and the removal rate becomes 

a surface limited process. Removal of Dextran is biomass dependent in what appears to be 

a non-linear dependency on biofilm thickness. Expressed as biomass areal density (g/m2), 

no depolymerisation is observed for thin biofilms (0.7 g/m2), slow for medium (3.7 g/m2) 

and high for thicker biofilms (5.2 g/m2). 
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Depolymerisation intermediates accumulated in the bulk phase over the entire Dextran size 

range during pure Dexranase studies, with even size distributions. Final products were 

oligo-isomaltoses (DP 2-6). Dextran was not depolymerised by α-Glucosidase nor Oligo-

α-1,6 Glucosidase. During biofilm reactor and slide sub-sample tests, low MW Dextran 

intermediates (1-10 kDa) accumulated in the bulk during depolymerisation of 160 kDa 

Dextran at 250 and 200 mg/l initial concentrations, but were not detected during 

experiments with 100 mg/l initial concentrations. Intermediate range Dextran (10-100 kDa) 

did not accumulate in either case. At the same conditions, some assimilable range Dextran 

(0.2-0.9 kDa) accumulated in the bulk liquid during initial 250 and 200 mg/l batches, but 

was not detected during 100 mg/l initial Dextran concentrations. The extent of bulk phase 

accumulation seems to depend on the biofilm growth rate, where more bulk phase 

accumulation is observed during experiments with starved compared to more actively 

growing biofilms. More intermediates accumulate during low MW initial standards, 

compared to higher. These observations indicate that the extent of bulk phase intermediate 

accumulation is balanced by the rate of depolymerisation, and the substrate uptake rate 

(growth). Accumulation of intermediate hydrolysis products in biofilm systems is therefore 

dependent on the slowly biodegradable organic (SBCOD) loading rate. 

Dextranase was detected in the cellular fraction of the biofilms. The enzyme activity was 

not detected in any other biofilm sub compartments, implying that the exogenous enzyme 

remains attached to the cells while working on polymers. These findings support the 

conceptual model of Confer and Logan (1998), implying that bulk phase intermediate 

accumulation observed in this study and by others, is not a result of enzymatic activity in 

the bulk phase, but transport of intermediates from the biofilm matrix. 
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RIU: Refractive index units 

ASM Activated sludge model 

DP: Degree of polymerisation (number of monomers) 

CSTR: Completely stirred tank reactor 

  

  

  

(For symbols, see Table 3-1.)
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1  Introduction 
 

Natural occurring organic matter is found in most environments of the biosphere. From the 

deep parts of sedimentary rocks such as oil, via soil and sediments to the water bodies of 

the oceans and fresh water sources, reduced organic molecules persist as slowly 

biodegradable or almost inert polymeric compounds. The continuous reduction of carbon 

species by photosynthesis is counterbalanced by the abiotic and biotic oxidations in oxic 

and anoxic environments resulting in a dynamic steady state of readily and slowly 

degradable organic matter. Thermodynamically, organic carbon is susceptible to chemical 

oxidation converting the reduced carbon to inorganic oxidised species. The absence of 

readily biodegradable organic substances in natural environments, such as soil, the ocean 

and freshwater bodies, indicate that the recycling of inorganic carbon is limited by the 

degradation of polymeric organics. Even though degradation is thermodynamically 

favourable, the chemical structure and size of the polymers provide a high degree of 

chemical stability causing the kinetics of the degradation to strongly limit the recycling. 

Thus, biological catalysis through the action of enzymes is the main route of degradation 

of organic matter, of which most catalysts are of microbial origin. By ecologists called the 

microbial loop, microbial degradation is the major route of re-mineralisation of organic 

carbon from photosynthesis. However, polymeric structure and high molecular weight 

prevent polymeric carbon molecules from entering microbial cells, necessitating 

preconditioning of the chemical structure before mineralisation. Depolymerisation, i.e. 

splitting a long polymer into its fragmented building blocks of mono- and oligomers, is the 

most important pre-processing as the cytoplasmic cell membrane prevents molecules larger 

than two to three atoms of passively diffuse into the cell, and more importantly, facilitated 

transport is by most organisms restricted to molecules less than about 600-1000 g/mole. 

Thus, enzymatic depolymerisation outside the cell membrane, either anchored to the 

membrane, in the periplasmic space, attached to the cell wall or even excreted into the 

surrounding media, produce readily biodegradable organic products that may enter the cell 

for intracellular terminal mineralisation. 

Microbial degradation of slowly biodegradable organic matter (SBOM) is also of major 

importance in biotechnological applications, especially in wastewater and solid waste 

treatment. While degradation of readily biodegradable organic matter (RBOM) has 
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received most attention during the last century, focus on the kinetics and stoichiometry of 

SBOM degradation has become more important lately, both for operational and design 

purposes. Most of this work has been aimed at understanding the role of RBOM synthesis 

in suspended biological nutrient removal systems (Activated sludge nutrient removal 

systems), and in sludge stabilisation processes. Less attention has been offered the other 

major microbial community structure found in nature, the attached microorganisms 

forming biofilms. In this work focus is aimed at investigating the process of 

depolymerisation of polymeric carbon in biofilms. The main objectives are evaluation of 

the effects of molecular weight on depolymerisation kinetics, the combined kinetic and 

transport effects of intermediate dynamics in diffusive gradient bioaggregates (here: 

biofilms) and location of depolymerisation in these systems. 

 Knowledge provided will give a better understanding of degradation processes in 

structured microbial systems, such as biofilms and activated sludge flocs, and provide 

designers and operators of biotechnological processes quantitative information on the 

mechanisms of depolymerisation. 
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2 Background 

This section contains information on definitions and concepts used. It is not intended to 

provide a general background, but rather introduce the necessary ideas and nomenclature 

used during the rest of the thesis. 

 

2.1 Degradation of polymeric and particulate organic matter 

Classification of organic matter is a relativistic exercise dominated by system related 

definitions. The lack of generalised terms is a source of confusion preventing exchange of 

quantitative information between, and within, disciplines. 

 

2.1.1 Classification of organic substrates 

Heterogeneity and diversity of organic compounds in natural and wastewater systems has 

resulted in the use of lumped terms representing the sum of carbon (TOC) or its oxygen 

demand upon oxic degradation (COD/BOD). Related to physical size, carbon exists as part 

of molecules over six orders of magnitude (0.001-1000 µm, Levine et al., 1985), and 

organic matter in wastewater has been organized into several sub-categories (Balmat, 

1957; Heukelekian and Balmat, 1959; McKinney and Ooten, 1969; Dold et al., 1980). 

Organic substrates may be classified based on: 1) physical size, and 2) degradability. 

Traditionally, two size fractions have been identified by filtration through a filter of 

nominal pore size of 0.2-2 µm (Clesceri et al., 1998), dissolved organic matter (DOM) 

defined to be the total organic carbon (TOC), or chemical oxygen demand (COD), in the 

filtrate, while the retentate represented the particulate organic matter fraction (POM). 

Sometimes the filtrate is further separated into the colloidal fraction, defined as the 1-1000 

nm size range by ultrafiltration or precipitation (Tchobanoglous and Burton, 1991), and the 

dissolved fraction remaining. The particulate fraction within the range 1-100 µm has 

sometimes been called the supra-colloidal, defining particles above this limit as settleable 

(Levine et al., 1985). Figure 2-1 show typical organic content of wastewater in the 

traditional size fractions. Even though composition is site specific and large variations are 

inevitable, these data indicate that significant fractions of inlet organic matter (~70%) is 

colloidal and particulate. More over, the  
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Figure 2-1. Typical organic content of traditional size ranges of wastewater particles (Levine et al., 1991) 

 

colloidal fraction increases relatively much during primary sedimentation (~50%) 

emphasising the importance of this particular fraction. Characterisation based on size does 

not distinguish chemical properties of the particles. Characterisation may also be based on 

system factors. Larsen (1992) fractionated particles as diffusible and non-diffusible in a 

biofilm matrix based on their molecular size (diffusible cut-off limit set at 105 g/mole 

(Daltons, Da), and the readily biodegradable fraction below 1000 Da.  

Traditionally, three particulate substrate groups have been specified based on chemical 

composition; polysaccharides (sugars), lipids (fats) and proteins. As substance groups these 

also include their shorter chain oligo- and monomers (carbohydrates, peptides, amino 

acids, fatty acids). Heukelekian and Balmat (1959) reported detailed on the composition of 

domestic wastewater. While only 36 % (w/w) of the total solids occurred as particulate 

material (i.e. colloidal, supracolloidal and settleable), 69 % of the volatile organics were 

particulate. Of these, total grease (fats) accounted for 32 %, nitrogenous (proteins) 36 %, 

20 % carbohydrates (polysaccharides) and 12 % was unspecified. This indicates that the 

major fraction of volatile organics (69 %) in wastewater is non-dissolved, and that most of 

this fraction consists of polysaccharides, proteins and particle bound fats (88 %). Other 

lumped organic molecules, such as nucleic acids (RNA and DNA), vitamins and humic 

acids, may also be singled out representing different characteristics as the three standard 

components. Figure 2-2 show how organic substrate (and inorganic nutrients) groups relate 

to molecular size in terms of their molecular weight and hydrodynamic radius (assuming 

flexible chain tertiary structure). Also indicated are traditional separation and analytical 

techniques applicable for each size fraction, and particular fraction distributions. Polymers 

are almost exclusively related to the colloidal  
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Figure 2-2. Biomolecules, particles and separation and analytical techniques used for classification and 
characterisation based on molecular weight and/or flexible chain size (Compiled on data from Levine et al., 
1985; Tchobanoglous and Burton, 1991; Cheryan, 1998) 

 

and macromolecular fraction of organic particles. Only very large polymers (like DNA, 

cellulose and starch) are big enough to be regarded as colloidal. Therefore, major fractions 

of organic particles found in wastewater are colloidal and particulate aggregates of 

polymers making up cellular fragments, and coagulated conglomerates. Thus, degradation 

of wastewater particles involves degradation of several unspecific polymers, parts of 

undefined structure and variable size fractions.  

Fractionation based on traditional filtering into suspended and dissolved solids (at about 1 

µm), in the wastewater literature often used to separate the readily from the slowly 

biodegradables, largely overestimate the true readily biodegradable fraction defined as 

substrates that may be taken up directly by microorganisms without any preconditioning. 

Ekama and Marais (1977) developed a respirometric method for determination of the 
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readily (RBCOD) and slowly biodegradable (SBCOD) organics in wastewater, further 

developed by Ekama et al. (1986) and Sollfrank and Gujer (1991). This method is based on 

estimating the oxygen utilization rate (OUR) during batch operated activated sludge on 

influent wastewater. Contrary to the filter based separation, SBCOD and RBCOD are 

estimated by the true biodegradability of the fractions, and not by molecular size. 

Unfortunately, this method involves significantly more equipment (in terms of 

technicalities and costs) and data interpretation. 

The IWA task group on mathematical modeling for design and operation of biological 

wastewater treatment (popularly called the ASM group) have based the characterization of 

biodegradable wastewater organics on the OUR procedure of Ekama and Marais (1977) 

and Ekama et al. (1986), separating into RBCOD (SS), SBCOD (XS), particulate inert 

organic matter (XI) and soluble inert organic matter (SI) (Henze et al., 1987), implementing 

the notation proposed by Grau et al. (1982).  By combining the OUR test with filtrates 

from wastewater, these fractions may be estimated based on degradability, providing a 

more representative characterization of the organic fractions compared to strict filtration. 

However, intrinsic filtration steps are required introducing some uncertainties regarding, 

especially, the estimation of the heterotrophic yield, YH.  Henze et al. (2000) suggested 

fractionation of the true RBCOD by ultrafiltration using a 1 kDa cut of membrane, and 

assuming the inert fraction of the filtrate to be less than 10 %.  In a recent calibration study, 

Koch et al. (2000) used the approach described above and found the SS fraction of the total 

primary effluent COD to be 10 %, XS was 50-60 %, XI varied from 15 to 25 %, SI was 

found constant at 6 % and the inlet heterotrophic biomass amounted to about 9 %. In the 

same study, the filtrate passing a 0.45 µm membrane filter was found to be 40 % of the 

total COD, of which 23 % was slowly biodegradable and 15 % was readily. This indicates 

that slowly biodegradable particulate COD and inert particular COD amounts to 60 % of 

the total primary effluent COD and only 15 % may be regarded as readily biodegradable. 

The colloidal/polymeric fraction (passing the 0.45 µm filter) is as high as 23 % of the total. 

Thus, significant fractions (approx. 50 %) of the dissolved substrates (<0.45 µm) are not to 

be regarded as readily biodegradable, but slowly biodegradable dissolved substrates. This 

fraction contains dissolved particles, colloids and polymers. These data are similar to the 

results reported by Sollfrank and Gujer (1991) and those of Henze et al. (2000) and Henze 

et al. (2002), who found the slowly biodegradable dissolved fraction to be 50 %,. Ohron 

and Çokgör (1997) report on primary influent compositions that typically show higher 

particulate fractions (67 %), a ratio that is reduced  
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Table 2-1. Literature values on the relative [%] composition of organic fractions as determined by filtration 
and respirometric estimations. 

 

during primary treatment (typically 50-70 % reduction, Henze et al., 2002). However, the 

readily biodegradable fraction is again about one third of the total dissolved COD (37 %), 

and the slowly biodegradable is 52 %. A summary of literature studies on characterisation 

is given in Table 2-1. 

CT XS XH XI SS SH SI

[mg/l] [%] [%] [%] [%] [%] [%] References
Primary influent
South Afrika 530 62 13 20 5 Ekama et al. (1986)

Denmark 40 20 18 20 2 Henze (1992)

Turkey 315 39 13 13 29 6 Ohron and Cokgör (1997)

Turkey 670 64 8 9 16 3 Ohron and Cokgör (1997)

Turkey 585 64 10 13 10 3 Ohron and Cokgör (1997)

Switzerland 250 53 7 9 11 20 Kappeler and Gujer (1992)

Switzerland 430 60 15 8 7 10 Kappeler and Gujer (1992)

Switzerland 325 55 15 10 8 12 Kappeler and Gujer (1992)

Primary effluent
South Africa 370 60 4 28 8 Ekama et al. (1986)

Switzerland 220 45 11 32 11 Henze et al. (1987)

Switzerland 190 56 26 10 8 Siegrist et al. (1994)

Switzerland 250 58 24 10 8 Siegrist et al. (1994)

Switzerland 320 31 22 8 14 16 9 Sollfrank and Gujer (1991)

Switzerland 390 4 33 7 Koch et al. (2000)

Switzerland 400 9 33 6 Koch et al. (2000)

Switzerland 390 10 27 6 Koch et al. (2000)

Switzerland 565 10 18 6 Koch et al. (2000)

Switzerland 330 9 27 6 Koch et al. (2000)

Switzerland 435 16 26 6 Koch et al. (2000)

Switzerland 345 9 25 6 Koch et al. (2000)

Switzerland 545 14 16 6 Koch et al. (2000)

Switzerland 480 33 13 6 Koch et al. (2000)

Switzerland 315 27 25 6 Koch et al. (2000)

Switzerland 140 25 14 7 Koch et al. (2000)

Switzerland 520 7 27 6 Koch et al. (2000)

Switzerland 280 25 5 Koch et al. (2000)

Switzerland 350 17 11 6 Koch et al. (2000)

Hungary 350 43 20 29 9 Henze et al. (1987)

Spain 340 33 15 25 18 9 de la Sota et al. (1994)

Denmark 515 49 19 24 8 Henze et al. (1987)

Denmark 43 14 11 29 3 Henze (1992)

France 450 44 13 33 10 Lesouf et al. (1992)

France 345 41 8 25 6 Lesouf et al. (1992)

Denmark 26 8 5 56 5 Henze (1992)

Pre-precipitated 
primary effluent
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2.1.2 Polymers 

As the particles enter the sub-micron range it is more appropriate to use the term polymers 

(poly = many, and meros = parts) or macromolecules, indicating that the particles are now 

small enough to exhibit molecular properties (Mortimer, 2000). Contrary to particles, the 

size of polymers is normally given as the molecular weight of the macromolecule. Relating 

that to the more common particle diameter depends on both molecular composition and 

conformations within the molecule (Smidsrød and Moe, 1995). Polymer size is often 

represented by the radii of gyration, RG (also called the radii of inertia). The size of 

macromolecules, in terms of physical extent, is correlated to their molecular weight as 

shown in Figure 2-3. Stiff polymers, like DNA, Cellulose and Xanthan, show close to 

direct correlation (RG~M) up to about 200-300 nm, while molecules resembling ideal 

spheres are related by the cubic root (RG~M0.33) (Smidsrød and Moe, 1995). Most 

macromolecules, like proteins and water soluble polysaccharides, and stiff molecules of 

high molecular weight, behave as flexible chains with varying degree of flexibility around 

each polymer bond. Intermediate correlation values are typical for these (~M0.4-0.8) with a 

typical root relation as an average. Hydrodynamic radii, representing radii of the hydrated 

macromolecule, is given as 80 % (flexible chain polymers) of the RG (Smidsrød and Moe, 

1995), and this value may be used for comparing molecular size with nominal pore sizes in 

 
 

Figure 2-3. Correlation between macromolecular radii of gyration, RG, and molecular weight. Upper 
boundary indicates the maximum correlation between stiff rods like molecules, while lower represents ideal 
spheres. The grey line in the middle shows the intermediate correlation for flexible chains. Experimental 
studies on Dextran (o, +, �) and Pullulan (x) are indicated. Data from Rogers et al., (2000), Wu, (1993) and 
Lawrence et al., 1994) and Smidsrød and Moe, (1995). 
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filters and gel structures. Wastewater polymers and typical hydrodynamic size ranges are 

indicated in Figure 2-2. As indicated, large polymers are well within the colloidal size 

range, while macromolecules of about 10 nm (or MW ~ 100 kDa) are defined as dissolved.  

 

2.1.3 Depolymerisation 
 

Depolymerisation may be defined as cleavage of covalent bonds, connecting monomers in 

a polymer, into products of sub-polymers of molecular weights less than the mother 

polymer. This process represents the opposite of the various polymerisation mechanisms 

used during polymer synthesis, and may come about through several mechanisms. Of 

these, hydrolysis and lysis of polymer bonds are most common. 

Hydrolysis represents a broad range of chemical reactions of which water is consumed 

during the breakdown of covalent bonds. The process is energetically favourable at 

standard conditions (∆S is always positive, ∆H is normally very low, and often negative), 

however, at rates too low for industrial applications (Goldberg and Tewari, 1994). The use 

of chemical and/or physical treatment combined with catalysts is therefore common in 

industrial processes. Chemical hydrolysis under acidic conditions, by thermal action and 

by combinations of these, has been used to enhance the rate of depolymerisation by 

hydrolysis. Chemical hydrolysis in natural habitats occurs slowly, however, in situ 

catalysts, such as soil, may enhance the process. In biological systems depolymerisation 

reactions are dominated by the action of hydrolytic enzymes. 

Figure 2-4 lists identified hydrolytic (group 3) and lytic (group 4) enzymes and sub-

classifications of these in accordance with the Recommendations of the Nomenclature 

Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) 

on the Nomenclature and Classification of Enzyme-Catalysed Reactions (Webb, 1992). 

The sub groups are related to the type of substrate or bonds that are subject of 

depolymerisation. Several databases are available on the internet listing various 

information on specific enzymes (IUBMB: http://www.chem.qmw.ac.uk/iubmb/enzyme/, 

BRENDA: http://www.brenda.uni-koeln.de/, Expasy: http://www.expasy.org/, NCBI: 

http://www.ncbi.nlm.nih.gov/, WIT base: http://wit.mcs.anl.gov/, EMP project: 

http://wit.mcs.anl.gov/EMP/, Protein data bank (PDB):  
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Figure 2-4. Groups and main sub groups of depolymerising enzymes as organised by the Nomenclature 
Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). 

 

Systers: http://www.rcsb.org/pdb, http://systers.molgen.mpg.de, Protein Mutant Database: 

http://spock.genes.nig.ac.jp). IUBMB lists a total of 3196 identified and systematically 

categorised enzymes of which 1009 are hydrolytic and 314 are lyases (Webb, 1992). 

Relevant enzyme groups for polymer and POM degradation is the lipases, 

polyphosphatases and nucleases of EC 3.1, the glucosylases of 3.2, proteinase of EC 3.4, 

and the lytic enzyme groups of EC 4.2 acting on C-O bonds, especially sub-sub group EC 

4.2.2 listing the polysaccharide lyases. Appendix 1 and 2 presents the full list of identified 

depolymerising enzymes.  

 

2.2 Microbiology of polymer and POM degradation 
 

Degradation of substrates involves numerous transport and reaction mechanisms attributed 

to cellular, but also community actions (Atlas and Bartha, 1998). While the terminal 

mineralisation refer to the reactions of the main intracellular metabolic pathways, 

exogenous mechanisms are often necessary to facilitate uptake of substrates. 

Fundamentally, the cellular membrane defines the outside of living cells, however, 

important reactions occur in the periplasm, on the surface of microbial cell walls and in the 

media surrounding the cell and/or the cellular community. 

Microorganisms have developed fundamentally two different strategies to utilise organic 

substrates of polymeric and particulate origin. Eukaryotic organisms lacking a rigid cell 

wall may engulf particles and water containing dissolved polymers by wrapping the 

cytoplasmic membrane around the substrate, forming intracellular vacuoles for enzymatic 

breakdown (Priest, 1984). Pinocytosis (uptake of dissolved substrates) and phagocytosis 

(POM uptake) have also been observed by certain prokaryotes (Hashimoto et al., 1999), 

however, the rigidity and low permeability of the prokaryotic cell wall makes these 

mechanisms impossible for most bacteria. 
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Microbial cell membranes inhibit transport of macromolecules and particles into (and out 

of) the cytosol (Maxham and Majer, 1978). Only small non-charged molecules (like gases, 

small hydrophobic and water molecules) may passively diffuse trough the phospholipid bi-

layer, limiting transport of other molecules to be transported by enzymes (Mathews and 

van Holde, 1990). Carbohydrates (Glucose, Mannose, Mannitol, etc.) are transported by 

the phosphotranspherase system (PTS), while separate systems exists for oligomers 

(maltose-maltohexose and melibiose transport system) and other non-PTS system 

substrates (lactose, glycerol, intermediates of the citric acid cycle). Transport and uptake of 

maltose and maltodextrins in G- bacteria has been reviewed by Boos and Schuman (1998), 

and serve as an excellent illustration of the mechanisms involved. 

The maltose transport system consists of a membrane intrinsic enzyme complex 

(MalFGK2) that transports maltose and maltose-oligomers up to six glucose units 

(maltohexaose) into the cytosol under ATP consumption. Intracellular degradation of 

maltodextrins are conducted by cytosolic amylomaltase (malQ), Maltodextrin glucosidase 

(malZ) and maltodextrin phosphorylase (malP), to produce maltose, glucose and glucose-

1-phosphate. These end products are readily mineralised by glycolysis or polymerised for 

storage as glycogen. In the outer membrane of the G- bacteria, a dedicated porin for 

maltose and maltodextrin (and other carbohydrates) specific diffusion is encoded by the 

lamB gene, known as the λ-receptor. This porin has a pore diameter of approx. 1 nm, 

allowing facilitated diffusion of maltodextrins of small enough (approx. 1 kDa) to enter the 

periplasmic space. Inside the periplasmic space a high affinity maltose binding protein 

(MBP or MalE) transport protein binds maltodextrin, and release it upon binding to the 

MalFGK2 translocation complex of the cytosolic membrane.  

The activity of the maltoporin, and especially the extreme high affinity of the MBP protein, 

enables the cell to scavenge carbohydrates and small polysaccharides at very low 

exogenous concentrations (KM of MBP is as low as 1 µM). The maltose system is typical 

for many G-
 bacteria, like E.Coli and Pseudomonads, but is generally absent in G+ 

prokaryotes. Maltose and small maltodextrins are thought to be transported through the 

peptidoglygan layer by passive diffusion, while proton motive force transport systems and 

PTS systems take up maltose. A similar system of depolymerisation and uptake 

mechanisms has been found for chitin (Baty III et al., 2001), and it may represent a general 

model for degradation and transport of large molecules in bacterial cells. 

Several authors have listed general cut off limits to the uptake of oligomers from the 

surrounding media (White, 2000; Confer and Logan, 1997b; Larsen, 1992). The above 
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description of the maltose transport system of G- and G+ bacteria indicate that this limit is 

in the range of 400 to 1000 Da for sugar oligomers. White (2000) lists a general average 

value of 600 Da for G- prokaryotes. 

Substrates of molecular weight higher than the cut off limit of the various transport 

systems have to be depolymerised by enzymes outside the cell membrane before entrance 

and terminal mineralisation can complete degradation. Enzymes transported across the 

membrane but remaining in the periplasm or anchored to the cell wall, are called 

ectoenzymes, while those excreted into the surrounding media are called extracellular 

enzymes (Priest, 1984; Chróst, 1990). Extracellular enzymes may be excreted intentionally 

by living cells, enter the media by lysis or cell damage, or result from grazing activity by 

zooplankton and protozoan (Chróst, 1991). In this work the term exogenous enzymes is 

used to represent both kinds of enzymes located outside the inner cell membrane. 

 Depolymerisation of polymers and POM are exothermic reactions mainly catalysed by 

hydrolytic extracellular and ectoenzymes, attacking intra-polymeric bonds (bonds inside 

the second monomer) or by cleavage of the last bond connecting the terminal monomer to 

the polymer chain, called endo- and exoenzymes respectively (Priest, 1984). Extracellular 

depolymerisation enzymes are most common for Gram positive bacteria, however, some 

may attach to the outer surface as surface bound ectoenzymes. The more complex structure 

of the G- cell wall enable excreted enzymes to occupy the periplasmic space, the outside of 

the inner cell membrane, fixed to the inner or outer surface of the outer cell membrane, and 

anchored to the cell wall surface (Priest, 1984). It is suggested that the multi-layered cell 

wall of G- bacteria generally result in high levels of ectoenzymes, whereas the G+, due to 

the relative open cell wall structure, release exogenous enzymes to the surrounding media 

(Cembella et al., 1984). 

The peptidoglycan layer in bacteria is thought to resemble a gel like network of the 

aminosugar N-acetylglucosamine and N-acetylmuramic acids, and additional peptides for 

crosslinkages and teichoic acids (White, 2000). In G+ bacteria the average net size is 

thought to be 5-6 nm (White, 2000), while peptidoglucan of G- are thought to cut off at 

around 50 kDa (Rydman and Bamford, 2002), ref. Figure 2-3. Ton B proteins found in G- 

bacteria protrude the bacterial cell wall and are known to be required for proton motive 

force driven translocation of substrates that do not diffuse through porins into the 

periplasm (White, 2000). It is therefore likely that small polymers, larger than the cut off 

limits of the porins and cytosolic membranes, accumulates in the immediate vicinity of the 
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membrane (inside the peptidoglycan of G+, and in the periplasm of G-), and that 

ectoenzymes depolymerise these into monomers of translocational size. 

 

Location of exogenous enzymes has profound biochemical and ecological effects. 

Enzymes released to the bulk phase solutions are known to have higher turnover rates 

compared to ectoenzymes or enzymes immobilised to gel structures (Wentzel, 1991). From 

the cellular point of view, releasing enzymes to the environment would appear 

energetically inefficient, and the investment would become even more uneconomical as the 

distance between the enzymatic activity and the cell increase. Cells would, however, still 

energetically benefit from their investment up to about 500 µm in suspended cultures 

(Wentzel, 1991). Ectoenzymes would grant it's producer most of the product of their 

activity. However, these enzymes are subjected to substrate transport limitations. 

Therefore, releasing enzymes could be beneficial to the cell after all, since increased 

substrate availability would compensate the loss of products. Intuitively, substrate 

sufficient conditions would probably make the extracellular depolymerisation strategy 

more favourable than during starvation regimes, as it seems more important to retain the 

products during substrate scarcity. For the important genera Bacillus sp., specific growth 

rate and growth phase have shown to have profound implications on the location of 

alkaline phosphatase (Hulett, 1986). Increased substrate availability is especially important 

for depolymerisation enzymes that attack substrates exhibiting low diffusivity and complex 

conformations. Immobilisation of extracellular enzymes or at least restricted diffusivity by 

extracellular matrix structures could provide a mean of ecological optimisation towards 

polymer scavenging. This will be dealt with in chapter 2.4. 

 

2.3 Extracellular and ectoenzymes 
 

According to the Enzyme Handbook (Schomburg et al., 19972002) 237 extracellular and 

130 ectoenzymes have been identified. True extracellular enzymes (those that has been 

extracted from the growth media) are dominated by hydrolases that attack polymer bonds, 

i.e. EC 3.1, EC 3.2, EC 3.4 and EC 3.5. Most lyases extracted belong to the 4.2.2 

subgroup, the polysaccharide lyases. This is not surprising in view of the transport 

mechanisms involved as discussed in section 2.2. EC 2.4 contains enzymes that transfer 

glycosyl groups from oligosaccharides to another carbohydrate, and some are known to 
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catalyse reactions that may be regarded as hydrolysis (strictly they transfer glycosyl groups 

to water). Hexosyl transferases (EC 2.4.1) are the major found extracellularly, in 

accordance with the abundance of hexoses in natural environments. Also, 

phosphotransferases (EC 2.7) has been extracted from the surrounding media, maybe as 

parts of phosphorous scavenging mechanisms. Extracellular oxido-reductases (EC 1) of the 

subclass dehydrogenase, especially the oxidases (EC.1.1.3) that oxidise glucose, galactose 

and alcohols (EC 1.1.3.4, 7, 9, 10, 18, 25 and 30) and dismutase (EC 1.15.1.1) are common 

detoxification enzymes (Harth and Horwitz, 1999). Group 1.10 enzymes (laccase oxidising 

benzenediol, ascorbate oxidase and rifamycin oxidase) and peroxidases (EC 1.11.1.7, 10, 

13, 14) involved in -detoxification, have also been found extracellular. It is not surprising 

to find enzymes of these types in the surrounding media, as their function is related to 

scavenging of organic and phosphorous containing substrates unable to cross into the cells 

(hydrolases, lyases and phosphotransferases), and defence mechanisms acting upon 

antimicrobial agents and toxic compounds (Frere, 1995; Kharazmi, 1991). 

Exogenous enzymes cross the cell membrane as part of the translation process (co-

translational secretion) through ribosome-transport protein complexes (Priest, 1992). Most 

of the depolymerisation enzymes do not rely on cofactors or prosthetic groups. The 

enzyme substrate specific activity is thought to follow traditional Michaelis-Menten 

kinetics. However, early studies reports 1. order kinetics (Tauber, 1948) but that might be 

due to relative low substrate affinity and high Vmax. They generally show wide temperature 

and pH ranges, and many have low specificity which makes them versatile for cells 

scavenging various substrates, providing microorganisms with an adaptive tool during 

static conditions. This is demonstrated as many exogenous enzymes are synthesized (or 

synthetically up-regulated) during late exponential and stationary growth conditions.  Most 

extracellular enzymes reported in enzyme databases (like BRENDA, 

http://www.brenda.uni-koeln.de/) have been studied in vitro, and it is questionable how 

representative kinetic and stoichiometric coefficients are for in vivo situations.  

Priest (1984) reviewed the regulation of exogenous enzymes. He suggested that control is 

exerted primarily at transcriptional level, and that inducible enzymes are governed by 

repressor or activator proteins. Further, inducible enzymes are thought to be activated by 

enzyme products due to the inability of primary substrates (polymers) to cross the cell 

membrane. Exogenous enzyme synthesis is found to be under strong catabolite repression 

by easily metabolised carbon substrates (e.g. acetate, glucose, intermediates of the citric 

acid cycle). For example, scavenging of maltodextrins is prepared by endogenous 
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induction after exponential growth on glucose or other carbohydrate carbon sources (Boos 

and Shuman, 1998). Similarly, synthesis of proteases is repressed by easily assimilable 

nitrogen sources, such as ammonium and amino acids (Priest, 1984). Many exogenous 

enzymes are up-regulated during late exponential and early stationary phase. That indicates 

substrate scavenging functions, and may also be indicative that some enzymes are involved 

in cell differentiation (White, 2000).  

 

2.3.1 Exogenous enzymes in natural systems 
 
Enzymatic activity in natural environments outside the cell has been observed for a long 

time. Overbeck (1991) gives a comprehensive historical review of papers published on the 

theme. He refers to Fermi (1906) as the first time proteolytic enzyme activity was observed 

in stagnant water pools, and Harvey (1925) reporting on extracellular oxidase and catalase 

activity in seawater. Kreps (1934) detected nitrate and ammonia oxidation in filtrate of 

seawater, while Elster and Einsele (1937) suggested extracellular phosphatase activity. 

ZoBell and Rittenburg (1937) reviewed degradation of high molecular weight chitins in 

natural habitats and concluded that these are found widely distributed in marine sediments, 

on the surface of plants, in the gut of marine mammals and associated with marine POM. 

More recently, Amon and Benner (1994) and Benner et al. (1992) reviewed the importance 

of exogenous enzymes in the recycling of DOM in the marine environment, emphasizing 

the importance of the microbial loop in primary production (Atlas and Bartha, 1998). 

Marine sediments harbour high levels of exogenous enzyme activity (Arnosti, 1995; 

Arnosti et al., 1994; Novitsky, 1986; Meyer-Reil, 1991) similar to activity found in 

brackish and estuarine waters (Hoppe, 1983; Smucker and Kim, 1991) and fresh water 

sediments (Cotner and Wentzel, 1991; Jones, 1979). Even deep-sea sediments and near 

bottom water have been studied and found to contain exoenzymatic activity associated to 

benthic macrofauna (Köster et al., 1991) and organic particles (Tholosan et al., 1999). 

Exoenzyme activity has also been studied in freshwater streams and rivers of epilithic and 

biofilm bacteria (Romani and Sabater, 1999; Chappell and Goulder, 1994; Jones and Lock, 

1991). 

Extracellular enzymes in the soil environment have been known for over 100 years 

(Skujins, 1976).  Exoenzyme activities in soil are thought to be due to extracellular 

enzymes associated with, or as part of biofilm communities covering, the soil matrix 

(Hattori and Hattori, 1976), or originating from plants and macro invertebrates (Ladd, 
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1972; Hartenstein, 1982). Extracellular enzymes are also important for degradation of dead 

material in forest habitats, like fungal and bacterial degradation of cellulose (Bayer et al., 

1998; Beguin and Aubert, 1994; Gilbert and Hazlewood, 1993; Coughlan, 1992; Coughlan, 

1985). Exoenzymes are also part of bacterial virulence strategy during infections. Erwinia 

cartotovora and Pseudomonas aeruginosa are examples of opportunistic pathogens that 

secrete exogenous enzymes (Pectinases, Cellulases, Elastase, Lipases and Proteases) 

contributing to pathogenesis of plant and mammal infections, respectively (Jones et al. 

1993; Kharamzi, 1991; Wicker-Böckelmann et al, 1987). Extracellular Dextranase has 

been isolated from Streptococci salivarius biofilms on tooth surfaces retarding plaque 

deposition (Ohnishi et al., 1995). 

All these examples point to the widespread occurrence of exogenous enzymes. In fact, this 

is not at all surprising considering that easily biodegradable substrates are rare in natural 

habitats while POM and organic polymers are abundant from decaying biomass. A priori, 

bacterial infections would also imply exogenous enzyme activity during early stages of 

virulent infections, as well as host responses involve counter acting by exogenous protease 

activity. Also, it is understandable that detoxification enzymes would have to be exogenous 

by nature, since the effect of antibacterial and aggressive chemicals are known to attack 

intracellular processes.  

 

2.3.2 Exogenous enzymes in wastewater systems 
 

Numerous studies of enzymatic activity of enzymes in activated sludge have been used to 

characterize the activity of the sludge (Vaicum et al., 1965, Klapwijk et al., 1974; Teuber 

and Brodisch, 1976). Most studies focused on the activity of exogenous hydrolases (Thiel 

and Hattingh, 1967; Sridhar and Pallai, 1973; Nybroe et al., 1992; Boczar et al., 1992; 

Frølund et al. 1995). Richards et al., 1984) screened a number of activated sludge plants 

for the activity of eight enzymes, among these α-Glucosidase and Protease (both 

exogenous hydrolytic enzymes). They found indications of positive correlation between 

hydrolytic activity and COD loading rate. Nybroe et al., 1992) correlated activated sludge 

enzymatic activity with biomass concentration and microbial activity. However, α-

Glucosidase did not seem to be affected by activity, indicating constitutive synthetic 

regulation. San Pedro et al., 1994) did not find any significant effect of biomass 

concentration on starch hydrolysis rate. In contrast, they did see an effect of 
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acclimatisation time, which may indicate an inducible long term effect. Hydrolysis of 

starch correlated well with first order hydrolysis kinetics, and interestingly, the activity of 

hydrolysis did not seem to be affected by changing electron acceptor conditions. Dold et al. 

(1995), however, reported higher α-Amylase activity under anaerobic conditions compared 

to aerobic, and located the Glycosylase activity to the cell fraction. Goel et al., 1997) also 

established a strong dependency between incubation electron acceptor conditions and 

hydrolytic activity in batch operated Bacillus amyloliquefaciens and Pseudomonas 

saccharophilia pure cultures. Contrary to Dold et al. (1995), they detected higher enzyme 

activity at aerobic conditions. However, their findings suggested that it was not the specific 

activity of hydrolytic enzymes that were affected, but rather the hydrolytic enzyme 

synthesis rate. The same authors demonstrated no electron acceptor effect on the specific 

activity of α-Glucosidase, Protease and Alkaline- and Acidic phosphatase in SBR activated 

sludge (Goel et al., 1999). However, in this study the stability and location of hydrolytic 

enzymes could explain the independence of electron acceptor conditions. Adsorption of 

extracellular enzymes to single sludge flocs subjected to varying conditions with 

characteristic times far below the degradation rate of hydrolytic enzymes could explain this 

effect. Interestingly, Protease activity increased during anaerobic phase. Batch tests under 

anaerobic and aerobic incubation all showed increased exogenous hydrolase activity 

(Phosphatase, Protease and α-Glucosidase) after exhaustion of TOC (undefined media). 

This may indicate an inducible enzyme synthetic stationary response by catabolite 

repression. 

Location of exogenous hydrolytic activity was also studied by Goel et al., 1997), Goel et 

al., 1998a), Goel et al., 1999). Their major conclusion was that bulk phase extracellular 

hydrolysis was significant in two pure cultures studied, while the activity in SBR sludge 

was associated with the sludge flocs. Boczar et al. (1992) also showed that activated sludge 

contained most hydrolytic activity, with negligible bulk water activity. Frølund et al. 

(1995) later found that Esterase and Leucine aminopeptidase activity was 18 – 32 times 

higher in the activated sludge flocs compared to bacterial culture. This strongly suggests 

that the extracellular matrix may immobilize large amounts of extracellular enzymes. 

Vetter et al. (1998) concluded that released extracellular enzymes provide individual 

bacteria with a powerful feeding mechanism, especially in typical wastewater conditions 

(high surface area, high particulate organic concentrations). By comparing net energy gain, 

they showed that to a limited distance, cell free enzymes provide an important carbon 
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source even without taking mutualistic effects into account. This is significant when 

comparing biofilm and activated sludge systems, as cell free enzymes are thought to be 

more effected by hydraulic washout in activated sludge systems. Confer and Logan (1998) 

found that Leucine aminopeptidase and α-Glucosidase activity was cell mass associated, 

both for biofilm and suspended growth batch systems. Similar results were found when 

analysing trickling filter effluents. Hydrolytic  

intermediates, however, were found to accumulate to some degree in the bulk phase. They 

explained this by suggesting a model were hydrolytic fragments may diffuse into the bulk  

phase (Confer and Logan, 1997a; Confer and Logan, 1997b). This is in accordance with 

Kepkay, 1994) who saw that bacteria attached to an organic particle hydrolyse 

significantly more organic substrate than they can use for their own metabolism. However, 

this is contrary to the model suggested by Larsen and Harremoës, 1994) were enzymes are 

thought to diffuse into the liquid bulk phase, and hydrolytic products diffuse back to be 

metabolised in the bio aggregates. The location of the enzymatic depolymerisation is 

especially important for the understanding of hydrolysis of particulate matter in biofilm 

systems. Larsen, 1992) and later Rohold and Harremoës, 1993) demonstrated an effect of 

bulk phase washout rates in biofilm reactors. However, these reports are not conclusive to 

whether washout influenced intermediates, enzymes or both. 

Most of the works listed above have been aimed at estimating the enzymatic activity in the 

samples analysed, often by enzyme assays involving labelled substrates that are different 

from the natural substrates. For depolymerisation enzymes this difference is very important 

since substrate properties, especially monomeric composition and molecular size, differ a 

lot from typical model substrates used during assaying (e.g. nitrophenyl, fluorescein labels, 

and methylumbelliferyl or methylcoumarinylamid). In addition to the reaction kinetic 

differences, transport mechanisms of the bio-aggregate involved very much depends on the 

molecular size of the model substrate. Using a significantly smaller (most model substrates 

are small compared to polymer substrates of depolymerising enzymes) substrate 

overestimate removal rates during transport limitations, conditions that are very significant 

in activated sludge flocs and biofilms. Therefore, generalisation of enzyme activity from 

data obtained by extraction and assayed using model substrates involve systematic 

uncertainties and errors that must be taken into consideration, especially during 

quantitative analysis. Some of these problems may be eliminated by the use of polymeric 

model substrates labelled with small side groups or small ligands (like Dextran Blue), or 
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by quantification of the reaction products like the endoglucanase assay based on reducing 

sugars quantification (Ashwell, 1957; Schellhorn and Forsberg, 1984). 

 

 

 

2.4 Biofilms 
 
Biofilms, as first introduced by Zobell and Allen (1935) and Zobell and Anderson (1937), 

may be defined as cells immobilised on a substratum and frequently embedded in an 

organic matrix of microbial origin (Characklis and Marshall, 1990). Both open culture 

(mixed population) and pure culture biofilms form heterogeneous dynamic structures 

(Costerton et al., 1995; Costerton et al., 1997; Costerton et al., 1999; Stoodley et al., 2002) 

of principally three components; cells, extracellular polymeric substances (EPS) and liquid 

void spaces (Christensen and Characklis, 1990). Numerous papers have been published on 

the biology of bacterial biofilms (see Watnick and Kolter (2001) for an interesting review), 

and the gradient environment biofilm cells are subjected to (e.g. Characklis et al. 1990; 

Harremoës, 1978). Recent methodological developments have established fundamental 

biological properties of sessile bacteria (Sauer and Camper, 2001; Sauer et al., 2002), and 

confirmed the typical substrate gradient environment resulting from transport limitations 

(de Beer et al., 1994b; Lewandowski et al., 1995; de Beer et al., 1997). These two aspects, 

the phenotype of bacterial biofilms and the transport limitations, together with the 

mechanical and structural properties of EPS, are the main features distinguishing sessile 

bacterial systems from suspended cultures. For further details into the field of general 

biofilm science, the assembled works of Characklis and Marshall (1990), Bryers (2000) 

and Wuertz et al. (2003) may be good starting points. 

 

2.4.1 Polymer and particle dynamics in biofilms 
 

Successful removal of organic particles and polymers in biofilm systems rely on four 

separate processes linked in series: Transport of particle/polymer to the biofilm surface, 

attachment to the biofilm matrix, depolymerisation and subsequent mineralisation (Sprouse 

and Rittmann, 1990). O'Melia (1987) described how particles are transported and attached 

to surfaces. Transport and attachment to the surface of biofilms was theoretically 
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investigated by Bouwer (1987) which proposed first order particle transport to be 

controlled by diffusion, interception or sedimentation mechanisms, depending on system 

configurations and molecular size of particle/polymer. Upon close approach to the biofilm 

surface, short range surface interactions such as hydrodynamic retardation, van der Waals 

attraction, electrostatic repulsion and overlapping double layers would all affect the 

attachment of the particles. In addition, net attachment would depend on the detachment 

forces exerted by hydraulic shear forces. Attachment and transport was lumped into a 

single process by reducing the process rate of transfer (transport to and attachment onto) to 

the biofilm by a sticking factor similar to the description of cell attachment proposed by 

Characklis (1990) and Escher and Characklis (1990). As both the surface charge of the cell 

walls, and the EPS of biofilms are negatively charged around neutral pH, electrostatic 

forces are important for the attachment and transport of especially charges particles and 

polymers (Horan and Eccles, 1986; Morgan et al., 1990). The effect of ionic strength on 

the forces stabilising activated sludge flocs are of the same type as the ones between 

particles and biofilm surfaces, except for the geometries involved. Zita and Hermansson 

(1994) suggested increase of the electric double layer thickness to explain the 

deflocculation of activated sludge during reduced ionic strength according to the DLVO 

theory. Keiding and Halkjær Nielsen (1997) emphasized the importance of divalent 

cations, especially Ca2+, for the sorption of organic macromolecules to the activated sludge 

EPS. Zita and Hermansson (1997) also suggested cell and polymer hydrophobicity as 

important during adhesion to sludge flocs. Carlson and Silverstein (1998) discussed how 

molecular size and surface charge of polymers affected the sorption to biofilms, 

concluding that increased molecular weight reduced surface adhesion to biofilms, as well 

as negative surface charge. Bouwer (1987), however, found the net transport to surfaces to 

be inversely correlated to particle size, especially due to increased sedimentation. Even 

though transport to the biofilm surface seems to be well understood, and that attachment 

can be modelled using DLVO theory, adsorption of macromolecules and organic particles 

to biofilms are influenced by biofilm specific properties and multi dependency towards 

surface and liquid composition, making generalisations difficult. O'Melia (1987) 

summarised by stating that during favourable attachment situations, existing theories are 

sufficient for practical modelling, while during unfavourable situations adsorption is 

underestimated. In addition, surface heterogeneity and matrix transport, factors related to 

the biology and history of the biofilms (Lewandowski et al., 1995; de Beer et al., 1994a; de 
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Beer et al., 1994b) further complicates the understanding of mass transfer, making 

qualitative evaluations just as appropriate as quantitative. 

For activated sludge systems, adsorption and/or enmeshment are thought to be fast, and 

that for modelling purposes the process may be described by equilibrium expressions 

(Henze, 1979; Dold et al., 1980; Gujer, 1981). Adsorption of organic films prior to biofilm 

formation is regarded as very fast (Characklis, 1990), and may be represented by a logistic 

saturation function (Characklis et al., 1990). For biofilms Bouwer (1987) suggests an 

empirical first order adsorption kinetics in bulk phase particle concentration compensated 

by the sticking efficiency, α. Characklis et al. (1990) regards α to be dependant on surface 

roughness, EPS composition and liquid ionic strength, and suggests it to be low (<<0.01). 

Sprouse and Rittmann (1990) reported α ≈ 0.04 for adsorption of milk colloids in a 

methanogenic fluidised bed biofilm reactor. 

As mentioned earlier, introduction of techniques from molecular biology has enabled the 

biofilm research community to identify phenotypic changes of the biofilm bacteria 

(Stoodley et al., 2002; Sauer and Camper, 2001). Interestingly, Holligbaugh and Azam 

(1983) have observed higher proteolytic activity of attached marine bacteria compared to 

their suspended counterparts. This might result from genetic regulation mechanisms, or 

simply by loss reduction due to transport restriction s in the biofilm matrix. Either way, 

sessile systems might have systematic or biological opportunities of enhancing scavenging 

of particulate and polymeric substances. 

Another biological response to polymer and POM substrates is the restructuring of the 

biofilm architecture to optimise the transport mechanisms to and from the biofilm matrix 

(de Beer and Stoodley, 1995; Tanyolac and Beyenal, 1997). As polymer transport and 

degradation rates are thought to be limiting for the degradation and terminal mineralisation 

(Ubukata, 1992;1997; 1999), quasi steady state depolymerisation products (RBCOD) are 

thought to be rather low, causing the biofilm to experience substrate limiting conditions. It 

has been suggested that substrate limiting conditions promote formation of porous biofilms 

enhancing advective transport and reducing diffusive path lengths into the biofilm matrix 

(Picioreanu et al., 1998). A mixed population biofilm from a biofilm airlift suspension 

reactor showed this morphological adaptation when transferred from growing on glucose 

to soluble starch (Mosquera-Corral et al., 2003). 

Degradation of polymers and POM in biofilm systems are governed by the chemical and 

physical properties of the polymers and enzymes involved in the depolymerisation. Biofilm 

communities have several levels of adaptation to the nature of limiting substrates, 
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including regulations at gene levels related to the synthesis of exogenous enzymes, their 

location and their activity. In addition, biofilm communities have shown adaptation on the 

morphological and structural level by changing the biofilm matrix to promote optimised 

transport mechanisms of the limiting substrate. Lag phases are thought to be involved in all 

these processes, especially on the structural level adaptation. This has consequences for 

experimental designs as well as for engineering applications.  

 

2.5 Mathematical Modelling 
 

Mathematical modelling has become the most important framework of interpreting 

experimental data and theories in the wastewater scientific society during the last 20 years. 

Even though microbiologists have not adopted the same strategy to the same extent, 

quantitative understanding and the use of mathematical formulations have been adopted to 

describe the fundamental processes such as growth, maintenance, decay, product formation 

and attachment/detachment. Especially the emergence of technological applications within 

the terms of biotechnology, has promoted the use of quantitative formulations and 

communication. In the wastewater engineering community the successful use of 

mathematical models to describe the activated sludge process, has spurred development of 

other models for systems like river water quality, anaerobic sludge digesters and biofilm 

reactors. 

 

2.5.1 The activated sludge an mixed population biofilm models 
 

Among the first attempts to propose a comprehensive model for the activated sludge 

process was the group at university of Cape Town (Dold et al., 1980, Ekama and Maris, 

1979). Building one their work, the IAWPRC task group on mathematical modelling for 

design and operation of biological wastewater treatment process was founded, and 

reported the Activated Sludge Model no. 1 (ASM1) in 1987 (Henze et al., 1987). The 

model described heterotrophic growth on carbonaceous substrates, nitrification and 

denitrification. It was extended in 1995 to include chemical and biological phosphorous 

removal (ASM 2), with further extensions in 1998 (denitrifying phosphorous accumulating 

organisms, ASM 2d). A restructured model based on storage as the central substrate uptake 

mechanism was presented in 1998 (ASM 3). These models contain stoichiometric and 
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kinetic expression for the conversion of substrates and growth of functional biomass 

without taking transport mechanisms into account. 

Harremoës (1978) proposed a steady state model successfully describing substrate 

gradients in biofilms. A similar model was put forward by Rittmann and McCarty (1980), 

while Gujer and Wanner (1990) made the necessary theory for a one-dimensional dynamic 

model for a mixed population biofilm. This model was implemented in a purpose made 

software (AQUASIM) by Reichert (1994), and extended to include advanced spatial 

heterogeneity and functions, and transport (interfacial) mechanisms (Wanner and Reichert, 

1996; Reichert and Wanner, 1997). Lately, the 1-dimensional models have been solved for 

three dimensions, opening up new possibilities for modelling structural properties and 

functions (Piceraneau et al., 1998; Hermanowicz, 1998). The biofilm models do not 

contain mass balance equations for kinetics and stoichiometry, but reflect the transport 

mechanisms involved in spatial heterogeneous growth. The practise has been to implement 

the stoichiometries and kinetics of the activated sludge models into the transformation 

equations of the mixed population biofilm models, for simulation and data interpretation.  

 

 

2.5.2 Modelling depolymerisation  
 

Degradation of POM and polymeric substances in the wastewater engineering literature 

has been equivalent to the process called "hydrolysis" without paying attention to whether 

the depolymerisation mechanisms are hydrolytic or not. That might be due to the fact that 

most depolymerisation enzymes are hydrolytic, and that the common macromolecules 

(fats, proteins, polysaccharides and nuclei acids) are depolymerised naturally by 

hydrolases. Thus, hydrolysis should not, in the wastewater treatment literature, been taken 

literarily, but rather representing the sum of mechanisms depolymerising POM and organic 

substrates into readily biodegradable matter. 

Morgenroth et al. (2002) recently reviewed processes and modelling of hydrolysis in 

aerobic wastewater treatment, and the following paragraph is based on their work. 

Early models of particulate substrate degradation were based on direct growth (Stenstrøm, 

1975) or adsorption followed by direct growth (Ekama and Maris, 1979; Dold et al., 1980). 

Hydrolysis of slowly biodegradable into easily biodegradable substrates was adopted by 

the IAWQ group as a one step hydrolysis process (Henze et al., 1987) based on the kinetic 
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expression proposed by Dold et al. (1980). Frigon et al. (2001) defined two distinct active 

biomasses, one growing on RBCOD whereas a second degraded SBCOD, for a structured 

model taking intracellular constituents into account. Several authors have expanded on the 

lumped substrate model of the IAWQ group to describe the kinetics of slowly, intermediate 

and rapidly hydrolysable substrates in order to reflect the chemical heterogeneity and 

molecular weights of particulate substrates. Sollfrank and Gujer (1991); Orhon et al., 

(1998); Janning, (1998) and Vollertsen and Hvidtved-Jacobsen (1999) defined parallel 

hydrolysis into easily biodegradable substrates, while Novak et al. (1995), Bjerre (1996), 

Confer and Logan (1997a; 1997b) and Spérandino and Paul, (2000) applied sequential 

hydrolysis. Separation into substrate classes based on degradability reflects the complexity 

of particle and polymer degradation. Table 2-2 shows a summary of empirical model 

stoichiometries from the wastewater literature. Kinetic expressions are shown in Table 2-3. 

Dold et al., 1980) developed a kinetic expression for hydrolysis based on Stenstrom, 1975), 

that assumed that slowly biodegradable organic matter adsorbs to the surface of the 

organisms and is degraded by direct growth. This results in surface limited hydrolysis 

kinetics as described by model no. V and VI in Table 2-3. Based on experimental results 

with variations in sludge age and sludge concentration, Dold et al., 1980), suggested that 

hydrolysis kinetics cannot be sufficiently described with simple Monod kinetics (Table 

2-3, model IV).  

A subject of ongoing debate is whether hydrolysis rates are influenced by redox conditions 

as can be seen by changes in the activated sludge models. In ASM1 and ASM2 (Table 2-3, 

model VI) a reduction factor η that reduced hydrolysis rates if no oxygen was present. In 

ASM1 η was 0.4 and in ASM2 η was 0.1 or 0.6 for anaerobic and anoxic conditions 

respectively (values for 20°C). In ASM3, no reduction factor was considered any more. 

This modification was supported by Goel et al., 1998b) who showed that enzyme activity 

was not significantly affected by redox conditions. Probable reasons for the observed 

reduction of hydrolysis rates during anoxic and anaerobic conditions by some authors 

(Henze and Mladenovski, 1991; San Pedro et al. 1994), might be reduction in grazing 

activity by higher organisms (amoebae and protozoan), and reduced synthesis rate of 

exogenous enzymes in anaerobic conditions. Simplified models for hydrolysis kinetics 

have been proposed as zero order, first order, or saturation type kinetics (Table 2-3, model 

0-IV). Most of these models have been developed for specific situations (very high or very 

low substrate to microorganism ratios) and it can be shown that under these cases the 

surface limited hydrolysis rate expression in model V can be simplified: For XS,i << XH the  
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Processes XS,1 XS,2 XS,3 XSads SS SO2 XH XH,2 
 
Model Nr. 1:  
Direct growth on both soluble and particulate organic matter 
Growth on XS,1 -1/YH     -(1-YH)/ YH 1  
Growth on SS     -1/YH -(1-YH)/ YH 1  

 
Model Nr. 2: Adsorption model 
Adsorption of hydrolysable COD (XS,1) -1   1     
Direct growth on adsorbed COD    -1/YH  -(1-YH)/ YH 1  
Growth on soluble COD     -1/YH -(1-YH)/ YH  1 

 
Model Nr. 3: One step hydrolysis 
Hydrolysis of hydrolysable COD (XS,1) -1    1    
Growth     -1/YH -(1-YH)/ YH 1  

 
Model Nr. 4: Parallel hydrolysis 
Hydrolysis of slowly hydrolysable COD (XS,1) -1    1    
Hydrolysis of intermediate hydrolysable COD 
(XS,2)  -1   1    

Hydrolysis of rapidly hydrolysable COD (XS,3)   -1  1    
Growth     -1/YH -(1-YH)/ YH 1  

 
Model Nr. 5: Sequential hydrolysis 
Hydrolysis of slowly hydrolysable COD (XS,1) -1 1       
Hydrolysis of intermediate hydrolysable COD 
(XS,2) 

 -1 1      

Hydrolysis of rapidly hydrolysable COD (XS,3)   -1  1    
Growth     -1/YH -(1-YH)/ YH 1  

 
Model Nr. 6: Two biomass model 
Hydrolysis of particulate COD (XS,1) -1    1    
Direct growth on hydrolysed COD     -1/YH -(1-YH)/ YH 1  
Growth on soluble COD     -1/YH -(1-YH)/ YH  1 

where: 
Model No. 1: Direct growth on both soluble and particulate organic matter. Hydrolysis is not considered as a separate process (e.g., 
Stenstrom, 1975). 
Model No. 2: Adsorption system (Ekama and Marais, 1979; Dold et al., 1980). 
Model No. 3: One step hydrolysis (e.g., Henze et al., 1987 (=ASM1); Henze et al., 1995 (=ASM2), Henze et al., 1999 (=ASM2d), Orhon 
et al., 1999, Gujer et al., 1999 (=ASM3), Sollfrank, 1988; Larsen, 1992; Spanjers and Vanrolleghem, 1995). 
Model No. 4: Parallel hydrolysis (e.g., Sollfrank and Gujer, 1991; Janning, 1998; Orhon et al., 1998, Vollertsen and Hvitved-Jacobsen, 
1999, Vollertsen, 1998). 
Model No. 5: Sequential hydrolysis (e.g., Bjerre, 1996; Confer and Logan, 1997a; Spérandio and Paul, 2000) 
Model No. 6: Two biomass system (Frigon et al., 2001) 
XS,1, XS,2, XS,3 = slowly biodegradable organic matter (in models with multiple XS fraction XS,1 is slowly and XS,3 is rapidly hydrolysable. 
XS,ads = adsorbed XS, SS, readily biodegradable organic matter, SO2 = oxygen, XH,1, XH,2 = separate heterotrophic bacterial populations. 

 

Table 2-2. Stoichiometries applied in literature models for various hydrolysis regimes (from Morgenroth et 
al. 2001) 
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Nr. Kinetic expression References 

0 kH,0 
Larsen, 1992, Cliff, 1980, Andrews and Tien, 1977, 
Dennis and Irvine, 1981, Tsuno, 1978 

I kH,I�XS 

Gujer, 1980, Henze and Mladenovski, 1991, Sollfrank 
and Gujer, 1991, Janning, 1998, Kappeler and Gujer, 
1992, San Pedro et al., 1994, Spérandio and Paul, 2000, 
Spanjers and Vanrolleghem, 1995, Goronszy and 
Eckenfelder, 1991 

II kH,II�XH Goel et al., 1997 

III kH,III�XS�XH Eliosov and Argaman, 1995, Argaman, 1995, Mino et 
al., 1995  

IV H
SIV,X

S
IV,H X

XK
X

k
+

⋅  Larsen, 1992, Mino et al., 1995, Goel et al., 1998a 

V H
HSV,X

HS
V,H X

X/XK
X/X

k
+

⋅  Stenstrom, 1975, Mino et al., 1995, Janning, 1998, 
Gujer et al., 1999 (=ASM3) 

VI 

�
�

�

�

+
⋅

+
⋅η+

�
�

�

�

+
⋅

+
⋅

H
2O2O

2O

HSVI,X

HS
H

H
2O2O

2O

HSVI,X

HS
VI,H

X
SK

K
X/XK

X/X

X
SK

S
X/XK

X/X
k

 Dold et al., 1980, Henze et al., 1987 (=ASM1), Henze 
et al., 1995 (=ASM2), Henze et al., 1999 (=ASM2d) 

 

Table 2-3. Kinetic expressions for the hydrolysis models listed in Table 2-2 (from Morgenroth et al. 2001). 

 
 
original Model V can be approximated with first order substrate kinetics (model I, with kH,I 

= kH,IV / KX). For XS,i >> XH model V can be approximated also with a first order model, in 

terms of the biomass concentration (model II, with kH,II = kH,IV ). Likewise model IV 

simplifies to model III and II for XS,i << XH and XS,i >> XH, respectively. 

All models described above are empirical models not taking substrate composition, 

enzyme concentration, enzyme location nor substrate molecular size or intermediate 

formation into account. That is not a surprise with respect to the complexity of natural 

populations and the justified assumption can drastically reduce model complexity. Use of 

Monte-Carlo simulations is a well applied stochastic approach used for modelling starch 

liquefaction, lignin hydrolysis and α-amylase activity (McDermott et al., 1990; Nakatani 

1996; Carbonell et al., 1998). Most kinetic expression used, both for deterministic and 
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stochastic models, is based on Michalis-Menten kinetics, or deduced variants taking into 

account model structure details, such as intermediate competitive substrate inhibition, 

endo- and exo-enymatic synergism, reversible dynamics and non-reversible binding 

(inhibition). Wojciechowski et al. (2001) give an updated review of recent models. For 

polysaccharide depolymerisation modeling, Fujii et al. (1981) used a lumped polymer 

model to show synergistic effects between simultaneous exo- and endo amylase activity. 

Suga et al. (1975) very early recognised the importance of intermediate modelling, and 

suggested a Michaelis-Menten based set of equations for each polymer intermediate. Dean 

and Rollings (1992) further extended the model of Suga et al. (1975) by including 

restrictions to bonding by a Dextranase- Dextran system at branching points. 

In this work a model for the endo- and exo-depolymerisation of a model substrate 

(Dextran) will be presented, and simulations compared to time series data of model 

enzymes and open culture biofilms.  

 

3 Hypothesis 
 

This section outlines the fundamental ideas and viewpoints that form the foundation of 

which hypothesis, experimental and mathematical methods and data interpretation is 

developed from. A conceptual model of the biofilm system and the dynamics and reactions 

involved in polymer and particle degradation is suggested. The main hypotheses deduced 

from the conceptual model are also presented as separate sub-chapters. 

 

3.1 Conceptual model 
 

Naturally, conceptual biofilm models have been developed from the current understanding 

of the structure and functions of biofilms. Several factors such as substrate loading, shear 

stress, substrate type(s), hydraulic and particulate retention times are known to have an 

effect on the macroscopic structure and properties of biofilms (van Loosdrecht et al., 1995; 

van Loosdrecht et al., 2002). The effect is mutual, since substrate and particulate transport 

are also affected by the same structure and properties. Early models considered the biofilm 

to be a homogenous slab of equal thickness and distribution (Harremoës, 1978), but recent 

methodological developments in microscopy and microelectrode technology has revealed 

the true heterogeneous structures and transport regimes governing most natural (and 
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established) biofilms (Bakke, 1986; Revsbech and Jørgensen, 1986; Neu and Lawrence, 

1997; de Beer et al., 1997; Schramm et al., 1997). Structure is influenced by the physical 

shear acting on the biofilm surface distributed into the cellular and EPS network and 

finally on the fimbriae and surface proteins and polysaccharides connecting the surface 

layer to the substratum (Characklis, and Marshall, 1990). The central role of EPS as the 

connective tissue and gel forming transport barrier has been known for quite some time 

(Geesey, 1982; Boyd and Chakrabarty, 1995; Flemming and Wingender, 2001), however, 

only recently has this profound property been considered in modelling and 

structure/function analysis (Kommedal et al., 2001); Horn et al., 2001; Kreft and 

Wimpenny, 2001; Boyd and Chakrabarty, 1995). EPS is likely to have an important effect 

on biofilm detachment (Boyd and Chakrabarty, 1994; Kommedal et al. 2000a). Chemical 

properties like composition, charge density, hydrophobicity, ion complexation, molecular 

weight, degradability etc. are all important factors when considering the dynamics of EPS 

(Christensen and Characklis, 1990). Environmental factors like pH, ionic strength and 

divalent cation activity strongly affects the EPS gel properties (Christensen and Characklis, 

1990a; Keiding and Nielsen, 1997; Keiding et al., 2001), as well as biological controlled 

factors like polymer synthesis and degradation rates (Boyd and Chakrabarty , 1994; Boyd 

and Chakrabarty, 1995). The ability of biofilms to adsorb substrates in oligotrophic 

environments is another aspect of EPS function (Flemming, 1995), an ability that also 

provide means of controlling the extracellular activity of active enzymes, optimising a 

local microniche (Costerton et al., 1995). These, and recent insight into the effects of cell-

cell signalling and biofilm genotype behaviour (Davies et al., 1998; Sauer et al., 2002; 

Stoodley et al., 2002), seems to have profound effects on the structure and function of 

biofilms, but little is known regarding the quantitative aspects and how these studies can be 

generalised into open mixed population cultures. The complexity of EPS (composition, 

synthesis, degradation) has therefore been regarded, together with the companioning 

process of detachment, as the "untouchables" of biofilm science, especially among the 

modellers. This is a surprising paradox considering their essential role in biofilm dynamics, 

but has nevertheless resulted in a very limited quantitative understanding of the dynamics. 

The conceptual model being outlined here will therefore take these factors into account on 

a qualitative level. Structurally and conceptually, the model suggested here is strongly 

influenced by the models put forward by Wanner and Reichert (1996) and Nielsen et al. 

(1997), which again built on Bryers and Mason (1987), Hseih et al. (1994) and 

Characklis(1990). 
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Model constituents Symbol Unit 

Components   

Heterotrophic cellular biomass XH g/m3 

Dissolved readily biodegradable substrate SS g/m3 

Dissolved oxygen SO g/m3 

Particulate slowly biodegradable substrate XS g/m3 

Dissolved slowly biodegradable polymers SP g/m3 

Dissolved Exogenous enzymes SE g/m3 

Structural EPS XEPS g/m3 

Inert particulate organic matter XI g/m3 

Biofilm void (liquid) fraction εl 1 

Conversion Processes   
Cellular growth rate µc g/m3.h 

Cellular endogenous decay rate rd g/m3.h 

Cellular lysis rate rd g/m3.h 

Substrate maintenance conversion rate rse g/m3.h 

Substrate conversion rate rs g/m3.h 

EPS synthesis rate µEPS g/m3.h 

Oxygen uptake rate, OUR ro g/m3.h 

Depolymerisation rate rh g/m3.h 

Dissolution rate rdiss g/m3.h 

Transport Processes   

Attachment rate ratt g/m2.h 

Detachment rate rdet g/m2.h 

Adsorption rate rads g/m2.h 

Desorption rate rdes g/m2.h 

Diffusion rates J g/m2.h 

Advection rates Q g/h 

Locations (sub compartment subscripts)   

Bulk phase B - 

Biofilm matrix FM - 

Biofilm void FV - 

Biofilm surface FS - 

 

Table 3-1. Components, transport and conversion processes, and sub compartment (location) subscripts. 
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The objective of the model is to conceptually describe the location, transport mechanisms 

and conversion of POM and polymeric substrates, the synthesis, location and activity of 

depolymerising enzymes, the growth, decay and transport/transfer mechanisms of active 

cells and illustrate the heterogeneity of the biofilm structure and substrate gradients. Table 

3-1 shows model symbols of components, processes, transport mechanisms and location 

indicators of the conceptual biofilm model. Figure 3-1 is a graphical representation of the 

model showing the biofilm structure and morphology, components (full text naming), 

transport and conversion mechanisms. Cellular conversion processes (growth, substrate 

uptake, endogenous and lytic decay) are thought to be no different than kinetics and 

stoichiometry for suspended bacteria (Bakke et al., 1984). This might be in contradiction to 

recent discoveries of the biofilm phenotype (Sauer and Camper, 2001; Sauer et al., 2002), 

however, limited (if any) knowledge has been published on the kinetic and stoichiometric 

consequences of changes in gene expression as bacteria form biofilms. Thus, anticipating 

the same conversion regime as adopted by the ASM group seems to be the only and best 

alternative (Henze et al., 2000). Molecular diffusion may be described by Fick's laws, and 

advection by classical mechanics. Adsorption and desorption may be modelled using the 

expressions suggested by Ekama and Marais (1978), while attachment of bacteria and 

POM might follow the mechanisms formulated in the model of Escher and Charaklis 

(1990) and Characklis et al. (1990). Biofilm detachment caused by surface shear force 

distribution cause erosion from the biofilm surface, while disintegration of internal matrix 

structures may lead to sloughing (Bakke, 1986), defined as detachment of larger chunks of 

biofilm. Sloughing, and probably also erosion, also provides EPS of a transport mechanism 

into the bulk phase. Often EPS and cells are lumped into the expression "biomass". All 

these mechanisms and processes have been described in detail elsewhere (see Bryers, 

2000, for a recent comprehensive description). Thus, details regarding the conceptual 

model (Figure 3-1) will focus on polymer and POM transport and conversion. The key 

components of the degradation of polymers and POM are microbial cells, exogenous 

enzymes and dissolved and particulate polymers/particles. Exogenous depolymerising 

enzymes synthesised by the active cells in the biofilm are exported to the periplasm, 

surface or excreted into the liquid phase (void) of the biofilm matrix. Extracellular 

enzymes may be transported away from the mother cell and diffuse into the bulk liquid. 

Based on the matrix properties, they may also adhere to the biofilm matrix. Dissolved 

polymers follow the same transport mechanisms, and may adsorb to the
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Figure 3-1. Conceptual model of biofilm compartment. 
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biofilm matrix at the surface or inside the biofilm. The important factors for the mobility of 

dissolved polymers and extracellular enzymes are the chemical properties of the matrix (cells 

and EPS), and the network mesh size of the EPS causing an inner filter effect. In addition, 

channels and pores may facilitate advective transport into the matrix of polymers (de Beer et 

al., 1994a), and even micro range particles (Drury et al., 1993). Advective transport into the 

biofilm matrix in channels and pores does not really change the regime fundamentally. 

Particles and dissolved substrate will still have to adsorb and diffuse into the matrix of the 

biofilm, however, the surface available for diffusion greatly increase. In addition, diffusion 

distances inside the matrix are significantly reduced. The 3-D "Swiss cheese" morphology 

resembles transport and diffusion in porous media, where the media may be regarded as the 

biofilm. Stoodley et al. (1997) suggests the biofilm matrix to be microporous, with pore 

diameters between 50 - 200 Å, however, Bryers and Drummond (1998) points out that the 

biofilm matrix is heterogeneous in terms of porosity, and that macropores and channels are 

common for heterogeneous biofilms suggesting the matrix pore diameter to vary from micro- 

to macropores (200-1000 Å) within a considerable range of pore diameters. Diffusive 

transport limitation due to the structural EPS matrix stresses the importance of the substrate 

molecular weight. Not only does this property greatly affect the diffusivity of the molecule, 

but the enmeshment into the polymer network effectively provides the EPS matrix a diffusive 

cut-off limit (Tanaka et al., 1984; Jimenez et al., 1988). POM may adsorb to the biofilm 

matrix surface, but rely on depolymerisation in order to enter the matrix. As the size of these 

substrates are thought to be 100 fold larger than typical spherical depolymerisation enzymes 

(typical exogenous enzyme size is 20-200 kDa, BRENDA database2), extracellular enzymes, 

or surface enzymes of bacteria colonising the particles, degrade POM by adsorbing to the 

particulate substrate and depolymerise particle polymers. This surface limited degradation is 

fundamentally different from the depolymerisation of dissolved polymers (small). These are 

of similar sizes as the enzymes, and both may diffuse in the matrix or adsorb at specific sites. 

The reaction mechanism may therefore be viewed as similar to traditional enzyme-substrate 

degradation regimes, and modelled similar to the established Michaelis-Menten kinetics and 

stoichiometry. A transition range is most likely to exist as the dissolved molecules become 

large enough to bind to several depolymerising enzymes. It is therefore probable that 

depolymerisation kinetically should be described by different expressions as the reaction 

mechanisms change according to molecular weight. As diffusive transport mechanism also 

                                                 
2 BRENDA: http://www.brenda.uni-koeln.de/ 
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depend on solute molecular weight, observed degradation in biofilm systems are most 

probably significantly affected by the molecular weight of macromolecular substrates, both 

kinetically and physically. 

As cells and exogenous enzymes diffuse and detach into the bulk liquid, they are still active 

and show the same activity as for the sessile organisms. Bulk phase versus biofilm 

depolymerisation of SBCOD has been a matter of controversy the last decade (Larsen, 1992; 

Roholt and Harremoës, 1993; Confer and Logan 1998), and this concept allows for both. 

 

3.2 Location of depolymerisation 
 

Location of depolymerising enzymes has profound implications on interpretation of  observed 

degradation kinetics and process design. From an ecological point of view, exogenous 

enzymes of biofilm system origin would provide the individuals and their community best 

substrate outcome if the enzymes were retained in the biofilm matrix. However, in case of 

transport limitations, enzymatic activity in the bulk phase could be just as possible, and 

conditionally advantageous, with products diffusing back to the biofilm matrix. The key 

factors here would be the exogenous enzyme synthesis and transport rate into the bulk, and 

the bulk phase washout rate. 

Numerous workers have reported on the location of exogenous activity (see section 2.2, 2.3 

and 2.4). Conceptually, two mechanisms have been proposed for biofilm reactor systems. 

Larsen (1992), Larsen and Harremoës (1994) and Roholdt and Harremoës (1993) all 

advocated enzymes to diffuse from their cellular origin within the biofilm matrix, into the 

bulk phase whereupon polymers and POM are depolymerised into readily biodegradable 

products that enter the biofilm by diffusion. Their motivation was based on the observed 

correlation between bulk phase washout rate, and the observed removal rate of slowly 

biodegradable substrates (Roholdt and Harremoës, 1993). Contrary to this model, Confer and 

Logan (1998) argued that the enzyme activity is retained in the biofilm matrix, and that 

depolymerisation products (intermediates) may diffuse back into the bulk phase. Even though 

some results indicated limited exogenous activity in the bulk phase, Goel et al. (1999) and 

Mosquera-Corral et al. (2003) supported the model outlined by Confer and Logan (1998). 

Fundamentally, both models predict loss of observed activity as the washout rate increase; 

enzyme and intermediate losses, respectively. Thus, direct analysis of enzymatic activity and 

chemical analysis of bulk phase intermediates are necessary in order to determine the location   
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Figure 3-2. Illustration of the two conceptual location models as suggested by Larsen and Harremoës (1994) and 
Roholdt and Harremoës (1993) (left), and the model of Confer and Logan (1998) assuming cell/matrix bound 
exogenous enzyme activity (right).  

 

of depolymerisation. Figure 3-2 show how these models differ when it comes to location of 

depolymerisation, and the implications for the transport mechanisms involved. 

In this study the model presented by Confer and Logan (1998) is assumed representative of 

the fundamental mechanisms involved during polymer and POM degradation. The hypothesis 
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bulk phase activity would support the alternative hypothesis represented by the model by 

Harremoës and Larsen (1994). 

 

3.3 Effect of polymer size on depolymerisation kinetics 
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effect of polymer MW and POM size (typical diameter or filter characteristics) have not been 

studied into detail, neither in the wastewater engineering nor the biochemical and 
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dynamics in biofilm systems (section 2.3.2 and 2.4.1). From a modelling point of view, 

molecular size will therefore have an effect on the true kinetic coefficients related to the 
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reaction mechanism, and the observed removal coefficient which is a combination of reaction 

mechanism and transport rates. Due to the intrinsic transport dependency of observed kinetic 

coefficients in biofilms (Harremoës, 1978), distinguishing transport from true kinetic 

correlations is difficult, however, the Thiele modulus may be used (Henze et al., 2002). The 

hypothesis tested here is whether or not the molecular size shows a systematic effect on 

observed removal rate coefficients. 

 

3.4 Intermediate formation and transport 
 

Both endo- and exo-enzymatic activity will result in the formation of products of molecular 

weight lower than the initial polymer or particle. Intermediate formation during degradation 

of initial size polymers and POM will affect the transport dynamics and the degradation 

kinetics. Molecular diffusion relates to the inverse of molecular weight according to the Stoke 

Einstein relation (Cussler, 1984). In biofilms, intermediates of higher diffusive mobility will 

reach further into the depths of the matrix, or the other way, into the bulk phase. On the 

cellular level, intermediates formed may enter cellular compartments not accessible for their 

larger predecessors and combine with new enzymes. The relative contribution to the overall 

depolymerisation will also depend on the molecular weight distribution of the intermediates. 

Exo-enzymatic activity depends on the concentration of molecular ends, while endo-enzyme 

substrate-enzyme complex formation is often dependent on a minimal size of the substrate 

(see BRENDA3 for numerous examples among the exogenous enzymes; Appendix). 

Therefore, intermediate formation and time dependant substrate molecular weight distribution 

is of great importance when interpreting enzymatic activity, modelling degradation of 

SBCOD and interpretation of observed removal rates. Haldane and Logan (1994) and Confer 

and Logan (1997a; 1997b) all reported accumulation of bulk phase low molecular weight 

polymer intermediates in pure and mixed culture biofilms. Loss of substrate by hydraulic 

washout of the bulk phase may be an alternative explanation to the observed loss of removal 

rate reported by Larsen and Harremoës (1994) and Roholdt and Harremoës (1993). Related to 

the location hypothesis outlined above, this work will try to identify accumulation of bulk 

phase intermediates, their molecular weight and concentrations. In addition, intermediate 

formation will be used to evaluate model formulations (see next section). Under the regime 

suggested by Confer and Logan (1998) and in accordance with the observations of the same 

                                                 
3 http://www.brenda.uni-koeln.de/ 
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authors (Confer and Logan, 1997a; 1997b) and Haldane and Logan (1994), bulk phase 

accumulation of intermediates are formed and are susceptible to washout. The alternative 

hypothesis is that intermediates do not accumulate in the bulk. 

 

3.5 General mathematical model for polymer depolymerisation 
 

Mathematical models for degradation of SBCOD in wastewater systems are based lumped 

variables, often limited to two or three substrate classes (section 2.5). However, 

systematically, depolymerisation bears similarities to other processes, especially 

fragmentation theory (Ziff and McGrady, 1986). Also chemists, and to a certain extent 

biochemists, have proposed different kinetic models to the dynamics of depolymerisation. 

Some of them are based on statistical structures (Montroll and Simha, 1940), while others are 

combination of classical enzyme kinetics (Michaelis-Menten) and statistical interpretations 

(Wojciechowski et al., 2001). Based on a mechanistic regime as described earlier (section 

2.5), a model for the kinetic and stoichiometric effects of molecular weight on 

depolymerisation rate is suggested. The model will be compared to the observed intermediate 

formations, and compared to the models found in the literature. 

 

3.6 Degradation rate of wastewater particles 
 

Degradation of wastewater particles extracted from municipal wastewater is also studied. As 

the studies outlined above are conducted using defined model substrates (see Materials and 

Methods section), comparison of the observed degradation rates using realistic particle 

composition and sizes is valuable for the projection of results. Quantitative evaluation of the 

degradation rates by comparing observed kinetics is used to evaluate whether degradation of 

wastewater particles may be described by the same model as for the observed kinetics of 

model substrates (comparing results to the results of the experiments used to test the 

hypothesis presented in section 3.3). 
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4 Materials and methods 
 

This section describes in detail the experimental set up used to test the hypothesis presented in 

chapter 2, the composition and extraction of culture media, substrates and inocula, the 

operation and control of the experimental set up, sampling and analytical techniques. Also 

included is a section on data handling and analysis, and finally a section on error analysis. 

Two experimental set ups were used. An annular Rototorque reactor system similar to the one 

described by Charaklis (1990b) was used during model substrate studies, while a tubular 

biofilm reactor (Bakke, 1986; Characklis, 1990b) was used during degradation studies of 

extracted POM from wastewater. In addition, culture tube batch tests were performed on 

biofilm samples from the annular reactor. 

 

4.1 Rototorque biofilm reactor  
 

The laboratory rotating annular biofilm reactor consists of a rotating inner cylinder 

concentrically housed inside an outer cylinder. Removable slides inside the outer, or on the 

outer surface of the inner cylinder, provide easy sampling of the biofilm without disrupting 

the biofilm structure. The reactor bulk phase is mixed by eccentrically drilled channels 

through the inner cylinder (close to the centre of the bottom towards the edges of the upper 

part of the rotor) to set up a circulating flow regime perpendicular to the direction of rotation 

(Characklis, 1990a). Constant fluid shear stress at the cylinder surfaces is directly related to 

the controlled speed of rotation of the rotor. By keeping the reactor hydraulic retention times 

low (10-20 min) sessile biomass are selected to the surfaces of the system representing true 

biofilm reactor conditions. 

 

4.1.1 Experimental set up 
 

The annular Rototorque reactor system is presented in Figure 4-1. Two parallel systems based 

on a model LJ 1120 Rototorque biofilm reactor from Biosurface Technologies (Bozeman MT, 

USA) were equipped with external recirculation loops (Watson-Marlow 313 U pump at 

approx. 500 ml/min) providing enhanced mixing (Trulear, 1983; Turakhia 1986), online pH 

and oxygen control, and a counter current bubble column for re-oxygenation of the reactor  
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Table 4-1. Overview of experiments conducted using the Rototorque biofilm reactors and model substrate 
Dextran. The system was built during Oct. 00-Feb. 01 and periods refer to the spring and summer of 2001. 

 

 bulk water. The reactor consists of an inner slotted polycarbonate rotor connected to top 

mounted DC motor, and a glass outer cylinder. Twenty slides are flush mounted on the 

rotating inner cylinder. These slides are removed by stopping the rotation and pulling the 

slides out of their bevelled slots through an access port on the top of the reactor. An outer 

glass cylinder provides an outer jacketing for temperature control by circulating 

coolant/heated liquids. Total reactor system volume was 1160 ml, and the total wetted surface 

area was 2890 cm2, giving a specific biofilm area of 250 m2/m3 (see Table 4-2 for details 

regarding the physical dimensions and operational settings). The bubble column was attached 

to a debubbler through a narrow tube connection to minimize diffusive backward re-

oxygenation. Hydrodynamic bulk phase conditions were kept constant by fixed rotor speed. 

Liquid phase dissolved oxygen concentration (DO) was monitored using a WTW Oxi 340A 

meter attached to an Ox 325 polarographic (Clark Type) probe placed in a flow through 

mixing cell with magnetic stirring. An additional flow cell was used for online pH 

measurements using a by an Advantech PCL 818L (Advantech Co. Ltd, Taiwan) data 

acquisition card.  

Experiment Period Reactors

1 01.03-10.03 1,2

2 01.04-04.04 1,2

3 20.04-23.04 1,2

4 01.05-30.05 1,2

5 06.06-30.06 1,2

6 10.07-16.07 1

7 24.07-28.07 1,2

8 07.08-08.08 1,2

9 02.09-05.09 1

10 06.09-09.09 1

11 10.09-11.09 1
Evaluation of eukaryotic versus prokaryotic activity on degradation of 

dextran using eukaryotic inhibitors and OUR analysis

Objectives

Evaluation of size effects and varoius initial concentrations on OUR 
and bulk phase TOC. Culture tube tests performed on selected MW 

standards 

Washout experiment for the preparation of biofilm for location 
determination by coupon and bulk phase sampling followed by biofilm 

fractionation and enzyme assays

Evaluation of initial polymer concentration of 160 kDa dextran on OUR 
and bulk phase TOC

Evaluation of 100 mg/l dextran polymers of variable initial MW on OUR 
and TOC

Assessing the influence of logging rate (# O2 loggings mer O2 

readings) and OUR estimation rate (# of O2 readings per OUR 
estimation) on the accuracy and sensitivity of the system.

Reactor characteristics using conductivity measurements and salt 
(NaCl) water as tracer. Conducted on empth (clean) reactor.

KLa estimations on clean systems for OUR compensation during 
experiments, and for modelling.

Initial experiments for evaluation of size effects (MW)of Dextran on 
OUR and the effects of variable initial concentrations (F/M).

Test injections.

Culture tube batch test experiments for the determination of 
intermediate formations
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Figure 4-1. Experimental set up indicating flow directions and reactor connections to external units. 1) 
Rototorque reactor with outer jacketing and top drive motor, 2) External water bath with recirculation pump, 3) 
Inlet pumps, 4) Inlet back-growth preventer, 5) Standard injection syringe, 6) Oxygen probe in flow through cell, 
7) Counter current oxygenation column, 8) Oxygenation column debubbler, 9) pH probe in flow through cell, 
10) pH control pump, 11) Diffuser for pure oxygen addition. 

 

Hanna HI 1910B probe attached to a Metrohm 692/691 meter. Both signals were logged using 

custom made software (LabVIEW 6.0e, National Instruments, Austin TX, US) on desktop PC 

Oxygen and pH control was provided by automatic operation of a solenoid valve (Kuhnke 

nw.1) of pure oxygen gas, and pump control (Ismatech Mini-S 860) connected to a 2 M 

NaOH reservoir. Computer controlled operation of saline/substrate and dilution water pumps 
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Table 4-2. Physical data for both Rototorque reactor systems. All numbers are based on physical measurements 
(volumes based on weight, flow on volumes, lengths by ruler). 

 

loading through a drop chamber for back growth prevention. Temperature control was 

established using an external water bath (Hetofrig, Birkerøed DK) with local temperature 

control, recirculating distilled water (at approx. 500 ml/min) through the outer cylinder of the 

jacketed LJ 1100 reactor. The reactor system was kept at a slight overpressure to prevent air 

or temperature control water from leaking into the bulk phase. The rotor housed 18 removable 

plastic coupons for biofilm sampling for analysis (biomass and thickness) and sub-batch 

experiments. A 5 ml plastic syringe was used to introduce substrate to the reactor bulk phase 

through the debubbler. 

System mixing and oxygenation properties were evaluated in order to test the assumptions 

underlying the experiment: Complete system bulk phase mixing, and insignificant oxygen 

loss by diffusion through system boundaries. Complete mixed conditions were tested on 

empty (cleaned) reactors by dilution (distilled water) of a strong salt solution (NaCl) and 

continuously measuring the bulk liquid conductivity (WTW Cond 340i meter with a Tetra on 

325 conductivity cell) placed in the oxygen probe flow cell. The conductivity meter was 

logged using the O2 meter analogue input. Oxygen uptake rate and loss rate were determined 

by oxygenating  pre-disinfected (40 % Ethanol for 2 hours) reactors filled with distilled water, 

and measure bulk phase dissolve oxygen under and after oxygenation. 

 

Parameter Unit R1 R2

Volume ml 1175 1160
Total wetted surface area cm2 2890 2890

Recirc. rate (40% max.) ml/min 570 570
Dia. air column mm 22 22
Length air column mm 265 265

Water level debubbler (from 
lower edge debubbler)

mm 50 50

Volume Ox. sensor flow cell ml 10 10

Volume pH sensor flow cell ml 7 7
Wetted area Ox flow cell cm2 15 15

Wetted area pH flow cell cm2 19 19

Tube length column-debubbler 
(Tygon 3803 5/8 mm)

mm 55 75

Recirc. pump tubing (Marprene 
7/10) mm 100 100

Tubing (Tygon 3803 5/8 mm) mm 56 56
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4.1.2 Model substrate: Dextran 
 

Dextran is a water soluble α1-6 Glucan found in sugar cane production facilities, and as part 

of the EPS in oral cavity biofilms (Smidsrøed and Moe, 1995).  It consists of linear glucose 

chains with 3-4 % α1-2, α1-3 and α1-4 branching points (Lehninger et al. 2000). Dextran 

serves as soluble storage compound for several yeast and bacterial species. Industrial 

applications include synthesis of gel beads for column chromatography, gel structure during 

immobilisation in biotechnology and plasma extenders in medicine. Dextran is commercially 

available as molecular weight standards, and serves as an excellent model substrate for 

degradation studies. In this study, Dextran from the lactic acid bacteria Leuconostoc 

mesenteroides strain B-512F was obtained from Sigma-Aldrich Chemicals 

(http://www.sigmaaldrich.com/). Dextran from this specie show variable structures according 

to the strain and growth conditions (Smidsrøed and Moe, 1995), but have a relatively linear 

secondary structure (>95% α1-6) with comb-like α1-3 short chain branches (1-2 monomers). 

Assuming 95% α1-6 glucosidic linkages, gives an average molecular formula of 

(C6H9.9O4.95)n-1C6H12O6 with an estimated molecular weight of: 

 

( )WM 180.16 161.24 n 1= + ⋅ −     ( 4-1) 

 

where n is the number of monomers. Dextran of MW >10 kDa behaves as typically branched 

flexible polymers, while standards of 2-10 kDa exhibit the properties of a random  

 
 

 
 

Figure 4-2. α1-6 linked glucose monomers making up the backbone of Dextran, also showing an α1-3 
bifurcation (From Smidsrøed and Moe, 1995). 
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Figure 4-3. Log-Normal distributions of calibration standards used for HPLC calibration. The total standard 
concentration is 100 mg Dex/l, and is based on the analysis provided by the producer (Sigma Chemicals4). 

 

chain/expandable coil, and below 2 kDa as stiff chain or rod like molecules (Product 

information Sigma-Aldrich). These properties are comparable to polymers found in 

wastewater (proteins and flexible polysaccharides), and Dextran should therefore be a good 

representative for the behaviour of such molecules in biofilm systems. 

Commercial Dextran is synthesised from native Dextran of molecular weight of 9-500 MDa, 

and lower molecular weight standards are produced by limited acid hydrolysis and 

fractionation by size exclusion chromatography (SEC) and ethanol fractionation (Sigma 

product information4). Standards are analysed using HPLC-SEC and laser diffraction, and 

show a typically normal distribution to the logarithm of the average molecular weight (Kuhn 

distributed, Smidsrøed and Moe, 1995). Figure 4-3 show the distributions of HPLC analytical 

standards used for the calibration of the HPLC analysis reported later (section 4.1.5). These 

standards have a more narrow range than the degradation standards used during the batch 

degradation experiments, and therefore give a conservative indication of the polymer 

distributions. The broad distributions are important when analysing degradation data as even 

medium and high molecular weight standards have significant concentrations of low 

molecular weight intermediates. 

                                                 
4 http://www.sigmaaldrich.com/cgi-bin/hsrun/Distributed/HahtShop/HAHTpage/HS_ProdDetail 
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4.1.3 Substrate, nutrients and buffer media 
 

Separate minimal salt solution, buffer and dilution water flasks (10, 10, 5, 200 l respectively) 

were prepared according to Table 4-3. All reagents were analytical grade, and diluted in 

double distilled deionised water (DI water). All flasks were covered with alum foil in order to 

prevent algae growth, and Tedlar bags (SKC 232-15) containing N2 gas provided gas relief as 

liquid was withdrawn from the flasks. Substrate standards (Table 4-3) were prepared by 

dissolving the appropriate carbon source in buffer, and stored at 2°C. During continuous 

operation (see section 4.1.4) reactor hydraulic retention times were controlled by 

simultaneously varying the flow rate of the dilution and saline/buffer pump maintaining the 

inlet ionic strength constant at 3.5-4 mM.  Reactor inlet carbon concentration (diluted) was 

kept at 200 mg Dex/l (88.9 mg C/l), and sufficient minimal salt solution and phosphate buffer 

were added to secure carbon limited growth. 

 

 

Table 4-3. Minimal salt solution, buffer and substrate stock solution concentrations, diluted inlet concentrations 
during continuous operation and during experiments (Batch operation). 

MW
Stock 

solution
Continuous 

inlet
Batch 
initial

Component (g/mole) (mmole/l) (µmole/l) (µmole/l)

Saline
(NH4)2SO4 114.10 1.75 54.8 54.8
NH4Cl 53.49 28.0 876 876
NaCl 58.44 17.1 535 535

MgCl2
.6H2O 203.30 6.04 189 189

MnCl2.2H2O 161.87 0.121 3.77 3.77

CuSO4
.5H20 249.68 0.067 2.09 2.09

CoCl2
.6H2O 237.93 0.060 1.89 1.89

(NH4)6Mo7O24
.4H2O 1235.86 0.0085 0.265 0.265

Na2B4O7
.10H2O 381.37 0.015 0.471 0.471

ZnCl2 136.29 0.110 3.44 3.44
FeCl3 162.21 0.123 3.85 3.85

CaCl2
.2H2O 147.02 1.36 42.5 42.5

Allyl-thio Urea (ATU) 116.19 5.87 183 183

Buffer
K2HPO4 174.18 1.37 0.043 48.6
KH2PO4 136.09 9.48 0.296 337

Substrates
Dextran (as C) - 236.8 7400 3653
Glucose (as C) 180.15 213.3 6666 3288

Yeast Extract (mg C/l) - 170 3.15 0



 45 

 

Table 4-4. Molar ratio's during continuous and batch operations of the Rototorque systems. The batch example 
represents injection of 10 ml 200 mg/l Dextran. 

 

Batch experiments were conducted by injecting Dextran substrate standards with weight 

averaged molecular weights ( WM ) of: 0.18 (Glucose), 6.0, 10.5, 38.1, 41.3, 160, 473, 513 and 

35000 kDa, of 30, 80, 200 and 500 mg/l each. Under continuous and batch operations, ionic 

strength and relative composition was carefully controlled such that growth limiting 

conditions were controlled by carbon availability. Table 4-4 shows the molar ratios during 

batch and continuous operation. When injecting 10 ml 500 mg/l Dextran (experiment 5 and 9, 

Table 4-1) additional saline was injected to secure carbon limited conditions. During batch 

experiments the initial ionic strength was estimated to be 3.6 - 3.9 mM. 

 

4.1.4 Operation and control 
 

Basic reactor characteristics were estimated (Vtot and KLa) and mixing conditions tested using 

clean empty bed reactors (see Table 4-1). BiocarboneTM biofilm carrier material from the 

anoxic reactor of Hundested WWTP Sjælland, Denmark, was harvested and placed in a 

packed bed laboratory reactor as described by Janning (1998). A steady state biofilm was 

established using high MW Dextran (35 MDa) as substrate. After two months of continuous 

anoxic operation to allow a permanent polymer degrading biofilm to be established 

(Mosquera-Corral et al., 2003), 5 litres of effluent was collected, and filtered through GF/A 

filter paper (Whatman, Springfield Mill in Maidstone, Kent, UK) to remove eukaryotic 

organisms >1.6 µm. The retentate was dissolved in 10 ml buffer/saline, and used to inoculate 

CSTR inlet 
concentrations

Component/
C ratio

Batch initial 
concentrations

Component/
C ratio

 (mmole/l) (%)  (mmole/l) (%)

Total C 7.4 - 7.3 -

Total N 0.99 13.3 0.99 13.5

Total P 0.34 4.6 0.43 5.9

Total K 0.38 5.2 0.38 5.2

Total Ca 0.043 0.57 0.043 0.58

Total Mg 0.19 2.5 0.19 2.6

Total Na 0.53 7.2 0.53 7.3

Total Fe 0.0039 0.052 0.0039 0.05

Total S 0.057 0.77 0.06 0.78
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the Rototorque reactors by adding 4 ml of enhanced culture inocula to bulk phase 

concentrations of 500 mg/l Dextran (160 kDa) and 100 mg/l Difco yeast extract (YE). 

Following 30 h of aerobic batch operation, continuous loading of 200 mg/l Dextran 160 KDa 

and 7 mg/l YE was initiated, and retention time was stepwise reduced from 1 h to 20 min. An 

approximate steady state biofilm was observed after three weeks by microscopic apparent 

thickness estimation (Bakke and Olsson, 1986) on removable coupons from the rotor. During 

start up, bulk phase pH and DO were controlled at 6.2 and 10-20 mg/l, respectively. 

Oxygen concentrations where logged automatically by the software every 100 mS. Electronic 

noise in the logging loop was dampened by averaging the measurements every 5 seconds, and 

this value (average of ∼50 measurements) was stored and used for respiration rate estimation. 

Based on linear approximation of the last stored oxygen measurements, the oxygen utilisation 

rate (OUR) was estimated. The number of measurements used for each approximation was 

determined automatically based on the previous respiration rate estimation in order to 

minimize standard deviation, and at the same time keep the frequency of estimation high 

enough to detect short term changes. Thus, at background respiration rates (i.e. ∼ 5 mg O2/l.h) 

~50 measurements were used, while at high rates (∼ 25 mg O2/l.h) 15 measurements were 

used for estimating OUR. Super saturated bulk phase oxygen concentration was imposed (by 

on-off aeration control) in the range [10, 24] mg O2/l for experiment 5, [22-32] experiment 7 

and [22, 30] mg O2/l during experiment 11, in order to prevent oxygen depletion in the deeper 

parts of the biofilm.  

After establishing a relatively constant biofilm thickness at approx. 300 µm, the reactor was 

flushed with PBS/DI water for 6 retention times, and background respiration was established 

during batch operation. At stable background respiration, 5 or 10 ml Dextran standard was 

injected, bringing the total bulk phase concentration to: 15, 30, 40, 80, 100, 200, 250 or 500 

mg Dex/l. No yeast extracts or any other carbon source were added during batch experiments. 

Six separate experiments (or campaigns) were conducted (5-10 in Table 4-1).  Respiration 

rates were estimated continuously, and bulk phase samples were collected for chemical 

analysis. Batch operation continued until stable background respiration rates were re-

established. During batch experiments, dissolved oxygen and pH was controlled between 22 

and 30 mg/l, and 5.75 and 6.0, respectively. Temperature was controlled (P-control) at 25°C. 

The procedure was repeated for the defined series of Dextran standards. Daily washout 

routines were established by increasing the rotor speed and recirculation rate to maximum 

(288 rpm and 1200 ml/min, respectively) under maximum hydraulic loading rates (TH at 8 
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min) without changing the ionic strength of the inlet. O2 and pH sensors were cleaned (for 

biofilm and precipitations on the sensor membranes) and recalibrated before, and checked 

after, each experiment. Insignificant drift was observed for both reactors over a 7 days period. 

Following each experiment, evaluation of the operational procedure and settings were 

conducted, and minor adjustments introduced. These will be specified in the appropriate 

section of the results chapter. Following the last experiment (10), eukaryotic inhibition by 15 

mg Nystatin and Cyclohexamid during degradation of 100 mg/l Dextran (160 kDa) was 

performed to evaluate eukaryotic contribution to the observed OUR. 

 

4.1.5 Sampling and analytical techniques 
 

Liquid bulk samples (approx. 3 ml) were withdrawn through the debubbler by a syringe. 

Samples were immediately filtered through a 0.45 µm nylon filter (Millipore) into acid 

washed glass vials (scintillation vials (10 ml) capped with alum foil seal caps). Each sample 

was conserved by adding 4 M H2SO4 (pH in sample <1.5) and stored at 2°C. An additional 1 

ml was filtered directly into autoclaved Eppendorf tubes, and immediately heated in a water 

bath (80°C) for 2 min. to assure complete denaturation of depolymerising enzymes (Lee and 

Fox, 1985). According to Sigma Chemicals4 Dextran standards are autoclavable, and 

precursor experiments showed that the size distribution of the polymers did not change by 

heat mediated hydrolysis (data not shown). Eppendorf samples were capped and stored for not 

more than 24 hours before HPLC analysis. 

Samples for TOC analysis were transferred to acid washed and carbon free (heated to 250°C 

overnight) autosampler vials, and analysed on an IO Analytical Model 700 TOC analyser 

within three weeks. Samples for HPLC analysis were filtered through a sterile 0.22 µm PTFE 

membrane filter prior to analysis in order to remove gas bubbles. Dextran molecular weight 

distributions were analysed on an Agilent 1100 series HPLC system (Agilent Technologies, 

http://www.agilent.com/) equipped with an Agilent refractive index detector (RID). 

Separation according to molecular weight was achieved by a PL Aquagel-OH 30 column 

(Polymer Labs, MA, US) serial connected to a Zorbax GF-250 column from Agilent and a 

Zorbax pre-column. A custom made analytical software was designed and implemented in 

LabView 6.0e (National Instruments, Austin TX, US). Details regarding the analytical 

settings, mobile phases and buffers are listed in Table 4-5. In order to increase sensitivity, a  
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Table 4-5. HPLC system details and settings used during SEC analysis of Dextran samples. 

 

500 µl sample injection volume loop was installed. Adjusting the buffer concentration of the 

mobile phase minimized buffer/stationary phase interactions. That resulted in a rather long 

elution time, giving a total HPLC run time of 63 min./sample. The HPLC system was 

calibrated by injection of six certified (DIN standards from Fluka GmBH, Sigma Aldrich 

Chemicals) Dextran calibration standards of MW (kDa): 0.342 (Isomaltose), 1, 12, 80, 150 and 

410 (see Figure 4-3 for distributions). For each standard, four concentrations were injected in 

order to calibrate the peak height (RID signal/concentration response) in addition to the peak 

elution time.  

Model Agilent 1100 Series (G1362A)
Sensor temp. 32°C
Postrun purge time 6 min.
Prerun baseline compensation 6 min.
Model Agilent 1100 Series (G1313A)
Injection loop Agilent Multi Draw Kit (G1313A)
Injection volume 500 µl
Sampler vials Autosampler vials, 1 ml
Model Agilent 1100 series binary pump (G1312A)
flow rate 1 ml/min
Model Agilent 1100 series quaternary pump (G1354A)
flow rate 1 ml/min
Software Custom made LabView 6.0e
Signal I/O Adam 4012
Resolution 0.01 mV (16 bit)
Range 0-150 mV
Logging rate 110 Hz
Control I/O Advantech 812

Datalogging(Exp.10) Agilent original system Chemstation 

Model PL Aquagel-OH 30
Manufacturer Polymer Labs
Dimensions 7.5 x 300 mm
Separation range 0.1-30 kDa
Particle size 8 µm
Stationary phase Hydrophilic polyhydroxyl
Model Zorbax GF-250
Manufacturer Mac-Mod Analytical Inc.
Dimensions 9.4 x 250 mm
Separation range 4-400 kDa
Particle size 4 µm
Stationary phase Hydrophilic diol bonds
Model Diol Guard
Dimensions 4.6 (i.d.) x 12.5
Model Supertherm
Manufacturer MikroLab, Aarhus (DK)
Column Temp. 32°C
Bulk Milli-Q water
Filtration 0.45 µm Cellulose nitrate
Degassing Ultrasonication (45 min)
pH 6.4
Ionic strength 0.17 mM

Buffer composition PBS (see table 2.3 last column)

RID

Autosampler

Pump

Datalogging

Pump (Exp.10)

Mobile phase

SEC Column 1

SEC Column 2

Pre-column

Column oven
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4.1.6 Enzyme location assay 
 

Two enzyme assays were used to test for exo- and endo- enzymatic activity in sub-

compartments of the biofilm reactors. These are thoroughly described by Milferstedt (2001). 

Endo-dextranase activity was assayed using the method developed by Mattiason (1980), with 

minor modifications (Milferstedt, 2001). In short, 200 µl Blue Dextran (30 g/l in 0.1 M PBS 

at pH 6), Reactive Blue 2 labelled 2 MDa Dextran, is added to an acid washed test tube 

containing 200 µl of sample. Following 30 min of incubation on a shaker (3 Hz), 0.9 ml PEG 

4000 (polyethylene glycol, 430 g/l) and 2.5 ml MgSO4
.7 H2O (430 mg/l) are added, and 

vortexed. Two-phase separation for 7 min allows the labelled intermediates (Reactive Blue is 

strongly hydrophobic) to accumulate in the organic phase. An appropriate amount of organic 

phase (here: 500 µl) is then transferred to a microcuvette (plastic) for spectrophotometric 

determination at 620 nm (Perkin Elmer Lambda 2). The method is calibrated against a 

dextranase standard acquired from Sigma Chemicals (Dextranase Paecilomyces lilacinus, 

BioChemika Merck Index 13/2966) and reported as units of Dextranse activity Udex). In the 

initial polymer, the hydrophobic labelled groups of Blue Dextran are balanced by the strongly 

hydrophilic Dextran backbone, giving an overall hydrophilic nature. As the endo-dextranase 

activity proceeds, the increasing relative amount of Reactive Blue in intermediates cause a 

change of hydrophobicity, enabling low Dextran containing intermediates diffusion and 

dissolution into the top organic phase. 

Exo-dextranase activity was assayed using AmplexTM Red glucose assay kit from Molecular 

Probes (A-12210). This assay determines the concentration of glucose monomers as they are 

released by exo-dextranase enzymes (Zhou et al., 1998). The assay is based on colorimetric 

detection of H2O2, a Glucose oxidase product that reacts with the Amplex Red reactant 

catalysed by Horseradish peroxidase (Molecular Probes Inc5). In order to detect glucose, 

microbial uptake was avoided by sterile filtration (0.45 µm PTFE membrane syringe filters) 

and/or NaN3 inhibition (5 mM). 90 µl samples were applied on a 96 well microplate together 

with 10 µl substrate assay solution2, and 100 µl buffer (pH 7.4, kit solution) was added. The 

fluorescent chromophore Resorufin is liberated from the Amplex Red reactant, and measured 

by an automated microplate reader (BMG FLUOstar Galaxy6 equipped with BMG 560-10 and 

BMG 590-EM filters). End point adsorption after 61 min of incubation (28°C) was used to 

                                                 
5 Molecular Probes Inc. (2001) Instructions for use, Amplex Red Glucose Assay Kit (A12210), 
http://www.probes.com 
6 Kindly made available by NovoNordisk, Copenhagen. 
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determine the exo-enzymatic dextranase activity by the presence of glucose oxidised 

(cumulative). The assay was calibrated against glucose in the range (0.05 - 10.8 mg/l, or 10-

2160 ng well plate mass). Samples for enzyme location determination was taken from the 

bulk phase just after experiment 8 (dilution experiment) at relatively high TH (75 min), from 

the biofilm surface by flushing biofilm coupons withdrawn from the inner rotor of the 

Rototorque with PBS (2 ml), and from the biofilm matrix by scraping of directly into a test 

tube. The biofilm matrix sample was disintegrated and homogenised by gentle sonication 

(Branson 2510, 40 kHz for 2 min). All samples were then centrifuged at 4°C for 10 min at 

10.000 G. One sub-volume of the supernatant was filtered (0.45 µm PTFE) while the other 

half represented the unfiltered dissolved fraction. The biofilm matrix sample separated into: 

active native biofilm, native inactivated (NaN3) biofilm, the cellular/matrix solid phase 

biofilm (represented by the re-suspended pellet) and the void volume represented by the 

supernatant (also sterile filtered by 0.45 µm PTFE syringe filter). All samples were kept on 

ice. For details on sampling procedure and sample preparations, see Milferstedt (2001)7. 

 

4.2 Culture tube batch tests 
  

Small scale batch tests were developed in order to study intermediate formation and dynamics 

by coupon samples from the annular reactor. These batches are similar to the annular batch 

whole reactor experiments described above (section 4.1.4), but provided enough samples 

(coupons) to perform simultaneous intermediate experiments on biofilms at the same time, on 

samples of identical initial conditions (same biofilm thickness, growth history, etc.). In 

addition, biofilm mass and thickness were determined just after an experiment in order to 

relate the observed activity to the biomass present. Biofilm slides were sampled from R1 and 

the effect of biofilm mass density and the extent of intermediate formation was evaluated 

using 250 mg/l initial Dextran 160 kDa standards. Inactivation by Azide (NaN3) was 

performed on two slides to evaluate the pure exogenous enzymatic effects on the Dextran 

standards. Coupons were transferred to 60 ml Pyrex culture tubes immediately after sampling, 

pre-incubated at room temperature with 20 ml of PBS and Dextran standard, to give an area to 

bulk volume ratio of 70 m2/m3. Compared to the annular reactor this reduced S/V was 

necessary in order to provide enough bulk volume for sampling (10 x 1 ml samples). The 

Pyres batch was kept on a shaker, and samples were heated immediately after sampling for 2 

                                                 
7 Appendix B, table 18. 
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min in an Eppendorf 2.5 ml tube, and centrifuged for 10 min at 10000 g and filter supernatant 

directly into the HPLC vial and stored at 2°C. 

Pure enzyme studies were also performed in the culture tubes for evaluation of pure 

exogenous enzyme activity and effect on intermediate dynamics. 3.2.1.11 Dextranase, derived 

from the fungi Paecilomyces lilacinus, and 3.2.1.20 α-Glucosidase from Bacillus 

stearothermophilus and 3.2.1.10 oligo-1,6 Glucosidase from Saccharomyces cerevisae were 

used representing endo- and exo- exogenous activity, respectively. Lyophilised Dextranase 

were dissolved in 0.05 M acetate buffer, pH 5.2, while the lyophilised exo-enzymes were 

dissolved in 0.05 M phosphate buffer of pH 5.5 (pH selected based on information from the 

Brenda database8). Representative aliquots were then stored at -20°C until batch tests were 

conducted. The same procedure was followed during sampling as for the annular reactor 

intermediate experiments described above (section 4.1.5), except for the filtration step which 

was omitted (no suspended materials present). All details regarding sampling and handling 

may be found in Milferstedt (2001). 

 

4.3 Tubular biofilm reactor 
 

Tubular reactor biofilm systems may be operated as once through systems, representing the 

ideal plug flow reactor, or with recirculation that may provide close to ideal mixed conditions. 

The advantage of this system is the uniform and well controlled fluid dynamics of the reactor 

that provides a close to uniform biofilm thickness. Rectangular designs allow for direct 

microscopic inspection (Bakke, 1986) that may be used for direct apparent biofilm thickness 

measurements (Bakke and Olsson, 1986). Indirect determination of the true biofilm surface 

shear is possible by measuring the pressure drop over a specific tube distance (Bakke, 1986). 

 

4.3.1 Experimental set up  
 

The tubular reactor system is presented in Figure 4-4, and was kindly provided by Norsk 

Hydro Research department, Porsgrunn Norway9. A glass loop of approximately 2060 mm 

with an inner diameter of 13.5 mm, was connected via 5 mm (i.d.) Marprene pump tubing to a 

recirculation pump (Watson-Marlow 313 U) providing a recirculation rate of 675 ml/min (i.e. 

                                                 
8 http://www.brenda.uni-koeln.de search on 3.2.1.11, 3.2.1.10 and 3.2.1.20 
9 contact person: Jon Hovland Norsk Hydro, Porsgrunn. 
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2.3 retention time per min.). The total loop (incl. tubing) volume was 299 ml, providing a 

specific wetted surface area of 333 m2/m3. An Ismatech Reglo Analog MS4/6-100 peristaltic 

pump loaded the system (143 ml/min) from four substrate flasks via a system of solenoid 

valves (Type Sirai, Z231A, 12 V three way tube valves) connected through Tygon 3603, 5 

mm (i.d.) tubing. Dissolved oxygen was monitored by a CellOx 325 probe placed in a flow 

through mixing cell with magnetic stirring, connected to an Oxi 340 A dissolved oxygen 

meter (WTW GmBH, Germany). pH was kept constant at 7.7 using a phosphate buffer (see 

section 4.1.3) while temperature was kept at room temperature (25°C). Dissolved oxygen was 

logged using a custom made software (LabVIEW 5.0, National Instruments, Austin TX, 

USA) on desktop PC (Digital P90) by an Advantech PCL 818L (Advantech Co. Ltd, Taiwan) 

data acquisition card. The outlet from the top connection of the loop was equipped with an 

optical level switch (Hatteland AS) that controlled the filling cycle of the reactor (see 

operation below). All substrate flasks (10 l Nalgene flasks equipped with gas relief 20 l Tedlar 

Bags (SKC 232-15) filled with N2) were kept anaerobic by stripping with N2, except the 

Nutrient/Buffer flask which was supersaturated with oxygen by sparging with pure oxygen 

gas. Removable plastic coupons were attached to plastic brackets, sealed to the tubular reactor 

 

 

 

Figure 4-4. Tubular reactor system set up used for degradation studies on extracted POM from wastewater. 
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by rubber O-rings connected by custom made Schott caps. pH was controlled by a strong 

buffer (Janning, 1998). Three experiments were performed on the tubular reactor. The 

objective of all experiments was estimation of the depolymerisation/hydrolysis rate 

coefficient. All experiments followed the same procedure (section 4.3.4) and involved 

injection of 70 mg/l POM (as TOC) (experiment 1 and 2), and 275 mg/l POM (experiment 3). 

Experiment 3 also involved an evaluation of initial adsorption dynamics, and particle 

characterisation of pre- and post adsorbed bulk phase. 

 

4.3.2 Substrate extraction 
 

Primary influent from Knardalstrand WWTP (Porsgrunn, Norway) was collected (20 l) and 

immediately filtrated by test sieves (Prüfsieb, DIN 4188) of 20 and 125 µm. Filter retentate 

was washed and diluted in buffer (same ionic strength as the bulk liquid). Before injection to 

the tubular reactor system, samples were kept on ice, or stored at 2°C.  

 

4.3.3 Nutrient media and buffer 

 

Phosphate buffered saline was prepared as reported by Janning (1998). 40 mg/l MgSO4
.7 

H2O, 2.7 mg/l FeSO4, 20 mg/l CaCl2
.2 H2O, 4.5 mg/l NH4Cl, 12 mg/l ATU (Allylthiourea), 

2.5 µg/l HCl, 17.5 µg/l ZnCl, 25 µg/l MnCl2
.4 H2O, 1.5 µg/l H3BO3, 1.5 µg/l CoCl2

. 6 H2O, 6 

µg/l NiCl2
. 6 H2O, 0.5 µg/l CuCl2

.2 H2O, 9 µg/l Na2MoO4
.2 H2O, 1.39 g/l NaH2PO4

⋅2 H2O 

and 0.179 g/l Na2HPO4
⋅2 H2O were dissolved in 10 liter distilled water (MilliQ), autoclaved, 

and re-oxygenated by pure oxygen sparging for 20 min. Another flask was stripped using N2 

to produce anaerobic PBS following autoclavation. Easily biodegradable substrate was 

prepared by dissolving 20 mg/l acetate, 20 mg/l Glucose and 15 mg/l Yeast Extract (Difco) in 

10 l PBS (giving a total organic carbon content of 25 mg/l), and autoclaved before super 

saturation by pure oxygen sparging. pH of all buffered solutions was maintained at pH 7.7 

(Janning, 1998). 

Three wastewater substrate standards were produced by dissolving extracted POM in PBS. 

One high TOC sample of 275 mg C/l was used during the adsorption and hydrolysis 

experiment, while two standards of 70 mg C/l was used for the hydrolysis experiments. 
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4.3.4 Operation and control 
 

The reactor was inoculated by incubating primary inlet wastewater collected at Knardalstrand 

WWTP with PBS in the reactor for 24 hours. Following the mixed batch operation, the 

tubular reactor was loaded with easily biodegradable substrate/PBS by reducing the hydraulic 

retention time from 2 hours to 20 min. The reactor was continuously aerated during the 

incubation and growth phase. After about 3 days of continuous operation a thick biofilm was 

established, with a maximum OUR above 100 mg/l.h. Batch tests were performed following a 

modified procedure originally published by Janning (1998). PBS of supersaturated oxygen 

(30-33 mg/l) was fed the reactor after draining the reactor bulk liquid. Once filled, the reactor 

is mixed by the recirculation pump, and dissolved oxygen is measured at fixed intervals (here 

6 sec.). Logged values are used to estimate OUR by least square fitting to 30 measurements. 

As soon as the dissolved oxygen concentration falls below the lower 0. order set point (here 

15 mg/l), the bulk phase is drained and fresh oxygenated PBS is loaded (30 mg O2/l). In order 

to condition the biofilm for the batch depolymerisation experiments, each experiment was 

performed by going through specific batch steps. Figure 5-23 (left) shows the main steps 

during preparation for the depolymerisation step. In order to remove residual organic 

substrates from the biofilm matrix (e.g. adsorbed SBCOD, storage compounds, degradable 

EPS) the biofilm as subjected to a relative long starvation phase of typically 4-6 hours. 

Background respiration was estimated by the end of the starvation phase. Reactivation using 

readily biodegradable substrates at high initial concentrations (120 mg CH3OH/l) was then 

imposed for estimation of maximum OUR, and to avoid lag-phase behaviour caused by the 

prolonged starvation. Another short starvation period of about an hour then followed to 

metabolise adsorbed readily biodegradable substrates, and possible storage compounds 

(Janning, 1998). As soon as the OUR reached background respiration, anaerobic substrate 

standard for the depolymerisation stage was loaded and allowed to adsorb to the biofilm for 

about 0.5 h. Remaining bulk phase TOC was removed by a short washing (about three 

retention times) by anaerobic PBS. The hydrolysis phase (strictly depolymerisation phase) 

was then initiated by loading the reactor with supersaturated (oxygen) PBS. OUR was 

estimated until background respiration was re-established. 
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4.3.5 Sampling and analytical techniques 
 

For all experiments, samples were taken from each draining of the reactor. During the 

adsorption phase (loading) of experiment 3, samples were also taken directly from the bulk 

phase by recirculating the bulk via a small external batch, and sample directly from that batch 

by pipettes. All samples were transferred to acid washed TOC vials (5 ml), and immediately 

analysed for TOC (Skalar Formacs TOC analyser, Skalar Breda NL). Initial and final particle 

distributions during the adsorption phase were investigated using laser diffraction scanning 

(Sympatec HELOS Laser diffraction pattern analyser). 

 

4.4 Data acquisition and system control 
 

Both experimental systems were equipped with full automatic control facilities, and automatic 

data logging and data evaluation. Custom made programs for data acquisition and control by 

PC interface were developed in LabView 5.0 (Tubular system) and 6.0e (Annular reactor). 

Suitable I/O interface cards and hardware for power supply and relay controls were designed 

and configured to the software. Detailed description of the tubular and annular biofilm system 

software may be found in Appendix 3. 

 

4.5 Calibrations, estimations and error analysis 
 

Even though some calibration and estimation details have been presented above, this section 

presents a comprehensive description of calibration, estimation and error analysis methods 

and strategies. The objective is to present the rationale behind determination of random and 

systematic error contribution. 

4.5.1 Oxygen measurements and OUR estimation 
 

The central parameter for activity estimation and experiment control was dissolved oxygen. In 

both systems, the Oxi 340 meter connected to the CellOx 325 polarographic (Clark type) 

probe provided oxygen readings to the system. The probe calibration was checked before each 

experiment, and recalibrated (in 100% humidity air, OxiCal-SL) if the cell constant was too 

low (<0.9). Accuracy of the probe and meter is listed at 0.5% of reading, which means about 
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0.1 mg/l (at 20 mg/l). Using the super saturated range of the meter (0-100%), 0.1 mg/l is 

equivalent to the resolution of the meter. The analogue output from the meter ranged 0-2 V 

from 0-100% saturation. The PCL 818L logging card had a 12 bit A/D converter covering the 

most appropriate ± 2.5 V range. The digital resolution thus becomes 1.22 mV, corresponding 

to 0.06 % oxygen resolution. At 20°C this is equivalent to about 0.025 mg/l. The accuracy of 

the A/D converter is 1 bit, or 1.22 mV. Thus, the system accuracy seems to be set by the 

meter/probe identical to the system resolution of 0.1 mg/l. Random errors were immediately 

observed, probably caused by 50 Hz net noise, and electrostatic interference from pumps and 

solenoid valves. This was especially observed during the annular reactor experiments. By 

increasing the O2-logging rate drastically (from 0.25/s to 50/s) and calculate the average value 

over 4 s (assuming noise was normal distributed, or at least approximately normal distributed, 

N = 50-200), random noise effects were minimised without changing the original logging 

frequency (0.25 Hz). The standard deviations of the measurements per O2 logging was 

estimated continuously by the Standard Deviation and Variance.vi of LabView, and was 

never found to exceed 0.05 mg/l. Thus, measurement error of dissolved oxygen was set to the 

meter/probe accuracy at ± 0.1 mg/l (95% confidence). 

OUR was estimated using a fixed number (tubular system: 30) of oxygen measurements, or a 

variable number, depending on the last estimated OUR (annular system), between 15 and 50. 

LabView estimated OUR as the slope of the O2 versus time curve, by the least squares method 

of the Linear Fit.vi (LabView 6.0i manual10). By calculating the standard error of the slope 

estimation according to Taylor (1982), an estimate of the uncertainty of the OUR estimation 

was available. This was found to be very constant and independent of OUR level (Covariance 

of OUR and St.error OUR was 0.1). Using six molecular weight standards and three 

concentration standards, the average constant standard error of the OUR estimations was 

found to be 0.38 ± 0.06 mg O2/l.h. 

 

4.5.2 pH measurements 
 

Even though the pH measurements were stable, pH logging followed the same regime as O2 

measurements. Both systems were calibrated using two point calibration standards (pH 4.01 

and 7.00, Radiometer Copenhagen, DK) before each experiment. Tests showed that the Hanna 

electrodes were very stable over time. The cell constants hardly changed during the entire 

                                                 
10 National Instruments Corporation (2000) LabVIEW Help, Part Number 370117A-01 
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experimental campaign (six months). The meters (Metrohm 691 and 692) had an accuracy of 

± 0.01, and resolution of 0.01. The Amphel HI 1910 B electrode (Hanna Instruments) was 

preamplified by an internal battery, providing extended life time and stable signal to the 

meter. The electrode potential was shunted via a buffer to the meter output and logged by the 

±1250 mV range of the PCL 818L board. That provided an A/D converter resolution of 0.6 

mV, i.e. more than sufficient for the meter resolution (1 mV). The overall resolution of the pH 

logging system was therefore <0.01 and with an accuracy of ±0.01. 

 

4.5.3 TOC analysis 
 

Both TOC analysers used in this study were based on high temperature combustion and NIR 

detection of the combusted CO2 gas. The Skalar analyser estimated standard deviations for 

each sample from three (or four) replicates, while the OI analytical analyser provided a fixed 

standard error (in %) from replicates of internal standards.  

 
 

4.5.4 HPLC analysis 
 

Size exclusion chromatography requires column and detector calibration. The column 

separate samples according to molecular weight by different column retention times 

(represented by the elution time). Thus, elution time is directly proportional to molecular 

weight. Refractive index sensors basically respond to almost all chemical compounds, 

unfortunately by variable degrees of response factors. Thus, each compound has to be 

calibrated by a set of concentration standards to calibrate the sensor response for that 

particular compound. Six different certified (DIN) Dextran MW standards were used for the 

calibration of the elution time (see section 4.1.5), four concentrations (5, 40, 100, 250 mg/l) 

were used for each size standard (i.e. 24 calibration samples), except for experiment 10 

calibration which were based on nine calibration standards of: 0, 5, 20 and 100 mg/l. As the 

samples are typically Log-Normal distributed (see Figure 4-3), only a fraction of the standards 

are found under the weighted mean MW. Thus, the peak height is equivalent to a much lower 

actual concentration than the standard. For example, all standards shown in Figure 4-3 are 100 

mg/l, however, the actual concentrations of the peaks are approximately 10 times lower 

depending on the spread of the peaks. The total standard concentration may be found 
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summing the peak response by each polymer class (i.e. integrate the curve using a d(MW) of 

162.15 g/mole). By using the certified analysis data provided by the manufacturer, a 2-

dimensional theoretical response curve may be constructed and used as a theoretical 

calibration curve. The actual response curve of the HPLC system will be projected on the 

intrinsic spreading of the Dextran standards, and will be modified by column and detector 

properties. The actual calibration curve (the one recoded by analysing the standards on the 

HPLC system) was constructed by using the elution time and peak height as representative of 

the sample concentration (concentration of the polymer directly under the peak). By 

comparing this calibration response curve to the theoretical, the relative concentration and 

elution time errors of the system could be determined. 

The Agilent 1100series HPLC system described above was equipped with custom made data 

acquisition soft- and hardware developed as part of this work. The RID detector provided mV 

direct output (1:1 buffered signal) that was logged using an ADAM 4012 A/D converter read 

by an ADAM 4520 I/O converter (RS 232). Control signals (start, stop signals) were read 

using a PCL 818L IO card. All hardware was purchased from Advantech Corp (KGS systems, 

Tromsø NOR). Logging and operation program was developed in LabView 6.0i and run from 

a Pentium II PC. The ADAM A/D converter provided 16 bit band width over a ±150 mV 

range, providing digital resolution of 5 µV. The analogue output from the RID detector 

provided resolution of 10 µV, equivalent to 60 nRIU (refractive index units). This is a relative 

low sensitivity (the short term S/N is 2.5 nRIU), but good enough compared to the long term 

drift stability (200 nRIU/h). Thus, the error of the RID sensor system was ± 60 nRIU,  and the 

logging system 167 nRIU per 10 µV.  That gives an overall system error of ± 167 nRIU. 

 

4.5.5 Enzyme assays 
 

Dextranase (from the fungus Paecilomyces lilacinus) was used to calibrate the Dextranase 

assay (Mattiasson, 1980). Six Dextranase standards (0, 6, 10, 20, 40, and 60 mU) were used 

for calibration against Blue Dextran (6 mg/3.8 ml) by measuring the water phase adsorption at 

620 nm. Duplicates were used to establish standard deviations and errors. The assay detection 

limit was chosen to be three times the mean standard error of the calibrants (8%), found to be 

1.5 mU. This gives an assay working range of 1.5 - 60 mU. During the experiments, duplicate 

samples were assayed and compared to the Dextranase activity standard curve. 
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Similarly, the α-Glucosidase an assay was calibrated by 10 substrate standards, standard 

errors estimated from triplicate standards and calibration range selected in accordance with 

the assay kit instructions to 0.05-10.8 mg/l. 

 

4.6 Mathematical modelling 
 

This chapter presents the development of a kinetic and stoichiometric model for exo- and 

endo-hydrolytic depolymerisation of Dextran. Expressions have been deduced as part of this 

work, but bears similarities to the models suggested by Suga et al. (1975) and Dean and 

Rollings (1992). 

 

4.6.1 Endo-dextranase activity 
 

Figure 4-5 show the reaction scheme for endo-hydrolysis of the mono-specie polymer. Let Pj 

represent an intermediate polymer during the degradation of Pn, and intermediates, to Pk. The 

proper substrate for enzymatic activity is the polymer bond between each monomer. 

Assuming the mechanism of hydrolysis of any bond inside the polymer chain to be equal, we 

assume the basal affinity for each bond to be equal (analogue to the equal probability of bond 

attach of stochastic models, and in a Michaelis-Menten expression, equivalent of assuming 

size independent KM values). Also, the rate of conversion of all enzyme-substrate complexes 

are assumed equal, regardless of the substrate size (k0 for all reactions are equal). The 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5. Stoichiometries for endo-depolymerisation activity against a linear homopolymer (e.g. Dextran) 

 + Pn ↔ E.Pn � E + Pn-k + Pk 
  : 
  : 
 + Pj+1 ↔ E.Pj+1 � E + Pj+1-k + Pk 
 
E + Pj ↔ E.Pj � E + Pj-k + Pk 
 
 + Pj-1 ↔ E.Pj-1 � E + Pj-1-k + Pk 
  : 
  : 
 + Pk+2 ↔ E.Pk+2 � E + P2 + Pk 
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competition for free enzyme among all intermediates leads to an apparent competitive 

inhibition by all other reactions catalysed by the same enzyme. By projection of the bi-

substrate competitive model presented by Cornish-Bowden (1995) into a multi-substrate 

expression, the formation rate of intermediate k may be represented by: 
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where: k0 is the endo-specific activity [mole/mg.s], e0 is the total endo-acting enzyme 

concentration, KMj is the Michaelis-Menten coefficient for the binding to polymer j and KMi is 

the same coefficient for polymer i. This rate expression was developed from Briggs-Haldane 

treatment (Cornish-Bowden, 1995) of a tri-substrate system, and projected onto n substrates. 

Mathematical proof may be achieved by induction (not shown here).  Since each endo-

hydrolytic reaction is stochastic in terms of which bond are attached, products may be 

assumed distributed with equal probabilities in a mixture of many enzymes and substrate 

molecules. This implies the following stoichiometric product coefficient for product Pk from 

substrate Pj : 
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where νPk/Pj is the monomer based stoichiometric coefficient stating how many monomers of 

the original polymer j is converted to the product polymer k. This implies j-2 stoichiometric 

coefficients which have to satisfy the mass balance: 
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Proof: 
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Depolymerisation rate of the formed intermediate is deduced the same way, with the rate 

expression: 
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and the stoichiometric coefficient -1. These expressions relate to the substrate concentrations 

as mass per volume, and not molar concentrations (see below). 

 

4.6.2 Exo-dextranase activity 
 

Figure 4-6 presents the reaction mechanisms and stoichiometry of the exo-depolymerisation 

activity of a linear homo-polymer. Let Pj represent the concentration of the j-monomer 

polymers. Exo-hydrolysis (hydrolysis of monomers from the non-reducing end of the 

polymer) of any polymer and oligomers will be subjected to the same kind of multi-substrate  
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Figure 4-6. Reaction mechanisms and stoichiometry of exo-dextranase activity. 

 
 
competitive inhibition as for endo-hydrolysis. Exo-hydrolysis activity will, however, be 

further reduced due to it’s affinity for only one linkage (the closest polymer bond to the non-

reducing end) of the polymer chain. Thus, the number of monomers of the polymer will 

reduce the affinity factor in the rate equation when weight per volume units is used. The 

competitive inhibition factors are also reduced by the same factor. Using the same arguments 

as outlined for the deduction of the endo-depolymerisation kinetics, formation by exo-

depolymerisation may be described by: 
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There are only two stoichiometric coefficients (mass per mass) for each reaction, one for the 

monomer liberated and one for the remaining polymer. Both are only dependant on the 

polymer size, 

 

jS P
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for the monomer, and 

 

 + Pn ↔ E.Pn � E + Pn-1 + S 

  : 
  : 
 + Pj+1 ↔ E.Pj+1 � E + Pj + S 

 
E + Pj ↔ E.Pj � E + Pj-1 + S 
 
 + Pj-1 ↔ E.Pj-1 � E + Pj-2 + S 

  : 
  : 
 + P2 ↔ E.P2 � E + S + S 
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for the remaining polymer, and so that they do obey the mass balance requirement: 

 

j j 1 jS P P P

j 1 1
1

j j
ν ν

−

−+ = + =      ( 4-9) 

 

Depolymerisation of intermediate k will be, analogue to the endo acting depolymerisation rate 

of k: 
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multiplied with the stoichiometric coefficient -1.  

Now, the Michaelis coefficients in both the exo- and endo-enzyme rate equations are the true 

substrate affinity coefficients, both in the substrate affinity factor (KMj) and the substrate 

competitive inhibition factors (KMi). Using the assumption of equal affinities regardless of 

substrate size, the formation expressions for the endo- and exo depolymerisation mass 

balances reduces to: 

k j

n
0 ,endo 0 ,endo jk

P Pn
j k 2

M ,endo i
i 4

k e PdP
dt K P

ν
= +

=

	 

� �⋅ ⋅
� �= ⋅
� �+
� � �

�
�

    ( 4-11) 

and 
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respectively, and for the remaining polymer 
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The same simplification will apply to the depolymerisation rate expression of the endo- and 

exo-activity substrates. The overall dynamic expression for the intermediate k thus becomes 

(rate multiplied by the appropriate stoichiometric coefficient): 
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In case of molar units, the equation of endo-depolymerisation formation changes to: 
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due to endo-enzymes affinity for polymer bonds rather than the molecule itself, and the 

stoichiometric coefficient changes to: 
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For exo-depolymerisation, the affinity is again limited to the non-reducing end bond, which 

gives the following rate expression: 
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and 
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Stoichiometric coefficients for exo-hydrolysis are both one. The overall batch mass balance 

thus becomes: 
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which is identical to the model proposed by Suga et al. (1974). 
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5 Results 
 
This section presents system evaluation, calibration, experimental and modelling results.  
 
 

5.1 System performance and calibrations 
 
System mixing conditions were evaluated using a strong saline bulk solution, and 

continuously measure bulk phase conductivity (initially 2180 and 2650 µS/cm, R1 and R2 

respectively) during inlet dilution (Qin,1: 17.33 and Qin,2: 16.66 ml/min). Figure 5-1 show the 

dilution curves for the reactors. Based on the estimated dilution rates, the reactor volume 

could be estimated. However, flow rate measurements showed that the flow rate changed 

during the progression of the experiment (after 320 min: 16.17 and 16.75 ml/min, 

respectively). By linear approximation of flow rate change, and using the least square 

approximation on the data, VR1 and VR2 were found to be 1156 and 1181 ml (R1 and R2). That 

is close to the measured volumes (using weight and distilled water) of 1175 and 1168 ml (R1 

and R2, respectively). The exponential match indicates very close to perfect mixed conditions 

in the reactors at a recirculation flow rate of 40% (570 ml/min). 

 

 

Figure 5-1. Dilution experiment of R1 and R2 using NaCl as tracer and conductivity measurements. 
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Figure 5-2. Oxygen loss from empty reactor (distilled water) following 40% Ethanol disinfection and 
oxygenation. Inserts show the estimated relation between OURloss and bulk phase O2 used to compensate for the 
apparent OUR recorded. Also indicated are the range split used for the compensation (high and low OURloss 
ranges). O and � represent data of R1 and R2 respectively, while lines show the two range KLa models used. 

 

 

Figure 5-2 shows the results of the system oxygen loss experiment. An ordinary KLa model 

did not fit the O2 data to the extent required, however, splitting the observed range (24-40 

mg/l) into a high and low OUR loss range was sufficient to represent the observed OURloss 

rate. This resulted in the calibration of a two range KLa model that was implemented in the 

Rototorque reactors software to compensate for apparent OUR due to oxygen diffusion losses 

over the system boundaries (models and parameters are listed in Figure 5-2). Above 30 mg/l 

the loss effect is quite significant for both reactors, while a rather limited and constant effect 

were found below this limit. As most experiments were conducted in the 22-30 mg/l range, 

the effects were restricted to the endogenous phase OUR. 

The SEC-HPLC and endo-enzyme assay developed (or modified) in this study were calibrated 

according to section 4.1.5. Complete description and discussion of the methodology and 

calibration procedures are given by Milfersted (2001). Details regarding the calibration 

methodology and calibration results are found in Appendix (9.3). 

 

22

24

26

28

30

32

34

36

38

40

0 4 8 12 16 20

Time [h]

O
2 

[m
g/

l]

R1
R2

Apparent EUR due to oxygen loss in reactor 1

-2

0

2

4

6

8

10

12

24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00
Oxygen (mg/l)

E
U

R
 (m

g/
l/h

)

Apparent EUR due to oxygen loss in reactor 2

-2

0

2

4

6

8

10

12

14

16

18

20

24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

Oxygen (mg/l)

E
U

R
 (m

g 
O

/l/
h)

Upper range  
(O2>30 mg/l) of the  
oxygen loss curve modeled  
by the first KLa coefficient. 
 

( )loss L high 2,sat.high 2OUR K a O O= − ⋅ −  

Lower range (O2<30 mg/l) of the oxygen loss 
curve modeled by the second KLa coefficient 
 

loss L low 2,sat.low 2OUR K a (O O )= − ⋅ −  
    KLa             O2,sat    

  High      Low        High        Low   
 

0.93     0.1      31.15      22.1 
 

1.71    0.12     30.75    21.9  



 68

5.2 Effect of polymer size on depolymerisation kinetics 
 

Effect of polymer size on depolymerisation kinetics is evaluated by observing degradation 

rates the batch operated annular biofilm reactor. Experiment 5, 7 and 10 (Table 4-1) all 

focused on this objective by analysing the observed bulk phase TOC and OUR results from 

injection of various sample standards. 

 

5.2.1 Experiment 5, pilot testing 
 

The objective of experiment 5 is to compare respiration rates from injections of sample 

standards at variable initial concentrations. Also, both reactors were fed the same substrates 

up to and during the experiment. By comparing the response from the reactors, conclusions 

could be drawn about the reproducibility and variability of the respirometric method. 

Figure 9-5and Figure 9-6 (appendix 9.4) show the results of various Dextran standards and 

initial concentrations for both reactors on the observed OUR (experiment 5). No clear effect 

of the larger molecular weight standards can be seen, even though some curves show 

indications of gradually decreasing degradation rates as the initial molecular weight 

distribution increase. The obscurity of the data may be explained by oxygenation and base 

addition failure (software timing failure due to overloaded memory) during the 200 mg/l 160 

kDa sample standard batch, which caused both reactors to become anaerobic, and suffering a 

pH drop. Injection of repeats of 200 mg/l 160 kDa was degraded in a distinct different fashion 

compared to the ones before the software failure (Figure 5-3, left panel). However, before the  

 

 

 

 

 

 

 

 

 

Figure 5-3. OUR results following injection of 160 kDa to R1 just after the process disturbance (June 11) and a 
week later (left panel). All data were zeroed (i.e. reduced by the OUR prior to injection) in order to compare the 
relative OUR peaks. During the batch experiments before the anaerobic accident, peaks were almost identical 
between the reactors (right panel). 
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process disturbance, the system showed good correlation between samples and strikingly 

similar behaviour in the two reactors (Figure 5-3).  Being a pilot experiment, experiment 5 

showed that equal and constant operating conditions must be provided in order to compare the 

kinetic effects of various molecular weight standards. Further, unknown high oxygen 

concentration OUR losses were observed and compensated for in order to provide consistent 

data (ref. discussion in Appendix 9.4). This problem was solved by increasing the oxygen 

range applied during the batch tests, from [10-24] to [22-30]. Several batch runs also failed 

due to accumulation of oxygen/gas bubbles around the inner cylinder shaft of the reactors. 

Increasing the distance between the bottom stopper of the oxygenation column and the 

oxygen diffuser reduced flow trapping of oxygen bubbles in the bubble column. The results of 

variable initial sample concentrations suggested that the optimal sample standard was 80 to 

200 mg/l. This is based on the necessary signal to noise ratio required, and the batch time per 

sample. Thus, initial sample concentrations of 100 and 200 mg/l were chosen for later 

experiments. 

 An important conclusion from the pilot experiment is that in order to compare degradation 

effects between samples of different molecular weight, injections had to be conducted as close 

as possible (time factor) with reactors of similar growth history. Two "close in time" late 

experiment 5 injections were performed in order to compare standards of different molecular 

weight (equal initial concentrations). Figure 5-4 show the results of 80 mg/l initial 

concentration of 38.1 and 513 kDa sample standards injected to both reactors June 27 (17:33) 

and 28 (10:30). Significant difference between the two molecular weight standards was 

observed, especially for R1. An additional injection of 80 mg/l Glucose emphasize the size  

 

  

 

 

 

 

 

 

 

 

Figure 5-4. Respirograms of "close in time" injections to R1 (left) and R2 of 80 mg/l Dextran 38.1 and 513 kDa. 
Data are zeroed to the OUR at injection, providing ∆OUR data for relative comparison 
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effects providing both a stronger initial OUR response as well as shorter overall degradation 

times. This result also supports the assumption for the depolymerisation experiments; that 

depolymerisation is the rate limiting step during total degradation of Dextran polymers. 

 

5.2.2 Experiment 7 
 

Experiment 7 involved the same standards as applied during experiment 6, except that 

degradation batch tests were only performed on 200 mg/l initial concentrations, and that 

additional analysis on bulk phase TOC and SEC-HPLC analysis of intermediate dynamics 

were conducted. This section will only report OUR and bulk phase TOC data, whereas 

intermediate data will be presented later. 

After the end of experiment 5 clogging of tubes and abnormal OUR under starvation 

conditions indicated that too much biomass accumulated in the reactors. This was concluded 

from draining and opening the reactors for direct inspection. By introducing regular 

"detachment" events under minimum hydraulic retention time (ΘH = 8 min.), maximum 

recirculation rate (QR = 1200 ml/min) and maximizing shear forces by increasing rotor speed 

to maximum (from 40%), settled and attached biomass from the bottom plate was re-

suspended and washed out over 45-60 min. Both reactors were also checked for gas 

accumulation around the rotor shaft, and evacuated if occurring through the slide sample port. 

Detachment events and gas removal were performed before each injection to secure equal 

biomass and gas free conditions. Biofilm mass was also reduced by reducing the organic 

loading to the reactors during the 14 days of acclimatisation prior to the experiment (10 mg/l 

Dextran 160 kDa, ΘH = 28 min, or about 2.2 g COD/m2.d). Oxygen range was set to [22, 32] 

mg/l and pHmin at 5.75. 

Assuming hydrolysis of Dextran to be the rate limiting step during mineralisation (Ubukata, 

1992; 1997; 1999), observed bulk phase carbon and OUR dynamics represent the rate of 

depolymerisation of the initial and intermediate polymers. For the biofilm batch system, the 

following mass balance describe the Dextran dynamics 

 

s
A f

dX
V r A

dt
⋅ = − ⋅       ( 5-1) 
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where V is the bulk phase reactor volume [m3], Af is the total biofilm area, XS is the polymer 

bulk phase concentration [g TOC/m3] and rA is the direct growth areal removal rate [g 

TOC/m2.h]. Janning (1998) showed how kinetic batch experiments could be interpreted using 

the kinetics developed by Harremoës (1978). Depending on the bulk substrate concentration, 

the observed kinetics would change from 0.order via ½. order to 1. order, according to shift in 

the intrinsic biofilm degradation rate from 0 to 1.order kinetics.  Assuming the biofilm is at 

any time partly penetrated, intrinsic Monod kinetics may be used to describe the observed 

bulk phase substrate concentration using a single equation (Rittmann and McCarty, 2001). 

This approach is advantageous when the shift between intrinsic kinetics is hard to define 

based on the data. The areal removal rate is given by: 

 

S b
A 1/ 2,A b S

S

K S
r k S K ln

K
	 
+= − ⋅ � �
 �

    ( 5-2) 

 

where k1/2,A is the areal specific removal rate coefficient [(g/m3)0.5/d], KS is the Monod half 

saturation coefficient [g/m3] and, according to Harremoës and Henze (2002), k1/2,A relates to 

the biofilm specific removal rate as: 

 

S1 / 2,A 0 , f X , fk 2 k D= ⋅ ⋅      ( 5-3) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Bulk phase TOC concentrations after injection of 200 mg/l (reactor concentration) Dextran standards 
of varying molecular weight (average molecular weight) to R1 and R2 (right). Insert shows the bulk phase 
concentration immediately after the injection (expand of main figure). 
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where DXs,f is the substrate diffusion coefficient in the biofilm [m2/d]. k0,f is the zero order  

intrinsic reaction rate coefficient, and represents the maximum substrate removal rate, defined 

by: 

max f
0 , f

X / S

X
k

Y

µ ⋅
=       ( 5-4) 

 

where µmax is the maximum specific growth rate of biofilm biomass [1/d], Xf [g/m3], and YX/S 

is the maximum biomass yield coefficient [g/g].  

Bulk phase TOC (mg C/l) during injection of 200 mg/l Dextran standards (equivalent to 89.4 

mg TOC/l) is presented in Figure 5-5. Samples were taken after 0.5, 1, 2, 3, 7, 20, 60 min, and 

then at appropriate times depending on respiration rates. Table 5-1 lists the half order areal 

specific degradation coefficients for each initial size standard following linearised regression 

analysis, and the fitted correlation coefficient obtained. KS was kept constant at 1.5 g TOC/m3 

based on literature values for the hydrolysis product (Glucose; Henze et al., 2000), while k0,f 

was adjusted by least squares minimisation. As can be seen from the insert in Figure 5-5 the 

initial bulk phase TOC was for all sample injection significantly lower than the calculated 

concentration (89.3 mg TOC/l). This could be the result of fast initial adsorption of the 

polymers to the biofilm surface/matrix, or degradation of the polymers during storage (this is 

a possibility since rather old standards, about 6 weeks, were used in this experiment). As no 

mechanism of adsorption is included in the model used for interpretation, the latter was 

anticipated during rate estimations. Dextran diffusion coefficients were estimated using the 

Stoke-Einstein equation (5-5) compensated for biomass density, DXs,f = 0.3.DXs,b, (Stewart, 

2003b),   

 

Init. MW 
 

[kDa] 

Est. Df .1010 
 

[m2/s] 

Est. k0,f   
 

[kg COD/m3.d] 

Est. k1/2,A 
 

[kg COD/m3.d] 

δδδδ k1/2,A  
 

[g/m3.d] 

Number of 
data points 

 

k1/2,A 
Correlation 
coeff. [r2] 

  R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

10.5 0.88 132 216 0.86 1.11 0.07 0.04 10 9 0.949 0.990 

38.1 0.50 346 226 0.66 0.86 0.02 0.02 9 10 0.996 0.998 

513 0.139 502 608 0.67 0.74 0.01 0.04 10 9 0.995 0.975 

35000 0.019 108 1380 0.12 0.41 0.01 0.02 10 9 0.935 0.960 

 
Table 5-1. Effect of Dextran initial molecular weight on the estimated half order degradation rate coefficient 
k1/2,A, estimated diffusion coefficients, Df, and intrinsic degradation rate coefficient, k0,f. 
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Figure 5-6. Pullulan (×) and Dextran (×) diffusion coefficients in water (Roger et al., 2000; Wu, 1993) including 
Stoke-Einstein estimation , and Pullulan effective diffusion coefficients as measured in agarose gels (�). The best 
estimate through the liquid diffusion data is indicated. Stoke diameter (nested sphere) related to molecular 
weight is indicated on the second (right) ordinate. 

 

 

B

e

k T
D

6 Rπ µ
⋅=

⋅ ⋅ ⋅
     ( 5-5) 

 

where kB is the Boltzman constant, T is the temperature, µ  is the solvent viscosity and Re is the 

hydrodynamic (equivalent sphere) polymer radius [m]. Dextran is polymerised through three 

separate bonds, a property resulting in a range of rotational and vibrational states between 

each monomer unit. Thus, the polymer chain becomes extremely flexible, and takes on the 

structure of a nested sphere (Smidsrød and Moe, 1995). The hydrodynamic radius may be 

represented by the radii of inertia, RG  

 

e GR Rξ= ⋅       ( 5-6) 

 

where ξ is a size independent constant at approximately 0.8 (Smidsrød and Moe, 1995). Due 

to the flexible and partial branching of the polymer chain, Dextran has a low RG and relates to 

the molecular weight as 
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Figure 5-7. Estimated half order areal removal rate coefficients plotted against initial Dextran molecular weight 
(initial concentrations of 200 mg/l). 

 

 

0.5
GR M∝       ( 5-7) 

 

for a polymer dissolved in a "good" solute. Thus, the diffusion coefficient of Dextran 

theoretically relates to the inverse root of their molecular weight. Figure 5-6 show reported 

relations between Dextran and Pullulan molecular weights (Roger et al., 2000; Wu, 1993) and 

the observed diffusion coefficient in water and hydrated gels. As indicated, the diffusion 

coefficient relates to the Dextran molecular weight very close to the theoretical anticipated 

value.  

From Figure 5-5 it is possible to evaluate whether degradation rates decrease systematically as 

the initial average molecular weight of the Dextran substrate increase. The half order removal 

coefficient is plotted against the average molecular weight of the initial substrate standard in 

Figure 5-7. Even though the data are limited, there seems to be a systematic reduction in k1/2,A 

as the initial molecular weight of the polymers increase. 

Respirograms of the same Dextran standards are presented in Figure 5-8. Background 

(endogenous) respiration is indicated by the OUR level before injection at t = 0 h. OUR could 

not be estimated during re-oxygenation, observed in the respirograms as gaps on the OUR 

curves. This effect was especially pronounced during high respiration rates when more 

frequent re-oxygenation was required. An immediate response can be seen for all standards 
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Figure 5-8. Respiration rates during depolymerisation and degradation of Dextran size standards in experiment 7. 
Lines represent the modelled OUR based on the half order kinetics in (5-2), using the estimated half order 
removal rate coefficient listed for each standard in Table 5-1. 

 

upon injection except for the blank (pure PBS standard; not included in the figure). This 

indicates the presence of low molecular Dextran in all standards. Apart from the immediate 

response, all OUR curves resemble a log-normal response as would be expected from the log-

normal MW distribution of the Dextran standards (ref. Figure 4-3). Also shown in Figure 5-8 

is the estimated OUR based on the TOC removal rate estimated from the TOC data, found by 
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multiplying the TOC removal rate with the theoretical stoichiometric coefficient of 0.79 g O2/ 

g TOC. By comparing the estimated OUR to the measured, some information regarding the 

adequacy of the modelling approach can be made. Both the shape and, especially, the initial 

OUR estimation indicate that the single direct substrate degradation model does not reflect the 

complexity and multi reaction set involved. Nevertheless, the half order rate estimation is an 

applicable tool to investigate the effects of initial polymer size as intrinsic reaction or 

transport rate effects are reflected in the coefficient. The peak like OUR estimation simply 

reflects the result of not taking diffusion time nor gradients into account, but treating the 

transport limiting effects as part of the reaction kinetics (deviation introduced by the model 

structure). In addition, assuming the polymers standards to be directly degradable without 

taking possible intermediate dynamics into account, produce the linear reduction response 

form which is very different from the almost bell shaped measured OUR curve (deviation 

introduced by the substrate structure). Nevertheless, the OUR estimation comparison is useful 

in order to evaluate the bulk phase TOC rate analysis. The areas under the OUR estimation 

and measured data curves are approximately equal, indicating that the stoichiometry of the 

model is correct. Also, the estimated OUR fairly good reflects the measured OUR during the 

latter phase of the batch were the system is not that influence by the initial injection. That is 

really not surprising as the reaction-diffusion intrinsic model has been developed and applied 

on steady state situations, rather than non-steady state batch systems. Interestingly, the model 

seems to be more accurate for the higher molecular weight standards (excluding the colloidal 

injection) during the initial phase. This may indicate that the lower size standards are transport 

limited, while the higher are limited by the depolymerisation rate.  

 

5.2.3 Experiment 10 
 

Experiment 7 showed that it is possible to evaluate the effects of initial polymer molecular 

weight on the observed degradation kinetics by applying a direct growth model with transport 

limitations intrinsic in the reaction rate expression. However, limited number of sample 

standards and uncertainties related to the initial concentrations suggested repeating the 

experiment using several freshly prepared standards. Thus, 100 mg/l standards of Glucose 

(0.18 kDa), 5, 10.5, 41.3, 160, 473, 513 and 35000 kDa were applied to R1 (only) while  
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Figure 5-9. Bulk phase TOC concentrations after injection of 100 mg/l (reactor concentration) Dextran standards 
of varying molecular weight (average molecular weight). Insert show the 36 MDa standard degradation kinetics. 

 
 
sampling for bulk phase TOC and intermediate dynamics. The experiment was performed just 

after experiment 9 where initial concentration effects were studied using 160 kDa standards. 

Therefore, the biofilm was active and adapted to Dextran substrate. Detachment events and 

gas evacuation were performed as described in section 5.2.2. 

Figure 5-9 shows the bulk phase TOC development following injection of 100 mg/l 

Dextran/Glucose sample standards to reactor 1. Note that all initial concentrations (measured 

after 30 and 60 sec.) are close to the estimated initial TOC (44 mg/l for Dextran, 40 mg/l for 

Glucose) suggesting the observed deviation during the initial stages of batches in experiment  

 
 
Init. MW  

 
[kDa] 

Est. Df .1010 

 
[m2/s] 

Est.  k0,f  
 

[g/m3.d] 

Est.  k1/2,A 
 

 [g/m3.d] 

δδδδ k1/2,A  
 

[g/m3.d] 

Number of  
data points 

k1/2,A 
Correlation 

coeff. [r2] 
0.18 2.07 261918 1.88 ±0.07 8 0.9998 

6 1.14 289218 1.51 ±0.03 8 0.998 

10.5 0.88 294565 1.34 ±0.04 7 0.996 

41.2 0.46 373043 1.08 ±0.04 8 0.997 

160 0.24 383541 0.79 ±0.06 8 0.990 

473 0.144 463810 0.67 ±0.05 6 0.996 

513 0.139 342205 0.57 ±0.03 9 0.997 

35000 0.019 26356 0.057 ±0.009 11 0.89 

 

Table 5-2. Effect of Dextran initial molecular weight on the estimated half order degradation rate coefficient 
k1/2,A, estimated diffusion coefficients, Df, and intrinsic degradation rate coefficient, k0,f. 
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Figure 5-10. Half order hydrolysis rate dependency of initial Dextran molecular weight. Dashed lines (thick) 
indicate transitions zones between dissolved polymer and colloidal polymer kinetics (1-10 MDa), and the 
membrane transport system cut off limit (0.6-1 kDa). Regression is estimated for the dissolved polymers. Error 
bars indicate estimated standard deviations. Dotted line represents a theoretical half order limited rate as defined 
by equation (5-2) using diffusion coefficients from equation (5-5) and constant degradation kinetics, k0,f. 

 

 
7 to be the result of degradation of sample standards and negligible adsorption. Applying the 

same mathematical framework as described in section 5.2.2, Table 5-2 lists degradation rate 

coefficients, estimated uncertainties (from linearised regression analysis) and correlation 

coefficients for the modelled degradation rates in Figure 5-9. Using the diffusion coefficients 

estimated from Figure 5-6 (also listed in Table 5-2), half order degradation rate coefficients 

are estimated by least square approximation between modelled and observed bulk phase TOC 

concentrations. Figure 5-10 shows the result of the correlation between the half order 

degradation coefficient and initial molecular weight. Depending on the initial average 

molecular weight there seems to be three distinct dynamics involved in the Dextran 

degradation. The first region comprising the monomer (Glucose) up top about 0.8-1 kDa 

seems to have no effect on k1/2,A, while a logarithmic reduction between 6 to 500 kDa fits the 

data quite well (r2 = 0.99). The one standard from the substrate region above 1 MDa indicate 

that the degradation follow a different rate, with distinctively different dynamics as the 

substrate move into the colloidal size spectra (0.05-0.5µm). Also shown is the estimated 

degradation rate effect on k½,A due to the reduced diffusion coefficients inserted in equation 

(5-3) keeping the intrinsic degradation rate coefficient, k0,f, and KS constant. As can be seen, 

the effect of transport rate reductions would suggest a stronger reduction in the observed 

degradation  
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Figure 5-11. Respiration rates during depolymerisation and degradation of Dextran size standards. All plots are 
shown in similar scales in order to compare OUR for the various size standards, except the colloidal standard due 
to low degradation rates. Lines represent the modelled OUR based on the half order kinetics (5-2), using the 
estimated half order removal rate coefficient listed for each standard. The thick (upper) lines represent OUR 
estimates based on the theoretical stoichiometry, while the thin line show the OUR using the measured 
stoichiometric coefficient. 

 

rates, indicating that elevated transport dynamics due to intermediate formation and dynamics 
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Respirograms of the same Dextran standards are presented in Figure 5-11. An immediate 

response can be seen for all standards upon injection except for the blank (pure PBS standard; 

not included in the figure), again indicating the presence of low molecular weight Dextran in 

all standards. Apart from the immediate response, all OUR curves resemble a log-normal 

response similar to experiment 7. The highest OUR response resulted from Glucose injection. 

Also, final degradation, defined as the time of which background respiration is re-established, 

was accomplished first for the glucose standard, increasing gradually as the initial Dextran 

standard size increased. The maximum OUR response followed a systematic trend as 

substrate initial average molecular weight increased. Peak OUR responses for the injected 

Dextran standards and Glucose are presented in Figure 5-12. The reduction in net peak 

response correlates well with the logarithm of the average initial size of the Dextran standard. 

As both the total degradation time is shorter, and peak response for the monomer is always 

higher than the polymer standards, and both factors are changing systematically according to 

average initial molecular weight, depolymerisation of Dextran is most likely the limiting step 

during Dextran degradation, validating the methodological assumption underlying the 

experiments. Figure 5-12 also shows another interesting correlation. The slope of OUR 

relaxation was defined as the slope of the OUR data as the batch OUR declines back to 

background respiration levels. This part of the OUR curve represent the most undisturbed part 

of the batch degradation test, and shows the respirometric response during low concentration 

of bulk TOC (ref. Figure 5-9). Similar logarithmic correlation between this indicator  

 

 

 

 

 

 

 

 

 

 

Figure 5-12. OUR change (left) and slope of relaxation plotted against initial molecular weight. The change of 
OUR was determined by subtracting the peak OUR value from the estimated endogenous respiration, while the 
slope of relaxation was determined by fitting a linear curve to the relaxation slope of the OUR curve. Correlation 
estimation relates to dissolved polymers (left) without the colloid particle (35 MDa) for the slope estimation (€, 
right). Circles represent Glucose. 
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parameter can be found as seen in the other plots. It may be interpreted as the first order 

degradation correlation, which is intrinsic in the model used here (Rittmann and McCarty, 

2002). The OUR curves (Figure 5-11) also show OUR estimates based on the estimated areal 

degradation rates (5-2), and adjusted by the theoretical calculated stoichiometry between 

oxygen and Dextran/Glucose of 0.78 g O2/g TOC. As the model applied does not take 

diffusive time nor biological time lags into account, OUR is overestimated during the initial 

phases of each batch. The relaxation back to background respiration levels is, however, 

relatively well described by the simple direct growth model applied, as the time scale is 

longer. As for the higher molecular weight standards of experiment 7, the model seems to be 

more accurate for them, indicating that the lower size standards are transport limited, while 

the higher are limited by the depolymerisation rate. Figure 5-11 also shows that the estimated 

OUR curves suggest higher total oxygen consumption than the measured. The stoichiometric 

coefficient used here is based on theoretical deduction as suggested by Heijnen (1999) by 

estimation, using thermodynamically based arguments, of the maximum theoretical 

heterotrophic yield on Glucose. Underlying this approach is the assumptions that maintenance 

requirements are negligible during growth, and that all assimilated substrate (carbon) is used 

for energy generation (catabolism) and cell growth (internal anabolism). This yield estimation 

does not take into account synthesis of EPS or other exogenous microbial products, and it 

represents the maximum yield. Thus, overestimation of OUR could easily be a result of too 

high O2 to TOC yield factor. Using a standard trapezoidal integration rule (Kreyszig, 1988), 

an integration software was designed and programmed in LabView (6.0i), and each OUR 

diagram from the injected Dextran standards were integrated. Observed yield coefficients 

were found as the ratio between the sample standard initial TOC and the integrated OUR 

curve. The result of this estimation will be presented later. Replacing the calculated 

theoretical yield by the estimated, recalculation of the estimated OUR curve from the bulk 

phase TOC kinetics resulted in the OUR estimations shown in Figure 5-11, as thin lines. 

Naturally, these OUR estimations show better fit than the theoretical estimates, and illustrate 

that using true stoichiometric coefficients enable fairly good estimations of measured OUR 

based on the degradation kinetics estimated on TOC data. 

Before turning to intermediate dynamics, a short evaluation of the assumptions made as part 

of the modelled data interpretation needs comments. The first assumption made was that the 

rate of hydrolysis is slower than the rate of mineralisation. This assumption was picked up 

above, and by comparing hydrolysis product OUR to Dextran OUR it is clear that this 
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assumption is valid as the OUR on glucose was faster and stronger (peak height) than 

subsequent Dextran polymers. The other major assumption is that the biofilm is partly 

penetrated by the sample standards. Harremoës and Henze (2002) suggested using the inverse 

Thiele modulus, Φ, that represent the governing parameter for diffusional limited reactions in 

biomass gradients, to calculate the substrate penetration depth as: 

 

Xs
P

0 f

2 D SL
L L

k
β

Φ
⋅ ⋅= = ⋅ =      ( 5-8) 

  

where: LP is the penetration depth [m], L is the real biofilm thickness [m], S is the bulk phase 

limiting substrate concentration [g/m3] and Φ is the Thiele modulus [1]. Assuming substrates 

are not restricted by the biofilm matrix (a conservative assumption which will overestimate 

the penetration depth, DXs > DXs,film), and using the maximum bulk phase concentrations 

occurring during experiments (i.e. 100 and 200 mg/l for exp. 10 and 7, respectively), 

estimated diffusion coefficients and zero order intrinsic reaction rates presented in Table 5-1 

and Table 5-2 provides maximum penetration depths presented in Figure 5-13. Biofilm 

thickness was determined throughout experiment 5, and at the beginning of experiment 7 by 

microscopic determination (Bakke and Olsson, 1986) of removable coupons from the rotor 

surface. Comparison between biomass areal density on slides and the outer wall (the static 

cylinder) at the end of experiment 11 indicated, however, that the biofilm on the slides were 

thinner and more heterogeneous than the biofilms on the other surfaces inside the Rototorque. 

The optical thickness was found to be about 200 µm at the start of experiment 7. Effective 

biofilm thickness, as defined by Harremoës and Henze (2002) was determined by adding 100 

mg/l Glucose (initial reactor concentration) to both reactors prior to experiment 7, and 

measuring OUR and bulk O2 as the reactor turned anaerobic. The effective biofilm thickness 

is given as: 

2 2O O
E

A,max

2 D S
L

OUR

⋅ ⋅
=       ( 5-9) 

 

where: SO2 is the limiting bulk phase O2 concentration, OURA,max is the maximum (zero order) 

OUR [mg O2/m2.h]. The right panel of Figure 5-13 shows the transition from zero to half 

order kinetics defining the bulk phase O2 concentration used for determination of the effective 

biofilm thickness. The areal removal rate may be found by dividing the OURmax by the 
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Figure 5-13. Estimated maximum penetration depths for R1 and R2 in experiment 7, and for R1 in experiment 10 
(left). Right panel show the determination of the effective thickness defined as the biofilm thickness estimated at 
the transition from 0. to ½ order kinetics. 

 

 

specific area, a, and the tabulated diffusion coefficients in water (2.1.10-4 m2/d, Cussler, 1984) 

compensated for biofilm diffusion resistance, (0.58.Dliq, Stewart, 2003a). The effective 

biofilm thickness was found to be 378 and 310 µm for R1 and R2, respectively, indicating that 

the optical density on coupons underestimated the biofilm thickness with as much as 89 %, 

most likely due to hydrodynamic shear force differences at the coupon surface, caused by 

small edges immediately upstream the coupon slide. It is therefore likely that the partly 

penetration assumption holds for all polymer standards, but that the Glucose sample standard 

could be close to fully penetrated in some parts of the biofilm, at least during the initial stages 

of the Glucose batch. However, as most of the rate estimation was conducted during lower 

batch concentrations (see Figure 5-9), the possible effect on the estimated kinetics is 

negligible. The third assumption of the batch experiments, that the biofilm was fully oxygen 

penetrated, was evaluated by assessing the Thiele modulus ratio of oxygen and substrate 

(Harremoës and Henze, 2002). The limiting oxygen concentration (bulk phase oxygen 

concentration where oxygen becomes limiting) may be determined by: 
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⋅
      ( 5-10) 

 

where: YS/O2 is the Glucose to oxygen stoichiometric coefficient and S is the bulk substrate 

concentration [g/m3]. For experiment 7 the limiting oxygen concentration during maximum 

bulk phase substrate concentration was 2.3 mg/l (for 10 kDa) or 21 mg/l for the monomer  
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Figure 5-14. Eukaryotic inhibition experiment following the last batch injection of experiment 10 to R1. 
Estimated OUR's are zeroed (by subtracting the lowest OUR before injection) for comparison. 

 
 

(Glucose), whereas the limiting oxygen concentration for experiment 10 was 10.5 mg/l (based 

on initial Glucose concentration). As the oxygen minimum set point during these experiments 

was set at 22 mg/l, oxygen was never limiting the degradation of carbon sources during any of 

the batch experiments performed. 

Figure 5-14 shows the result of adding eukaryotic inhibitors (Nystatin and Cycloheximid, Lee 

and Welander, 1994) to R1 following experiment 10 batches. Inhibitors were added about 45 

min before injection of 100 mg/l Dextran 160 kDa, and the batch were left for 19 hours. 

Injection of the same Dextran standard before (4 hours) and after (19 hours) did not 

significantly reduce  OUR, indicating dominant bacterial respiration. 

 

5.3 Intermediate formation and transport 

 

Intermediate dynamics were studied in experiment 7 and 10. In addition, separate batch 

studies using pure enzymes and biofilm coupon samples were conducted. The main 

hypothesis to be evaluated is accumulation of intermediates in the bulk phase, and 

characterisation of size distribution during degradation. Due to the uncertainty and difficulties 

with slope calibration (see appendix 9.3), all results in this section is reported as refractive 

index output signal [mV] or units [nRIU]. 
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5.3.1 Pure enzymes studies 
 

Three purified enzymes with cited activity against Dextran were evaluated for degradation 

intermediate dynamics. Several sample standards were incubated in Pyrex vials with variable 

Dextranase (3.2.1.11), Oligo-1,6 Glucosidase (3.2.1.10, Isomaltase) and α-Glucosidase 

(3.2.1.20) activity. All activities are reported as enzyme activity units, U; for Dextranase: 1 

mmole Isomaltose/min (substrate: 500 kDa Dextran, Fluka 31392 at pH 5.5 and T = 50°C), 

and for α-Glucosidase and Oligo-1,6 Glucosidase: activity as 2 µmole D-Glucose/min from 

Isomaltose and Maltose at pH 6.0 and 6.8, respectively (T=25°C).   

No activity against Dextran was observed for Isomaltase. Figure 5-15 shows Dextranase 

depolymerisation of 250 mg/l initial concentration of 160m kDa Dextran at various initial 

Dextranase activity. Upper left panel show the result of 0.03 mU, right panel 3 mU, and lower 

panels the action of 0.8 and 0.6 mU (left, right). The first batch (0.03 mU) suggests  

 

 

Figure 5-15. Intermediate dynamics during Dextranase depolymerisation of 160 kDa 250 mg/l initial 
concentration. Upper left panel show degradation by 0.03 mU Dextranase, while the upper right show the same 
by 3 mU enzyme. Lower panels show the action by 0.8 (left) and 0.6 mU and intermediate dynamics at high rate 
sampling. 
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Dextranase shortage, as only about 25% of the original 160 kDa peak is depolymerised within 

1.5 hours. Increasing the initial enzyme concentration by 100 resulted in total 

depolymerisation of the initial peak within 3 minutes (Figure 5-15, upper right panel). No 

intermediates in the 10-100  kDa range appeared to occur, but peaks around 1 kDa 

accumulated in most samples. The final product accumulated at  0.514 kDa, very close to 

Isomaltotriose (0.504 kDa). In order to evaluate depolymerisation intermediates in the 10-100 

kDa range, additional experiments were conducted at higher sampling frequencies. Lower 

panels (Figure 5-15) show that intermediates in all size classes were produced before being 

further depolymerised into lower fragments, again accumulating around 1 kDa. Most of this 

intermediate range dynamics was over within the first 10 -20 min. Pressure fluctuations 

during analysis of the 0.8 mU batch samples caused the initial peak to be skewed towards the 

higher MW range. This did not affect the other peaks. From the data in Figure 5-15 it is hard to 

conclude how the effect of initial Dextranase changed the kinetics. Comparing the to panels to 

the right (3 and 0.6 mU) there seems to be no major kinetic effect of lowering the enzyme  

 

 

Figure 5-16. α-Glucosidase activity (3.7mU) against 160 kDa Dextran at 250 mg/l initial concentration (upper 
left), and Oligo-1,6-Glucosidase (3.75 mU) against 250 mg/l initial 12 kDa Dextran. Lower left panel show 
depolymerisation by 3.6 mU Dextranase and lower right the combined action of 3.6 mU Dextranase and 3.75 
mU α-Glucosidase. 
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concentration by a factor of 5, an unexpected result it is hard to explain. Also, the slightly 

higher Dextranase concentration of the 0.8 mU batch (lower left) did not seem to cause the 

depolymerisation of the initial peak, nor intermediates, to occur faster. On the contrary, the 

intermediate peaks seem to show up later than the 0.6 mU (lower right). This can only be 

explained by pipetting errors and analytical variabilities. Interpretation of  Figure 5-15 should  

therefore only be limited to the relative distributions of intermediates during depolymerisation 

of the model system, Dextranase and 160 kDa Dextran. 

Figure 5-16 show α-Glucosidase activity against 160 kDa Dextran, and Oligo-1,6-

Glucosidase incubated with 12 kDa. No α-Glucosidase activity can be detected the first hours, 

however, depolymerisation occurred after 24 hours. Depolymerisation was very similar for 

both 0.6 and 3.75 mU of enzyme (0.6 mU not shown), indicating that the depolymerisation 

detected is probably not caused by the α-Glucosidase, but could possibly be related to 

contamination. This enzyme is exo-acting and it is therefore suspicious that only medium 

range intermediates occurred, and no mono- or oligomeric products were detected. The 

intermediate range signal detected in all initial pure enzyme batches (Figure 5-15 and Figure 

5-16) could result from limited contamination of the sample standard, however, it did not 

interfere with the high enzyme activity batches as the initial enzyme activity was comparably 

high. Oligo-1,6-Glucosidase activity was also very low. The low increase at around 0.1-0.2 

kDa during the initial minute of the experiment is probably due to analytical variations as no 

decrease in the 12 kDa peak is found, and peak increase stop after 10 seconds.  

Figure 5-16 also show results from a pure Dextranase and a combined Dextranase-α-

Glucosidase batch (lower panels). No effect of additional α-Glucosidase activity could be 

detected, thus, depolymerisation could only be attributed to Dextranase. The end products of 

these batches were dominated by a 0.348 peak (Isomaltose at 342) and Isomaltotriose at 0.504 

kDa, with preceding temporal accumulation between 1 and 2 kDa. One would expect exo-

activity to bring the low MW product peak towards Glucose (0.18 kDa), but that did not occur, 

suggesting low α-Glucosidase activity also against Isomaltoses. 

 

5.3.2 Coupon experiments (Exp. 6) 
 
Batch tests in 60 ml Pyrex culture tubes were used to evaluate depolymerisation and 

mineralisation of products using biofilm samples from R1 during the regrowth period between 

experiment 5 and 7. Experiment 6 involved evaluating three distinct biofilms (thin, medium  
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Figure 5-17. Pyrex batch tests using biofilm slides from R1 dropped into 250 mg/l 160 kDa Dextran. Upper left is 
thin biofilm (0.7 g/m2), upper right medium biofilm (3.7 g/m2), lower plates show thick biofilms (5.2 g/m2), one 
with high sampling rate (right) indicating details of intermediate formation. The high initial concentration in the 
medium biofilm batch is probably due to pipetting error. Termination sample was used for background 
correction for the thick biofilm tests. 

 
 
and thick) and their effect on depolymerisation dynamics. R1 had been operated on 20 mg/l  

inlet 160 kDa continuous operation for 15 hours, after thickness estimation using strong yeast 

extract and Glucose (500 mg/l, initial). Detachment/washout events were conducted daily. 

Figure 5-17 show the results of Pyrex batch experiments of thin (0.7 g/m2, 0-10 µm), medium 

thick (3.7 g/m2, ∼ 60 µm) and thick biofilms (5.7 g/m2, 150 µm) after slides were dropped into 

predefined media containing 250 mg/l Dextran 160 kDa. Biomass density seems to have a 

great effect upon depolymerisation of the initial polymer as hardly any reduction can be seen 

after 4 hours of the thin biofilm, and only modest amount being converted in the medium 

sized; complete conversion can be seen for the thick biofilm within 1 - 1.5 hours. Complete 

degradation was only observed for the thick biofilms, however, that is most likely due to the 

duration of the observations, rather than incomplete conversion. All samples (apart from the 

thin biofilm) showed bulk phase accumulation of intermediates in the lower MW range (below 

10 kDa), and some interesting dynamics was observed for the thick biofilm shown in the right  
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Figure 5-18. Results from Azide inactivation experiments showing Pyrex batch tests of 160 kDa Dextran 250 
mg/l initial concentration of active growing biofilm (upper left), active but starved (upper right), inactivated 
growing (lower left) and inactivated starved biofilm (lower right). Azide eluted around 0.1 kDa and may be seen 
as a peak in the lower left panel.  

 

lower panel of Figure 5-17. Following incubation, short chain polymers starts to accumulate 

immediately. No intermediates in the 10-100 kDa range seem to occur at significant levels. 

After about 20 minutes, a peak can be seen at 0.5 kDa, however, it disappears after 90 minutes 

appearing to go through a dynamic peak formation around 40 minutes. This peak suggests 

temporal accumulation of assimilable Isomaltose to Isomaltotetraose, and could indicate rapid 

surface depolymerisation combined with a lag-phase growth response and/or back diffusion to 

the bulk. The fact that no low MW intermediates appear during the rest of that batch indicates 

direct mineralisation or exo-oligo - Glucosidase activity. All samples also show consistent 

accumulation of intermediates in the lower kDa range (0.5 - 2 kDa). Another interesting detail 

is the disappearance of all intermediates above 2-3 kDa in the initial and 5 min sample shown 

in the lower right panel of Figure 5-17. Temporary accumulation below, and disappearance 

above this limit seems to indicate a shift in dynamics in this rather short range. The reason for 

that is not clear. Apart from the obvious mineralisation, the main difference between these 

experiments and the Dextranase experiments is that intermediate range (3-100 kDa) 

intermediates did not appear in any of the Pyrex batches. Isomaltotriose, the main product of 
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the pure enzyme studies, did occur as a temporal intermediate, but disappeared after about 60 

min. This point towards dominating Dextranase activity, and that potential oligo-Glucosidase 

degradation occurred after induction, or not at all. Pyrex glass experiments were also carried 

out by comparing growing (active), starved and NaN3 inactivated biofilms. The objective for 

these experiments was to see if inactivation by Azide would result in bulk phase accumulation 

of the assimilated depolymerisation product. By comparing active and inactivated samples 

this should appear in the bulk. Also, growth phase effects were evaluated by comparing 

kinetics and intermediate dynamics of biofilms in the exponential and endogenous growth 

phase (growing and starved biofilms). Results of inactivation experiments are presented in 

Figure 5-18. Due to pressure variations during analysis, resulting chromatograms were not 

aligned (using the buffer signal as internal standard reference), and had to be manually 

aligned by moving each sample peak according to the buffer elution peak. This caused some 

of the early peaks to appear slightly off the initial peak, and may have led to some dislocation 

of the accumulating peaks around 1 kDa. Still, as for the other Pyrex batches, accumulation of 

intermediates occurred around 1 kDa, and inactivation seemed to enhance this for both the 

active and starved biofilm. The starved biofilm showed the same depolymerisation rate as the 

active, but consumption of products was slower, and low MW intermediates accumulated 

more. Similar trend could be observed for the Azide treated biofilms. Comparing the growing 

biofilm batches, inactivation seemed to cause accumulation of oligo Dextrans, especially the 

low MW's at 0.5-1 kDa. This again coincides with the Isomaltotriose to Isomaltopentaose 

oligomers and could indicate that active biofilms assimilate these Dextranase products, or that 

growth linked induction of oligo-Glucosidase activity cease during inactivation. 

 

5.3.3 Rototorque OUR experiments 
 

Intermediate dynamics were followed during the OUR experiments reported in section 5.2.2 

and 5.2.3 (Experiment 7 an 10). Figure 5-19 show intermediate dynamics in R1 during the 

OUR experiment reported in section 5.2.2. Intermediates over the entire range appeared in the 

bulk phase for the low MW standards, while these did not occur for the 160 and 513 kDa. The 

lack of 10 - 100 kDa intermediates for the high MW batches is probably not due to 

inappropriate sampling frequency, as intermediate simultaneously occur at low Mw and under 

the original peak. For all standards, oligomers accumulation to significant concentrations was  
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Figure 5-19. Intermediate dynamics in R1 during OUR batch experiments as part of experiment 7 (section 5.2.2). 
Upper left to lower right show 10.5, 38.1, 160 and 513 kDa Dextran, initial concentration was 200 mg/l.  

 

observed, very similar to the Pyrex batch coupon and pure enzymes results. By observing iso- 

time lines, a certain impression of the rate of polymer change can be seen. This is consistent 

with the observed OUR and TOC time series reported above, and support the kinetic 

implications inferred from Figure 5-7 and Figure 5-12. The 38.1 kDa injection deviates, 

however, to some extent as the 7 minute isotime line is skewed more too the lower MW 

intermediates as for the 10.5 kDa standard. That might be due to the fact that the 38.1 kDa 

standard was the last injection made during this campaign, and that growth may have 

enhanced the rate of the intermediate dynamics by higher biomass. Generally, the higher the 

molecular weight of the initial standard, the lower accumulation of bulk phase intermediates. 

That might be due to sampling intensity, but could also indicate rate dependant back diffusion 

or adsorption (i.e. the rate of low MW production is high enough to cause local intermediate 

accumulation that also increase back diffusion and limit adsorption). Figure 5-20 presents the 

same data for R2, showing the same pattern and behaviour as observed in R1. Here the kinetic 

behaviour is more consistent with the rate inferences made in section 3.3, and also consistent 

with the TOC and OUR observations (see Table 5-1, Table 5-2 and Figure 5-7). R2 showed 

higher depolymerisation and mineralisation kinetics, probably due to biomass differences 
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Figure 5-20. Intermediate dynamics in R2 during OUR batch experiments as part of experiment 7 (section 5.2.2). 
Upper left to lower right show 10.5, 38.1, 160 and 513 kDa Dextran, initial concentration was 200 mg/l. 

 

 (with reference to the observed strong implications of biomass reported in section 5.3.2). In 

fact, comparison of estimated k0f coefficients (Table 5-1), reveals that R2 was faster than R1 

for all standards except the unexpected rapid depolymerisation of 38.1 kDa in R1. That also 

suggest that 38.1 kDa in R1 should be considered as an outlayer during comparison of 

intermediate dynamics results and kinetic interpretation. Intermediate formation results from 

experiment 10 are presented in Figure 5-21. Lack of time resolution is due to less frequent 

sampling, as intermediate formation was not the main objective of this experiment. Low 

levels of intermediates appeared, but that could be the result of too low initial sampling rate, 

or could be attributed to the reduced initial concentration, as compared to experiment 7 

results. Some accumulation was, however, detected, this time around 0.5 kDa 

(Isomaltotriose), similar to the pure enzyme accumulation observed in section 5.3.1. 

Comparison of the 35-60 min distribution curves indicates the same kinetic effect on 

depolymerisation of the initial peak as observed in experiment 7. The higher the initial MW 

standard is, the lower the initial peak reduction rate appears. This demonstrates consistency 

towards the TOC and OUR curves in section 5.2.3., and the kinetic relation presented in 

Figure 5-10. 
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Figure 5-21. Intermediate formation in R1 during OUR experiments of the Rototorque depolymerisation studies 
reported in section 5.2.3. Initial concentration was 100 mg/l, and initial Dextran standards are indicated. Signals 
have been background corrected by Blank injection. 

 

 

5.4 Location of depolymerisation 
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Figure 5-22. Dextranase (left) and α-Glucosidase activity (right) found in sub-compartments of the biofilm on 
coupons sampled from the Rototorque during experiment 8. 

 

shown in Figure 5-22. Significant (i.e. over the detection limit) Dextranase activity was only 

found in the pellet after centrifugation of re-suspended biofilm sub-samples from the biofilm 

coupons. This indicates dominated cell bound dextranase activity (endo-depolymerisation). 

Surprisingly, the active un-fractionated biofilm sample did not show Dextranase activity 

similar to the pellet extract. That is probably due to less biomass on the slide used for this 

particular assay, and up-concentration during centrifugation.  α-Glucosidase was detected in 

the cell containing biofilm fractions, the intact biofilm and the cellular extract. However, 

addition of Dextran did not increase the rate of Glucose formation, but actually decreased it. 

This result is probably due to residual glycosides in the freshly sampled biofilm. Reduction 

upon Dextran addition could indicate non-productive binding between α- Glucosidase and the 

Dextran substrate. Inactivation by Azide did not seem to affect the Glucose liberation rate. 

Pure α-Glucosidase was run in parallel as a method check, and it only showed significant 

activity against Maltose indicating that α-Glucosidase was active during testing. This strongly 

suggests that α-Glucosidase do not act upon α-1,6 bonds of terminal glucosidic linkages of 

Dextran, supporting the pure enzyme intermediate results in section 5.3.1 (Figure 5-16). 

Database information of this enzyme indicates activity against Dextran (as α-Glucosidase are 

known to depolymerise Starch and Oligo-Dextrans)11, however, no direct evidence of activity 

on larger Dextrans is reported. 

 

                                                 
11 A range of references is given in BRENDA (http://www.brenda.uni-koeln.de) under the 3.2.1.20 entry. 
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5.5 Degradation rate of wastewater particles 

 

The sequencing batch operation of the tubular reactor system meant that a slightly different 

approach for data interpretation had to be used. Reactor concentration of extracted wastewater 

particles, XS, was estimated by subtracting the amount TOC lost during each bulk phase 

refreshment, and the amount respired estimated from the OUR. The equation used for reactor 

XS estimation was: 

out

2 S

2 n
S n S n 1 S n

O X

O ( t )
X ( t ) X ( t ) X ( t )

Y
∆

−= − −     ( 5-11) 

 

where: XS is the reactor concentration at tn and tn-1, ∆O2 is the oxygen consumption at tn, YO2/Xs 

is the stoichiometric consumption of O2 per TOC consumed and XS,out is the TOC in the 

drained bulk at time tn. The oxygen consumption was calculated by trapezoidal integration of 

the OUR curve (Kreysig, 1990), as: 

( )n n 1
2 n n n 1

OUR( t ) OUR( t )
O ( t ) t t

2
∆ −

−
+= ⋅ −     (5-12) 

 

The mass balance for the areal removal rate of particulate wastewater is given by: 

 

s
A f

dX
V r A

dt
⋅ = − ⋅       (5-13) 

 

Under the assumption that depolymerisation is the rate limiting process during degradation, 

we may infer that the areal removal rate of depolymerisation products is first order in 

substrate, and may be treated as constant (pseudo steady state approximation): 

 

,1 A A

dS
V k S A r A 0

dt
= − ⋅ ⋅ + ⋅ ≈      (5-14) 

 

Bulk phase oxygen utilisation rate, as measured, may then be represented by: 

 

2 S

2
1,A O / X end

dO A
OUR k S Y OUR

dt V
= − = ⋅ ⋅ ⋅ +     ( 5-15) 
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which, by insertion of (5-13) gives the areal depolymerisation rate as: 

 

2 S

end
A

O X

OUR OUR
r

Y a
−=

⋅
      ( 5-16) 

 

where: a is the area to surface ratio (A/V) [1/m] and YO2/Xs is the stoichiometric oxygen 

consumption per mass unit POM consumed [g O2/g XS]. The stoichiometric coefficient may 

be determined from typical wastewater substrate stoichiometries. Assuming the substrate 

yield to be 0.5 g wastewater substrate (C18H19O9N) (Henze, 2002), the oxygen consumption 

per wastewater substrate (POM) consumed is 1.49 g O2/g POM, or 3.05 g O2/g TOCPOM. By 

plotting rA against the estimated bulk phase POM data, kinetics and kinetic parameters may be 

determined. Figure 5-23 shows the time course of the preparative stages and the 

depolymerisation experiment on extracted wastewater particles from Knardalstrand WWTP, 

Porsgrunn, Norway, and the depolymerisation rate (here denoted as hydrolysis rate, rh,A) 

plotted against the estimated total reactor (bulk and adsorbed) POM concentration. Assuming 

variable half order kinetics as used in section 5.2.2, equation (5-4), the half order variable 

depolymerisation/degradation rate coefficient may be determined. From Figure 5-23 (right) 

best fit by least squares approximation for the half order model adopts first order properties as 

the KS coefficient becomes very high (for the fit shown KS was limited  

 

 

 

 

 

 

 

 

 

 

Figure 5-23. OUR during wastewater depolymerisation experiment (left) and determined relation between 
reactor POM (as TOC) and estimated (based on measured OUR) depolymerisation (here: hydrolysis) rate. Model 
estimation using the half order model described in section 5.2.2, and simple first order kinetics are shown. Lines 
in OUR diagram represent estimated endogenous-, reactivation and short starvation respiration, and respiration 
curve during POM depolymerisation and mineralisation.  
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to 100 mg TOC/l). The half order rate coefficient for this approximation is 0.01 (g/m)1/2/d 

which is half of the estimated 35 MDa Dextran degradation coefficient found in experiment 

10 (see Figure 5-10 and Table 5-2). Anticipating fist order kinetics gives an areal first order 

removal rate coefficient, k1,A of 0.58 mm/h, or 0.014 m/d. By multiplying this with the area to 

surface ratio (a), one may obtain a rough estimate for the volumetric first order removal rate 

coefficient that may be compared to activated sludge literature values. A ratio of 333 m2/m3 

gives a first order volumetric removal coefficient of 4.6 1/d, which is intermediate of 

literature values for hydrolytic first order coefficients for dissolved solids (i.e. particle 

diameters < 0.45 µm) of 3-20 1/d, and suspended solids of 0.6-1.4 1/d (Henze, 2002). The 

relative distributions of POM before and after the accumulation/adsorption phase of the 

experiment were determined by Laser diffraction analysis, and results are presented in Figure 

5-24. Adsorption of primarily lower range POM seems to be the predominant mechanism as 

the curve moves towards the higher size fractions with a slightly tighter distribution. 

Interestingly, low µm POM seems to accumulate during the adsorption, indicating 

fragmentation or even microbial depolymerisation/degradation, or detached biomass during 

the anaerobic 30 minutes of adsorption. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-24. Relative and cumulative distribution of POM, before and after the adsorption phase. The difference 
between the curves represents the adsorbed POM onto the biofilm surface/matrix. 
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5.6 Depolymerisation modelling results 
 

This section reports on modelling results obtained from simulations of the batch degradation 

process of experiment 7 and 10. The objective is to complement the analytical modelling 

results obtained in section 3.3, for comparison and further evaluation of kinetics and model 

identification. Three modelling strategies were tested: One step hydrolysis in a biofilm 

compartment, full range polymer dynamics by suspended Dextranase and full range polymer 

dynamics in a biofilm compartment. All models were implemented in Aquasim (Reichert, 

1994; Reichert, 1998), and selected parameters were estimated by secant parameter estimation 

integrated by a fifth order Runge-Kutta algorithm (Reichert, 1998). Before reporting on 

depolymerisation dynamics, a short description of kinetic and stoichiometric biofilm 

characterisation is provided. 

 

5.6.1 Biofilm characterisation 
 

This section reports on data interpretation and estimations conducted to establish basal growth 

and stoichiometric parameters used for modelling Monod limited growth and simple 

endogenous respiration and maintenance substrate utilisation as described by Beeftink et al. 

(1991). 

Theoretical maximum growth yield on easily biodegradable substrate was estimated using the 

method suggested by Heijnen (1999), compensated for the fact that Isomaltose, 

Isomaltotriose, Isomaltotetraose and Isomaltopentaose (MW 0.342-0.666 kDa) may be 

assimilated directly. This value was evaluated against estimated respirometric coefficients 

found by dividing the integrated OUR curve by the initial carbon (Glucose or Dextran) 

concentrations. Several parameters were estimated by splitting data sets into suitable ranges 

for the particular parameter in question (Dochain et al., 1995; Keesman et al., 1997; Weijers 

and Vanrolleghem, 1997). In this section, a simple ASM1 derived model as, suggested by 

Kommedal et al. (2002) without EPS synthesis and degradation, is applied. 

Respirometric coefficients, defined as mass oxygen consumed per mass substrate converted, 

were determined using the integration routine as described in section 3.3, and results are 

presented in Figure 5-25. As noted above, oxygen to Glucose consumption was lower than the 

theoretical estimate, while the stoichiometric coefficients were higher for the medium sized 

fractions (10-500 kDa) and lower for 6 and 473 kDa (note that these size classes were  
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State Variables 
Process 

S SO XS XH XI 
Rate 

Growth 1−  2O /S
µ−ν
 

 X /SY   max H
S

S
X

K S
µ ⋅

+
 

Maintenance consumption 1−  2

m
O /S−ν
 

   m H
S

S
k X

K S
⋅

+
 

Endogenous respiration  2

endo
O / X−ν
 

 1−  IXf  
S

d H
S

K
k X

K S
⋅

+
 

Oxygenation  1    ( )OsatOL SSaK −⋅ ,  

Detachment  
(surface�bulk) 

   1− ,1  2
det ,H f fk X L⋅ ⋅  

 
Table 5-3. Process matrix for the model used for estimating endogenous and growth process parameters. 

 

estimated from single data only). No systematic correlation was found between the initial 

concentrations of Dextran and the respirometric coefficient, νO2/Dex. 

Endogenous respiration data obtained from several long running time batches were used for 

estimation of the endogenous respiration coefficient, kd, and initial biomass estimation as 

described by Ekama et al. (1986) and Keesman et al. (1998). Assuming no external substrate 

(neither slowly nor readily biodegradable) is present, and full oxygen penetration of the 

biofilm, the system may be represented by suspended mass balances as no substrate gradients 

are limiting: 

d

dX
k X

dt
= − ⋅       ( 5-17) 

 

where kd is the endogenous respiration coefficient [1/h]. The oxygen mass balance is given 

by: 

2

2( ) d

X O

kdO
OUR t X

dt Y
= − = ⋅      ( 5-18) 

 

Differentiating (5-18), inserting (5-17) into the differential and re-integrating, gives the 

following biomass independent equation for the endogenous respiration coefficient: 

 

( )
( )0

− ⋅= dk tOUR t
e

OUR t
     ( 5-19) 
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Figure 5-25. Estimated oxygen to substrate stoichiometric coefficients for all batch experiments conducted. Left 
panel show relation to initial molecular weight of the substrate, while right panel show the dependency to initial 
concentration. Dashed line indicates the theoretical stoichiometry between O2 and Dextran as described by 
Heijnen (1999). 

 

Figure 5-26 shows endogenous respirations for selected long runtime batches during the entire 

experimental campaign. Endogenous respiration coefficients, estimated by exponential fitting 

to each batch, are weight averaged based on the non-linear standard error estimate, and found 

to be 0.020 ± 0.005 1/h (n = 6) for R1, and 0.017 ± 0.006 1/h (n = 8) for R2. These values are 

about twice the lysis rate reported by Henze et al. (2000), and slightly higher than the 

theoretical estimate (0.012 1/h) found by using the approach suggested by Heijnen (1999). 

That could indicate remaining biodegradable material during the initial parts of the 

estimations, or storage effects not detected in the respirograms (Gujer et al., 2000). 

Endogenous respiration is further applied for the estimation of active heterotrophic biomass 

by inserting estimated kd values into (5-18), and estimating Xini at stable background 

respiration levels before each sample standard injection. The endogenous stoichiometric 

oxygen demand is estimated by thermodynamic balancing (Heijnen, 1999), and found to be 

 

 

 

 

 

 

 

 
 
Figure 5-26. Endogenous respiration estimations used for estimation of kd (R1 and R2). 
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1.36 g O2/g X. As described by Insel et al. (2002), respirograms may be separated into 

specific parameter sensitive ranges for optimum (reduction of estimation error) sensitivity. 

For biofilm systems, further complexity results from diffusional transport phenomena. Further 

investigation of the kinetic model (Table 5-3) therefore involved parameter estimation in 

Aquasim (Reichert, 1994), using defined substrate batch samples (i.e. blanks as diluted PBS) 

and Glucose standards. In order to reflect the plug-flow nature of the sampling point (top of 

the bubble column, see Figure 4-1), the plug flows of tubing and possible adsorption 

phenomena, a rather complicated model was designed and evaluated (Figure 5-27). However, 

model complexity resulted in very long simulation times, and led to program failure during 

parameter estimation. Therefore, model simplification by implementation of the oxygenation 

process in the CSTR-Bulk phase and removing plug flow sub-compartments was performed. 

Figure 5-28 show the results of sensitivity and error propagation analysis of both models on 

the 100 mg/l Glucose batch in experiment 10. Model complexity reduction does not reduce 

sensitivity for the parameters of interest for estimation, indeed the sensitivity of the simple 

model increase, reducing the estimated error propagating from the uncertainty of the 

parameters. The simple model is therefore the preferred, both for simulation simplicity and 

estimation accuracy. Figure 5-28 also shows that the model is sensitive and restricted to kd 

and Xini estimation before injection, and when the model relaxes back to background  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-27. Block compartment description of realistic model (left) and model compartment structure of the 
simplified model. Dark arrows indicate advective flow links, while the broad represents the diffusive link across 
the biofilm boundary layer. The biofilm bulk phase is kept very small (at approx. 130 µm total thickness) and the 
major part of the bulk phase is represented by the CSTR Bulk phase compartment. 
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Figure 5-28. Model complexity evaluation by comparing sensitivity analysis on both models (complex to the 
left), and error contribution by selected parameters (µmax, KS, DGluc, kd, Xini) to the simulated OUR response on 
initial 100 mg/l Glucose. 

 

respiration (as assumed during analytical estimation above). Further, knowing Xini at t0 enable 

estimation of µmax during the peak phase, while KS may be estimated by the relaxation slope 

of the OUR response curve (as suggested by Insel et al., 2002), and from the bulk phase TOC 

concentrations (data not shown). Diffusion coefficients are not estimated here, both due to 

limited sensitivity and lack of measurements, and that literature values exist for liquid and 

biofilm applications (Stewart, 2003; Cussler, 1984). Table 5-4 presents estimated growth and 

substrate transport parameters adopted in the basal biofilm growth-maintenance-endogenous 

respiration model. Parameters (umax and KS) are estimated from the 100 mg/l Glucose injection 

of experiment 10 (9. September), and validated against the 80 and 200 mg/l injections after 

experiment 6 (27 June) and experiment 7 (29 July). Biofilm detachment is modeled by the 

generic expression suggested by Wanner and Gujer (1986), and evaluated by Stewart (1993) 

and Kommedal et al. (2000). Biofilm intrinsic parameters (diffusion resistance factors, η, the 

biofilm surface detachment coefficient, kdet, biofilm density, ρXf) are selected from relevant 

literature (Stewart, 2003; Kommedal et al., 2000; Kommedal and Bakke, 2003) adapted to 

biofilm areal density observations (6-10 g VSS/m2). 
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Parameter Value Unit Reference 
µmax 0.51 ±0.02 1/h Estimated here 
KS 4.01 ± 0.09 mg/l Estimated here 

DO2 7.62.10-6 m2/h Cussler, 1984 
ηO2,film 0.58 1 Stewart, 2003 
DGluc 2.28.10-6 m2/h Cussler, 1984 

ηGluc,film 0.3 1 Stewart, 2002 

kd 
R1: 0.017 ± 0.006 
R2: 0.020 ± 0.005 

1/h Estimated here 

YX/S 
Glucose: 0.55 
Dextran: 0.58 g S/g X Estimated here (Heijnen, 1999) 

νO/S Figure 5-25 g O2/g S Estimated here 
νO2/S,maint 1.07 g O2/ g S Estimated here (Heijnen, 1999) 
νO/X,end 1.36 g O2/g X Estimated here (Heijnen, 1999) 

fXi 0.1 1 Henze et al (2000) 
kdet 0.5 m2/mg.h Kommedal et al. (2000) 
ρXf 105000 g/m3 Estimated here 
Lb 50 µm LaMotta (1976), Trulear and Characklis (1982) 

 

Table 5-4. Growth and substrate transport parameters estimated or adopted from literature for use in the growth-
maintenance-endogenous decay basal biofilm model. Errors represent standard errors estimated by Aquasim 
(µmax and KS) and by non-linear regression analysis (kd). 

 

Initial biomass density, Xini,f, is determined for each batch based on endogenous respiration, 

while initial biofilm thickness is estimated by parameter estimation of the OUR peak shape. 

While OUR peak height is determined by Xini and µmax, the peak width is determined by the 

initial active biofilm thickness. The biomass density inside the active layer is determined from 

endogenous respiration levels (i.e. that part of the OUR curve that is not experiencing mass 

transfer limitations). OUR and TOC degradation was found to be insensitive to the modeled 

diffusive boundary layer thickness in the biofilm reactor (data not shown in Figure 5-28). The 

small response detected was in addition correlated to the diffusion coefficients. This is 

consistent with LaMotta (1976) who found no effect of Rototorque rotational speed on 

Glucose removal rates above 1.5 1/s (in this study, 2 1/s) on a thin biofilm (≈ 8 µm), and with 

Trulear and Characklis (1982) that found the same for a thicker biofilm (110 µm). Both 

studies concluded no effects of a boundary layer thickness of 40-60 µm (Lb/D = 1-2 d/m). In 

this study an effective layer thickness of 50 µm is used (i.e. bulk biofilm reactor thickness, 

plus estimated boundary layer thickness). The biomass density was chosen based on the 

following reasoning. Assuming spherical bacteria, the densest biofilm possible is π/6 volume 

fraction (vol. cells/vol. biofilm). 
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Figure 5-29. Calibration and validation of biofilm growth and endogenous process model. Upper panels show 
measured and simulated OUR (left) and bulk phase TOC (right) results from calibration of growth parameters 
(µmax and KS), and initial biomass Xini after injection of 100 mg/l Glucose. Lower panels show OUR validations 
of 80 (left) and 200 mg/l Glucose initial batch concentrations. 

 

One cell consists of about 80 % water (Brock and Madigan, 1991) which gives a theoretically 

estimated maximum biofilm density of 105 kg/m3.  

Figure 5-29 presents the result of model calibration and validation described above. The 

model seems to reflect the main characteristics of the OUR curve even for batch experiments 

separated by more than 70 days. The ascending plateau of the peak OUR represents close to 

maximum growth, while the slope back to background respiration represents substrate limited 

growth. Deviations observed at the peak levels and transition between substrate limited and 

endogenous respiration may be attributed to storage phenomena (Insel et al., 2002; Gujer 

2000). The inadequacy of precisely reflect the initial TOC dynamics is most likely due to the 

structural reduced model with no plug flow dynamics around the sampling point, and non-

homogeneity during the initial stages of the batch operation. The estimated initial biomass 

densities are (initial concentrations in brackets) 13035 (100 mg/l), 6844 (80 mg/l) and 9027 

(200 mg/l) g/m3 and the initial biofilm thickness is 60 µm. These densities are about 1/10 of 

Time [min] 
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the measured VS from coupon analysis (average June: 8 g/m2), indicating that about 10% of 

the biomass (as VS) is actively respiring. Using the measured biofilm thickness (about 300 

µm) this would indicate that the non-respiring fraction of the biofilm biomass (here lumped 

into the inert fraction parameter, Xi) is about 22000 g/m3, and that the active biofilm layer is 

situated on top of a non-respiring layer of about 250 µm. For the remaining modeling, 

volumetric fractions are assumed to be constant (constant biomass densities), and differences 

in background respiration is attributed to variable thickness of the respiring layer. This 

strategy is based on the assumption that biofilm thickness is more dynamic than the biomass 

density of the biofilm matrix. Some reports indicate this to be the case (Bakke, 1986), and 

structurally it does not significantly change the modeling behavior. The main difference is 

that plateau shape will be more consistent and distinct. 

 

5.6.2 One step depolymerisation model 
 

Calibration of a one step hydrolysis model as suggested by the ASM group (Henze et al., 

1987; Henze et al., 1995; Henze et al., 1999 and Gujer et al., 1999) and other workers (Orhon 

et al., 1999; Sollfrank et al., 1988; Spanjers and Vanrolleghem, 1995) was implemented using 

simple first order kinetics (references are listed in Table 2-3, model no. I). It can be easily 

shown that both the adsorption-hydrolysis model of Dold et al. (1980) adapted in the ASM1 

and 2, and the equivalent adopted in ASM 3 (Gujer, 1999) will reduce to a simple first order 

depolymerisation expression in biofilms. The main reason for that is the high local biomass 

concentration in the biofilm matrix that makes the denominator of the switch function 

constant at most concentrations: 

 

* *
h S

h h

S
X X

h S
h h h S

S X
X

h

X
X X

r k X k k X
X KK X

= ⋅ � = ⋅
+

�

   ( 5-20) 

 

The apparent biomass independence of this expression does not represent the observed 

biomass effects as found in the slide experiments and pure enzyme studies (section 5.3.1 and 

5.3.2.). It is postulated here that the first order depolymerisation coefficient, k1h, is biomass 

dependant, but with rather low short term sensitivity to the depolymerisation process during a 

single batch experiment. Thus, k1h is determined by the biomass at the beginning of each  
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State Variables 

Process 
S SO XS XH XI 

Rate 

Growth 1−  2O /S
µ−ν
 

 X /SY   max H
S

S
X

K S
µ ⋅

+
 

Maintenance consumption 1−  2

m
O /S−ν
 

   m H
S

S
k X

K S
⋅

+
 

Endogenous respiration  2

endo
O / X−ν
 

 1−  IXf  
S

d H
S

K
k X

K S
⋅

+
 

Hydrolysis 
(depolymerisation) 1  1−    h Sk X⋅  

Oxygenation  1    ( )OsatOL SSaK −⋅ ,  

Detachment  
(surface�bulk) 

   1− ,1  2
det ,H f fk X L⋅ ⋅  

 

Table 5-5. Process matrix for the one step hydrolysis (depolymerisation) model. 

 

batch, and the depolymerisation rate is modelled independent of biomass during batch 

execution.  Hydrolysis of Dextran (XS) to produce readily biodegradable substrate (Glucose), 

without any carbon loss (i.e. YXs/S = 1), were complimented by the basal growth and 

endogenous respiration model presented above. Table 5-5 shows the process matrix used for 

one step hydrolysis modelling. Figure 5-30 presents the results of the one step 

depolymerisation model applied on experiment 10 (section 5.2.3). The first order 

depolymerisation coefficient, kh, was estimated by fitting to the observed OUR and bulk phase 

TOC concentrations. In addition, initial active biofilm thickness (layer of active biomass) was 

estimated by the initial respiration, keeping the biomass composition constant. Bulk phase 

TOC estimations show very good accordance with the measured values, while reasonable 

good fit is achieved for the OUR. Interestingly, the modelled bulk phase TOC indicate 

relatively high levels of Glucose (data not shown), peaking at 24 mg/l for the fastest degraded 

standard (6 kDa), decreasing to about 0.5 mg/l for the slowly standard (35 MDa). Initial OUR 

peaking and rapid bulk phase TOC reduction in the colloidal standard (35 MDa) required 

additional processes, here minimized by introducing two step hydrolysis (fast and slow) and 

large fraction Dextran adsorption. Simple linear mass transfer adsorption was implemented 

(Dold et al, 1980), and the fast fraction equaled the kinetics and diffusivities of the 160 kDa 

standard. 
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Figure 5-30. Estimated (circles) and modelled OUR and bulk phase TOC (solid lines) during experiment 10 
batches. Panels show the results of injecting 100 mg/l Dextran of 6, 10.5, 41.3 and 160 kDa initial molecular 
weight (top to bottom). 

Time [min] 
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Figure 5-30 (cont). Estimated (circles) and modelled OUR and bulk phase TOC (solid lines) during experiment 
10 batches. Panels show the results of injecting 100 mg/l Dextran of 473, 513, and 35000 kDa initial molecular 
weight (top to bottom). The 35 MDa standard was modelled using two step depolymerisation and adsorption (see 
text for details). 

 

Structured biofilm modelling provides valuable information on biofilm development and 

substrate dynamics that are not accessible in the measured data. Biofilm thickness increased 

during the batch run by 10 µm, independent of the MW standard, and the relative volume 

fraction of active bacteria increased equally (inert particles were reduced), most at the surface 

(6%) and less at the active-inactive biofilm layer (0.6%). Bulk phase biomass increased (due  

 

Time [min] 
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Figure 5-31. Estimated first order depolymerisation coefficient for the MW standards used in experiment 10, 
implemented in the one step depolymerisation model. Error bars represent estimated standard deviations during 
parameter estimation in Aquasim. 

 

to growth and detachment) to about 1 g/m3, or about 0.5 % of the active biomass in the 

reactor. These observations support the experimental assumption regarding negligible bulk 

phase contribution to the observed rates, and adjustments of the initial biofilm thickness 

according to the initial respirometric activity. Biofilm Glucose concentrations increased to 

high levels violating the assumption of constant and low Glucose levels assumed as part of the 

analytical variable half order approach presented in section 3.3. However, taking the 

modelling premise of an active layer on top of a thick inactive biomass layer as supported by 

the observed and estimated biofilm thickness, and the biomass measured on coupons, the 

structured model can still be regarded as non-penetrated, following variable zero to half order 

kinetics (high Glucose levels). 

Figure 5-31 presents the estimated first order depolymerisation coefficients plotted against the 

initial molecular weight of the sample standards. This plot represents the same as Figure 5-7 

and Figure 5-10, however, this time compensated for biofilm transport. The same logarithmic 

dependency is apparent for the intermediate size fractions (10-500 kDa), while the small 

standard (6 kDa) and the colloidal deviates as it did in the analytical analysis of section 3.3. 

The elevated kinetics of the small Dextran standard could be explained by the model structure 

allowing assimilation of monomer only (Glucose). Omitting intermediate dynamics would 

affect the Dextran of closest proximity to the assimilable fragments (Oligomers < 0.8-1 kDa) 

more than the higher MW standards. 
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The simple one step model clearly reflects some of the MW effects on depolymerisation 

kinetics as shown by the variable order model of Rittman and McCarty (1980; 2001), but still 

does not take intermediate dynamics into account, making evaluation of transport versus 

reaction limitation insufficient. Using the Thiele modulus (Levenspiel, 1972) as suggested by 

Harremoës and Henze (2002) the following conditions can be defined: 

 

reaction limited  1 >  > 1  diffusion limited⇐ Φ �    ( 5-21) 

 

where the Thiele Modulus for general kinetics is given as: 

 

( ) 2 1
,

,

1

2

n
n f f

S f

n k L S

D

−+ ⋅ ⋅ ⋅
Φ =

⋅
     ( 5-22) 

 

where: n is the reaction order, kn,f is the nth reaction order coefficient, Lf is the biofilm 

thickness, S is the biofilm surface limiting substrate concentration and Dsf is the limiting 

substrate diffusion coefficient in the biofilm. Figure 5-32 shows bulk phase Glucose 

concentrations and estimated Thiele modulus concentration limits for reaction to diffusion 

limitations (below the dashed lines of left panel) given the active biofilm thickness. 

Interestingly, the biofilm system is reaction limited during the peak OURs for all standards  

 

 

 

 

 

 

 

 

 

 

Figure 5-32. Simulated bulk Glucose concentrations during experiment 10 (left). Dashed lines represent Thiele 
modulus concentrations limits for the particular biofilm thickness where the system changes from being reaction 
to be diffusion limited (below lines). Right panel show the estimated Thiele modulus of the rate limiting first 
order depolymerisation process (values are based on the diffusion characteristics of the initial molecular 
standard). Solid lines represent estimated Thiele modulus based on kh estimates from Figure 5-31 and DXf from 
Figure 5-6. 
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below 41.3-100 kDa. Figure 5-32 also show the estimated Thiele modulus of each batch 

injection during experiment 10, using the estimated first order depolymerisation coefficients 

and the estimated biofilm diffusion coefficients of the initial polymer standard (Figure 5-6). 

Also included is the Thiele modulus of the zero order (µ ≈ µmax) Glucose conversion rate, and 

a theoretical estimate using correlations of kh in Figure 5-31 and diffusion coefficients from 

Figure 5-6. As can be seen, depolymerisation is diffusion limited for all polymer standards, 

and the theoretical estimate indicate that it will be for all Dextrans above 0.35 kDa for 

biofilms thicker than 30 µm (solid lines). Variability within the 30 - 60 µm theoretical range 

is due to variable initial biofilm thicknesses during the simulations (kh estimations), and the 

error introduced by disregarding intermediate dynamics. 

 

5.6.3 Full intermediate model; pure enzymes 
 

Practical limitation regarding the number of active state variables restricts full intermediate 

modelling to the low size fractions. The full intermediate model is presented in the process 

matrix of . Due to the model size limitations, the maximum number of intermediates is set to 

123 (i.e. 20 kDa). Initial concentrations are taken from the certified standard distribution 

provided by the producer (see Figure 4-3). Lack of pure enzyme depolymerisation data from ∼ 

10 kDa initial Dextran standards, limits this modelling section to simulations for qualitative 

comparison to the measured intermediate time series presented in section 5.3.1. 

Figure 5-33 presents simulation results of endo-depolymerisation of the 12 kDa certified 

calibration standard. The maximum activity (e0 
.k0 = Vmax) and Michaelis coefficient (KM) are 

selected arbitrarily as no comparison with data or literature values are available. Comparison 

of different KM values showed that the same dynamics could be simulated by simultaneously 

adjusting the Vmax value (data not shown). In order to compare simulated intermediates and 

SEC-HPLC results, the simulated intermediates need to be superimposed the same way as the 

polymer intermediates were during SEC (ref. discussion in section 5.3). By grouping the 

simulated intermediates into elution intervals of 0.25 min it was possible to present simulation 

results for comparison with the RID signals from the SEC-HPLC. Figure 5-33 left panel show 

endo-activity end products (Isomaltose and Isomaltotriose) and intermediate (P4 to P120) 

time series, while the right panel presents intermediate dynamics after grouping plotted 

against molecular weight. This plot may be compared to the pure enzyme dynamic plots in  
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Table 5-6. Process matrix for the pure enzymes simulation. m is all polymers susceptible for enzymatic activity, j 
is the actual polymer being depolymerised into intermediates i during endo-attack and into j-1 and a monomer 
(S1) during exo-activity.  

 

section 5.3.1 (Figure 5-15), even though quantitative comparison is impossible (160 kDa data 

whereas simulations represents 12 kDa). Some quantitative evaluation can still be made 

though, by assuming the accumulating peak between 0.2 and 0.8 kDa of Figure 5-15 (right 

panels) to represent Dextranase end products (Isomaltose and Isomaltotriose) formation. By 

regarding the RID response to be fairly constant in the 0.1 to 3 kDa region (see Appendix 9.3 

for validation), the peak values below 0.6 kDa may be regarded as the sum of the end 

products, while the 0.8-2 kDa represents residual fragments. Using the relative peak values, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-33. Simulation of intermediate dynamics using the pure Dextranase model with high KM. Left panel 
show selected intermediates against time, while the right panel show intermediate concentrations at selected 
times as they would have appeared on the RID detector using 0.25 min grouping (peak overlapping; see text for 
details). 
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Figure 5-34. One step depolymerisation model (Michaelis Menten kinetics) calibrated on the pure Dextranase 
data of Figure 5-15 for 3 mU (left) and 0.6 mU Dextranase. Initial Dextran of 160 kDa and 250 mg/l. 

 

these may be recalculated into concentrations by assuming the initial Dextran to be conserved. 

The inability of the Aquasim model to simulate larger than 20 kDa intermediates, also limits 

this simulation to one step analysis, Dextran → Isomaltose + Isomaltotriose. Figure 5-34 

shows a calibrated one step model based on Michaelis-Menten kinetics applied on the data 

presented in Figure 5-15 for 0.6 and 3 mU. Michaelis-Menten parameters were estimated to 

66 g/l for KM, and 2.2 and 1.9 g Iso/l.min for Vmax for 3 and 0.6 mU, respectively. These 

coefficients effectively transform the Michaelis-Menten kinetics into first order kinetics with 

first order rate coefficients 0.037 and 0.029 g Iso/g Dex.min.  

 

5.6.4 Full intermediate model; Biofilm application 
 

The full intermediate model presented in  is combined with the basal growth and decay model 

(Table 5-3), using the calibrated growth and decay parameters in Table 5-4, and theoretically 

estimated diffusion coefficients presented in Figure 5-6. In response to the findings in section 

5.4 on localisation of exogenous enzymes, only Dextranase (no exo-activity) is active as it is 

thought to dominate the overall depolymerisation. Growth and maintenance are incorporated 

for all Dextran oligomers below the uptake limit of 0.99 kDa (White, 2000). Kinetically, the 

substrates are subjected to competing substrate inhibition equivalent to the apparent substrate 

inhibition deduced for depolymerisation. Yield and respirometric coefficients are theoretically 

estimated by the method of Heijnen (1999). Table 5-7 presents the process matrix for the full 

intermediate biofilm model. An inactive fraction of 10 % (of dry mass) is introduced by 

endogenous decay (cell death). The biofilm has the same  



 114

State Variables 
Process 

S1 S2 S3 S4 S5 S6 SO Si S(j-1) Sj XH XI 
Rate 

Growth on 
“C” 1−       

2O /1
µ−ν     X /1Y   

1
max H6

S iC
i

S
X

K S
µ ⋅

+�
 

Growth on 
“2C”  1−      

2O / 2
µ−ν     X / 2Y   

2
max H6

S iC
i

S
X

K S
µ ⋅

+�
 

Growth on 
“3C”   1−     

2O / 3
µ−ν     X / 3Y   

3
max H6

S iC
i

S
X

K S
µ ⋅

+�
 

Growth on 
“4C”    1−    

2O / 4
µ−ν     X / 4Y   

4
max H6

S iC
i

S
X

K S
µ ⋅

+�
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“5C”     1−   

2O / 5
µ−ν     X / 5Y   

5
max H6

S iC
i

S
X

K S
µ ⋅

+�
 

Growth on 
“6C”      1−  2O / 6

µ−ν     X / 6Y   
6

max H6

S iC
i

S
X

K S
µ ⋅

+�
 

Endo-
depolymer.        2

2
3
i

j j
⋅
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  1−    

0 0

2

4
l

m
j

m
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M l
l

k e P
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=
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+
�

�
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m
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1
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S
k X

K S
=

⋅
+�
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m
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2
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⋅
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m
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3
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4
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k X
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⋅
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m
O / 5−ν       

5
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S
k X

K S
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⋅
+�
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m
O / 6−ν       

6
e H6

S i
i 1

S
k X

K S
=

⋅
+�

 

Endogenous       
2

endo
O / X−ν    1−  IXf  

S
d H6

S i
i 1

K
k X

K S
=

⋅
+�

 

Oxygenation       1       ( )L O,sat OK a S S⋅ −  
Comments:        i = 4,5,…m-4      

 

Table 5-7. Process matrix for the full intermediate model. 
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initial properties as described in section 5.6.1, while the initial Dextran distribution is taken 

from the sample standard analysis presented in Figure 5-21 for 6 and 10.5 kDa. The simplified 

model (Figure 5-27) described in section 5.6.2 is embedded in Aquasim 2.1 using the biofilm 

compartment, and loading of the initial Dextran is implemented by a inlet advective pulse of 

50.10-6 m3/min active over 0.2 min (V = 10 ml) of 11.5 g Dextran/l at time 0 min, to the bulk 

phase compartment. 

Figure 5-35 shows simulated and measured OUR and bulk phase TOC during 

depolymerisation and mineralisation of 100 mg/l (initial) 6 and 10.5 kDa Dextran. The results 

are similar to the one step depolymerisation model estimated by the same data (Figure 5-30, 

first and second panels), even though slightly better fit for both OUR and TOC is observed 

(Terminal Chi-Square results from Aquasim parameter estimation decreased from 2730 and 

3464, to 2666 and 2346, when applying the full intermediate model, for the 6 and 10 kDa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-35. Modelled and measured OUR and bulk phase TOC during depolymerisation and mineralisation of 
initial MW of 6 (left panels) and 10.5 kDa Dextran (Experiment 10). Initial Dextran concentration was 100 mg/l. 

 

Time [min] 
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standards, respectively). Thus, applying the complex model seems not to dramatically 

improve the overall observable performance. However, expanding the model from a one step 

process to a full intermediate depolymerisation model, without increasing the number of 

parameters by more than a single rate coefficient (KM of depolymerisation), clearly suggest 

model improvements in terms of generality and mechanistic reflection of the nature of 

Dextran depolymerisation. Parameter estimation of the two depolymerisation coefficients, KM 

and Vmax, using the OUR and Bulk phase TOC data, gave half saturation concentrations of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-36. Simulated intermediate dynamics of 100 mg/l initial 6 (left panels), and 10.5 kDa Dextran sample 
standards. Upper row shows time series development of bulk phase intermediates. Middle plots presents 
simulated bulk phase MW distribution during degradation, while lower figures presents the same data 
compensated for superimposition and dispersion as they would appear from a calibrated RID signal (see text for 
details).  
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0.0254 and 0.0250 mg/l, and maximum Dextranase rates of 1554 and 1686 g/g.min, for 6 and 

10 kDa, respectively. Even though the samples standards used for this estimation is close, and 

to a certain degree overlapping, the conformity of the estimated parameters, from two 

independent data sets of two separate state variables, support the model of size independent 

kinetic coefficients, with intrinsic MW effects as presented in Table 5-7 from the deduced 

expression in section 4.6. Figure 5-36 presents simulated intermediate dynamics during the 

depolymerisation of 6 and 10 kDa (initial concentration 100 mg/l), including the measured 

intermediates during experiment 10. Simulated intermediate data are compensated for peak 

overlapping and variable MW RID sensor response as discussed in section (5.1) and appendix 

2, for qualitative comparison to the measured intermediate distributions. RID data are 

recalculated into Dextran concentrations using the slope/RID signal calibration presented in 

Appendix 2. Middle panels (Figure 5-36) show true simulated intermediate concentrations, 

while the lower panels indicate compensated distributions. Qualitatively, the simulated 

dynamics of the initial polymer peak resembles the measured distribution, however, 

simulations indicate accumulation of assimilable intermediates (especially P2 and P3) that are 

not seen in the data. Accumulation in the pre-assimilable range (1-5 kDa) does not occur 

during simulations. 

 

This concludes the results section. Experimental data not reported here do not ad significant 

information to the results presented, or data are not interpretable using the methods applied. 

Raw data are available in Appendix 9.4 and 9.5.  
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6 Discussion 
 
The main objectives of this study are evaluation of the effects of molecular weight on 

depolymerisation kinetics, the combined kinetic and transport effects of intermediate 

dynamics in diffusive gradient bio aggregates (here: biofilms) and location of 

depolymerisation in these systems. 

 

6.1 Effect of molecular weight on depolymerisation kinetics 

 

Degradation rate reductions due to increased substrate size, either as molecular weight or 

particle diameter, have to a certain degree been regarded a priori in the wastewater literature 

(Levine et al., 1991), and early studies on particle degradations confirmed that degradation 

rates of colloids are higher than degradation of supracolloidal particles (Balmat, 1957). The 

effect of molecular weight on polymer degradation in biofilm systems was investigated in this 

work by analysing bulk phase TOC (Figure 5-5 and Figure 5-9) and estimation of OUR 

(Figure 5-8 and Figure 5-11). While the OUR analysis provides qualitative evidence for the 

rate effects of MW, analysis by the theory of Harremoës (1978) and Rittmann and McCarty 

(1980; 2001) of the bulk phase substrate concentration, enable quantitative evaluation.  Figure 

5-7 and Figure 5-10 show that degradation of polymers relates systematically to the molecular 

weight within the range above the membrane transport cut-off limit (or the direct assimilable 

range), and that above about 1-10 MDa the dependency change. The half order degradation 

coefficient decreased from about 1.5 to 0.057 (g/m)1/2/d when initial MW of the substrate was 

increased from 6 to 35000 kDa. This 26-fold decrease is similar to the size effects presented 

by Sollfrank and Gujer (1991) and Vollertsen and Hvitved-Jacobsen (1999) where 10-fold 

decrease in degradation of fast to slowly hydrolysable wastewater particles was found. The 

latter studies did not, however, separate the degradable fractions according to size, but by 

degradation. The biofilm removal rate of wastewater particles investigated here (section 5.5, 

Figure 5-23) correlated to first order kinetics in the range of values found in the literature. 

First order kinetics has been reported by many authors (see Table 2-3), and re-evaluation of 

the data of experiment 7 and 10 by first order kinetics showed that as the initial polymer 

become large, first order fitting becomes just as good as the variable order model by Rittmann 

and McCarty (1980; 2002).  
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The size effect on the observed removal rate may be due to reaction and/or transport 

limitations to the surface of, or into the biofilm matrix. From the mathematical definition of 

the areal removal coefficient, k1/2,A (5-3) , it is clear that both degradation rate effects and 

diffusion limitations are included in this parameter, by k0,f and DXs respectively. Intrinsic 

reaction effects on the reaction coefficient may be due to the molar reduction of possible 

substrate molecules, combined with spatial limitations on the number of enzyme complexes 

per molecule. The initial concentration of Dextran in experiments 7 and 10 was kept constant 

at 100 and 200 mg/l, meaning that the initial number of available substrate molecules was 

inversely proportional to the molecular weight. As the substrate becomes smaller (number of 

polymer bonds per molecule decrease), the number of substrate molecules available for 

substrate-enzyme complex formation increase, yielding increased degradation rates.  

An alternative explanation model for the observed size effect on the removal rate is the 

reduced substrate diffusion coefficient as the molecular size increase, described by the Stokes-

Einstein equation (5-5). Figure 5-10 shows that k1/2,A relates to the molecular weight as   ~ 

MW
-0.19 while strictly mass transfer limitations should show a ~MW

-0.5 relation (represented by 

the dotted line in Figure 5-10), not taking partitioning into account. Intermediate formation 

would reduce the average molecular weight during depolymerisation, and increase the 

effective diffusion coefficient. Therefore, the deviation between the observed reduction on 

k1/2,A and the theoretical estimate based on diffusion restrictions alone can be explained by 

intermediate formation effectively reducing the mean substrate molecular weight as the initial 

molecules are degraded. Bulk accumulation of small fragment intermediates has been 

observed in batch and continuous, suspended and biofilm cultures, and for pure and mixed 

populations (Haldane and Logan, 1994; Confer and Logan, 1998). These observations support 

the formation and accumulation of intermediates with increasing molecular mobility, resulting 

in increased penetration, degradation rates, and bulk phase accumulation. The shift from 

logarithmic reduction of k1/2,A as the initial molecular weight increase as depicted in Figure 

5-10, to the less dependant removal rate of the high MW standards may be attributed to 

obstruction of the large molecules by the extracellular polymeric structure of the biofilm. 

Jimenez et al. (1988) found an upper biofilm diffusion limit of about 2 MDa, while Tanaka et 

al. (1984) indicated this limit to be lower (10-100 kDa) studying alginate gels resembling 

biofilm gel properties. More recently Stoodley et al. (1997) suggests the biofilm matrix to be 

microporous, with pore diameters between 50 - 200 Å, corresponding to spherical molecules 

of 20-200 kDa (see Figure 5-6). However, Bryers and Drummond (1998) points out that the 

biofilm matrix is heterogeneous in terms of porosity, and that macropores and channels are 
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common for heterogeneous biofilms, suggesting the matrix pore diameter to vary from micro- 

to macropores (0.2-10 MDa) within a considerable range of pore diameters. This is supported 

by Lawrence et al. (1994) who found spatial variability in the mobility of fluorescein labelled 

Dextrans of variable sizes in pure (Pseudomonas fluorescens) and mixed population biofilms 

using scanning confocal laser microscopy. Thus, the shift at 1-3 MDa observed in Figure 5-10 

may very well be due to the inner filter effect of the biofilm matrix, indicating the limit of the 

effect of polymer/particle molecular weight on observed hydrolysis in biofilm systems. Above 

this limit the available area of the polymer/particle to biofilm surface area is more likely to be 

affecting the degradation rate indicated by the fat dotted line in Figure 5-10 as supported by 

other studies (Terashima and Lin, 2000).  

By the analysis of the Thiele modulus (5-21) and (5-22) and the one step depolymerisation 

model (section 5.6.2) it is evident that the system was partly reaction limited by 

depolymerisation product utilisation during the peak OUR for Dextran below about 100 kDa. 

However, a similar analysis of the estimated first order depolymerisation rates and the 

Dextran diffusion coefficients shows that the depolymerisation process is at all times 

diffusion limited, even down to Isomaltose (0.342 kDa) for a biofilm as thin as 30 µm (Figure 

5-32). This indicates that the overall removal rate of polymers is diffusion limited as long as 

depolymerisation is the rate limiting process. Accumulation of assimilable intermediates as 

shown in Figure 5-17 and partly in Figure 5-21, and from the full intermediate model (section 

5.6.4) indicates, however, that depolymerisation is not rate limiting for degradation of low 

MW polymers, observations also supported by the Thiele modulus evaluation in Figure 5-32 

(left). The logarithmic effect of MW on the overall degradation as presented in Figure 5-7 and 

Figure 5-10 can therefore be attributed to combined diffusion and reaction rate limitations, 

where reaction limitations are most likely to dominate for low MW intermediates and thin 

biofilms, and diffusion limitations gradually overtakes at higher MW (50 - 100 kDa).  

 

6.2 Intermediate dynamics 
 

Very limited information regarding intermediate formations and effects of such is found in the 

wastewater research and engineering literature. Investigations into the kinetics and 

stoichiometry of depolymerisation have been limited to one to three step processes of 

sequential degradation without measuring intermediate formation. Early studies by Banerji et 

al. (1968) showed that intermediate carbohydrates occurred in the liquid phase of activated 
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sludge systems degrading polysaccharides. Coulibaly et al. (2002) measured oligosaccharide 

accumulation during starch degradation in a model sewer bioreactor, and Larsen and 

Harremoës (1994) detected the same in a biofilm system. Haldane and Logan (1994) detected 

by ultrafiltration significant accumulation (14 and 54%) of intermediates in the size range 

below 1 and 10 kDa when studying 70 kDa Dextran degradation in batch and continuous 

monocultures. The same was observed by Confer and Logan (1997a; 1997b) when studying 

pure, limited mixed population and wastewater biofilm and suspended cultures degrading 

Bovine Albumin and Dextrans. In the latter study intermediates of 2-10 kDa accumulated 

during protein depolymerisation, while assimilable fractions (< 1 kDa) increased in the bulk 

phase of suspended pure and mixed biofilm and suspended cultures during Dextran and 

Dextrin (Starch hydrolysate) degradation. Depolymerisation fragments were released in a 

range of reactor and culture configurations, indicating that bulk phase accumulation of low 

MW intermediates is a general fundamental aspect of biological polymer degradation.  

These findings are supported by the studies reported in this work. Using SEC-HPLC, 

intermediate dynamics could be presented as continuous distributions. The suspended pure 

enzyme studies reported in section 5.3.1 show that intermediates of all size fractions occur, 

and that low MW intermediates around the 1-5 kDa accumulate more than the intermediate 

fraction above 5 kDa, and that the formation of end products (di and trimers) are slightly 

delayed compared to the 1-5 kDa range. Similar delayed end product formation is also seen in 

the inactivated coupon experiments (Figure 5-18), but for these intact biofilm matrix studies 

no significant levels of larger intermediates (8-50 kDa) occurred. The absence of larger 

intermediates can be explained by the reduced diffusivity back to solution. A similar effect 

may account for the relative low removal effect on the initial polymers, as they will have to 

penetrate and not escape the biofilm matrix. Adsorption to biofilms is reported to correlate 

inversely to MW (Carlson and Silverstein, 1998), indicating marginal adsorption effects on the 

initial polymers. The colloidal standard may, however, be subjected to entrapment 

mechanisms to the surface, or inside the biofilm matrix (Drury et al., 1993), as the size of 

these particles is the order of biofilm cells (Stolzenbach, 1996). Rapid uptake, as seen in 

Figure 5-5 and Figure 5-9 (inserts), can only be explained by such mechanisms. 

Accumulation of low MW intermediates was also observed by MacGregor et al. (1994). They 

suggested that multi-binding sites on the enzyme (α-Amylase) resulted in increased affinity 

for longer oligomers, MW > 1.5-1.7 kDa (DP>9-10), compared to the shorter intermediates. 

This resulted in intermittent accumulation of penta to octamers during degradation of amylose 

(0.8-1.3 kDa). No accumulation was observed for oligomers above this limit, and mono- di- 
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and trimers were only detected after the longer polymers were degraded. This dynamic pattern 

is very similar to the intermediate dynamics detected in this study, especially the pure enzyme 

experiment (section 5.3.1), experiment 7 and the coupon experiments (section 5.3.3 and 

5.3.2). Naturally this is not reflected in the modelling results due to the assumption of equal 

enzyme affinity. This might indicate that Dextranase also posses a multi-binding sites active 

centre. It has been shown that the reaction mechanism of barley α-Amylase is similar to 

several bacterial α-Amylases (e.g. Bacillus amyloliquefaciens, Thoma, et al., 1971), so this 

model could also apply to other bacterial Glucanases. The combination of reduced reaction 

rates of the sub-DP10 oligomers combined with increased diffusivity by MW reduction may 

explain the observed dynamics.  

Active biofilm coupon experiments show that assimilable fractions do accumulate 

intermittently similar to the observations by Haldane and Logan (1994) and Confer and Logan 

(1997b); however, accumulation of the low MW non-assimilable fractions (1-4 kDa) was more 

pronounced (Figure 5-17). Confer and Logan (1997a) observed this for protein degradation, 

but only to a limited extent during Dextran and Dextrin degradation. Assimilable fractions did 

not accumulate during the Rototorque degradation studies in experiment 7 (section 5.3.3), 

however, low MW non-assimilable intermediates accumulated similar to the coupon 

experiments (Figure 5-19 and Figure 5-20). Contrary to this, no intermediates accumulated at 

all in experiment 10 (Figure 5-21). The fundamental intermediate and assimilable fraction 

accumulation proposed by Confer and Logan (1997b; 1998) seems to be supported by these 

results. The model suggests that the production of low MW fractions proceed faster than 

assimilation and mineralisation by the culture responsible for the depolymerisation. However, 

they did not suggest mechanistic explanations to why this happens (though, necessity of 

reaching different enzymes are proposed), and from the data in this work there seems to be 

some circumstances where accumulation do not occur. In order to project fundamental 

systematic properties mechanistic understanding is necessary. Before entering that discussion, 

Figure 5-17 indicate that less accumulation is likely to occur during growth compared to 

starved biofilms. That indicates that accumulation is balanced by the uptake rate of 

depolymerisation products. 

During sequential depolymerisation in a porous structure like biofilms, whereby a polymer is 

degraded into smaller fragments, the concentration of intermediates (and initial polymer) is 

very different from the equivalent distribution in the bulk. Intermediates formed in the 

biofilms are more likely to react further, than to diffuse back into the biofilm. As the products 

become smaller diffusivities within the biofilm increase, and the likelihood that products 
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diffuse back into the bulk solution increase. Depending on factors affecting the reaction 

kinetics and diffusion, such as the pore size and structure, temperature, enzyme activity, 

biofilm intrinsic advective transport, matrix surface charge, etc, intermediate concentrations in 

the bulk phase may occur. Varga and Malcata (1996) evaluated, by mathematical arguments, 

the behaviour of polymers diffusing into a structure holding immobilized enzymes. They 

evaluated the effect of the Thiele modulus (5-21) for saturated (Cn >> KM) Michaelis Menten 

kinetics, defined as:  
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If the selectivity is positive and above 1, bulk phase intermediates will not form. In the 

selectivity range 0-1, substrate flux is higher than the product removal rate, indicating higher 

affinity for the substrate compared to the product (at equal diffusivities), or higher diffusivity 

of the products (at equal reaction rates) out of the biofilm (products are generated inside the 

matrix). Negative selectivity results when the intermediate formation is high enough to give 

net flux out of the biofilm surface. Depending on the bulk phase concentration of substrates 

and intermediates, intermediates may therefore form if the Thiele modulus of the intermediate 

is low and the bulk phase concentration is low. In this work reaction rate (vmax = k0
..e0) is 

constant, while the diffusivity of the products always increased compared to the substrates. At 

higher Φ intermediates will not form due to diffusion limitations of products (intermediates) 

out of the biofilm slab. However, Thiele moduli will gradually decrease as the MW of the 

products decrease (diffusivity increase), and at some stage intermediates may occur 

(depending on the bulk phase concentration). This is in agreement with the theoretical 

investigation of Varga and Malcata (1996) who found that the selectivity of polymer removal 

gradually decreased first below 1, and then below 0 upon lowering the Thiele modulus of 
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depolymerisation reactions. In the range Φ ε [0.1,1] an abrupt shift occurred due to reversal of 

the intermediate concentration gradient in the matrix. Thus, in addition to the rate effects 

described by MacGregor et al. (1994), increased diffusivities due to reduced MW could also 

explain the accumulation of low MW intermediates. Combining these models do in fact 

explain accumulation of the non- assimilable as well as the delayed occurrence of the 

assimilable products in the pure enzyme and inactivated biofilm coupon experiment. For 

intermediates above the number of multicites of the endo-enzyme (10, MacGregor et al., 

1994; 9-12 found by Thoma et al., 1971) the depolymerisation rate is constant. Reduced 

Thiele modulus by increased diffusivity, results in increased bulk phase intermediate 

formation. As the polymers are cleaved below the maximum active site number of the 

enzyme, the affinity is reduced leading to reduced conversion of the 4-9 DP fraction (0.67-1.5 

kDa. This in turn increases the flux of these intermediates into the bulk, further enhancing the 

accumulation of these intermediates. As the depolymerisation of this fraction proceeds (at the 

reduced rate) the end products will finally dominate the bulk. During simultaneous 

assimilation of the assimilable fraction (0.18-0.9 kDa), the 1-2 kDa fraction will dominate in 

the bulk phase as observed for the active coupon experiments in section 5.3.2 (Figure 5-17), 

and the biofilm reactor experiment in section 5.3.3 (Figure 5-19 and Figure 5-20). 

From the explanation model suggested above, the extent of intermediate release depends on 

the depolymerisation enzyme activity (amount and kinetics). Using the same enzyme as used 

in section 5.3.1 (Dextranase from P. lilacinum and Dextran from L. mesenteroides B 512), 

Mountzouris et al. (2002) also found Isomalto- and Isomaltotriose to be the major product (43 

and 56 %, respectively). In addition, by HPLC-SEC they found intermediate accumulation in 

the 1-10 kDa region in a CSTR operated reactor when the enzyme activity was low combined 

with low residence time (60 min). As the enzyme activity (amount) and residence time 

increased, only di- to heptamers accumulated. Absence of intermediates due to high 

concentrations (activity) of depolymerising enzymes was also reported and discussed by 

Rollings et al. (1983). Their explanation suggests multi-binding of enzymes to single substrate 

polymers disabling release of the product sub/polymers until the polymers are small enough to 

be completely released by the enzymes. Whether high enzyme concentrations promote multi-

bonding or limits the release and transport by the intermediates, both mechanisms suggest 

reductions in low MW intermediates due to elevated enzyme activity. Interestingly, limited 

substrate availability, as will be the case for degradation of non-hydrated dense colloids (like 

Starch granules), will significantly limit the amount of intermediate released to the bulk phase 

(Rollings and Thompson, 1984). Thus, high enzyme activities and low substrate availability 
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will limit accumulation of intermediates. This may explain the absence of significant amounts 

of intermediates during experiment 10 batches (Figure 5-21) compared to the ones in 

experiment 7. In experiment 10, half the initial Dextran concentration was added (100 as 

opposed to 200 mg/l), and the activity measured as OUR (reflecting synthesis of assimilable 

fractions) did not reduce by more than 16, 17 and 35 % for 10.5, 38.1/41.3 and 513 kDa, 

respectively (from Figure 5-8 and Figure 5-11). This suggests that the depolymerisation 

activity during experiment 10 was relatively higher than experiment 7. Reduced substrate 

availability and increased enzyme activity will both result in reduced accumulation of 

intermediates as seen in experiment 10 (Figure 5-21). 

Another explanation to the accumulation in the 1-5 kDa range of pure enzyme studies is that 

Dextranase do not attack α1-2, α1-3 and α1-4 bonds of the branching points (Walker, 1978), 

nor adjacent α1-6 bonds (Walker and Pulkownik, 1974). Altered intermediate dynamics due 

to branching of Starch was reported by Sanroman et al. (1996). Branching also reduce 

depolymerisation of the polymer backbone by steric hindrances close to the branching 

positions. Open mixed cultures as applied in the coupon and biofilm reactor experiments 

probably house, or at least harbour the ability to synthesise, debranching enzymes. The 

observed accumulation of these fractions must in such circumstances be attributed to Thiele 

moduli effects as discussed above. 

 

6.3 Enzyme location 
 

Compared to the limited studies on intermediate dynamics during depolymerisation, 

identification and location mapping of extracellular enzymes are well studied for activated 

sludge and natural systems (see section 2.3 for references). For suspended cultures it seems 

evident that enzyme activity follows the cellular fraction (Banerji et al., 1967; Chóst 1991; 

Boczar et al., 1992; Frølund et al., 1995; Confer and Logan, 1997a; Confer and Logan; 

1997b), even though reports of bulk phase dominated depolymerisation in pure cultures are 

available (Goel et al., 1997; Goel et al., 1998a; Goel et al., 1999), and several observations of 

secretion in natural habitats have been reported (see Wetzel, 1991, for a summary). Confer 

and Logan (1998a showed, by comparing suspended and biofilm cultures fed on 

polysaccharides (Dextran) and protein (Bovine Albumine), that hydrolytic activity was 

associated with the biofilm matrix, a minimum of five times higher than the biofilm filtrate. 

The results of this study support the proposed mechanism of Confer and Logan (1998b) of 
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depolymerisation activity in biofilms dominated by the biofilm matrix fraction, followed by 

possible back diffusion into the bulk phase by depolymerisation intermediate products. 

Further, it seems like the biofilm activity is compartmentalised with the cellular fraction of the 

biofilm, with no detectable activity in the filtered void water, EPS matrix or the bulk phase 

(Figure 5-22), and residual activity below the detection limit in the unfiltered non-cellular 

compartments. α-Glucosidase, associated with the cells of suspended and biofilm cultures by 

several workers (Confer and Logan (1998a; Goel et al., 1997; Goel et al., 1998a; Richards et 

al, 1984), detected through liberation of Glucose, was observed in the biofilm compartment. 

Addition of Dextran did not, however, increase the Glucose liberation rate, suggesting that the 

activity was not related to Dextran degradation. Inactivation by Azide did not alter this, 

indicating that the absence of Glucose was not related to rapid assimilation by the biofilm 

bacteria. Residual Glucose can be attributed to Glucose leakage from surplus intracellular 

Glucose during mineralisation of Dextranase products (Isomaltoses).  

These data were obtained during continuous operation of the Rototorque reactors (experiment 

8; see Table 4-1) at ΘH of 75 min, and Dextran loading of 3.5 g/m2.d. This is in the same 

range as full scale wastewater biofilters are operated (Tchobanoglous et al., 2003). 

Depolymerisation of polymers in biofilm systems are therefore not likely to be the result of 

bulk phase exogenous enzymes as suggested by Rohold and Harremoës (1993) and Larsen 

(1992), and conceptualised by the model suggested by Larsen and Harremoës (1994). The 

intermediate dynamics and enzyme locations observed in this work support the general model 

suggested by Confer and Logan (1998b) of cellular enzyme location and intermediate 

transport via the bulk (graphically presented in the conceptual model in Figure 3-2). 

Releasing enzymes into the bulk phase has by several authors been viewed as energetically 

inefficient compared to cell-associated locations (Confer and Logan, 1998; Wentzel, 1991; 

Hoppe, 1983; Hollibaugh and Azam, 1983) due to increased susceptibility to degradation and 

chemical alteration, and the increased distance between the product releasing site and the 

enzyme producer. Wentzel (1991) argued, however, that releasing enzymes into solution still 

would benefit cells over distances as high as 500 µm. In biofilm systems, transport limitations 

will reduce the efficiency of polymer degradation, limitations that would be reduced if 

enzymes were released to the bulk, and more diffusible products return. However, bulk phase 

constituents are subjected to washout, and enzymes released to the bulk would very soon be 

transported out of energetically favourable zones (e.g. > 500 µm). As a community, though, 

coordinated release of enzymes could still be beneficial for harvesting limited diffusible 

substrates through collective harvesting, and mutualistic mechanisms have been proposed and 
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observed in these consortia (Costerton and Lewandowski, 1997; Watnick and Kolter, 2001; 

Stoodley et al., 2002). Location of exogenous enzymes may therefore be subjected to 

environmental regulation on gene and/or community level controlled by factors like residence 

time, growth rate, substrate availability/transport limitations, substrate properties, etc. The 

numerous observation of cell associated activity to the less frequent reports of extracellular 

may suggest that cell association is the most common location but certain conditions may 

induce release into the surrounding media. In biofilms, that would primarily imply release to 

the EPS matrix and void liquids, and subsequent release to the bulk. Thus, the model 

suggested by Larsen and Harremoës (1994) may be a contingency mechanism for polymer 

and particle degradation, while the standard scheme outlined by Confer and Logan (1998a; 

1998b) prevail during "normal" conditions. 

 

6.4 Modelling  
 

Mathematical modelling is a very efficient way of organising and communicating quantitative 

concepts and hypothesis. In this work, three modelling exercises are used to 1) identify and 

calibrate growth and biofilm structure dynamics; 2) calibrate a one step depolymerisation 

model as suggested by the ASM group (see references in section 5.6.2) for evaluation of size 

effects on depolymerisation kinetics (as opposed to degradation kinetics by the approach 

suggested by Harremoës (1978) and Rittmann and McCarty (1980; 2002)); 3) further 

investigations into the cause of the observed size dependency; and 4) qualitative calibration of 

a full range intermediate model for simulation of intermediate dynamics, and qualitative 

comparison to observed intermediate distributions. Kinetics and stoichiometry for the applied 

models were based on first order kinetics in accordance with the ASM suggestions, adapted to 

biofilm conditions; and multi-substrate kinetics and stoichiometries developed from standard 

Michaelis-Menten expressions. 

Calibration and validation of the biofilm characterisation model (Figure 5-25, Figure 5-26 and 

Figure 5-29) show acceptable fit to the measured bulk phase TOC and OUR data, and the 

growth and biofilm dynamics parameters estimated (Table 5-4) are within reported values for 

similar mixed culture biofilm systems (see references in section 5.6.1). 

Using the calibrated growth model, one step depolymerisation was calibrated for all size 

classes investigated in experiment 10 (section 5.2.3), and results are presented in Figure 5-30. 

Compared to the modelling using the Rittmann and McCarty (1980; 2002) model, tight fitting 
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is achieved for both observed variables, OUR and bulk TOC. Estimated first order 

depolymerisation rate coefficients show similar logarithmic correlation to the substrate 

molecular weight as found by the analytical solution (Figure 5-7 and Figure 5-10), confirming 

the analytical direct degradation results, even though the three distinct regions identified on 

Figure 5-10 did not appear as clearly. By itself, this result indicates logarithmic reaction rate 

reduction by the substrate MW. At the same time, transport limitations are evident from the 

evaluation of the Thiele moduli calculated using the depolymerisation coefficients estimated 

(Figure 5-32). As the Thiele moduli increase linear to the logarithm of the MW even though 

the linear reduction of kh to the logarithm of MW (Figure 5-31) is used for the Thiele moduli 

calculations, significant effects on the overall removal rate must in addition be attributed to 

transport limitations, especially for the larger polymers. Interestingly, the colloidal size 

standard show reduced Thiele modulus compared to the dissolved polymers, which means 

that for this fraction transport limitations are not as strong, but that reaction rate reduction 

becomes more significant. This may indicate that the colloid is not diffusing into the matrix 

(transport independent from size) but is depolymerised at the biofilm surface, and the 

reduction in overall removal rate is dominated by reaction rate reductions. Combining these  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1. Conceptual model for the combined effect of transport and reaction rate on observed removal rate by 
substrate molecular size. 
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two observations, a unified degradation model for polymer and particle degradation in 

biofilms may be suggested. Dissolved polymers able to penetrate the biofilm matrix are 

subjected to logarithmic reduction of observed removal rate due to reaction rate and transport 

limitations. Non-diffusible polymers, colloids and particles are subjected to reaction rate 

reductions only, and show less dependency towards substrate molecular weight. The unified 

degradation model concept is presented in Figure 6-1. 

Kinetic expressions presented in section 4.6 were developed by assuming: single active site - 

single substrate bond enzyme-substrate complex formation, equal complex formation 

probability (constant KM) and no MW effects on the product rate formation (k0). These are 

standard assumptions underlying the gross of continuous multi-substrate Michaelis-Menten 

kinetics (Suga et al., 1974; Costa and Malcata, 1994; Silva and Malcata, 1994; Varga and 

Malcata, 1996; Sehanputri and Hill Jr., 2000). Kinetic expressions and stoichiometry 

developed for endo activity (4-2 and 4-3) and exo depolymerisation (4-6, 4-7 and 4-8) are 

equivalent to the molar expressions by Suga et al. (1974). 

Inability to extract single polymer intermediates from the HPLC-SEC data made quantitative 

calibration and validation of the full intermediate model impossible. However, by grouping 

simulated intermediates by a constant time factor, column dispersion and intrinsic calibration 

uncertainty could be mimicked for qualitative comparison to real data. This introduced 

artefacts, especially pronounced in the low MW region, and care should be exercised during 

interpretation. 

Suspended pure enzyme simulation results (Figure 5-33) indicate formation of all possible 

intermediates similar to the observations in section 5.3.1, and resemble the simulated 

distribution dynamics reported in the early works of Montroll and Simha (1940). For the 

biofilm plots (Figure 5-36), assimilable (0.18-0.9 kDa) product formation dominates bulk 

phase accumulation (especially the Dextranase end products), while non-assimilable low MW 

accumulation is not significant. Comparing the grouped simulation results to the observed 

distributions in experiment 10 (Figure 5-36, low panels) it is clear that the calibrated model 

overestimates assimilable substrate accumulation, while the higher MW intermediates show 

better fit.  

The full intermediate biofilm model was calibrated against measured OUR and bulk TOC by 

tuning the endo- activity maximum, vmax, (as Dextranase was the only depolymerising enzyme 

detected) and the Michaelis coefficient, while exo-activity was set to zero. Figure 5-35 show 

the result of the calibration. The estimated KM values are remarkably close, and similar to 

literature reports on Penicillium lilacinum Dextranase (Das and Dutta, 1996). As literature 
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values are hard to implement in a structured multisubstrate model (most of the literature 

values are estimated using one step Michaelis-Menten models), further interpretation cannot 

be done. This is seen by the fact that most reported affinities are very low12, indicating 

competitive substrate inhibition rather than true low affinities (ref. equation 4-2). However, it 

is interesting that the estimated parameters are pair wise close (both KM and vmax), and that the 

overall model performance is close to the observed OUR and TOC. 

By leaving out the exo-glucanase activity, reported synergistic effects found for celluloses 

(Okazaki and Moo-Young, 1978; Fujii) and Starch degradation (Fujii and Kawamura, 1985) 

is not included. Dean III and Rollings (1992) showed that synergism becomes significant for 

homogenous endo, and to endo + exo activity ratios in the range 0.3 - 0.7, using a model very 

similar to the one proposed here. As the measured ratio is very close to unity, synergism may 

not have been a major mechanism during the experiment herein. Moreover, the same authors 

also found that log (KM/S0)endo values above zero exhibited most synergism, values that are 

very far from the ones obtained in this study (here about -3.5). 

Multi-substrate modelling as suggested here exhibits the drawback of complexity on 

parameter estimation and model identification. Even though the full intermediate model does 

not contain many parameters, inability to identify intermediates and enzyme concentrations 

precisely, makes estimation of kinetic parameters very uncertain, if not impossible. 

Applications should therefore be restricted to qualitative evaluations. Lumped substrate 

modelling, like the ones reported in section 5.6.2 or generic limited number intermediate 

models, should be used for macro scale evaluations. Nevertheless, the model framework is a 

priori and from observations more consistent with the micro scale dynamics of the process. 

Further investigations into the process should therefore be based on the full intermediate 

mechanistic model, in order to develop a sound basis for data interpretation. That would 

require development or adaptations of refined analytical methodologies for enzyme and 

intermediate quantification, and implementation of the mathematical model in powerful 

numerical software. From detailed knowledge of the fundamentals, lumped models may be 

used for applied reactor modelling, restricted by necessary assumptions evaluated against the 

detailed model. It is better to do qualified simplifications on the known, than guessing the 

unknown. 

 

 

                                                 
12 BRENDA (http://www.brenda.uni-koeln.de/php/result_flat.php3?ecno=3.2.1.11) 
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6.5 Implication for wastewater treatment systems 
 

This section presents a short attempt to project the results and discussion on polymer and 

colloid degradation to wastewater engineering applications. Some ideas on how intermediate 

dynamics may be used for the development of novel designs are suggested. 

Renewed interest for the application of biofilm reactors for treating municipal and industrial 

wastewater has been catalysed by the development of quantitative mechanistic models for 

biofilm dynamics the past 25 years. Removal of dissolved and colloidal organics following 

primary treatment, nitrification and denitrification using packed and suspended biofilters, are 

now standard wastewater engineering applications. Adsorption of smaller fragments, mainly 

dissolved polymers (Carlson and Silverstain, 1998), and physical retention (entrapment) by 

the heterogeneous biofilm structure (Bouwer, 1987), removes polymer and particulate organic 

matter to the bio aggregate (also valid for suspended biofilms: activated sludge flocs). 

Retention close to the active biomass enhance degradation by depolymerisation and 

mineralisation, and by sludge return (activated sludge) and substratum growth (biofilms), 

particles are given sufficient retention time for complete depolymerisation. As suggested in 

the present study, depolymerisation by exogenous enzymes in the biofilm matrix cause readily 

biodegradable substrates to diffuse back into bulk solution, whereby these are subjected to 

advective transport further into the biofilter (packed bed). Thus, hydraulic retention time 

significantly determines the COD dynamics in biofilters, and successful design for COD 

removal must take the size effects and dynamics of particulate/polymeric organic matter into 

account.  

Biofilters have also been used successfully to oxidise ammonium, and for nitrogen removal 

(Harremoës and Henze, 2002). Use of treatment plant internal carbon sources for post-

denitrification is interesting in order to minimize sludge production, and reduce operation 

costs (Janning, 1998). Particles extracted after pre-treatment are bypassed the secondary BOD 

removal and nitrification process, and fed denitrifying biofilters (la Cour Jansen et al., 2002). 

Entrapment and adsorption of SBOD will, by depolymerisation, provide carbon source for the 

biofilm downstream. Again, design and operation of such filters must take size effects on 

depolymerisation and transport dynamics into account. Bulk phase intermediate formation 

will, by the plug flow advection, distribute RBCOD deeper into the filter with consequences 

for the location of denitrification.  
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Biofilters may be designed for one stage nitrogen removal in post aerobic RBCOD removal 

systems, by bypassing SBCOD from primary treatment to combined nitrification-

denitrification filters. Particles and colloids entering the filter will adsorb to surface biofilm in 

the inlet region, and release intermediates to the advective bulk for transport deeper into the 

filter. Aerobic ammonium rich inlet water with limited RBCOD may select for nitrifying 

cultures below the limited heterotrophic surface layer, loaded with particulate and colloidal 

SBCOD. As the RBCOD is relatively low, nitrifiers are able to compete with the heterotrophs 

for oxygen, maintaining viable autotrophic cultures in the deeper part of the biofilm in the 

inlet stages of the filter. Autotrophic growth may even cause extended surface detachment of 

adsorbed SBCOD and heterotrophs, carrying them deeper into the filter. Depending on 

organic loading and hydraulic retention time, a pseudo steady state could be achieved where 

nitrifiers dominate the first stage of the filter, consuming oxygen and releasing nitrate, 

followed by anoxic sections deeper in the filter receiving electron donor from the 

depolymerisation of SBCOD in the upstream aerobic and anoxic sections. Combined 

nitrification- denitrification could also be achieved in a suspended biofilm reactor low in bulk 

phase RBCOD, but with high SBCOD and ammonium. Under such conditions, fast growing 

autotrophs may be able to compete with the heterotrophs in the upper layers, resulting in 

sharp oxygen gradients (due to the high OUR of nitrifiers) and formation of anoxic layers in 

the deeper biofilm sections. In such a regime, particles retained on the surface and/or 

transported into the upper regions of a biofilm, will be depolymerised into diffusive 

intermediates and products that may enter deeper into the biofilm, where anoxic respiring 

heterotrophs create a sink for depolymerisation products and nitrate. Limited 

depolymerisation rate could enable steady state conditions of autotrophic surface layers 

growing on top heterotrophs growing at limited rate under anoxic conditions. The key factor 

for this condition is the concentration of bulk phase RBCOD and oxygen. 

Intermediate dynamics will also have an effect on mathematical modelling of wastewater 

systems. In the ASM group (Henze et al., 2000), depolymerisation, or hydrolysis, is treated as 

a one step model not taking the size of substrates into account. In gradient systems, biofilms 

and activated sludge flocs, sequential depolymerisation into more and more diffusive 

intermediates will affect the observed removal rates, causing overestimation of kinetic 

parameters, or SBCOD fraction. By the same reasons, generalisation of parameters is also 

difficult, something that might be the reason for the relatively large range of hydrolysis 

parameters reported, and the emphasis by the ASM group on hydrolysis parameters as a major 

source of uncertainty of the ASM models (Henze et al. 2000). 
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7 Conclusion 
 

Depolymerisation in biofilms was investigated for the purpose of obtaining general 

knowledge on degradation of dissolved polymers and colloidals using the polysaccharide 

Dextran as model substrate. Oxygen utilisation rates and bulk phase TOC measurements 

during batch operation of a rototorque biofilm reactor were used to investigate the effect of 

initial molecular weight on the observed removal rates. Bulk phase size distribution of 

depolymerisation intermediates was measured by HPLC-SEC using pure enzymes and 

biofilms, and specific enzyme assays were used for identifying the location of 

depolymerisation. Calibration of a mixed population biofilm model was used to compare 

simulated substrate dynamics with mineralisation rate (OUR), and bulk phase substrate 

dynamics. By theoretical analysis of the estimated depolymerisation rates and literature data 

on polymer diffusivity in biofilms, a conceptual model for the combined effect of polymer 

and particle size on depolymerisation and transport in biofilms is suggested.  

 

The main conclusions are: 

 

1. Dextran removal rate decrease with increasing Dextran molecular weight. The 

observed areal half order removal rate coefficient, k1/2,A, show negative logarithmic 

correlation to the initial MW of Dextran in the 1-500 kDa range.  

2. Depolymerisation intermediates accumulated in the bulk phase over the entire Dextran 

size range during pure Dexranase (3.2.1.11) studies. Final products were 

oligoisomaltoses (DP 2-6). Dextran was not depolymerised by α-Glucosidase 

(3.2.1.20) nor Oligo-α-1,6 Glucosidase. 

3. Removal of Dextran is biomass dependent in what appears to be a non-linear 

dependency on biofilm thickness, expressed as biomass areal density (g/m2), with no 

depolymerisation observed for thin biofilms (0.7 g/m2), slow for medium (3.7 g/m2) 

and high for thicker biofilms (5.2 g/m2). 

4. Low MW Dextran intermediates (1-10 kDa) accumulated in the bulk during 

depolymerisation of 160 kDa Dextran at 250 and 200 mg/l initial concentrations, but 

were not detected during experiments with 100 mg/l initial concentrations. 

Intermediate range Dextran (10-100 kDa) did not accumulate in either case. At the 
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same conditions, some assimilable range Dextran (0.2-0.9 kDa) accumulated during 

initial 250 and 200 mg/l batches, but was not detected during 100 mg/l initial 

concentrations. The extent of bulk phase accumulation seems to depend on the biofilm 

growth rate, where more bulk phase accumulation is observed during experiments with 

starved compared to more actively growing biofilms. More intermediates accumulate 

during low MW initial standards, compared to higher. These observations indicate that 

the extent of bulk phase intermediate accumulation is balanced by the rate of 

depolymerisation, and the substrate uptake rate (growth). Accumulation in biofilm 

systems is therefore depending on the SBCOD loading rate. 

5. Dextranase was detected in the cellular fraction of the biofilms. Dextranase activity 

was not detected in any other biofilm sub compartments. 

6. The observed bulk phase intermediate accumulation and enzymatic activity in the 

cellular fraction, support the conceptual model of Confer and Logan (1998), implying 

that bulk phase intermediate accumulation observed in this study and by others, is not 

a result of enzymatic activity in the bulk phase, but transport of intermediates from the 

biofilm matrix. 

7. Evaluation of Thiele moduli from one step depolymerisation modelling suggests that 

the logarithmic reduction in observed removal rate is caused by combined reaction rate 

and transport limitations. Transport limitations dominates as the polymeric substrate 

size increase and inhibit biofilm matrix diffusion, and the removal rate becomes a 

surface limited reaction 

. 
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9 Appendix 

9.1 EC Group 3 Hydrolases 
 
EC 3.1 Acting on Ester Bonds  

EC 3.1.1 Carboxylic Ester Hydrolases  

EC 3.1.1.1 carboxylesterase 
EC 3.1.1.2 arylesterase 
EC 3.1.1.3 triacylglycerol lipase 
EC 3.1.1.4 phospholipase A2 
EC 3.1.1.5 lysophospholipase 
EC 3.1.1.6 acetylesterase 
EC 3.1.1.7 acetylcholinesterase 
EC 3.1.1.8 cholinesterase 
EC 3.1.1.10 tropinesterase 
EC 3.1.1.11 pectinesterase 
EC 3.1.1.13 sterol esterase 
EC 3.1.1.14 chlorophyllase 
EC 3.1.1.15 L-arabinonolactonase 
EC 3.1.1.17 gluconolactonase 
EC 3.1.1.19 uronolactonase 
EC 3.1.1.20 tannase 
EC 3.1.1.21 retinyl-palmitate esterase 
EC 3.1.1.22 hydroxybutyrate-dimer hydrolase 
EC 3.1.1.23 acylglycerol lipase 
EC 3.1.1.24 3-oxoadipate enol-lactonase 
EC 3.1.1.25 1,4-lactonase 
EC 3.1.1.26 galactolipase 
EC 3.1.1.27 4-pyridoxolactonase 
EC 3.1.1.28 acylcarnitine hydrolase 
EC 3.1.1.29 aminoacyl-tRNA hydrolase 
EC 3.1.1.30 D-arabinonolactonase 
EC 3.1.1.31 6-phosphogluconolactonase 
EC 3.1.1.32 phospholipase A1 
EC 3.1.1.33 6-acetylglucose deacetylase 
EC 3.1.1.34 lipoprotein lipase 
EC 3.1.1.35 dihydrocoumarin hydrolase 
EC 3.1.1.36 limonin-D-ring-lactonase 
EC 3.1.1.37 steroid-lactonase 
EC 3.1.1.38 triacetate-lactonase 
EC 3.1.1.39 actinomycin lactonase 
EC 3.1.1.40 orsellinate-depside hydrolase 
EC 3.1.1.41 cephalosporin-C deacetylase 
EC 3.1.1.42 chlorogenate hydrolase 
EC 3.1.1.43 a-amino-acid esterase 
EC 3.1.1.44 4-methyloxaloacetate esterase 
EC 3.1.1.45 carboxymethylenebutenolidase 
EC 3.1.1.46 deoxylimonate A-ring-lactonase 
EC 3.1.1.47 1-alkyl-2-acetylglycerophosphocholine esterase 
EC 3.1.1.48 fusarinine-C ornithinesterase 
EC 3.1.1.49 sinapine esterase 
EC 3.1.1.50 wax-ester hydrolase 
EC 3.1.1.51 phorbol-diester hydrolase 
EC 3.1.1.52 phosphatidylinositol deacylase 
EC 3.1.1.53 sialate O-acetylesterase 
EC 3.1.1.54 acetoxybutynylbithiophene deacetylase 
EC 3.1.1.55 acetylsalicylate deacetylase 
EC 3.1.1.56 methylumbelliferyl-acetate deacetylase 
EC 3.1.1.57 2-pyrone-4,6-dicarboxylate lactonase 
EC 3.1.1.58 N-acetylgalactosaminoglycan deacetylase 
EC 3.1.1.59 juvenile-hormone esterase 
EC 3.1.1.60 bis(2-ethylhexyl)phthalate esterase 
EC 3.1.1.61 protein-glutamate methylesterase 
EC 3.1.1.63 11-cis-retinyl-palmitate hydrolase 
EC 3.1.1.64 all-trans-retinyl-palmitate hydrolase 
EC 3.1.1.65 L-rhamnono-1,4-lactonase 
EC 3.1.1.66 5-(3,4-diacetoxybut-1-ynyl)-2,2'-bithiophene 
deacetylase 
EC 3.1.1.67 fatty-acyl-ethyl-ester synthase 
EC 3.1.1.68 xylono-1,4-lactonase 
EC 3.1.1.70 cetraxate benzylesterase 
EC 3.1.1.71 acetylalkylglycerol acetylhydrolase 
EC 3.1.1.72 acetylxylan esterase 
EC 3.1.1.73 feruloyl esterase  
EC 3.1.1.74 cutinase  
EC 3.1.1.75 poly(3-hydroxybutyrate) depolymerase  
EC 3.1.1.76 poly(3-hydroxyoctanoate) depolymerase 
acyloxyacyl hydrolase 
EC 3.1.1.77 acyloxyacyl hydrolase 
EC 3.1.1.78 polyneuridine-aldehyde esterase  

EC 3.1.2 Thiolester Hydrolases  

EC 3.1.2.1 acetyl-CoA hydrolase 
EC 3.1.2.2 palmitoyl-CoA hydrolase 
EC 3.1.2.3 succinyl-CoA hydrolase 
EC 3.1.2.4 3-hydroxyisobutyryl-CoA hydrolase 
EC 3.1.2.5 hydroxymethylglutaryl-CoA hydrolase 
EC 3.1.2.6 hydroxyacylglutathione hydrolase 
EC 3.1.2.7 glutathione thiolesterase 
EC 3.1.2.10 formyl-CoA hydrolase 
EC 3.1.2.11 acetoacetyl-CoA hydrolase 
EC 3.1.2.12 S-formylglutathione hydrolase 
EC 3.1.2.13 S-succinylglutathione hydrolase 
EC 3.1.2.14 oleoyl-[acyl-carrier-protein] hydrolase 
EC 3.1.2.15 ubiquitin thiolesterase 
EC 3.1.2.16 [citrate-(pro-3S)-lyase] thiolesterase 
EC 3.1.2.17 (S)-methylmalonyl-CoA hydrolase 
EC 3.1.2.18 ADP-dependent short-chain-acyl-CoA hydrolase 
EC 3.1.2.19 ADP-dependent medium-chain-acyl-CoA hydrolase 
EC 3.1.2.20 acyl-CoA hydrolase 
EC 3.1.2.21 dodecanoyl-[acyl-carrier protein] hydrolase 
EC 3.1.2.22 palmitoyl-(protein) hydrolase 
EC 3.1.2.23 4-hydroxybenzoyl-CoA thioesterase 
EC 3.1.2.24 2-(2-hydroxyphenyl)benzenesulfinate hydrolase  

EC 3.1.3 Phosphoric Monoester Hydrolases  

EC 3.1.3.1 alkaline phosphatase 
EC 3.1.3.2 acid phosphatase 
EC 3.1.3.3 phosphoserine phosphatase 
EC 3.1.3.4 phosphatidate phosphatase 
EC 3.1.3.5 5'-nucleotidase 
EC 3.1.3.6 3'-nucleotidase 
EC 3.1.3.7 3'(2'),5'-bisphosphate nucleotidase 
EC 3.1.3.8 3-phytase 
EC 3.1.3.9 glucose-6-phosphatase 
EC 3.1.3.10 glucose-1-phosphatase 
EC 3.1.3.11 fructose-bisphosphatase 
EC 3.1.3.12 trehalose-phosphatase 
EC 3.1.3.13 bisphosphoglycerate phosphatase 
EC 3.1.3.14 methylphosphothioglycerate phosphatase 
EC 3.1.3.15 histidinol-phosphatase 
EC 3.1.3.16 phosphoprotein phosphatase 
EC 3.1.3.17 [phosphorylase] phosphatase 
EC 3.1.3.18 phosphoglycolate phosphatase 
EC 3.1.3.19 glycerol-2-phosphatase 
EC 3.1.3.20 phosphoglycerate phosphatase 
EC 3.1.3.21 glycerol-1-phosphatase 
EC 3.1.3.22 mannitol-1-phosphatase 
EC 3.1.3.23 sugar-phosphatase 
EC 3.1.3.24 sucrose-phosphatase 
EC 3.1.3.25 inositol-1(or 4)-monophosphatase 
EC 3.1.3.26 4-phytase 
EC 3.1.3.27 phosphatidylglycerophosphatase 
EC 3.1.3.28 ADPphosphoglycerate phosphatase 
EC 3.1.3.29 N-acylneuraminate-9-phosphatase 
EC 3.1.3.31 nucleotidase 
EC 3.1.3.32 polynucleotide 3'-phosphatase 
EC 3.1.3.33 polynucleotide 5'-phosphatase 
EC 3.1.3.34 deoxynucleotide 3'-phosphatase 
EC 3.1.3.35 thymidylate 5'-phosphatase 
EC 3.1.3.36 phosphoinositide 5-phosphatase 
EC 3.1.3.37 sedoheptulose-bisphosphatase 
EC 3.1.3.38 3-phosphoglycerate phosphatase 
EC 3.1.3.39 streptomycin-6-phosphatase 
EC 3.1.3.40 guanidinodeoxy-scyllo-inositol-4-phosphatase 
EC 3.1.3.41 4-nitrophenylphosphatase 
EC 3.1.3.42 [glycogen-synthase-D] phosphatase 
EC 3.1.3.43 [pyruvate dehydrogenase (lipoamide)]-
phosphatase 
EC 3.1.3.44 [acetyl-CoA carboxylase]-phosphatase 
EC 3.1.3.45 3-deoxy-manno-octulosonate-8-phosphatase 
EC 3.1.3.46 fructose-2,6-bisphosphate 2-phosphatase 
EC 3.1.3.47 [hydroxymethylglutaryl-CoA reductase (NADPH)]-
phosphatase 
EC 3.1.3.48 protein-tyrosine-phosphatase 
EC 3.1.3.49 [pyruvate kinase]-phosphatase 
EC 3.1.3.50 sorbitol-6-phosphatase 
EC 3.1.3.51 dolichyl-phosphatase 
EC 3.1.3.52 [3-methyl-2-oxobutanoate dehydrogenase 
(lipoamide)]-phosphatase 
EC 3.1.3.53 myosin-light-chain-phosphatase 
EC 3.1.3.54 fructose-2,6-bisphosphate 6-phosphatase 
EC 3.1.3.55 caldesmon-phosphatase 
EC 3.1.3.56 inositol-polyphosphate 5-phosphatase 
EC 3.1.3.57 inositol-1,4-bisphosphate 1-phosphatase 
EC 3.1.3.58 sugar-terminal-phosphatase 
EC 3.1.3.59 alkylacetylglycerophosphatase 
EC 3.1.3.60 phosphoenolpyruvate phosphatase 
EC 3.1.3.62 multiple inositol-polyphosphate phosphatase 
EC 3.1.3.63 2-carboxy-D-arabinitol-1-phosphatase 
EC 3.1.3.64 phosphatidylinositol-3-phosphatase 
EC 3.1.3.66 phosphatidylinositol-3,4-bisphosphate 4-
phosphatase 
EC 3.1.3.67 phosphatidylinositol-3,4,5-trisphosphate 3-
phosphatase 
EC 3.1.3.68 2-deoxyglucose-6-phosphatase 
EC 3.1.3.69 glucosylglycerol 3-phosphatase  
EC 3.1.3.70 mannosyl-3-phosphoglycerate phosphatase 
EC 3.1.3.71 2-phosphosulfolactate phosphatase 
EC 3.1.3.72 5-phytase  

EC 3.1.4 Phosphoric Diester Hydrolases  

EC 3.1.4.1 phosphodiesterase I 
EC 3.1.4.2 glycerophosphocholine phosphodiesterase 
EC 3.1.4.3 phospholipase C 
EC 3.1.4.4 phospholipase D 
EC 3.1.4.11 phosphoinositide phospholipase C 
EC 3.1.4.12 sphingomyelin phosphodiesterase 
EC 3.1.4.13 serine-ethanolaminephosphate phosphodiesterase 
EC 3.1.4.14 [acyl-carrier-protein] phosphodiesterase 
EC 3.1.4.15 adenylyl-[glutamate—ammonia ligase] hydrolase 
EC 3.1.4.16 2',3'-cyclic-nucleotide 2'-phosphodiesterase 
EC 3.1.4.17 3',5'-cyclic-nucleotide phosphodiesterase 
EC 3.1.4.35 3',5'-cyclic-GMP phosphodiesterase 
EC 3.1.4.37 2',3'-cyclic-nucleotide 3'-phosphodiesterase 
EC 3.1.4.38 glycerophosphocholine cholinephosphodiesterase 
EC 3.1.4.39 alkylglycerophosphoethanolamine 
phosphodiesterase 
EC 3.1.4.40 CMP-N-acylneuraminate phosphodiesterase 
EC 3.1.4.41 sphingomyelin phosphodiesterase D 
EC 3.1.4.42 glycerol-1,2-cyclic-phosphate 2-phosphodiesterase 
EC 3.1.4.43 glycerophosphoinositol inositolphosphodiesterase 
EC 3.1.4.44 glycerophosphoinositol glycerophosphodiesterase 
EC 3.1.4.45 N-acetylglucosamine-1-phosphodiester a-N-
acetylglucosaminidase 
EC 3.1.4.46 glycerophosphodiester phosphodiesterase 
 EC 3.1.4.48 dolichylphosphate-glucose phosphodiesterase 
EC 3.1.4.49 dolichylphosphate-mannose phosphodiesterase 
EC 3.1.4.50 glycosylphosphatidylinositol phospholipase D 

EC 3.1.4.51 glucose-1-phospho-D-mannosylglycoprotein 
phosphodiesterase  

EC 3.1.5 Triphosphoric Monoester Hydrolases  

EC 3.1.5.1 dGTPase  

EC 3.1.6 Sulfuric Ester Hydrolases  

EC 3.1.6.1 arylsulfatase 
EC 3.1.6.2 steryl-sulfatase 
EC 3.1.6.3 glycosulfatase 
EC 3.1.6.4 N-acetylgalactosamine-6-sulfatase 
EC 3.1.6.6 choline-sulfatase 
EC 3.1.6.7 cellulose-polysulfatase 
EC 3.1.6.8 cerebroside-sulfatase 
EC 3.1.6.9 chondro-4-sulfatase 
EC 3.1.6.10 chondro-6-sulfatase 
EC 3.1.6.11 disulfoglucosamine-6-sulfatase 
EC 3.1.6.12 N-acetylgalactosamine-4-sulfatase 
EC 3.1.6.13 iduronate-2-sulfatase 
EC 3.1.6.14 N-acetylglucosamine-6-sulfatase 
EC 3.1.6.15 N-sulfoglucosamine-3-sulfatase 
EC 3.1.6.16 monomethyl-sulfatase 
EC 3.1.6.17 D-lactate-2-sulfatase 
EC 3.1.6.18 glucuronate-2-sulfatase  

EC 3.1.7 Diphosphoric Monoester Hydrolases  

EC 3.1.7.1 prenyl-diphosphatase 
EC 3.1.7.2 guanosine-3',5'-bis(diphosphate) 3'-
diphosphatase 
EC 3.1.7.3 monoterpenyl-diphosphatase  

EC 3.1.8 Phosphoric Triester Hydrolases  

EC 3.1.8.1 aryldialkylphosphatase 
EC 3.1.8.2 diisopropyl-fluorophosphatase  

EC 3.1.11 Exodeoxyribonucleases Producing 5'-
Phosphomonoesters  

EC 3.1.11.1 exodeoxyribonuclease I 
EC 3.1.11.2 exodeoxyribonuclease III 
EC 3.1.11.3 exodeoxyribonuclease (lambda-induced) 
EC 3.1.11.4 exodeoxyribonuclease (phage SP3-induced) 
EC 3.1.11.5 exodeoxyribonuclease V 
EC 3.1.11.6 exodeoxyribonuclease VII  

EC 3.1.13 Exoribonucleases Producing 5'-
Phosphomonoesters  

EC 3.1.13.1 exoribonuclease II 
EC 3.1.13.2 exoribonuclease H 
EC 3.1.13.3 oligonucleotidase 
EC 3.1.13.4 poly(A)-specific ribonuclease  

EC 3.1.14 Exoribonucleases Producing 3'-
Phosphomonoesters  

EC 3.1.14.1 yeast ribonuclease  

EC 3.1.15 Exonucleases Active with either Ribo- or 
Deoxyribonucleic Acids and Producing 5'-
Phosphomonoesters  

EC 3.1.15.1 venom exonuclease  

EC 3.1.16 Exonucleases Active with either Ribo- or 
Deoxyribonucleic Acids and Producing 3'-
Phosphomonoesters  

EC 3.1.16.1 spleen exonuclease  

EC 3.1.21 Endodeoxyribonucleases Producing 5'-
Phosphomonoesters  

EC 3.1.21.1 deoxyribonuclease I 
EC 3.1.21.2 deoxyribonuclease IV (phage-T4-induced) 
EC 3.1.21.3 type 1 site-specific deoxyribonuclease 
EC 3.1.21.4 type II site-specific deoxyribonuclease 
EC 3.1.21.5 type III site-specific deoxyribonuclease 
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EC 3.1.21.6 CC-preferring endodeoxyribonuclease 
EC 3.1.21.7 deoxyribonuclease V  

EC 3.1.22 Endodeoxyribonucleases Producing 3'-
Phosphomonoesters  

EC 3.1.22.1 deoxyribonuclease II 
EC 3.1.22.2 Aspergillus deoxyribonuclease K1 
EC 3.1.22.4 crossover junction endoribonuclease 
EC 3.1.22.5 deoxyribonuclease X  

EC 3.1.25 Site-Specific Endodeoxyribonucleases Specific 
for Altered Bases  

EC 3.1.25.1 deoxyribonuclease (pyrimidine dimer) 
EC 3.1.26 Endoribonucleases Producing 5'-
Phosphomonoesters  

EC 3.1.26.1 Physarum polycephalum ribonuclease 
EC 3.1.26.2 ribonculease alpha 
EC 3.1.26.3 ribonuclease III 
EC 3.1.26.4 calf thymus ribonuclease H 
EC 3.1.26.5 ribonuclease P 
EC 3.1.26.6 ribonuclease IV 
EC 3.1.26.7 ribonuclease P4 
EC 3.1.26.8 ribonuclease M5 
EC 3.1.26.9 ribonuclease [poly-(U)-specific] 
EC 3.1.26.10 ribonuclease IX 
EC 3.1.26.11 RNase Z  

EC 3.1.27 Endoribonucleases Producing 3'-
Phosphomonoesters  

EC 3.1.27.1 ribonuclease T2 
EC 3.1.27.2 Bacillus subtilis ribonuclease 
EC 3.1.27.3 ribonuclease T1 
EC 3.1.27.4 riblonuclease U2 
EC 3.1.27.5 pancreatic ribonuclease 
EC 3.1.27.6 Enterobacter ribonuclease 
EC 3.1.27.7 ribonuclease F 
EC 3.1.27.8 ribonuclease V 
EC 3.1.27.9 tRNA-intron endonuclease 
EC 3.1.27.10 rRNA endonuclease  

EC 3.1.30 Endoribonucleases Active with either Ribo- or 
Deoxyribonucleic Acids and Producing 5'-
Phosphomonoesters  

EC 3.1.30.1 Aspergillus nuclease S1 
EC 3.1.30.2 Serratia marcescens nuclease  

EC 3.1.31 Endoribonucleases Active with either Ribo- or 
Deoxyribonucleic Acids and Producing 3'-
Phosphomonoesters  

EC 3.1.31.1 micrococcal nuclease  

EC 3.2 Glycosylases  

EC 3.2.1 Glycosidases, i.e. enzymes hydrolysing O- and S-
glycosyl compounds  

EC 3.2.1.1 a-amylase 
EC 3.2.1.2 b-amylase 
EC 3.2.1.3 glucan 1,4-a-glucosidase 
EC 3.2.1.4 cellulase  
EC 3.2.1.6 endo-1,3(4)-b-glucanase 
EC 3.2.1.7 inulinase 
EC 3.2.1.8 endo-1,4-b-xylanase 
EC 3.2.1.10 oligo-1,6-glucosidase 
EC 3.2.1.11 dextranase 
EC 3.2.1.14 chitinase 
EC 3.2.1.15 polygalacturonase 
EC 3.2.1.17 lysozyme 
EC 3.2.1.18 exo-a-sialidase 
EC 3.2.1.20 a-glucosidase 
EC 3.2.1.21 b-glucosidase 
EC 3.2.1.22 a-galactosidase 
EC 3.2.1.23 b-galactosidase 
EC 3.2.1.24 a-mannosidase 
EC 3.2.1.25 b-mannosidase 
EC 3.2.1.26 b-fructofuranosidase 
EC 3.2.1.28 a,a-trehalase 
EC 3.2.1.31 b-glucuronidase 
EC 3.2.1.32 xylan endo-1,3-b-xylosidase 
EC 3.2.1.33 amylo-1,6-glucosidase 
EC 3.2.1.35 hyalurononglucosaminidase  
EC 3.2.1.36 hyaluronoglucuronidase 
EC 3.2.1.37 xylan 1,4-b-xylosidase 
EC 3.2.1.38 b-D-fucosidase 
EC 3.2.1.39 glucan endo-1,3-b-D-glucosidase 
EC 3.2.1.40 a-L-rhamnosidase 
EC 3.2.1.41 pullulanase 
EC 3.2.1.42 GDP-glucosidase 
EC 3.2.1.43 b-L-rhamnosidase 
EC 3.2.1.44 fucoidanase 
EC 3.2.1.45 glucosylceramidase 
EC 3.2.1.46 galactosylceramidase 
EC 3.2.1.47 galactosylgalactosylglucosylceramidase 
EC 3.2.1.48 sucrose a-glucosidase 
EC 3.2.1.49 a-N-acetylgalactosaminidase 

EC 3.2.1.50 a-N-acetylglucosaminidase 
EC 3.2.1.51 a-L-fucosidase 
EC 3.2.1.52 b-L-N-acetylhexosaminidase 
EC 3.2.1.53 b-N-acetylgalactosaminidase 
EC 3.2.1.54 cyclomaltodextrinase 
EC 3.2.1.55 a-N-arabinofuranosidase 
EC 3.2.1.56 glucuronosyl-disulfoglucosamine glucuronidase 
EC 3.2.1.57 isopullulanase 
EC 3.2.1.58 glucan 1,3-b-glucosidase 
EC 3.2.1.59 glucan endo-1,3-a-glucosidase 
EC 3.2.1.60 glucan 1,4-a-maltotetraohydrolase 
EC 3.2.1.61 mycodextranase 
EC 3.2.1.62 glycosylceramidase 
EC 3.2.1.63 1,2-a-L-fucosidase 
EC 3.2.1.64 2,6-b-fructan 6-levanbiohydrolase 
EC 3.2.1.65 levanase 
EC 3.2.1.66 quercitrinase 
EC 3.2.1.67 galacturan 1,4-a-galacturonidase 
EC 3.2.1.68 isoamylase 
EC 3.2.1.70 glucan 1,6-a-glucosidase  
EC 3.2.1.71 glucan endo-1,2-b-glucosidase 
EC 3.2.1.72 xylan 1,3-b-xylosidase 
EC 3.2.1.73 licheninase 
EC 3.2.1.74 glucan 1,4-b-glucosidase 
EC 3.2.1.75 glucan endo-1,6-b-glucosidase 
EC 3.2.1.76 L-iduronidase 
EC 3.2.1.77 mannan 1,2-(1,3)-a-mannosidase 
EC 3.2.1.78 mannan endo-1,4-b-mannosidase 
EC 3.2.1.80 fructan b-fructosidase 
EC 3.2.1.81 agarase 
EC 3.2.1.82 exo-poly-a-galacturonosidase 
EC 3.2.1.83 k-carrageenase 
EC 3.2.1.84 glucan 1,3-a-glucosidase 
EC 3.2.1.85 6-phospho-b-galactosidase 
EC 3.2.1.86 6-phospho-b-glucosidase 
EC 3.2.1.87 capsular-polysaccharide endo-1,3-a-galactosidase 
EC 3.2.1.88 b-L-arabinosidase 
EC 3.2.1.89 arabinogalactan endo-1,4-b-galactosidase 
 EC 3.2.1.91 cellulose 1,4-b-cellobiosidase 
EC 3.2.1.92 peptidoglycan b-N-acetylmuramidase 
EC 3.2.1.93 a,a-phosphotrehalase 
EC 3.2.1.94 glucan 1,6-a-isomaltosidase 
EC 3.2.1.95 dextran 1,6-a-isomaltotriosidase 
EC 3.2.1.96 mannosyl-glycoprotein endo-b-N-
acetylglucosaminidase 
EC 3.2.1.97 glycopeptide a-N-acetylgalactosaminidase 
EC 3.2.1.98 glucan 1,4-a-maltohexaosidase 
EC 3.2.1.99 arabinan endo-1,5-a-L-arabinosidase 
EC 3.2.1.100 mannan 1,4-mannobiosidase 
EC 3.2.1.101 mannan endo-1,6-b-mannosidase 
EC 3.2.1.102 blood-group-substance endo-1,4-b-galactosidase 
EC 3.2.1.103 keratan-sulfate endo-1,4-b-galactosidase 
EC 3.2.1.104 steryl-b-glucosidase 
EC 3.2.1.105 strictosidine b-glucosidase 
EC 3.2.1.106 mannosyl-oligosaccharide glucosidase 
EC 3.2.1.107 protein-glucosylgalactosylhydroxylysine 
glucosidase 
EC 3.2.1.108 lactase 
EC 3.2.1.109 endogalactosaminidase 
EC 3.2.1.110 mucinaminylserine mucinaminidase 
EC 3.2.1.111 1,3-a-L-fucosidase 
EC 3.2.1.112 2-deoxyglucosidase 
EC 3.2.1.113 mannosyl-oligosaccharide 1,2-a-mannosidase 
EC 3.2.1.114 mannosyl-oligosaccharide 1,3-1,6-a-mannosidase 
EC 3.2.1.115 branched-dextran exo-1,2-a-glucosidase 
EC 3.2.1.116 glucan 1,4-a-maltotriohydrolase 
EC 3.2.1.117 amygdalin b-glucosidase 
EC 3.2.1.118 prunasin b-glucosidase 
EC 3.2.1.119 vicianin b-glucosidase 
EC 3.2.1.120 oligoxyloglucan b-glycosidase 
EC 3.2.1.121 polymannuronate hydrolase 
EC 3.2.1.122 maltose-6'-phosphate glucosidase 
EC 3.2.1.123 endoglycosylceramidase 
EC 3.2.1.124 3-deoxy-2-octulosonidase 
EC 3.2.1.125 raucaffricine b-glucosidase 
EC 3.2.1.126 coniferin b-glucosidase 
EC 3.2.1.127 1,6-a-L-fucosidase 
EC 3.2.1.128 glycyrrhizinate b-glucuronidase 
EC 3.2.1.129 endo-a-sialidase 
EC 3.2.1.130 glycoprotein endo-a-1,2-mannosidase 
EC 3.2.1.131 xylan a-1,2-glucuronosidase 
EC 3.2.1.132 chitosanase 
EC 3.2.1.133 glucan 1,4-a-maltohydrolase 
EC 3.2.1.134 difructose-anhydride synthase 
EC 3.2.1.135 neopullulanase 
EC 3.2.1.136 glucuronoarabinoxylan endo-1,4-b-xylanase 
EC 3.2.1.137 mannan exo-1,2-1,6-a-mannosidase 
EC 3.2.1.138 anhydrosialidase 
EC 3.2.1.139 a-glucuronidase 
EC 3.2.1.140 lacto-N-biosidase 
EC 3.2.1.141 4-a-D-{(1-4)-a-D-glucano}trehaose 
trehalohydrolase 
EC 3.2.1.142 limit dextrinase 
EC 3.2.1.143 poly(ADP-ribose) glycohydrolase 
EC 3.2.1.144 3-deoxyoctulosonase  
EC 3.2.1.145 galactan 1,3-b-galactosidase  
EC 3.2.1.146 b-galactofuranosidase  
EC 3.2.1.147 thioglucosidase  
EC 3.2.1.148 ribosylhomocysteinase  
EC 3.2.1.149 b-primeverosidase  
 

EC 3.2.2 Hydrolysing N-Glycosyl Compounds  

EC 3.2.2.1 purine nucleosidase 
EC 3.2.2.2 inosine nucleosidase 
EC 3.2.2.3 uridine nucleosidase 
EC 3.2.2.4 AMP nucleosidase 
EC 3.2.2.5 NAD nucleosidase 
EC 3.2.2.6 NAD(P) nucleosidase 
EC 3.2.2.7 adenosine nucleosidase 
EC 3.2.2.8 ribosylpyrimidine nucleosidase 
EC 3.2.2.9 adenosylhomocysteine nucleosidase 
EC 3.2.2.10 pyrimidine-5'-nucleotide nucleosidase 
EC 3.2.2.11 b-aspartyl-N-acetylglucosaminidase 
EC 3.2.2.12 inosinate nucleosidase 
EC 3.2.2.13 1-methyladenosine nucleosidase 
EC 3.2.2.14 NMN nucleosidase 

EC 3.2.2.15 DNA-deoxyinosine glycosylase 
EC 3.2.2.16 methylthioadenosine nucleosidase 
EC 3.2.2.17 deoxyribodipyrimidine endonucleosidase 
EC 3.2.2.19 ADPribosylarginine hydrolase 
EC 3.2.2.20 DNA-3-methyladenine glycosylase I 
EC 3.2.2.21 DNA-3-methyladenine glycosylase II 
EC 3.2.2.22 rRNA N-glycosylase  
EC 3.2.2.23 DNA-formamidopyrimidine glycosylase 
EC 3.2.2.24 ADP-ribosyl-[dinitrogen reductase] hydrolase  

EC 3.2.3 Hydrolysing S-Glycosyl Compounds  

EC 3.3 Acting on Ether Bonds  

EC 3.3.1 Trialkylsulfonium hydrolases  

EC 3.3.1.1 adenosylhomocysteinase 
EC 3.3.1.2 adenosylmethionine hydrolase 
EC 3.3.2 Ether Hydrolases  

EC 3.3.2.1 isochorismatase 
EC 3.3.2.2 alkenylglycerophosphocholine hydrolase 
EC 3.3.2.3 epoxide hydrolase 
EC 3.3.2.4 trans-epoxysuccinate hydrolase 
EC 3.3.2.5 alkenylglycerophosphoethanolamine 
hydrolase 
EC 3.3.2.6 leukotriene-A4 hydrolase 
EC 3.3.2.7 hepoxilin-epoxide hydrolase 
EC 3.3.2.8 limonene-1,2-epoxide hydrolase  

EC 3.4 Acting on peptide bonds (Peptidases)  

EC 3.4.11 Aminopeptidases  

EC 3.4.11.1 leucyl aminopeptidase 
EC 3.4.11.2 membrane alanyl aminopeptidase 
EC 3.4.11.3 cystinyl aminopeptidase 
EC 3.4.11.4 tripeptide aminopeptidase 
EC 3.4.11.5 prolyl aminopeptidase 
EC 3.4.11.6 arginyl aminopeptidase 
EC 3.4.11.7 glutamyl aminopeptidase 
EC 3.4.11.9 X-Pro aminopeptidase 
EC 3.4.11.10 bacterial leucyl aminopeptidase 
EC 3.4.11.13 clostridial aminopeptidase 
EC 3.4.11.14 cytosol alanyl aminopeptidase 
EC 3.4.11.15 lysyl aminopeptidase 
EC 3.4.11.16 X-Trp aminopeptidase 
EC 3.4.11.17 tryptophanyl aminopeptidase 
EC 3.4.11.18 methionyl aminopeptidase 
EC 3.4.11.19 D-stereospecific aminopeptidase 
EC 3.4.11.20 aminopeptidase Ey 
EC 3.4.11.21 aspartyl aminopeptidase 
EC 3.4.11.22 aminopeptidase I  

EC 3.4.12 Peptidylamino-Acid Hydrolases or 
Acylamino-Acid Hydrolases  

EC 3.4.13 Dipeptidases  

EC 3.4.13.3 X-His dipeptidase 
EC 3.4.13.4 X-Arg dipeptidase 
EC 3.4.13.5 X-methyl-His dipeptidase 
EC 3.4.13.7 Glu-Glu dipeptidase 
EC 3.4.13.9 X-Pro dipeptidase 
EC 3.4.13.12 Met-X dipeptidase 
EC 3.4.13.17 non-stereospecific dipeptidase 
EC 3.4.13.18 cytosol nonspecific dipeptidase 
EC 3.4.13.19 membrane dipeptidase 
EC 3.4.13.20 b-Ala-His dipeptidase 
EC 3.4.13.21 dipeptidase E  

EC 3.4.14 Dipeptidyl-peptidases and tripeptidyl-
peptidases  

EC 3.4.14.1 dipeptidyl-peptidase I 
EC 3.4.14.2 dipeptidyl-peptidase II 
EC 3.4.14.4 dipeptidyl-peptidase III  
EC 3.4.14.5 dipeptidyl-peptidase IV 
EC 3.4.14.6 dipeptidyl-dipeptidase 
EC 3.4.14.9 tripeptidyl-peptidase I  
EC 3.4.14.10 tripeptidyl-peptidase II 
EC 3.4.14.11 X-Pro dipeptidyl-peptidase  

EC 3.4.15 Peptidyl-dipeptidases  

EC 3.4.15.1 peptidyl-dipeptidase A 
EC 3.4.15.4 peptidyl-dipeptidase B 
EC 3.4.15.5 peptidyl-dipeptidase Dcp  

EC 3.4.16 Serine-type carboxypeptidases  

EC 3.4.16.2 lysosomal Pro-X carboxypeptidase 
EC 3.4.16.4 serine-type D-Ala-D-Ala carboxypeptidase 
EC 3.4.16.5 carboxypeptidase C 
EC 3.4.16.6 carboxypeptidase D  
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EC 3.4.17 Metallocarboxypeptidases  

EC 3.4.17.1 carboxypeptidase A 
EC 3.4.17.2 carboxypeptidase B 
EC 3.4.17.3 lysine carboxypeptidase 
EC 3.4.17.4 Gly-X carboxypeptidase 
EC 3.4.17.6 alanine carboxypeptidase 
EC 3.4.17.8 muramoylpentapeptide carboxypeptidase 
EC 3.4.17.10 carboxypeptidase E  
EC 3.4.17.11 glutamate carboxypeptidase 
EC 3.4.17.12 carboxypeptidase M 
EC 3.4.17.13 muramoyltetrapeptide carboxypeptidase 
EC 3.4.17.14 zinc D-Ala-D-Ala carboxypeptidase 
EC 3.4.17.15 carboxypeptidase A2 
EC 3.4.17.16 membrane Pro-X carboxypeptidase 
EC 3.4.17.17 tubulinyl-Tyr carboxypeptidase 
EC 3.4.17.18 carboxypeptidase T 
EC 3.4.17.19 carboxypeptidase Taq 
EC 3.4.17.20 carboxypeptidase U 
EC 3.4.17.21 glutamate carboxypeptidase II 
EC 3.4.17.22 metallocarboxypeptidase D  

EC 3.4.18 Cysteine-type carboxypeptidases  

EC 3.4.18.1 cathepsin X  

EC 3.4.19 Omega peptidases  

EC 3.4.19.1 acylaminoacyl-peptidase 
EC 3.4.19.2 peptidyl-glycinamidase 
EC 3.4.19.3 pyroglutamyl-peptidase I 
 EC 3.4.19.5 b-aspartyl-peptidase 
EC 3.4.19.6 pyroglutamyl-peptidase II 
EC 3.4.19.7 N-formylmethionyl-peptidase 
 EC 3.4.19.9 g-glutamyl hydrolase 
 EC 3.4.19.11 g-D-glutamyl-meso-diaminopimelate peptidase I 
EC 3.4.19.12 ubiquitinyl hydrolase 1  

EC 3.4.21 Serine endopeptidases  

EC 3.4.21.1 chymotrypsin 
EC 3.4.21.2 chymotrypsin C 
EC 3.4.21.3 metridin 
EC 3.4.21.4 trypsin 
EC 3.4.21.5 thrombin 
EC 3.4.21.6 coagulation factor Xa 
EC 3.4.21.7 plasmin 
EC 3.4.21.9 enteropeptidase 
EC 3.4.21.10 acrosin 
EC 3.4.21.12 a-Lytic endopeptidase 
EC 3.4.21.19 glutamyl endopeptidase 
EC 3.4.21.20 cathepsin G 
EC 3.4.21.21 coagulation factor VIIa 
EC 3.4.21.22 coagulation factor IXa 
 EC 3.4.21.25 cucumisin 
EC 3.4.21.26 prolyl oligopeptidase 
EC 3.4.21.27 coagulation factor XIa 
EC 3.4.21.32 brachyurin 
 EC 3.4.21.34 plasma kallikrein 
EC 3.4.21.35 tissue kallikrein 
EC 3.4.21.36 pancreatic elastase 
EC 3.4.21.37 leukocyte elastase 
EC 3.4.21.38 coagulation factor XIIa 
EC 3.4.21.39 chymase 

 EC 3.4.21.41 complement subcomponent C  

EC 3.4.21.42 complement subcomponent C  
EC 3.4.21.43 classical-complement-pathway C3/C5 convertase 
 EC 3.4.21.45 complement factor I 
EC 3.4.21.46 complement factor D 
EC 3.4.21.47 alternative-complement-pathway C3/C5 
convertase 
EC 3.4.21.48 cerevisin 
EC 3.4.21.49 hypodermin C 
EC 3.4.21.50 lysyl endopeptidase 
 EC 3.4.21.53 endopeptidase La 
EC 3.4.21.54 g-renin 
EC 3.4.21.55 venombin AB 
 EC 3.4.21.57 leucyl endopeptidase 
 EC 3.4.21.59 tryptase 
EC 3.4.21.60 scutelarin 
EC 3.4.21.61 kexin 
EC 3.4.21.62 subtilisin 
EC 3.4.21.63 oryzin 
EC 3.4.21.64 endopeptidase K 
EC 3.4.21.65 thermomycolin 
EC 3.4.21.66 thermitase 
EC 3.4.21.67 endopeptidase So 
EC 3.4.21.68 t-plasminogen activator 
EC 3.4.21.69 protein C (activated) 
EC 3.4.21.70 pancreatic endopeptidase E 
EC 3.4.21.71 pancreatic elastase II 
EC 3.4.21.72 IgA-specific serine endopeptidase 
EC 3.4.21.73 u-plasminogen activator 
EC 3.4.21.74 venombin A 
EC 3.4.21.75 furin 
EC 3.4.21.76 myeloblastin 
EC 3.4.21.77 semenogelase 
EC 3.4.21.78 granzyme A 
EC 3.4.21.79 granzyme B 
EC 3.4.21.80 streptogrisin A 
EC 3.4.21.81 streptogrisin B 
EC 3.4.21.82 glutamyl endopeptidase II 
EC 3.4.21.83 oligopeptidase B 
EC 3.4.21.84 limulus clotting factor  
EC 3.4.21.85 limulus clotting factor  
EC 3.4.21.86 limulus clotting enzyme 
EC 3.4.21.87 omptin 
EC 3.4.21.88 repressor LexA 
EC 3.4.21.89 signal peptidase I 

EC 3.4.21.90 togavirin 
EC 3.4.21.91 flavivirin 
EC 3.4.21.92 endopeptidase Clp 
EC 3.4.21.93 proprotein convertase 1 
EC 3.4.21.94 proprotein convertase 2 
EC 3.4.21.95 snake venom factor V activator 
EC 3.4.21.96 lactocepin 
EC 3.4.21.97 assemblin 
EC 3.4.21.98 hepacivirin 
EC 3.4.21.99 spermosin  
EC 3.4.21.100 pseudomonapepsin 
EC 3.4.21.101 xanthomonapepsin 
EC 3.4.21.102 C-terminal processing peptidase  

EC 3.4.22 Cysteine endopeptidases  

EC 3.4.22.1 cathepsin B 
EC 3.4.22.2 papain 
EC 3.4.22.3 ficain 
EC 3.4.22.6 chymopapain 
EC 3.4.22.7 asclepain 
EC 3.4.22.8 clostripain 
EC 3.4.22.10 streptopain 
EC 3.4.22.14 actinidain 
EC 3.4.22.15 cathepsin L 
EC 3.4.22.16 cathepsin H 
EC 3.4.22.17 calpain 
EC 3.4.22.24 cathepsin T 
EC 3.4.22.25 glycyl endopeptidase 
EC 3.4.22.26 cancer procoagulant 
EC 3.4.22.27 cathepsin S 
EC 3.4.22.28 picornain 3C 
EC 3.4.22.29 picornain 2A 
EC 3.4.22.30 caricain 
EC 3.4.22.31 ananain 
EC 3.4.22.32 stem bromelain 
EC 3.4.22.33 fruit bromelain 
EC 3.4.22.34 legumain 
EC 3.4.22.35 histolysain 
EC 3.4.22.36 caspase-1 
EC 3.4.22.37 gingipain R 
EC 3.4.22.38 cathepsin K 
EC 3.4.22.39 adenain 
EC 3.4.22.40 bleomycin hydrolase 
EC 3.4.22.41 cathepsin F  
EC 3.4.22.42 cathepsin O  
EC 3.4.22.43 cathepsin V  
EC 3.4.22.44 nuclear-inclusion-a endopeptidase  
EC 3.4.22.45 helper-component proteinase 
EC 3.4.22.46 L-peptidase  

EC 3.4.23 Aspartic endopeptidases  

EC 3.4.23.1 pepsin A 
EC 3.4.23.2 pepsin B 
EC 3.4.23.3 gastricsin 
EC 3.4.23.4 chymosin 
EC 3.4.23.5 cathepsin D 
EC 3.4.23.12 nepenthesin 
EC 3.4.23.15 renin 
EC 3.4.23.16 HIV-1 retropepsin 
EC 3.4.23.17 Pro-opiomelanocortin converting enzyme 
EC 3.4.23.18 aspergillopepsin I 
EC 3.4.23.19 aspergillopepsin II 
EC 3.4.23.20 penicillopepsin 
EC 3.4.23.21 rhizopuspepsin 
EC 3.4.23.22 endothiapepsin 
EC 3.4.23.23 mucorpepsin 
EC 3.4.23.24 candidapepsin 
EC 3.4.23.25 saccharopepsin 
EC 3.4.23.26 rhodotorulapepsin 
EC 3.4.23.27 physaropepsin 
EC 3.4.23.28 acrocylindropepsin 
EC 3.4.23.29 polyporopepsin 
EC 3.4.23.30 pycnoporopepsin 
EC 3.4.23.31 scytalidopepsin A 
EC 3.4.23.32 scytalidopepsin B 
EC 3.4.23.34 cathepsin E 
EC 3.4.23.35 barrierpepsin 
EC 3.4.23.36 signal peptidase II 
EC 3.4.23.38 plasmepsin I 
EC 3.4.23.39 plasmepsin II 
EC 3.4.23.40 phytepsin 
EC 3.4.23.41 yapsin 1 
EC 3.4.23.42 thermopsin 
EC 3.4.23.43 prepilin peptidase 
EC 3.4.23.44 nodavirus endopeptidase  

EC 3.4.24 Metalloendopeptidases  

EC 3.4.24.1 atrolysin A 
EC 3.4.24.3 microbial collagenase 
EC 3.4.24.6 leucolysin 
EC 3.4.24.7 interstitial collagenase 
EC 3.4.24.11 neprilysin 
EC 3.4.24.12 envelysin 
EC 3.4.24.13 IgA-specific metalloendopeptidase 
EC 3.4.24.14 procollagen N-endopeptidase 
EC 3.4.24.15 thimet oligopeptidase 
EC 3.4.24.16 neurolysin 
EC 3.4.24.17 stromelysin 1 
EC 3.4.24.18 meprin A 
EC 3.4.24.19 procollagen C-endopeptidase 
EC 3.4.24.20 peptidyl-Lys metalloendopeptidase 
EC 3.4.24.21 astacin 
EC 3.4.24.22 stromelysin 2 
EC 3.4.24.23 matrilysin 
EC 3.4.24.24 gelatinase A 
EC 3.4.24.25 vibriolysin 
EC 3.4.24.26 pseudolysin 
EC 3.4.24.27 thermolysin 
EC 3.4.24.28 bacillolysin 
EC 3.4.24.29 aureolysin 

EC 3.4.24.30 coccolysin 
EC 3.4.24.31 mycolysin 
EC 3.4.24.32 b-lytic metalloendopeptidase 
EC 3.4.24.33 peptidyl-Asp metalloendopeptidase 
EC 3.4.24.34 neutrophil collagenase 
EC 3.4.24.35 gelatinase B 
EC 3.4.24.36 leishmanolysin 
EC 3.4.24.37 saccharolysin 
EC 3.4.24.38 gametolysin 
EC 3.4.24.39 deuterolysin 
EC 3.4.24.40 serralysin 
EC 3.4.24.41 atrolysin B 
EC 3.4.24.42 atrolysin C 
EC 3.4.24.43 atroxase 
EC 3.4.24.44 atrolysin E 
EC 3.4.24.45 atrolysin F 
EC 3.4.24.46 adamalysin 
EC 3.4.24.47 horrilysin 
EC 3.4.24.48 ruberlysin 
EC 3.4.24.49 bothropasin 
EC 3.4.24.50 bothrolysin 
EC 3.4.24.51 ophiolysin 
EC 3.4.24.52 trimerelysin I 
EC 3.4.24.53 trimerelysin II 
EC 3.4.24.54 mucrolysin 
EC 3.4.24.55 pitrilysin 
EC 3.4.24.56 insulysin 
EC 3.4.24.57 O-sialoglycoprotein endopeptidase 
EC 3.4.24.58 russellysin 
EC 3.4.24.59 mitochondrial intermediate peptidase 
EC 3.4.24.60 dactylysin 
EC 3.4.24.61 nardilysin 
EC 3.4.24.62 magnolysin 
EC 3.4.24.63 meprin B 
EC 3.4.24.64 mitochondrial processing peptidase 
EC 3.4.24.65 macrophage elastase 
EC 3.4.24.66 choriolysin L 
EC 3.4.24.67 choriolysin H 
EC 3.4.24.68 tentoxilysin 
EC 3.4.24.69 bontoxilysin 
EC 3.4.24.70 oligopeptidase A 
EC 3.4.24.71 endothelin-converting enzyme 
EC 3.4.24.72 fibrolase 
EC 3.4.24.73 jararhagin 
EC 3.4.24.74 fragilysin 
EC 3.4.24.75 lysostaphin 
EC 3.4.24.76 flavastacin 
EC 3.4.24.77 snapalysin  

EC 3.4.25 Threonine endopeptidases  

EC 3.4.25.1 proteasome endopeptidase complex  

EC 3.4.99 Endopeptidases of unknown catalytic 
mechanism  

EC 3.5.1 In Linear Amides  

EC 3.5.1.1 asparaginase 
EC 3.5.1.2 glutaminase 
EC 3.5.1.3 w-amidase 
EC 3.5.1.4 amidase 
EC 3.5.1.5 urease 
EC 3.5.1.6 b-ureidopropionase 
EC 3.5.1.7 ureidosuccinase 
EC 3.5.1.8 formylaspartate deformylase 
EC 3.5.1.9 arylformamidase 
EC 3.5.1.10 formyltetrahydrofolate deformylase 
EC 3.5.1.11 penicillin amidase 
EC 3.5.1.12 biotinidase 
EC 3.5.1.13 aryl-acylamidase 
EC 3.5.1.14 aminoacylase 
EC 3.5.1.15 aspartoacylase 
EC 3.5.1.16 acetylornithine deacetylase 
EC 3.5.1.17 acyl-lysine deacylase 
EC 3.5.1.18 succinyl-diaminopimelate desuccinylase 
EC 3.5.1.19 nicotinamidase 
EC 3.5.1.20 citrullinase 
EC 3.5.1.21 N-acetyl-b-alanine deacetylase 
EC 3.5.1.22 pantothenase 
EC 3.5.1.23 ceramidase 
EC 3.5.1.24 choloylglycine hydrolase 
EC 3.5.1.25 N-acetylglucosamine-6-phosphate 
deacetylase 
EC 3.5.1.26 N4-(b-N-acetylglucosaminyl)-L-asparaginase 
EC 3.5.1.27 N-formylmethionylaminoacyl-tRNA 
deformylase 
EC 3.5.1.28 N-acetylmuramoyl-L-alanine amidase 
EC 3.5.1.29 2-(acetamidomethylene)succinate hydrolase 
EC 3.5.1.30 5-aminopentanamidase 
EC 3.5.1.31 formylmethionine deformylase 
EC 3.5.1.32 hippurate hydrolase 
EC 3.5.1.33 N-acetylglucosamine deacetylase 
EC 3.5.1.35 D-glutaminase 
EC 3.5.1.36 N-methyl-2-oxoglutaramate hydrolase 
EC 3.5.1.38 glutamin-(asparagin-)ase 
EC 3.5.1.39 alkylamidase 
EC 3.5.1.40 acylagmatine amidase 
EC 3.5.1.41 chitin deacetylase 
EC 3.5.1.42 nicotinamide-nucleotide amidase 
EC 3.5.1.43 peptidyl-glutaminase 
EC 3.5.1.44 protein-glutamine glutaminase 
EC 3.5.1.46 6-aminohexanoate-dimer hydrolase 
EC 3.5.1.47 N-acetyldiaminopimelate deacetylase 
EC 3.5.1.48 acetylspermidine deacetylase 
EC 3.5.1.49 formamidase 
EC 3.5.1.50 pentanamidase 
EC 3.5.1.51 4-acetamidobutyryl-CoA deacetylase 
EC 3.5.1.52 peptide-N4-(N-acetyl-b-
glucosaminyl)asparagine amidase 
EC 3.5.1.53 N-carbamoylputrescine amidase 
EC 3.5.1.54 allophanate hydrolase 
EC 3.5.1.55 long-chain-fatty-acyl-glutamate deacylase 
EC 3.5.1.56 N,N-dimethylformamidase 
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EC 3.5.1.57 tryptophanamidase 
EC 3.5.1.58 N-benzyloxycarbonylglycine hydrolase 
EC 3.5.1.59 N-carbamoylsarcosine amidase 
EC 3.5.1.60 N-(long-chain-acyl)ethanolamine deacylase 
EC 3.5.1.61 mimosinase 
EC 3.5.1.62 acetylputrescine deacetylase 
EC 3.5.1.63 4-acetamidobutyrate deacetylase 
EC 3.5.1.64 Na-benzyloxycarbonylleucine hydrolase 
EC 3.5.1.65 theanine hydrolase 
EC 3.5.1.66 2-(hydroxymethyl)-3-
(acetamidomethylene)succinate hydrolase 
EC 3.5.1.67 4-methyleneglutaminase 
EC 3.5.1.68 N-formylglutamate deformylase 
EC 3.5.1.69 glycosphingolipid deacylase 
EC 3.5.1.70 aculeacin-A deacylase 
EC 3.5.1.71 N-feruloylglycine deacylase 
EC 3.5.1.72 D-benzoylarginine-4-nitroanilide amidase 
EC 3.5.1.73 carnitinamidase 
EC 3.5.1.74 chenodeoxycholoyltaurine hydrolase 
EC 3.5.1.75 urethanase 
EC 3.5.1.76 arylalkyl acylamidase 
EC 3.5.1.77 N-carbamoyl-D-amino acid hydrolase 
EC 3.5.1.78 glutathionylspermidine amidase 
EC 3.5.1.79 phthalyl amidase 
EC 3.5.1.81 N-acyl-D-amino-acid deacylase 
EC 3.5.1.82 N-acyl-D-glutamate deacylase 
EC 3.5.1.83 N-acyl-D-aspartate deacylase 
EC 3.5.1.84 biuret amidohydrolase 
EC 3.5.1.85 (S)-N-acetyl-1-phenylethylamine hydrolase  
EC 3.5.1.86 mandelamide amidase  
EC 3.5.1.87 N-carbamoyl-L-amino-acid hydrolase  
EC 3.5.1.88 peptide deformylase 
EC 3.5.1.89 N-acetylglucosaminylphosphatidylinositol 
deacetylase  

EC 3.5.2 In Cyclic Amides  

EC 3.5.2.1 barbiturase 
EC 3.5.2.2 dihydropyrimidinase 
EC 3.5.2.3 dihydroorotase 
EC 3.5.2.4 carboxymethylhydantoinase 
EC 3.5.2.5 allantoinase 
EC 3.5.2.6 b-lactamase 
EC 3.5.2.7 imidazolonepropionase 
EC 3.5.2.9 5-oxoprolinase (ATP-hydrolysing) 
EC 3.5.2.10 creatininase 
EC 3.5.2.11 L-lysine-lactamase 
EC 3.5.2.12 6-aminohexanoate-cyclic-dimer hydrolase 
EC 3.5.2.13 2,5-dioxopiperazine hydrolase 
EC 3.5.2.14 N-methylhydantoinase (ATP-hydrolysing) 
EC 3.5.2.15 cyanuric acid amidohydrolase 
EC 3.5.2.16 maleimide hydrolase  

EC 3.5.3 In Linear Amidines  

EC 3.5.3.1 arginase 
EC 3.5.3.2 guanidinoacetase 
EC 3.5.3.3 creatinase 
EC 3.5.3.4 allantoicase 
EC 3.5.3.5 formiminoaspartate deiminase  
EC 3.5.3.6 arginine deiminase 
EC 3.5.3.7 guanidinobutyrase 
EC 3.5.3.8 formimidoylglutamase  
EC 3.5.3.9 allantoate deiminase 
EC 3.5.3.10 D-arginase 
EC 3.5.3.11 agmatinase 
EC 3.5.3.12 agmatine deiminase 
EC 3.5.3.13 formiminoglutamate deiminase  
EC 3.5.3.14 amidinoaspartase 
EC 3.5.3.15 protein-arginine deiminase 
EC 3.5.3.16 methylguanidinase 
EC 3.5.3.17 guanidinopropionase 
EC 3.5.3.18 dimethylargininase 
EC 3.5.3.19 ureidoglycolate hydrolase 
EC 3.5.3.20 diguanidinobutanase 
EC 3.5.3.21 methylenediurea deaminase  

EC 3.5.4 In Cyclic Amidines  

EC 3.5.4.1 cytosine deaminase 
EC 3.5.4.2 adenine deaminase 
EC 3.5.4.3 guanine deaminase 
EC 3.5.4.4 adenosine deaminase 
EC 3.5.4.5 cytidine deaminase 
EC 3.5.4.6 AMP deaminase 
EC 3.5.4.7 ADP deaminase 
EC 3.5.4.8 aminoimidazolase 
EC 3.5.4.9 methenyltetrahydrofolate cyclohydrolase 
EC 3.5.4.10 IMP cyclohydrolase  
EC 3.5.4.11 pterin deaminase 
EC 3.5.4.12 dCMP deaminase 
EC 3.5.4.13 dCTP deaminase 
EC 3.5.4.14 deoxycytidine deaminase 
EC 3.5.4.15 guanosine deaminase 
EC 3.5.4.16 GTP cyclohydrolase I 
EC 3.5.4.17 adenosine-phosphate deaminase 
EC 3.5.4.18 ATP deaminase 
EC 3.5.4.19 phosphoribosyl-AMP cyclohydrolase  
EC 3.5.4.20 pyrithiamine deaminase 
EC 3.5.4.21 creatinine deaminase 
EC 3.5.4.22 1-pyrroline-4-hydroxy-2-carboxylate deaminase 
EC 3.5.4.23 blasticidin-S deaminase 
EC 3.5.4.24 sepiapterin deaminase 
EC 3.5.4.25 GTP cyclohydrolase II 
EC 3.5.4.26 diaminohydroxyphosphoribosylaminopyrimidine 
deaminase 
EC 3.5.4.27 methenyltetrahydromethanopterin cyclohydrolase 
EC 3.5.4.28 S-adenosylhomocysteine deaminase  

EC 3.5.5 In Nitriles  

EC 3.5.5.1 nitrilase 
EC 3.5.5.2 ricinine nitrilase 
EC 3.5.5.4 cyanoalanine nitrilase 
EC 3.5.5.5 arylacetonitrilase 
EC 3.5.5.6 bromoxynil nitrilase 
EC 3.5.5.7 aliphatic nitrilase 
EC 3.5.5.8 thiocyanate hydrolase  

EC 3.5.99 In Other Compounds  

EC 3.5.99.1 riboflavinase 
EC 3.5.99.2 thiaminase  

EC 3.5.99.3 hydroxydechloroatrazine ethylaminohydrolase 
EC 3.5.99.4 N-isopropylammelide isopropylaminohydrolase 
EC 3.5.99.5 2-aminomuconate deaminase 
EC 3.5.99.6 glucosamine-6-phosphate deaminase 
EC 3.5.99.7 1-aminocyclopropane-1-carboxylate deaminase  

EC 3.6 Acting on Acid Anhydrides  

EC 3.6.1 In Phosphorus-Containing Anhydrides  

EC 3.6.1.1 inorganic diphosphatase 
EC 3.6.1.2 trimetaphosphatase 
EC 3.6.1.3 adenosinetriphosphatase 
EC 3.6.1.5 apyrase 
EC 3.6.1.6 nucleoside-diphosphatase 
EC 3.6.1.7 acylphosphatase 
EC 3.6.1.8 ATP diphosphatase 
EC 3.6.1.9 nucleotide diphosphatase 
EC 3.6.1.10 endopolyphosphatase 
EC 3.6.1.11 exopolyphosphatase 
EC 3.6.1.12 dCTP diphosphatase 
EC 3.6.1.13 ADP-ribose diphosphatase 
EC 3.6.1.14 adenosine-tetraphosphatase 
EC 3.6.1.15 nucleoside-triphosphatase 
EC 3.6.1.16 CDP-glycerol diphosphatase 
EC 3.6.1.17 bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) 
EC 3.6.1.18 FAD diphosphatase 
EC 3.6.1.19 nucleoside-triphosphate diphosphatase 
EC 3.6.1.20 5'-acylphosphoadenosine hydrolase 
EC 3.6.1.21 ADP-sugar diphosphatase 
EC 3.6.1.22 NAD diphosphatase 
EC 3.6.1.23 dUTP diphosphatase 
EC 3.6.1.24 nucleoside phosphoacylhydrolase 
EC 3.6.1.25 triphosphatase 
EC 3.6.1.26 CDP-diacylglycerol diphosphatase 
EC 3.6.1.27 undecaprenyl-diphosphatase 
EC 3.6.1.28 thiamine-triphosphatase 
EC 3.6.1.29 bis(5'-adenosyl)-triphosphatase 
EC 3.6.1.30 m7G(5')pppN diphosphatase 
EC 3.6.1.31 phosphoribosyl-ATP diphosphatase 
EC 3.6.1.39 thymidine-triphosphatase 
EC 3.6.1.40 guanosine-5'-triphosphate,3'-diphosphate 
diphosphatase 
EC 3.6.1.41 bis(5'-nucleosyl)-tetraphosphatase (symmetrical) 
EC 3.6.1.42 guanosine-diphosphatase 
EC 3.6.1.43 dolichyldiphosphatase 
EC 3.6.1.44 oligosaccharide-diphosphodolichol diphosphatase 
EC 3.6.1.45 UDP-sugar diphosphatase 
EC 3.6.1.46 heterotrimeric G-protein GTPase 
EC 3.6.1.47 small monomeric GTPase 
EC 3.6.1.48 protein-synthesizing GTPase 
EC 3.6.1.49 signal-recognition-particle GTPase 
EC 3.6.1.50 dynamin GTPase 
EC 3.6.1.51 tubulin GTPase 
EC 3.6.1.52 diphosphoinositol-polyphosphate diphosphatase  

EC 3.6.2 In Sulfonyl-Containing Anhydrides  

EC 3.6.2.1 adenylylsulfatase 
EC 3.6.2.2 phosphoadenylylsulfatase  

EC 3.6.3 Acting on acid anhydrides; catalysing 
transmembrane movement of substances  

EC 3.6.3.1 Mg2+-ATPase  
EC 3.6.3.2 Mg2+-importing ATPase  
EC 3.6.3.3 Cd2+-exporting ATPase 
EC 3.6.3.4 Cu2+-exporting ATPase 
EC 3.6.3.5 Zn2+-exporting ATPase  
EC 3.6.3.6 H+-exporting ATPase 
EC 3.6.3.7 Na+-exporting ATPase  
EC 3.6.3.8 Ca2+-transporting ATPase 
EC 3.6.3.9 Na+/K+-exchanging ATPase  
EC 3.6.3.10 H+/K+-exchanging ATPase 
EC 3.6.3.11 Cl--transporting ATPase 
EC 3.6.3.12 K+-transporting ATPase 
EC 3.6.3.14 H+-transporting two-sector ATPase 
EC 3.6.3.15 Na+-transporting two-sector ATPase 
EC 3.6.3.16 arsenite-transporting ATPase 
EC 3.6.3.17 monosaccharide-transporting ATPase 
EC 3.6.3.18 oligosaccharide-transporting ATPase 
EC 3.6.3.19 maltose-transporting ATPase 
EC 3.6.3.20 glycerol-3-phosphate-transporting ATPase 
EC 3.6.3.21 polar-amino-acid-transporting ATPase 
EC 3.6.3.22 nonpolar-amino-acid-transporting ATPase 
EC 3.6.3.23 oligopeptide-transporting ATPase 
EC 3.6.3.24 nickel-transporting ATPase 
EC 3.6.3.25 sulfate-transporting ATPase 
EC 3.6.3.26 nitrate-transporting ATPase 
EC 3.6.3.27 phosphate-transporting ATPase 
EC 3.6.3.28 phosphonate-transporting ATPase 
EC 3.6.3.29 molybdate-transporting ATPase 

EC 3.6.3.30 Fe3+-transporting ATPase 
EC 3.6.3.31 polyamine-transporting ATPase 
EC 3.6.3.32 quaternary-amine-transporting ATPase 
EC 3.6.3.33 vitamin B12-transporting ATPase 
EC 3.6.3.34 iron-chelate-transporting ATPase 
EC 3.6.3.35 manganese-transporting ATPase 
EC 3.6.3.36 taurine-transporting ATPase 
EC 3.6.3.37 guanine-transporting ATPase 
EC 3.6.3.38 capsular-polysaccharide-transporting 
ATPase 
EC 3.6.3.39 lipopolysaccharide-transporting ATPase 
EC 3.6.3.40 teichoic-acid-transporting ATPase 
EC 3.6.3.41 heme-transporting ATPase 
EC 3.6.3.42 b-glucan-transporting ATPase 
EC 3.6.3.43 peptide-transporting ATPase 
EC 3.6.3.44 xenobiotic-transporting ATPase 
EC 3.6.3.45 steroid-transporting ATPase 
EC 3.6.3.46 cadmium-transporting ATPase 
EC 3.6.3.47 fatty-acyl-CoA-transporting ATPase 
EC 3.6.3.48 a-factor-transporting ATPase 
EC 3.6.3.49 channel-conductance-controlling ATPase 
EC 3.6.3.50 protein-secreting ATPase 
EC 3.6.3.51 mitochondrial protein-transporting ATPase 
EC 3.6.3.52 chloroplast protein-transporting ATPase 
EC 3.6.3.53 Ag+-exporting ATPase  

EC 3.6.4 Acting on acid anhydrides; involved in 
cellular and subcellular movement  

EC 3.6.4.1 myosin ATPase 
EC 3.6.4.2 dynein ATPase 
EC 3.6.4.3 microtubule-severing ATPase 
EC 3.6.4.4 plus-end-directed kinesin ATPase 
EC 3.6.4.5 minus-end-directed kinesin ATPase 
EC 3.6.4.6 vesicle-fusing ATPase 
EC 3.6.4.7 peroxisome-assembly ATPase 
EC 3.6.4.8 proteasome ATPase 
EC 3.6.4.9 chaperonin ATPase 
EC 3.6.4.10 non-chaperonin molecular chaperone 
ATPase 
EC 3.6.4.11 nucleoplasmin ATPase  

EC 3.7 Acting on Carbon-Carbon Bonds  

EC 3.7.1 In Ketonic Substances  

EC 3.7.1.1 oxaloacetase 
EC 3.7.1.2 fumarylacetoacetase 
EC 3.7.1.3 kynureninase 
EC 3.7.1.4 phloretin hydrolase 
EC 3.7.1.5 acylpyruvate hydrolase 
EC 3.7.1.6 acetylpyruvate hydrolase 
EC 3.7.1.7 b-diketone hydrolase 
EC 3.7.1.8 2,6-dioxo-6-phenylhexa-3-enoate hydrolase 
EC 3.7.1.9 2-hydroxymuconate-semialdehyde hydrolase 
EC 3.7.1.10 cyclohexane-1,3-dione hydrolase  

EC 3.8 Acting on Halide Bonds  

EC 3.8.1 In C-Halide Compounds  

EC 3.8.1.1 alkylhalidase 
EC 3.8.1.2 2-haloacid dehalogenase 
EC 3.8.1.3 haloacetate dehalogenase 
EC 3.8.1.4 thyroxine deiodinase 
EC 3.8.1.5 haloalkane dehalogenase 
EC 3.8.1.6 4-chlorobenzoate dehalogenase 
EC 3.8.1.7 4-chlorobenzoyl-CoA dehalogenase 
EC 3.8.1.8 atrazine chlorohydrolase  

EC 3.8.2 In P-Halide Compounds  

EC 3.9 Acting on Phosphorus-Nitrogen Bonds  

EC 3.9.1.1 phosphoamidase  

EC 3.10 Acting on Sulfur-Nitrogen Bonds  

EC 3.10.1.1 N-sulfoglucosamine sulfohydrolase 
EC 3.10.1.2 cyclamate sulfohydrolase  

EC 3.11 Acting on Carbon-Phosphorus Bonds  

EC 3.11.1.1 phosphonoacetaldehyde hydrolase  
EC 3.11.1.2 phosphonoacetate hydrolase  

EC 3.12 Acting on Sulfur-Sulfur Bonds  

EC 3.12.1.1 trithionate hydrolase  

EC 3.13 Acting on Carbon-Sulfur Bonds 

EC 3.13.1.1 UDPsulfoquinovose synthase  
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9.2  EC Group 4 Lyases 
 
 
EC 4.1 Carbon-Carbon Lyases  

EC 4.1.1 Carboxy-Lyases  

EC 4.1.1.1 pyruvate decarboxylase 
EC 4.1.1.2 oxalate decarboxylase 
EC 4.1.1.3 oxaloacetate decarboxylase 
EC 4.1.1.4 acetoacetate decarboxylase 
EC 4.1.1.5 acetolactate decarboxylase 
EC 4.1.1.6 aconitate decarboxylase 
EC 4.1.1.7 benzoylformate decarboxylase 
EC 4.1.1.8 oxalyl-CoA decarboxylase 
EC 4.1.1.9 malonyl-CoA decarboxylase 
EC 4.1.1.10 deleted, included in EC 4.1.1.12 
EC 4.1.1.11 aspartate 1-decarboxylase 
EC 4.1.1.12 aspartate 4-decarboxylase 
EC 4.1.1.13 deleted 
EC 4.1.1.14 valine decarboxylase 
EC 4.1.1.15 glutamate decarboxylase 
EC 4.1.1.16 hydroxyglutamate decarboxylase 
EC 4.1.1.17 ornithine decarboxylase 
EC 4.1.1.18 lysine decarboxylase 
EC 4.1.1.19 arginine decarboxylase 
EC 4.1.1.20 diaminopimelate decarboxylase 
EC 4.1.1.21 phosphoribosylaminoimidazole carboxylase  
EC 4.1.1.21 phosphoribosylaminoimidazole carboxylase 
EC 4.1.1.22 histidine decarboxylase 
EC 4.1.1.23 orotidine-5'-phosphate decarboxylase 
EC 4.1.1.24 aminobenzoate decarboxylase 
EC 4.1.1.25 tyrosine decarboxylase 
EC 4.1.1.26 deleted, included in EC 4.1.1.28 
EC 4.1.1.27 deleted, included in EC 4.1.1.28 
EC 4.1.1.28 aromatic-L-amino-acid decarboxylase 
EC 4.1.1.29 sulfoalanine decarboxylase 
EC 4.1.1.30 pantothenoylcysteine decarboxylase 
EC 4.1.1.31 phosphoenolpyruvate carboxylase 
EC 4.1.1.32 phosphoenolpyruvate carboxykinase (GTP) 
EC 4.1.1.33 diphosphomevalonate decarboxylase 
EC 4.1.1.34 dehydro-L-gulonate decarboxylase 
EC 4.1.1.35 UDP-glucuronate decarboxylase 
EC 4.1.1.36 phosphopantothenoylcysteine decarboxylase 
EC 4.1.1.37 uroporphyrinogen decarboxylase 
EC 4.1.1.38 phosphoenolpyruvate carboxykinase (diphosphate) 
EC 4.1.1.39 ribulose-bisphosphate carboxylase 
EC 4.1.1.40 hydroxypyruvate decarboxylase 
EC 4.1.1.41 methylmalonyl-CoA decarboxylase 
EC 4.1.1.42 carnitine decarboxylase 
EC 4.1.1.43 phenylpyruvate decarboxylase 
EC 4.1.1.44 4-carboxymuconolactone decarboxylase 
EC 4.1.1.45 aminocarboxymuconate-semialdehyde decarboxylase 
EC 4.1.1.46 o-pyrocatechuate decarboxylase 
EC 4.1.1.47 tartronate-semialdehyde synthase 
EC 4.1.1.48 indole-3-glycerol-phosphate synthase 
EC 4.1.1.49 phosphoenolpyruvate carboxykinase (ATP) 
EC 4.1.1.50 adenosylmethionine decarboxylase 
EC 4.1.1.51 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-
decarboxylase 
EC 4.1.1.52 6-methylsalicylate decarboxylase 
EC 4.1.1.53 phenylalanine decarboxylase 
EC 4.1.1.54 dihydroxyfumarate decarboxylase 
EC 4.1.1.55 4,5-dihydroxyphthalate decarboxylase 
EC 4.1.1.56 3-oxolaurate decarboxylase 
EC 4.1.1.57 methionine decarboxylase 
EC 4.1.1.58 orsellinate decarboxylase 
EC 4.1.1.59 gallate decarboxylase 
EC 4.1.1.60 stipitatonate decarboxylase 
EC 4.1.1.61 4-hydroxybenzoate decarboxylase 
EC 4.1.1.62 gentisate decarboxylase 
EC 4.1.1.63 protocatechuate decarboxylase 
EC 4.1.1.64 2,2-dialkylglycine decarboxylase (pyruvate) 
EC 4.1.1.65 phosphatidylserine decarboxylase 
EC 4.1.1.66 uracil-5-carboxylate decarboxylase 
EC 4.1.1.67 UDP-galacturonate decarboxylase 
EC 4.1.1.68 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase 
EC 4.1.1.69 3,4-dihydroxyphthalate decarboxylase 
EC 4.1.1.70 glutaconyl-CoA decarboxylase 
EC 4.1.1.71 2-oxoglutarate decarboxylase 
EC 4.1.1.72 branched-chain-2-oxoacid decarboxylase 
EC 4.1.1.73 tartrate decarboxylase 
EC 4.1.1.74 indolepyruvate decarboxylase 
EC 4.1.1.75 5-guanidino-2-oxopentanoate decarboxylase 
EC 4.1.1.76 arylmalonate decarboxylase 
EC 4.1.1.77 4-oxalocrotonate decarboxylase 
EC 4.1.1.78 acetylenedicarboxylate decarboxylase  
EC 4.1.1.79 sulfopyruvate decarboxylase 
EC 4.1.1.80 4-hydroxyphenylpyruvate decarboxylase  

EC 4.1.2 Aldehyde-Lyases  

EC 4.1.2.1 deleted, included in EC 4.1.3.16 
EC 4.1.2.2 ketotetrose-phosphate aldolase 
EC 4.1.2.3 deleted 
EC 4.1.2.4 deoxyribose-phosphate aldolase 
EC 4.1.2.5 threonine aldolase 
EC 4.1.2.6 deleted 
EC 4.1.2.7 deleted, included in EC 4.1.2.13 
EC 4.1.2.8 deleted 
EC 4.1.2.9 phosphoketolase 
EC 4.1.2.10 mandelonitrile lyase 
EC 4.1.2.11 hydroxymandelonitrile lyase 
EC 4.1.2.12 ketopantoaldolase 
EC 4.1.2.13 fructose-bisphosphate aldolase 
EC 4.1.2.14 2-dehydro-3-deoxy-phosphogluconate aldolase 
EC 4.1.2.15 now EC 2.5.1.54 
EC 4.1.2.16 now EC 2.5.1.55 
EC 4.1.2.17 L-fuculose-phosphate aldolase 
EC 4.1.2.18 2-dehydro-3-deoxy-L-pentonate aldolase 

EC 4.1.2.19 rhamnulose-1-phosphate aldolase 
EC 4.1.2.20 2-dehydro-3-deoxyglucarate aldolase 
EC 4.1.2.21 2-dehydro-3-deoxy-6-phosphogalactonate aldolase 
EC 4.1.2.22 fructose-6-phosphate phosphoketolase 
EC 4.1.2.23 3-deoxy-D-manno-octulosonate aldolase 
EC 4.1.2.24 dimethylaniline-N-oxide aldolase 
EC 4.1.2.25 dihydroneopterin aldolase 
EC 4.1.2.26 phenylserine aldolase 
EC 4.1.2.27 sphinganine-1-phosphate aldolase 
EC 4.1.2.28 2-dehydro-3-deoxy-D-pentonate aldolase 
EC 4.1.2.29 5-dehydro-2-deoxyphosphogluconate aldolase 
EC 4.1.2.30 17a-hydroxyprogesterone aldolase 
EC 4.1.2.31 deleted, included in EC 4.1.3.16 
EC 4.1.2.32 trimethylamine-oxide aldolase 
EC 4.1.2.33 fucosterol-epoxide lyase 
EC 4.1.2.34 4-(2-carboxyphenyl)-2-oxobut-3-enoate aldolase 
EC 4.1.2.35 propioin synthase 
EC 4.1.2.36 lactate aldolase 
EC 4.1.2.37 acetone-cyanhydrin lyase 
EC 4.1.2.38 benzoin aldolase 
EC 4.1.2.39 hydroxynitrilase 
EC 4.1.2.40 tagatose-bisphosphate aldolase 
EC 4.1.2.41 vanillin synthase  

EC 4.1.3 Oxo-Acid-Lyases  

EC 4.1.3.1 isocitrate lyase 
EC 4.1.3.2 now EC 2.3.3.9 
EC 4.1.3.3 N-acetylneuraminate lyase 
EC 4.1.3.4 hydroxymethylglutaryl-CoA lyase 
EC 4.1.3.5 now EC 2.3.3.10 
EC 4.1.3.6 citrate (pro-3S)-lyase 
EC 4.1.3.7 now EC 2.3.3.1 
EC 4.1.3.8 now EC 2.3.3.8 
EC 4.1.3.9 now EC 2.3.3.11 
EC 4.1.3.10 now EC 2.3.3.7 
EC 4.1.3.11 now EC 2.3.3.12 
EC 4.1.3.12 now EC 2.3.3.13 
EC 4.1.3.13 oxalomalate lyase 
EC 4.1.3.14 3-hydroxyaspartate aldolase 
EC 4.1.3.15 now EC 2.2.1.5 
EC 4.1.3.16 4-hydroxy-2-oxoglutarate aldolase 
EC 4.1.3.17 4-hydroxy-4-methyl-2-oxoglutarate aldolase 
EC 4.1.3.18 now EC 2.2.1.6 
EC 4.1.3.19 now EC 2.5.1.56 
EC 4.1.3.20 now EC 2.5.1.57 
EC 4.1.3.21 now EC 2.3.3.14 
EC 4.1.3.22 citramalate lyase 
EC 4.1.3.23 now EC 2.3.3.2 
EC 4.1.3.24 malyl-CoA lyase 
EC 4.1.3.25 citramalyl-CoA lyase 
EC 4.1.3.26 3-hydroxy-3-isohexenylglutaryl-CoA lyase 
EC 4.1.3.27 anthranilate synthase 
EC 4.1.3.28 now EC 2.3.3.3 
EC 4.1.3.29 now EC 2.3.3.4 
EC 4.1.3.30 methylisocitrate lyase 
EC 4.1.3.31 now EC 2.3.3.5 
EC 4.1.3.32 2,3-dimethylmalate lyase 
EC 4.1.3.33 now EC 2.3.3.6 
EC 4.1.3.34 citryl-CoA lyase 
EC 4.1.3.35 (1-hydroxycyclohexan-1-yl)acetyl-CoA lyase 
EC 4.1.3.36 naphthoate synthase 
EC 4.1.3.37 now EC 2.2.1.7  

EC 4.1.99 Other Carbon-Carbon Lyases  

EC 4.1.99.1 tryptophanase 
EC 4.1.99.2 tyrosine phenol-lyase 
EC 4.1.99.3 deoxyribodipyrimidine photo-lyase 
EC 4.1.99.4 now EC 3.5.99.7 
EC 4.1.99.5 octadecanal decarbonylase 
EC 4.1.99.6 now EC 4.2.3.6 
EC 4.1.99.7 now EC 4.2.3.9 
EC 4.1.99.8 now EC 4.2.3.14 
EC 4.1.99.9 now EC 4.2.3.15 
EC 4.1.99.10 now EC 4.2.3.16 
EC 4.1.99.11 benzylsuccinate synthase  

EC 4.2 Carbon-Oxygen Lyases  

EC 4.2.1 Hydro-Lyases  

EC 4.2.1.1 carbonate dehydratase 
EC 4.2.1.2 fumarate hydratase 
EC 4.2.1.3 aconitate hydratase 
EC 4.2.1.4 citrate dehydratase 
EC 4.2.1.5 arabinonate dehydratase 
EC 4.2.1.6 galactonate dehydratase 
EC 4.2.1.7 altronate dehydratase 
EC 4.2.1.8 mannonate dehydratase 
EC 4.2.1.9 dihydroxy-acid dehydratase 
EC 4.2.1.10 3-dehydroquinate dehydratase 
EC 4.2.1.11 phosphopyruvate hydratase 
EC 4.2.1.12 phosphogluconate dehydratase 
EC 4.2.1.13 now EC 4.3.1.17  
EC 4.2.1.14 now EC 4.3.1.18 
EC 4.2.1.15 now EC 4.4.1.1 
EC 4.2.1.16 now EC 4.3.1.19 
EC 4.2.1.17 enoyl-CoA hydratase 
EC 4.2.1.18 methylglutaconyl-CoA hydratase 
EC 4.2.1.19 imidazoleglycerol-phosphate dehydratase 
EC 4.2.1.20 tryptophan synthase 

EC 4.2.1.21 now EC 4.2.1.22 
EC 4.2.1.22 cystathionine b-synthase 
EC 4.2.1.23 deleted 
EC 4.2.1.24 porphobilinogen synthase 
EC 4.2.1.25 L-arabinonate dehydratase 
EC 4.2.1.26 now EC 4.3.1.21 
EC 4.2.1.27 malonate-semialdehyde dehydratase 
EC 4.2.1.28 propanediol dehydratase 
EC 4.2.1.29 indoleacetaldoxime dehydratase 
EC 4.2.1.30 glycerol dehydratase 
EC 4.2.1.31 maleate hydratase 
EC 4.2.1.32 L(+)-tartrate dehydratase 
EC 4.2.1.33 3-isopropylmalate dehydratase 
EC 4.2.1.34 (S)-2-methylmalate dehydratase 
EC 4.2.1.35 (R)-2-methylmalate dehydratase 
EC 4.2.1.36 homoaconitate hydratase 
EC 4.2.1.37 now EC 3.3.2.4 
EC 4.2.1.38 now EC 4.3.1.20 
EC 4.2.1.39 gluconate dehydratase 
EC 4.2.1.40 glucarate dehydratase 
EC 4.2.1.41 5-dehydro-4-deoxyglucarate dehydratase 
EC 4.2.1.42 galactarate dehydratase 
EC 4.2.1.43 2-dehydro-3-deoxy-L-arabinonate dehydratase 
EC 4.2.1.44 myo-inosose-2 dehydratase 
EC 4.2.1.45 CDP-glucose 4,6-dehydratase 
EC 4.2.1.46 dTDP-glucose 4,6-dehydratase 
EC 4.2.1.47 GDP-mannose 4,6-dehydratase 
EC 4.2.1.48 D-glutamate cyclase 
EC 4.2.1.49 urocanate hydratase 
EC 4.2.1.50 pyrazolylalanine synthase 
EC 4.2.1.51 prephenate dehydratase 
EC 4.2.1.52 dihydrodipicolinate synthase 
EC 4.2.1.53 oleate hydratase 
EC 4.2.1.54 lactoyl-CoA dehydratase 
EC 4.2.1.55 3-hydroxybutyryl-CoA dehydratase 
EC 4.2.1.56 itaconyl-CoA hydratase 
EC 4.2.1.57 isohexenylglutaconyl-CoA hydratase 
EC 4.2.1.58 crotonoyl-[acyl-carrier-protein] hydratase 
EC 4.2.1.59 3-hydroxyoctanoyl-[acyl-carrier-protein] 
dehydratase 
EC 4.2.1.60 3-hydroxydecanoyl-[acyl-carrier-protein] 
dehydratase 
EC 4.2.1.61 3-hydroxypalmitoyl-[acyl-carrier-protein] 
dehydratase 
EC 4.2.1.62 5a-hydroxysteroid dehydratase 
EC 4.2.1.63 now EC 3.3.2.3 
EC 4.2.1.64 now EC 3.3.2.3 
EC 4.2.1.65 3-cyanoalanine hydratase 
EC 4.2.1.66 cyanide hydratase 
EC 4.2.1.67 D-fuconate dehydratase 
EC 4.2.1.68 L-fuconate dehydratase 
EC 4.2.1.69 cyanamide hydratase 
EC 4.2.1.70 pseudouridylate synthase 
EC 4.2.1.71 acetylenecarboxylate hydratase  
EC 4.2.1.72 now EC 4.1.1.78 
EC 4.2.1.73 protoaphin-aglucone dehydratase (cyclizing) 
EC 4.2.1.74 long-chain-enoyl-CoA hydratase 
EC 4.2.1.75 uroporphyrinogen-III synthase 
EC 4.2.1.76 UDP-glucose 4,6-dehydratase 
EC 4.2.1.77 trans-L-3-hydroxyproline dehydratase 
EC 4.2.1.78 (S)-norcoclaurine synthase 
EC 4.2.1.79 2-methylcitrate dehydratase 
EC 4.2.1.80 2-oxopent-4-enoate hydratase 
EC 4.2.1.81 D(-)-tartrate dehydratase 
EC 4.2.1.82 xylonate dehydratase 
EC 4.2.1.83 4-oxalmesaconate hydratase 
EC 4.2.1.84 nitrile hydratase 
EC 4.2.1.85 dimethylmaleate hydratase 
EC 4.2.1.86 16-dehydroprogesterone hydratase 
EC 4.2.1.87 octopamine dehydratase 
EC 4.2.1.88 synephrine dehydratase 
EC 4.2.1.89 carnitine dehydratase 
EC 4.2.1.90 L-rhamnonate dehydratase 
EC 4.2.1.91 carboxycyclohexadienyl dehydratase 
EC 4.2.1.92 hydroperoxide dehydratase 
EC 4.2.1.93 ATP-dependent H4NAD(P)OH dehydratase 
EC 4.2.1.94 scytalone dehydratase 
EC 4.2.1.95 kievitone hydratase 
EC 4.2.1.96 4a-hydroxytetrahydrobiopterin dehydratase 
EC 4.2.1.97 phaseollidin hydratase 
EC 4.2.1.98 16a-hydroxyprogesterone dehydratase 
EC 4.2.1.99 2-methylisocitrate dehydratase 
EC 4.2.1.100 cyclohexa-1,5-dienecarbonyl-CoA hydratase  
EC 4.2.1.101 trans-feruloyl-CoA hydratase  
EC 4.2.1.102 now EC 4.2.1.100 
EC 4.2.1.103 cyclohexyl-isocyanide hydratase  
EC 4.2.1.104 cyanate hydratase  

EC 4.2.2 Acting on Polysaccharides  

EC 4.2.2.1 hyaluronate lyase  
EC 4.2.2.2 pectate lyase 
EC 4.2.2.3 poly(b-D-mannuronate) lyase 
EC 4.2.2.4 chondroitin ABC lyase 
EC 4.2.2.5 chondroitin AC lyase 
EC 4.2.2.6 oligogalacturonide lyase 
EC 4.2.2.7 heparin lyase 
EC 4.2.2.8 heparin-sulfate lyase 
EC 4.2.2.9 pectate disaccharide-lyase 
EC 4.2.2.10 pectin lyase 
EC 4.2.2.11 poly(a-L-guluronate) lyase 
EC 4.2.2.12 xanthan lyase 
EC 4.2.2.13 exo-(1-4)-a-D-glucan lyase 
EC 4.2.2.14 glucuronan lyase  

EC 4.2.3 Acting on phosphates  
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EC 4.2.3.1 threonine synthase  
EC 4.2.3.2 ethanolamine-phosphate phospho-lyase  
EC 4.2.3.3 methylglyoxal synthase  
EC 4.2.3.4 3-dehydroquinate synthase  
EC 4.2.3.5 chorismate synthase  
EC 4.2.3.6 trichodiene synthase  
EC 4.2.3.7 pentalenene synthase  
EC 4.2.3.8 casbene synthase  
EC 4.2.3.9 aristolochene synthase  
EC 4.2.3.10 (-)-endo-fenchol synthase  
EC 4.2.3.11 sabinene-hydrate synthase  
EC 4.2.3.12 6-pyruvoyltetrahydropterin synthase  
EC 4.2.3.13 (+)-d-cadinene synthase  
EC 4.2.3.14 pinene synthase  
EC 4.2.3.15 myrcene synthase  
EC 4.2.3.16 (-)-(4S)-limonene synthase  
EC 4.2.3.17 taxadiene synthase 
EC 4.2.3.18 abietadiene synthase 
EC 4.2.3.19 ent-kaurene synthase  

EC 4.2.99 Other Carbon-Oxygen Lyases  

EC 4.2.99.1 now EC 4.2.2.2 
EC 4.2.99.2 now EC 4.2.3.1 
EC 4.2.99.3 now EC 4.2.2.2 
EC 4.2.99.4 now EC 4.2.2.3 
EC 4.2.99.5 deleted 
EC 4.2.99.6 deleted, included in EC 4.2.2.4 and EC 4.2.2.5 
EC 4.2.99.7 now EC 4.2.3.2 
EC 4.2.99.8 now EC 2.5.1.47 
EC 4.2.99.9 now EC 2.5.1.48 
EC 4.2.99.10 now EC 2.5.1.49 
EC 4.2.99.11 now EC 4.2.3.3 
EC 4.2.99.12 carboxymethyloxysuccinate lyase 
EC 4.2.99.13 now EC 2.5.1.50 
EC 4.2.99.14 now EC 2.5.1.51 
EC 4.2.99.15 now EC 2.5.1.52 
EC 4.2.99.16 now EC 2.5.1.53 
EC 4.2.99.17 now EC 4.2.99.14 
EC 4.2.99.18 DNA-(apurinic or apyrimidinic site) lyase 
EC 4.2.99.19 2-hydroxypropyl-CoM lyase  

EC 4.3 Carbon-Nitrogen Lyases  

EC 4.3.1 Ammonia-Lyases  

EC 4.3.1.1 aspartate ammonia-lyase 
EC 4.3.1.2 methylaspartate ammonia-lyase 
EC 4.3.1.3 histidine ammonia-lyase 
EC 4.3.1.4 formiminotetrahydrofolate cyclodeaminase  

EC 4.3.1.5 phenylalanine ammonia-lyase 
EC 4.3.1.6 b-alanyl-CoA ammonia-lyase 
EC 4.3.1.7 ethanolamine ammonia-lyase 
EC 4.3.1.8 hydroxymethylbilane synthase 
EC 4.3.1.9 glucosaminate ammonia-lyase 
EC 4.3.1.10 serine-sulfate ammonia-lyase 
EC 4.3.1.11 dihydroxyphenylalanine ammonia-lyase 
EC 4.3.1.12 ornithine cyclodeaminase 
EC 4.3.1.13 carbamoyl-serine ammonia-lyase 
EC 4.3.1.14 3-aminobutyryl-CoA ammonia-lyase 
EC 4.3.1.15 diaminopropionate ammonia-lyase 
EC 4.3.1.16 threo-3-hydroxyaspartate ammonia-lyase  
EC 4.3.1.17 L-serine ammonia-lyase  
EC 4.3.1.18 D-serine ammonia-lyase  
EC 4.3.1.19 threonine ammonia-lyase  
EC 4.3.1.20 erythro-3-hydroxyaspartate ammonia-lyase  

EC 4.3.2 Amidine-Lyases  

EC 4.3.2.1 argininosuccinate lyase 
EC 4.3.2.2 adenylosuccinate lyase  
EC 4.3.2.3 ureidoglycolate lyase 
EC 4.3.2.4 purine imidazole-ring cyclase 
EC 4.3.2.5 peptidylamidoglycolate lyase  

EC 4.3.3 Amine-Lyases  

EC 4.3.3.1 3-ketovalidoxylamine C-N-lyase 
EC 4.3.3.2 strictosidine synthase 
EC 4.3.3.3 deacetylisoipecoside synthase  
EC 4.3.3.4 deacetylipecoside synthase  

EC 4.3.99 Other Carbon-Nitrogen Lyases  

EC 4.3.99.1 now EC 4.2.1.104  

EC 4.4 Carbon-Sulfur Lyases  

EC 4.4.1.1 cystathionine g-lyase 
EC 4.4.1.2 homocysteine desulfhydrase 
EC 4.4.1.3 dimethylpropiothetin dethiomethylase 
EC 4.4.1.4 alliin lyase 
EC 4.4.1.5 lactoylglutathione lyase 
EC 4.4.1.6 S-alkylcysteine lyase 
EC 4.4.1.7 deleted, included in EC 2.5.1.18 

EC 4.4.1.8 cystathionine b-lyase 
EC 4.4.1.9 L-3-cyanoalanine synthase 
EC 4.4.1.10 cysteine lyase 
EC 4.4.1.11 methionine g-lyase 
EC 4.4.1.12 sulfoacetaldehyde lyase 
EC 4.4.1.13 cysteine-S-conjugate b-lyase 
EC 4.4.1.14 1-aminocyclopropane-1-carboxylate synthase 
EC 4.4.1.15 D-cysteine desulfhydrase 
EC 4.4.1.16 selenocysteine lyase 
EC 4.4.1.17 holocytochrome-c synthase 
EC 4.4.1.18 now EC 1.8.3.5  

EC 4.5 Carbon-Halide Lyases  

EC 4.5.1.1 DDT-dehydrochlorinase 
EC 4.5.1.2 3-chloro-D-alanine dehydrochlorinase 
EC 4.5.1.3 dichloromethane dehalogenase 
EC 4.5.1.4 L-2-amino-4-chloropent-4-enoate 
dehydrochlorinase 
EC 4.5.1.5 S-carboxymethylcysteine synthase  

EC 4.6 Phosphorus-Oxygen Lyases  

EC 4.6.1.1 adenylate cyclase 
EC 4.6.1.2 guanylate cyclase 
EC 4.6.1.3 now EC 4.2.3.4 
EC 4.6.1.4 now EC 4.2.3.5 
EC 4.6.1.5 now EC 4.2.3.7 
EC 4.6.1.6 cytidylate cyclase 
EC 4.6.1.7 now EC 4.2.3.8 
EC 4.6.1.8 now EC 4.2.3.10 
EC 4.6.1.9 now EC 4.2.3.11 
EC 4.6.1.10 now EC 4.2.3.12 
EC 4.6.1.11 now EC 4.2.3.13 
EC 4.6.1.12 2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase 
EC 4.6.1.13 phosphatidylinositol diacylglycerol-lyase 
EC 4.6.1.14 glycosylphosphatidylinositol diacylglycerol-lyase 
EC 4.6.1.15 FAD-AMP lyase (cyclizing)  

EC 4.99 Other Lyases  

EC 4.99.1.1 ferrochelatase 
EC 4.99.1.2 alkylmercury lyase
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9.3  Calibration of SEC-HPLC system 
 
 
Calibration of SEC-HPLC system involved calibration of peak elution times versus known 

molecular weight standards (column calibration), and calibration of the refractive index 

detectors (RID) response to concentration standards (sensor calibration). As two slightly 

different systems were used for the analysis of experiment 7 and 10 (see Table 4-5), two 

calibration results are shown here. 

Column calibration was performed according to the method described in materials and 

methods. The size standards used are listed in table xx. Peak elution times were determined as 

the mean of all standards injected (variable concentrations, see below). By plotting mean 

elution times versus certified molecular weight means (weight means), the ideal elution curve 

was constructed. The slight deviations from the expected logarithmic curve are most 

pronounced towards the ends of the calibration range (column set) of 0.2 - 250 kDa (even 

though the Zorbax column may be pushed towards 400 kDa using non-linear calibration). 

Omitting these data would bring the calibration curve close to the ideal correlation. However, 

these data points are very important for interpretation of the degradation data, and could not 

be left out. The deviation from the ideal will result in a slight over estimation of low 

molecular weight molecules (about 0.1 to 0.2 kDa) up to about 1 kDa, while an 

underestimation of the high molecular weight fragments over 200 kDa of 50 -100 kDa is 

expected. The concentration of each eluted polymer was found by calibrating the peak 

response using the certified calibration standards. As the concentration response of the 

detector proved to be 

 

 

 

 

 

 

 

 

 

 

Figure 9-1. Elution curves of the Dextran calibration procedure. Indicated are calibrated MW transformation 
functions used for the rest of the HPLC-SEC analysis of experiment 10 (left) and 7 (right). 
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Figure 9-2. Sensor calibration for experiment 10 (right) and 6 (left) using certified (DIN) Dextran standards and 
>99% pure glucose, Isomaltose (Maltose) and Isomaltotriose as calibration standards. Legend show MW 
standard, slope of the "forced through zero" linear fitting curves and the linear correlation coefficient for 4 
concentrations. 

 

varying according to the molecular weight of the standards, sensor calibration had to be 

performed for each molecular weight standard (Figure 9-2). Calibration standards were 

distributed over a considerable range of polymer molecular weights (section 4.1.2). That 

implicated that the actual concentration at the peak was considerably lower than the total 

concentration of the standard. In order to calibrate the sensor response to the instantaneous 

molecular weight (given by the elution curve, Figure 9-1) passing through the sensor, the 

actual calibration standard peak concentrations would have to be determined. By the HPLC 

system used here, that is not possible since a high degree of overlapping was intrinsic of the 

molecular weight standards, and the high injection volume imposed a rather high degree of 

systematic superimposition that could not be resolved by traditional HPLC manipulations 

(mobile phase focusing, gradient elution, etc.). Peak concentration (i.e. the concentration of 

polymers integrated around the peak) of experiment 6 was therefore chosen to be the ± 5 % 

(MW) range around each peak. A Gaussian curve (to the log Mw) was fitted to the DIN 

certified distribution following each standard. The ± 5 % area was determined by integrating 

the fitted Gauss curve, and defining the peak concentration as the ratio between the peak area 

and the total integrated area multiplied by the sample standard concentration (total 

concentration of the calibration standard). 

Figure 9-3 show the slope to the elution time plot, indicating the relation between the slope of 

the calibration curve and the molecular weight (or elution time) of he standards. The fitted 

slope to elution time curves are "best fit" polynomials that were chosen solely on the degree  
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Figure 9-3. Calibration slope to elution time data for experiment 10 (left) and 6 and 7 (right). Models fitted are 
"best fitted" calibration curves (polynomial fitting). Error bars represent estimated slope and elution time 
standard deviations of the calibration standards (four concentrations). 

 

of fitting, without any expected/presumed relation between the two. The lack of mechanistic 

relation weakens the method, but it should be remembered that the calibration does not 

represent a "true" single polymer to sensor response calibration, but rather a qualitative 

indication between the relative concentrations between size classes in a sample. By applying 

the integration method described above on one single polymer range (i.e. integrating over a 

single molecular weight polymer range of 0.162 kDa), a theoretical correlation between the 

slope value and the molecular weight could be constructed.  

 

 

 

Figure 9-4. Theoretical Slope - Elution time plot based on single polymer peak integration range. Data from the 
experiment 10 calibration. 
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Figure 9-4 show the result of single peak slope to elution time calibration. The observed 

exponential relation is dominated by the exponential relation between the molecular weight 

separation and the elution time. The lower the molecular weight, the better separation (an 

intrinsic property of the SEC-HPLC technique).  
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9.4 Pilot testing results, Experiment 5. 
 
 
Figure 9-5 and Figure 9-6 show the resulting OUR responses after Dextran sample standard 

injections during experiment 5. Legends provide information on batch date, initial MW 

standard and initial concentrations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-5. Respirograms of experiment 5 batches of 30 (top row), 80, 200 and 500 mg/l (bottom row) initial 
concentrations of indicated Dextran standards. The right column shows reactor 1 data, while column 2 contains 
the equivalent respirograms of reactor 2. 
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Figure 9-6. Respirograms from experiment 5 grouped as constant MW standards (rows) for R1 and R2 (right). 
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Figure 9-5 show the OUR curves of the same initial standard concentration and variable initial 

MW (for R1 and R2, same samples applied at the same time). Dates of injection are indicated, 

and should be compared to the date of system failure (June 12, see Results section 5.2.1). 

Figure 9-6 show the same data grouped by plotting the same initial molecular weight sample 

standard, at variable initial batch concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-7. Example of data reprocessing (right column) conducted on the R1 equal initial concentration raw data 
in order to compensate for data spreading and re-oxygenation effects. 

0

10

20

30

40

50

60

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

10.5 kDa 30 June 10

38.1 kDa 30 June 10

160 kDa 30 June 25

513 kDa 30 June 14

35000 kDa 30 June 13

0

10

20

30

40

50

60

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10.5 kDa 80 June 21

38.1 kDa 80 June 13

160 kDa 80 June 21

513 kDa 80 June 11

35000 kDa 80 June 10

0

10

20

30

40

50

60

70

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

38.1 kDa 200 June 15

10.5 kDa 200 June 8

160 kDa 200 June 20

513 kDa 200 June 13

35000 kDa 200 June 22

0

20

40

60

80

100

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10.5 kDa 500 June 11

38.1 kDa 500 June 9

160 kDa 500 June 10

513 kDa 500 June 15

O
U

R
 [m

g/
l. h]

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

-0.2 0 0.2 0.4 0.6 0.8

09.06.2001 Blank 0

09.06.2001 10.5 30

10.06.2001 38.1 30

22.06.2001 160 30

14.06.2001 513 30

13.06.2001 35000 30

0.00

10.00

20.00

30.00

40.00

50.00

60.00

-0.5 0 0.5 1 1.5 2

09.06.2001 Blank 0

21.06.2001 10.5 80

12.06.2001 38.1 80

21.06.2001 160 80

11.06.2001 513 80

09.06.2001 35000 80

0

10

20

30

40

50

60

70

-0.5 0.5 1.5 2.5 3.5 4.5

11.06.2001 Blank 0

08.06.2001 10.5 200

14.06.2001 38.1 200

12.06.2001 160 200

13.06.2001 513 200

21.06.2001 35000 200

0

20

40

60

80

100

-0.5 0.5 1.5 2.5 3.5 4.5

11.06.2001 Blank 0

11.06.2001 10.5 500

08.06.2001 38.1 500

10.06.2001 160 500

15.06.2001 513 500

Time [hours] 



 166

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-8. Observation that led to (upper plates) and compensation curve fitted for both reactors when analysing 
injection of a Blank sample.  

 
 
In order to compensate for abnormally high OUR estimation just after a re-oxygenation cycle, 

the data were subtracted the blank re-oxygenation behaviour and smoothened using a Median 

filter in the data acquisition software (filter used was the "median.vi" of LabView, National 

Instruments, using variable data grouping). Figure 9-7 show the equal initial concentration of 

variable initial molecular weight batches smoothened by the Median filter, and compensated 

for high initial OUR rates following re-oxygenation. This processing reduced the fuzzy plots, 

but did not change the main features of the batches. Compensation for abnormal high OUR 

was apparent from the respirograms above (Figure 9-5 and Figure 9-6) by the systematic 

deviation from the OUR curves following oxygenation. This effect can easily be seen from 

the Blank injection shown in Figure 9-8 were the OUR curves of both reactors are plotted 

after injection of saline at t0. By plotting OUR of endogenous respiring batches against the 

bulk phase O2 concentration, a non-linear curve was fitted (Figure 9-8, lower plates) and 

implemented in the OUR data acquisition software for compensation of this unknown effect. 

Figure 9-9 show the result on the Blank (June 11) injection, and the effect on the 38.1 and 513 

kDa samples on both reactors. Outlayers introduced after oxygenation is compensated 
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Figure 9-9. Upper plates illustrate compensation applied on the Blank injection (June 11; uncompensated left), 
and the comparisons between compensated and uncompensated batches of June 27 injections (513 vs 38.1 kDa) 
of R1 (left) and R2 (lower plates). Circled areas indicate data outlayers introduced after oxygenation and 
compensated for by the compensation equations of Figure 9-8. 

 

for by the compensation equations presented in Figure 9-8 as can be seen from the difference 

between the lines (compensated data) and the raw data points. 

Compensation and Median filter smoothening were only applied to the experiment 5 data as 

increased O2 range level, system set up modifications (higher diffuser levels) and strict gas 

evacuation of the reactors before each experiment (accumulation of gas was checked before 

each sample injection) reduced the post-oxygenation artificial high OUR to expected 

(coherent) levels. 
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9.5 Effect of initial Dextran 160 kDa concentrations, experiment 9. 
 

Evaluation of the initial concentration of Dextran was subject of experiment 9. Dextran 160 

kDa of 25, 50, 100, 200 and 500 mg/l initial concentrations were injected to R1, and 

depolymerisation rates were evaluated using observed mineralisation rates, and bulk phase 

TOC. The order of injection was 50, 100, 25, 500 and 200 mg/l. 

Figure 9-10 show bulk phase OUR and TOC during degradation of the standards. The peak 

OUR, as mentioned in section 5.2.3, follow systematically the initial concentration, while the 

slope OUR (section 5.2.3) do not behave the same way. It seems like the high concentration 

standard proceed slower than the intermediate ones, something that may indicate overall 

substrate inhibiting mechanisms.  Indeed, such mechanisms have been observed at high 

substrate concentrations (Miranda et al. 1991), and the TOC plot (Figure 9-10, right) indicates 

the same. First order degradation rate fittings indicate the substrate inhibitory effect 

(simplification of the half order kinetics applied in section 5.2), however, implementing a 

substrate inhibition model, as proposed by Bailey and Ollis (1986), in the one step 

depolymerisation model (section 5.6.2), did not reflect the OUR nor the TOC data (results not 

shown). As discussed in section 7, the high bulk phase TOC levels during the high initial 

batches could be due to extensive intermediate back diffusion to the bulk. This may offer an 

explanation to the observed inhibitory behaviour, however, that must be evaluated by bulk 

phase analysis and simulations.  

 

 

 

 

 

 

 

 

 

 

Figure 9-10.  Oxygen utilisation rates (left) and bulk phase TOC during degradation of 160 kDa Dextran in R1. 
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