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Introduction 
In large and important sectors of modern production, there is an increased demand for 
on-line or at-line information. Both consumers and governmental regulations require 
that producers can document the quality of their products. The more precise 
measurements can be, the more potentially valuable they are for the producers in their 
endeavours to fulfil these demands.  

Usually, however, precision has its price. In many measurement systems samples have 
to be removed from the production line to be analysed in a laboratory. When the 
producer needs continuous surveillance of the products, off-line methods are inefficient 
and expensive. Searching for on-line measurement systems capable of extracting the 
information in demand will always be a topic of interest. 

It has been said in many occasions that “An image says more than a thousand words”. 
In many cases this is true regarding the very promising area of multivariate image 
analysis, but there are indeed also potentially many problems regarding teaching 
electronic components to interpret these digital signals the same way humans can 
extract information from visual input. Not only are humans extremely adept at 
recognising patterns and objects, but our vision system is also very compensative when 
variations occur. These superior human abilities can only be matched with very great 
difficulties (if at all) by the present powerful image-analytical methods, some of which 
make up the major parts of the present thesis.  

Thus, in many cases, image analysis strive to imitate the human way of interpreting 
visual information. Because of the complexity involved, it is my belief that digital 
analysis of visual information should often be adapted to what may be totally different 
ways of treating the data, ways which may initially seem odd to humans. 

For people without chemometric experience, the methods discussed below may then 
well seem unfamiliar. But because a computer is doing the job, we must design the job 
in a way in which the computer can handle the complex world of image data, so as to 
use its facilities to the maximum. Based on the results in this thesis, it is my intention 
that the methods discussed will prove to be useful for future implementations in real-
world, image analytical measurement systems.  
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Scope of project 
The present work has been financed by the Norwegian Research Council (NFR) as a 
Strategic Program (SIP), project No. 51120/100. The title of the project was “Efficient 
control and assurance of product quality in food-, feed- and process industry.” It was 
organized as collaborative project between the Norwegian food research institute 
(MATFORSK), Telemark University College (HiT) and Telemark Technological 
Research and Development Centre (Tel-Tek) who has been my formal employer. 

The overall objective, out of which my project was about one third, was to develop 
rapid and reliable methods for quantification and measurement systems within food 
science and technology. Hence the extensive use of food-related examples in this 
thesis. The two other Ph.D. projects in this collaboration were Jens Petter Wold[1] and 
Bjørn-Helge Mevik[2].  

In the beginning of the project it was the intention that I especially should study 
multivariate image texture analysis (MIX) which is explained elsewhere in the present 
thesis. For this I should build a large texture filter database, and apply these to 
experimental data which were to be analysed on an adequate software system, MIR 
(Multivariate Image Regression) . This latter was going to be developed by a forth 
participant in the project, who unfortunately had to leave the project in midterm due to 
personal matters. This lead to that I had to do the MIR programming myself, leaving 
less time for the filter database. 

As it turned out, however, the principles of MIX were not all that new as we first 
believed. Therefore, efforts were made to focus on other aspects of multivariate image 
regression (MIR) for quantitative measurements. Thus when working on the last paper 
(V), a  totally new (as far as I know) approach for combining spectral and spatial 
information in regression analysis was developed. Therefore I believe it is safe to say 
that the task of the overall project objectives still have been achieved, and that an 
appropriate amount of new knowledge has been brought to the world. 

Prior to the work on this thesis, I was educated as an Charted Engineer in 
Environmental Technology, with some basic knowledge to chemometrics, some 
programming experience and 10 years with photography as my major hobby. In order 
to do the present Ph.D. research I have had to study more on chemometrics, signal- and 
image processing and –analysis, programming and multivariate image analysis (MIA) 
and –regression (MIR). In addition to this, I feel that working with the practical 
industrial and technological examples have given me considerable understanding in the 
field of MIA and MIR. 
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Theory 
This chapter describes some of the important aspects of multivariate image analysis 
(MIA) and –regression (MIR). Most of the theory herein is based of the work of others, 
the rest was initially published in the papers I-V. References will be given where 
appropriate. 

The multivariate Image 
The term “multivariate image” [3] is here used to describe any digital image consisting 
of a multiple of spatially consistent channels. One channel may represent a colour or a 
different part of the electromagnetic spectrum, a different imaging technique, a specific 
time etc [4]. When treating different spectral channels, the terms multi- spectral or 
hyper-spectral is often used. The actual number of channels is not important for the 
methods described in this thesis, but it is crucial for an image analytical measurement 
system that the number of channels and choice of spectral wavelengths are optimised 
with regard to both quantification and measurement precisions. If e.g. the imaging 
techniques used does not manage to distinguish different species in a quantification 
system, the methods described in the present thesis will not work. 

Independent on the technique used to acquire a multivariate image, it can be visualised 
as a 3D OOV[5] matrix where two of the ways are objects (M x N pixels) and the third 
way is variables[6], e.g. spectral channels. In Figure 1 the variable way is vertical and 
the object ways are in the horizontal plane. 

Figure 1. The Multivariate Image as a 3D matrix 

Because the techniques described below treats each pixel as a separate object 
independent of its neighbours, the 3D matrix is usually re-arranged into a 2D OV 
matrix where each channel is a (M x N) long vector[4]. On this matrix, 2-way 
algorithms can be applied, as described below. 

k Variables 

M 

N 
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MIA: Image PCA 
Multivariate Image Analysis [7, 8] was introduced by Esbensen and Geladi in 1989[9]. 
However, the 2-way calculation core aspects of MIA , the principal component 
decomposition, was initially described already in 1933 [10].  

Principal Component Analysis (PCA) is a data transformation that decomposes the 
matrix X into scores T, loadings P and residuals E, so that 

X=TP’ + E 

This can be interpreted so that the structural information is organised in the scores T, 
the noise is gathered in the residuals E and the loadings P contains the transformation 
information. 

Basically, MIA calculates the loadings as eigenvectors from the cross product matrix, 
the  covariance matrix or the correlation matrix of the re-arranged multivariate image. 
If the re-arranged image is called X, the three different matrixes are given by: 

 

Matrix Definition [4] 

Cross Product Z = X’X 

Covariance Zcov = [1/(N-1)] Xmc’Xmc  

where Xmc is mean centred and N is the number of objects 

Correlation Zcor = [1/(N-1)] Xmcw’ Xmcw  

Where Xmcw is Xmc [1/s], where s is column-wise standard deviation 
of Xmc. 

From one of these matrixes, loadings can be calculated using Singular Value 
Decomposition (SVD). When loadings are available, scores are calculated using 

T=XP 

The unused information in X will be placed in E, so that 

E=X-TP’ 

Figure 2 shows the different matrixes involved in the calculations. 
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Figure 2. The MIA PCA decomposition diagram 

The most important benefits of the PCA transformation is that the structural 
information in X is organized in a decreasing manner in T, so that the  most 
dominating structure is found in the first component, the second most dominating 
structure in the second component etc. This way, structural information spread over a 
large number of original, “raw” variables in X is compressed into a few principal 
components in T. 

Secondly, and also important, is the orthogonal feature of the components. Because 
every component in T is orthogonal to all other components, it gives well-reasoned 
meaning plotting them against each other in score plots. This very often gives an 
empirical, increased insight into the relevant data covariance structures, i.e. both the 
inter-variable as well as the inter-object (spatial) relationships. 

Score plots are actually 2D histograms where each way represents one component. 
Every (x,y) position in the score plot contains the number of objects with score-pairs 
corresponding to this score-pair. The larger this number is, the more objects display 
identical score-combinations in the two components. 

Figure 3 [11] shows an example of a typical MIA scoreplot, where colour codes are used 
to illustrate the frequency of score pairs in each position. This is done to enhance the 
visual inspection, as the human eye is more able to distinguish colours than grey-levels 
[12]. In this type of plot there is a truly remarkable potential information to be gained if 
guided by the proper MIA strategy. Paper I is devoted entirely to formulating a general, 
complete and flexible multivariate image analysis strategy, the core of which was 
originally stated to have comprised a central part of Geladi and Grahn [4]. 
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Z 
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Figure 3. Example MIA score plot showing component 1 vs. component 2.  This figure is from paper I, 
where the original data is presented in full detail. 

This type of score plot and a technique called “MIA-mask brushing” described below, 
are the most important tools that MIA has added to the multivariate image analysis 
realm.  

Brushing is a technique which correlates the score plot with the corresponding original 
raw image, i.e. the scene space. With the MIA-mask brushing tool, it is possible to map 
information between the two spaces. By drawing a mask or a Region of Interest (ROI) 
in the score plot and having the corresponding pixels  highlighted in the scene space, 
the user is able to identify (and perhaps classify) objects with similar score 
combinations, independently of position and form in the scene space. The brushing 
technique is demonstrated on pages 28-29. 

In addition to the score plot, score data and raw data can be visualised in scene space as 
grey-level images or colour-composition RGB images. In the present implementations 
the brushing works also from scene space to score space. 

Image PLS; Algorithms and Tools 
Multivariate Regression concerns calibrating models between two sets of data. In 
addition to the X-matrix introduced above, there is also an Y-matrix, or –vector, 
containing the dependent variable(s). The goal of the calibration is to establish a 
regression model between X and Y, so that in the future, Y can be calculated (or 
predicted) from X. In most cases, X will typically contain some multivariate 
measurements of a phenomenon, while Y will contain the information that are sought, 
e.g. some kind of state (e.g. concentration) of the phenomenon. 
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The idea of Multivariate Image Regression (MIR) was initially introduced in 1991 by 
Geladi and Esbensen [13], and strategies were published by Esbensen, Geladi and Grahn 
the year after [14]. Initially, MIR was based on Principal Components Regression 
(PCR). PCR uses PCA in the decomposition of X, and creates a regression model 
based on the scores from PCA. PCR is thus unguided in its decomposition, principally 
opening for the possibilities of a sub-optimised decomposition. 

A different approach, Partial Least Squares Regression (PLS) [15-16] overcomes this 
problem. PLS performs Y-guided decomposition of the X matrix, so that Y-related 
information in X also gets priority in deriving T. A potential drawback with this 
approach lies in problems related to a noisy Y, which can cause overfitting of 
models[17], if not properly validated [18]. 

In the original algorithms[17], PLS is performed on the entire X and Y matrixes.  This is 
no problem when the number of objects and/or variables are small. In MIR, however, 
the opposite is the case. Carrying around with 106-107 pixels or more in a calibration, 
the available computer memory may easily become an issue. In such cases, the Kernel 
algorithm presented by Lindgren and Geladi [19] is a powerful way of reducing memory 
consumption in the calibration. Because of this, the Kernel PLS approach was chosen 
in the present MIR implementation (II). Kernel PLS is based on the work by 
Höskuldson [20] 

 Figure 4 shows the outline of the Kernel PLS approach. Because PLS is iterative, the 
X and Y matrixes needs to be updated after each component has been calculated. In 
Kernel PLS, however, this updating is done on the smaller Kernel matrixes; X’X, X’Y 
and Y’Y. The master Kernel matrix, the X’YY’X is used for the decomposition. In the 
present implementation, SVD is used to extract loading weights W, X’X gives X-
loadings P, X’Y gives Y-loading Q and Y’Y is used for calculating the explained 
variance in Y. MATLAB code for this algorithm is listed below. 

Figure 4. Basic overview of the Kernel matrixes in the Kernel Algorithm for PLS. The sizes of the matrixes 
are only dependent on the number of varialbes, not the number of samples (pixels). 
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Program Listing 1. MATLAB code for the Kernel PLS [19]. MATLAB implementation: T. T. Lied. 

function [W,P,Q,SX,SY,B]=kernelpls(XpX,XpY,YpY,A)
%KERNELPLS [W,P,Q,SX,SY,B]=kernelpls(XpX,XpY,YpY,A)
% Calulates the PLS of X on Y using the Kernel approach.
% INPUT:
% XpX: X'*X
% XpY: X'*Y
% YpY: Y'*Y
% A: Scalar number of components
% OUTPUT:
% W: (k by A) loading wights
% P: (k by A) X-loadings
% Q: (j by A) Y-loadings
% SX: (j by A) Explained X-variance
% SY: (j by A) Explained Y-variance
% B: (k by A) regression coefficients
% (C)1999 Thorbjørn T Lied,
% Ref: Lindgren, Geladi, Wold:"The Kernel Algorithm for PLS"

% Initialize return variables
W=zeros(0);
P=zeros(0);
Q=zeros(0);
SX=zeros(0);
SY=zeros(0);
B=zeros(0);
I=eye(size(XpX)); %Identity matrix used for uptates
Kernel=XpY*XpY'; %Kernel Matrix
oXpX=XpX; %Saving the initial XpX
oSSX=trace(XpX);
oSSY=trace(YpY);
for i=1:A

[u,s,v]=svd(Kernel);
w=u(:,1);
wXw=w'*XpX*w;
scale=inv(diag((wXw))); %used to scale p and q
p=(w'*XpX)'*scale;
Q=(W'*XPY)'*SCALE;
W=[W w]; Q=[Q,q]; P=[P,p];
%Update kernel and covariances:
Iwp=I-w*p';
XpX = Iwp'*XpX*Iwp;
XpY = Iwp'*XpY;
Kernel = XpY*XpY';
b=W*inv(P'*W)*Q';
B=[B b];
YpY=b'*oXpX*b;
SX=[SX 100-trace(XpX)/oSSX*100];
SY=[SY trace(YpY)/oSSY*100];

end
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As with PCA, the components of PLS are orthogonal. The all-important score plot 
interpretation features of MIA is hence also available in MIR. In addition to the t-t 
plots, MIR offers t-u plots, ŷ-y plots (predicted vs. measured y), Figure 5 and Figure 7, 
or any other combination of t, u, x, y and ŷ that may be of interest. The same data can 
also be visualized in scene space in either grey-level images or colour-composition 
RGB images, papers II-V.  

Combining different data in plots and images can reveal valuable information about the 
model. Plotting ŷi vs. ŷj 1 will show the degree of difference between the two (Figure 6 
and Figure 8). The more pixels not lying on the diagonal, the larger is the difference. 
Showing e.g. ŷi and y together in an image can also reveal where the model is accurate, 
and where there are problems. This can be seen as a function of colours in a RGB 
image. Divergence from grey tones indicate over- or under prediction (Figure 10 to 
Figure 12). Figure 9 shows the (calibrated) Y-variance plot from the banana example 
used here (X=Figure 13 and Y=Figure 36, below). 

  
Figure 5.Pred1 vs. measured (ŷ1 vs. y)1 from the 
banana case. 

Figure 6.Cross plot of ŷ1 vs. ŷ2 
1 from the banana 

case. 

                                                      

1 The subscripts i and j represents  the number of components used to predict ŷ. 
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Figure 7.Pred2 vs. measured (ŷ2 vs. y) from the 
banana case. 

Figure 8.Cross plot of ŷ2 vs. ŷ3 from the banana 
case. 

 

 

Figure 9.Residual Y-variance (cal) from the banana case. 
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Figure 10. Predicted and measured (ŷ1  and y) from the banana case. Red indicates over-prediction while 
cyan indicates under-prediction. 

 

Figure 11. Predicted2 and measured (ŷ2  and y) from the banana case. Red indicates over-prediction while 
cyan indicates under-prediction 

Within all the current figures (Figure 5 to Figure 12), except in the variance plot 
(Figure 9), the brushing technique also found in MIA can be applied to increase the 
interpretation potential even further. This will not be demonstrated here, however. 
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Figure 12. Predicted 3 and 2 (ŷ3  and ŷ2) from the banana case. Red indicates pixels where component 3 
adds information, while component 2 is stronger where the pixels have cyan colour. 

MIX: Data Pre-treatment 
MIX, Multivariate Image teXture analysis, is an approach for introducing spatial 
information into the decomposition. Variables derived from the raw variables based on 
e.g. textural information, can be used as additional variables in the decomposition [21, 22, 

23]. In cases where e.g. the spectral information in the raw data is insufficient for a 
calibration, textural derivatives may sometimes add the little extra needed in the 
calibration. In other situations more dedicated texture approaches may be needed. 

With several variables available for derivation, and a large number of possible filters 
available for each, MIX has the potential for explosive data growth. Means for 
reducing this may come in handy when looking for an optimal solution. As a general 
approach, the following procedure is recommended: 

 • Decompose X with MIA 

• Apply filters considered to be useful for extracting additional information either on 
the original X-images or in score images from MIA. Append variables to X, which is 
now termed X*. 

• Calibrate X* with MIA or MIR (whichever appropriate for the objective at hand.) 

• Examine loadings (from MIA) or loading weights (from MIR) to decide which (new 
or old) variables in X* should be used in the future, based on which variables actually 
helped improve the image modelling, relative to X alone. 
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The approach outlined above should be able to assist the filter selection procedure, as 
well as minimizing the amount of variables. Usually, textural derivates are quite 
different from their “parents”, so using scores as the basis for filtration can often be a 
fast way of finding the “best” combination of filters. MIX is treated in papers II and III.  

In paper V a somewhat different MIX-approach is suggested, where the results from 
MIR (see The Ŷ-Histogram section in the chapter on Quantitative Measurements, p. 
39) are combined with the highly texture- and pattern correlated AMT-transformed 
spectra[24, 25, 26] in a PLS model containing both spectral and spatial data, 
MIR+AMT+PLS.  

Data Arrangement 
In traditional 2-way calibration, a calibration data set is created by concatenating  a 
number of relevant samples into the X-matrix. For PLS the Y-vector or matrix is 
established the same way. To calibrate a reliable PLS model, it is of importance that all 
the different phenomena in X and in Y are well represented. The data should span the 
model as much as possible within the experimental domain. 

This is the case also for MIA and MIR, only here also w.r.t. the image Region Of 
Interest (ROI). If the purpose of the calibration is to be able to extract some kind of 
information in future images, as many available images as possible should be merged 
into a larger calibration X-image, in e.g. an image-grid as described in detail in paper 
III. Figure 13 shows an example of a calibration image-grid. 

Only if the entire ROI (“experimental design”) is included in a single scene, making 
such image-grids is unnecessary. This situation is usually found only in remote sensing 
applications, but here it may also be useful to create a grid where different objects, e.g. 
water, snow, ice, forest, sand etc. are isolated in separate grid-cells for the training data 
set. 

The Y-image 
The Y-image used in a PLS calibration situation should be designed so that the 
predicted images from future X-observations can be used to extract the sought 
information from X. The nature of Y is thus very much problem-dependent. Paper III 
discusses three different principal modes of Y-images. These are in the paper called 
Ydiscrim, Ygrid and Ytotal. Figure 14 shows a schematic overview of these three modes. 
Y-image examples are shown in Figure 30 (p.32) and in Figure 36 (p. 35). 
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Figure 13. Example of image-grid with 4 by 3 sub-images. The dataset is treated in paper III. 

 

The Y-image must be of identical spatial dimensions as X, but the number of variables 
may be different. If there are two or more variables in Y, the Kernel PLS[19] will act as 
a PLS2[17] algorithm. 

In a quantification or classification system, different classes in X should be given 
different values in Y. Because PLS1 usually gives better precision for separate classes 
than PLS2 [18], one PLS1 model will often be created for each class. In the training data 
set, all occurrences of the class in focus are given high values (white) in Y, all other 
classes are given low value (black) in Y. When predicting  X-images in the future, the 
current class will be brightened, while other classes will be darkened. In paper III this 
is called Ydiscrim. This contrast adjustment can later be used for further feature 
extraction, paper V.  

In designing the training set for a quantification system involving mixing of different 
classes, it is recommended to create a image-grid where the sub-images are of pure 
classes. Then the MIR algorithm will be able more optimally to separate the class of 
interest. 

In homogenous mixtures, where e.g. the colour is varying with time, concentration etc., 
the training set should also span a number of concentrations in form of a grid, and the 
corresponding Y-image-grid should contain these concentrations in the corresponding 
grid-cells. This situation is called Ygrid in paper III. 

The Ytotal mode is the situation where every pixel in X has an individual representation 
in Y. in remote sensing applications this would correspond to complete ground-
knowledge, down to every pixel. Also when creating models between different 
imaging techniques, the Ytotal mode is relevant. 
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Figure 14. The three different Y-image modes: Y discrim, Y grid and Y total. In all three modes additional Y-
variables can be used in a MIR PLS2 case. 
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Interactive Prototype Software Implementation 

Introduction 
At the time I started studying the field of MIA and MIR, the (to me) only available PC 
software was the DOS-based ERDAS v. 7.5 (1991), where the MIA components were 
originally programmed by P. Geladi. This had to be run on an old computer (486) 
because of a NUMBER 9 CPU-card with capture- and display functionality. The 
software was slow when calculating, brushing and displaying data. There were no 
simultaneous display of images and plots, they all had to be visualized sequentially, 
once at a time. This system would in the long run lead to nothing but irritation, 
knowing of the potential in a Windows-based system. Therefore it was decided that in 
order to work efficiently with the data and methods, a different system was required.  

Design specifications 
Some design specifications were initially set up for the software system prior to any 
programming work. Based on the experiences with the ERDAS software, it was 
decided that the software should be designed for operation in MS Windows with the 
possibilities of displaying an “unlimited” number of images and plot simultaneously. 

Further it was a requirement that the brushing technique should work both ways, not 
only in score space as was the case in ERDAS. Visualization of X, Y, T, U, and Ŷ 
should be possible in both scene space and score space, and it should be possible to 
combine the different matrixes in plots and images.  

Limitations 
Because of limitations in time and manpower, some restrictions were made regarding 
the development of the prototype. The algorithms to be implemented were confined to 
PCA and Kernel-PLS, and they should both be available both in the global- as well as 
in the local-model mode. These limitations also forced the selection of a Rapid 
Development System with proper pre-made functionality for image data disk- and 
memory management. This was found in LabVIEW  from National Instrument and 
their IMAQ Vision toolbox where most of the required tools were available. 

In the present thesis it was not found time to optimise the software with respect of 
speed and memory consumption, but for small data sets (few variables) it is usually 
still reasonably fast. LabVIEW does not (for the time being, anyway) offer the 
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memory-management functionalities available in e.g. C++. Hence, the software uses a 
“large” amount of time and memory when doing calculation. Especially cross-
validation on large data sets may tend to be rather slow. 

Functionality 
Figure 15 shows the UI-dialog for the implemented prototype. 

 
Figure 15. Main UI Dialog Window for the Multivariate Image Explorer prototype software. 

 

The File Menu 

At the present time, only BITMAP (*.BMP) images are supported, so images in other 
formats have to be converted to BITMAP before read into the system. If reading 24-bit 
bmp-files, however, these are automatically split into three colour channels. 

Any number of channels may be read sequentially into both X and Y, and these are 
kept as 8-bit (unsigned integer) channels in memory until computations of  correlation 
matrixes and loadings, which are computed in 64-bit double precision floating values. 

For convenience, all loaded images can be stored together in one file. This is an 
internal file format containing X and Y channels in vectors, as well as raw data 
dimensions. The size of this file is equal to the sum of sizes of all images loaded. Later, 
when working on the same dataset, the entire dataset can be read in one operation. 

As with data, MIA and MIR results can be stored to disk. Both scores, loadings, 
predicted images, X-and Y variance, loadings and loading weights are stored in one 
file. If the calibration is time-consuming, saving the results can save time if the user 
needs to study the results later. Also, when predicting new images, this is done from a 
model on file (currently not available in the program). 
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The Edit Menu 

The active image can be copied to the clipboard and later pasted into a different 
program, e.g. a word-proseccor, software for image treatment etc. 

The Analysis Menu 

The Analysis Menu contains five choises: MIA (Image PCA), MIR (Image PLS), 
Local MIA, Local MIR and Cross validation. The local models, if selected, is based on 
a mask drawn in either score- or image space. 

The Display Menu 

This has 11 choises: Image, Cross-plot, Loading plots (includes loading weights), 
RMSEP-, PRESS- and CV-plot, X- and Y-variance, close (all open) windows, ROI 
(brushing) Tools and finally Select Fill Colour (the colour used for brushing in RGB 
images). 

The Display Image Dialog (Figure 16) and the Display Cross-plot Dialog (Figure 17) 
alows the user to select among the avaliable matrixes and variables for what to plot.  

  

Figure 16. The Display Image Dialog allows the 
user to select among several data to show in image 
space. 

Figure 17. The Display Cross Plot Dialog allows 
the user to select what data to plot in x- and y-
direction in the cross plot. 
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Explorative Analysis of Multivariate Images (MIA) 
Before starting out on a regression calibration, an explorative analysis of the 
multivariate images using MIA usually gives valuable information about the structure 
in the data. If MIA easily separates the classes in X, there is probably no need for 
additional variables, and the regression model should be stable. If there are problems, 
however, MIX and other additional features can be of use. 

The topics discussed in this chapter are treated extensively in paper I. In this outline, a 
different data set will be used to show the principles however. This dataset forms an 
integral part of paper V. 

Figure 18 shows the raw image of the current example. This image is acquired with a 
SILVACAM video camera, which is a false colour composite NIR-R-G camera. The 
image represents a mix of three types of vegetables; green peas, maize and carrots. The 
image represents a mixture which contain approximately one third of each component. 

Figure 18. RAW image of a three-component mix in NIR, Red and Green channels 

Two MIA score plots from this classification problem is shown in Figure 19 and 
Figure 20. In this example only three channels were used, so there are three 
components available of score plots. In the MIA decomposition of this example, 
component three has the strongest discriminative effect. The first principal component 
is mainly used to describe the black-white contrast properties of the image. A small 
bright dot in the left part of the scoreplot (low t1 score values) in Figure 19 represents 
the black border in the right and lower part of the image in Figure 18. The right side of 
the score plot (high t1 score values) contains pixels with high values, e.g. reflections. 
Score 1 represents the overall intensity contrast of the image in the current example. 
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Such a general content-component will often be found when decomposing multivariate 
images. 

In Figure 21 the lower class in the t1-t3 score plot has been masked with a ROI. This 
mask has been projected to image space in Figure 22 with brushing. Here, it can be 
seen that the class outlined is the carrot class. The two other classes can be selected in 
the same manner. The middle class represents the maize (Figure 23) while the upper 
class (high t3 values) represents the peas (Figure 24). 

 
 

Figure 21. t1 vs. t3 score plot. The carrot class has 
been marked by a ROI. The corresponding mask in 
image space is shown in Figure 22. 

Figure 22. The carrot class selected in score space 
in Figure 21 shown in image space. 

According to the separative effect of the third component in this example, it can be 
concluded that additional variables are not required for regression purposes. This is in 
agreement with what could be expected, considering the spectral differences between 

  

Figure 19. t1 vs. t2 scoreplot. Note  that there is no 
obvious differentiation between the three species in 
this plot. 

Figure 20. t1 vs. t3 score plot. Note good separation 
between the three species along the third image PC. 



Explorative Analysis of Multivariate Images (MIA) 29 

the classes. In cases where the spectral distinctions are smaller, pre-processing etc. may 
be required. 

  

Figure 23. The maize-class selected in a t1 - t3 
score plot  shown in image space. 

Figure 24. The pea-class selected in a t1 - t3 score 
plot  shown in image space. 

In addition to score plot inspection, plotting the loadings can give valuable information 
about the channels (i.e. the variables) and how they are used to build the scores. Below 
the loading plots corresponding to Figure 19 and Figure 20 are shown in Figure 25 and 
Figure 26 respectively. 

 

Figure 25. The p1 vs. p2 loading plot for the 
example in Figure 18. Note almost equal loading 
for all components in the  first component, the 
general contrast-component. 

Figure 26. p1 vs. p3 loading plot. Note that X1 lies 
close to zero on the third component, hence it  is 
not used to seperate the classes in this example. 

Figure 26 tells that variable 1 has a very small loading in the third component. Since it 
was the third component that was used to separate the classes, this means that variable 
1 (the NIR channel) does not contribute to the classification. This can be understood 
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looking at variable 1 in image space, as shown in Figure 27, where it is obvious that 
the NIR channel does not separate the three different classes in any significant degree. 
In the current example, using the available NIR-channel  to classify the three 
vegetables is a waste, and different sensors should be considered. A traditional RGB 
camera would probably be more suitable in the current case. By way of contrast, the 
PC3 is seen to be a manifestation of X3/X2, i.e. a green/red differentiation, Figure 26. 

 
Figure 27. Variable 1, the NIR-channel in the example from Figure 18. 

For assisting the interpretation of the score plots, it is valuable to also look at the score 
images. A score image is a score component visualized (“backfolded”) in scene space. 
Figure 28 shows component 1 while Figure 29 shows component 3. Note how the first 
component is used both to describe the overall greylevel span of the image and to 
describe the 3D properties of the vegetables with highlights and shadows, while the 
third component describes an almost flat landscape, but where the three classes have 
highly discriminatory values. The essence of MIA comes about only if/when it is 
understood that the score plot t1-t3 (Figure 20) comes about by plotting Figure 28 
against Figure 29. 

  

Figure 28. Score image of component 1. Figure 29. Score image of component 3. 
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Multivariate Image Regression (MIR) 
As mentioned above, MIR involves building a regression model between two sets of 
image data. There may be several reasons for doing this[4]: 

• Matching one imaging technique with another 

• Matching remotely sensed images with “ground truth” 

• Matching images in one spectral region with images in a different spectral 
region, e.g. UV and NIR. 

• Classification for quantitative measurements 

• Quantitative <y-image prediction 

• Other, more problem-dependent, regression situations (generic). 

To illustrate a typical quantitative measurement system, the example used in Figure 18, 
the three vegetables, will be used. For in-depth MIR reading, see papers II and III and 
for more examples see paper V. 

In a production plant involved with heterogeneous mixtures of particles, it is important 
to be able to measure the fraction of each component in the mixture at different 
production stages. Because of segregation and other problems occurring when mixing 
particulate matter of different physical characteristics, being able to compare the mix 
with its specifications is of critical interest to the producer. 

In this section calibration models will be created from training data sets, and these will 
be examined. In the section on Quantitative Measurements (p. 37) the results from the 
following example chosen here for illustration, will be used for calibrating the 
concentrations of the different species. 

Figure 30 gives an overview of the principles involved in setting up a MIR regression 
model for quantitative image measurements of a heterogeneous mixture. 

The principles visualized in Figure 30 have been designed to enhance the contrast in 
the predicted Ŷ-images from mixture images. In the illustration a X-training image is 
constructed from pure class-images of the classes involved, here named A, B and C. 
For each class an Y-image is generated which will be used to maximize the intensity 
difference between the pertinent class and its surroundings.  

In a PLS1 MIR situation, each class will be represented with an individual Y-image. 
This has the maximum value (white) in every pixel in Y where the current class is 



32  Multivariate Image Regression For Quantitative Predictions 

found in X, and the minimum value (black) in all other pixels. For an unsigned, 8-bit 
image these values are 255 (white) and 0 (black), respectively. 

Figure 30. Illustration of MIR discrim set-up for quantitative measurements of classes A, B and C  in 
heterogeneous mixtures. A separate model is calibrated for each class. 

In this illustration, three models are created, one for each class. Even though it is 
possible to use PLS2 to create one general model for all classes, prediction will usually 
be improved by using separate models [18].  

Figure 31 shows the X-training image for the vegetables example. Note that the three 
classes are kept in separate sub-images (ref Ygrid, paper III). This has been done to ease 
the Y-image construction. If it is not possible to acquire training images of pure 
classes, generating the Y will be more complex. 

 
Figure 31. X-training image for the mixed vegetables example. From left to right: maize, peas and carrots. 
The SILVACAM false colour camera was used, thus the "strange" colours. 

The corresponding Y-images that should be used for the three separate models are 
equal to the ones illustrated in Figure 30, and is hence not repeated. The corresponding 
t1-t2 scoreplot for each model is visualized in Figure 32. From this figure it is evident 
that the maize-model has more problems separating the three classes than the two other 
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models. This can also be seen in Figure 33, Figure 34 and Figure 35 where the 
predicted images are shown.  

Also notice that the carrot model only uses one component to distinguish the classes, 
while the other models use two. This can be seen in Figure 32, where the separation in 
the rightmost score plot is done in the horizontal direction, in contrast to the middle 
and leftmost models which use a diagonal (combination of 1st and 2nd component). 

 
Figure 32. t1 vs. t2 for the three vegetable models designed to predict, from left to right,  maize, peas and 
carrots. 

 
Figure 33. Predicted image from maize- model using 2 components. Note the similarities between maize 
and some of the peas (which are frost covered). 

 
Figure 34. Predicted image from pea-model using 2 components. Note good separation between peas and 
the other classes. Also note the (somewhat smaller) difference between maize and carrots. 
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Figure 35. Predicted image from carrot-model using 1 component. Note good separation between carrots 
and the others, also note differences between maize and peas. 

Figure 34 and Figure 35 should be compared with Figure 29 (the 3rd score image of the 
MIA example). This comparison should demonstrate that MIR, in the last two models, 
successfully has guided the decomposition against a classification, and is no longer 
concerned with variations in intensity (reflections, shadows etc.) as was the case in the 
first MIA components. 

The images shown in Figure 33 - Figure 35 is not the answer to the question “how 
much of each class”. It is merely a pre-processing-step on the way to this answer. How 
these images are treated further, will be discussed in the chapter Quantitative 
Measurements (p. 37). 

In the outline above a heterogeneous mixture example has been used for illustration. 
Because of the obvious benefits regarding complete acquisition control and “ground 
truth knowledge”, these examples are easy to set up. It should be noted, however, that 
the principles above may very well be transferred to remote sensing problems 
involving satellite imagery, as these images also can be considered of being of the 
heterogeneous mixture type as well as many other similar types of the same nature.  

In cases not involving heterogeneous mixtures, different approaches may be needed for 
setting up a MIR calibration. If the measured signals show a shift in intensity or colour 
as a result of variations in the medium being imaged, a more continuous model 
involving more Y-value levels will be required, ref Ygrid and Ytotal (paper III).  

For an example involving a more complex model, refer to Figure 13 which shows the 
banana example X-training  image from paper III. This example treats the problem 
regarding deciding the degradation status of bananas as a function of time. In the 
corresponding Y-image, each sub image contains the storage time in number of days 
since purchase. Hence this Y-image has 12 different value levels, as shown in Figure 
36. 
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 Figure 36. The Y image of the banana problem shown in Figure 13.In this Y-image, the different sub-
image greylevels correspond to the number of days the banana has been stored. The brighter value, the 
longer storage period.  

In the current image (Figure 36), the grey level values have been maximized in contrast 
(“contrast-stretched”) to enhance visual inspection. Because the original image 
contains values between 1 and 20, it would not be possible to distinguish the different 
sub-images by visual inspection.. 

Figure 37 shows the t1-t2 scoreplot for the banana example, which clearly has a 
complex structure. This highly non-linear model obviously needs some help to be able 
to predict the degradation as a function of time. This is detailed in paper III. 

 
Figure 37. t1-t2 score plot from the banana MIR example. 
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Figure 38. The t1-t2 scoreplot from the banana MIR example. The curve follows the time-line( from right to 
left) of steadily increasing decomposition over 20 days. 

 

In Figure 38 the blue curve marks the time-line in the banana example in the t1-t2 score 
plot, which shows a highly non-linear trace. Considering there are actually two 
processes involved, this is not difficult to understand. Initially the banana is going 
through a ripening process where the colour changes from green to yellow. This 
process is followed by a deterioration process where the colour changes from yellow to 
dark brown.  
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Quantitative Measurements: Extended MIR-
predictions 
For quantitative measurement problems, especially when dealing with homogeneous 
mixtures and remote sensing problems, MIR can be used as a powerful pre-processing 
step which essentially enhances intensity differences among classes. However, trying 
to predict one value directly from a complex image will seldom be effective. In 
addition to MIR, some sort of post-processing must also often be applied. In the current 
chapter three different pre-processing approaches will be presented; two univariate and 
one multivariate. These methods are discussed in detail in paper V. 

The basis for the current discussion is the predicted image, as shown in Figure 33 - 
Figure 35. As mentioned in the previous chapter, these figures show that each class is 
associated with a distinct grey-level interval. In a mixture analysis, the number of 
pixels in each interval should hopefully correlate with the concentration of the 
corresponding class in some way. Three different approaches for this correlation will 
be presented below. 

Thresholding 
The thresholding technique tries to find the optimum grey-level value that will split the 
predicted image in two, where the modelled class will get the value one, and all other 
classes will get the value zero. If this is done successfully, calculating the mean value 
for the thresholded image will return the concentration as a fraction between 0 and 1. 
This is thus a very direct method for calculating an estimate of the concentration. 

One problem with this method is finding the “best” value to threshold at. For assistance 
in selecting this value, the histogram-plot[12] of the predicted image can be valuable. 
Figure 39 shows the histogram-plot of the predicted image in Figure 35. In the 
histogram-plot, grey-level 180 was selected to be optimal. Figure 40 shows Figure 35 
after thresholding, and the listing below shows both the thresholding command in 
MATLAB, as well as calculation of the mean value. 

g of image A at 180, and calculation of mean value. 

/255);
Program Listing 2. Thresholdin

» BW=im2bw(A,180
» f=mean(BW(:))
f = 0.3367
As can be seen from Program Listing 2, the concentration of the current class is found 
to be 0.3367, or 33.67%. Because  the class covers exactly 1/3 of the image, the correct 
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value would be 0.3333, or 33.33%. For the current example, this must be said to be 
within an acceptable prediction error.  
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Figure 39. The histogram-plot of Figure 35 (predicted image using the carrot-model) is a valuable tool for 
selecting the optimum point for thresholding. The histogram is an overview of the number of pixels at each 
grey-level value.In the current image the local minimum at about 180 was selected. Figure 40 shows the 
result after splitting at this level. 

When it comes to the other two classes, however, there is a strong overlap, as can be 
seen in the histogram in Figure 39. For these classes, finding split-points would be 
difficult, to say the least. For these classes, the two other models must be used. 

 
Figure 40. Predicted image using the carrot model in Figure 35 after thresholding with "optimum" value. 

Figure 40 shows that some parts of the class are not included (they are left black), 
while on the other hand, parts of the other classes have been included in the class. This 
phenomenon will almost always occur, and is mostly related to highlights and shadow 
effects. Unless totally eliminated with large, diffuse light sources, this can give 
problems in the modelling. Also consider the predicted image using  the maize-model 

Threshold-
value 
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(Figure 33). This model has great difficulties separating between maize and peas, as 
can be seen in Figure 41. In this case, the thresholding approach will be problematic.  

Figure 41. Histogram of predicted image using the maize-model. The image contains 1/3 of each 
vegetable. Finding the optimum threshold value is obviously very difficult, and large prediction errors are 
to be expected. 

The mean value 
Instead of thresholding the predicted image, the mean value can be calculated for the 
predicted image “as is”. This will in some cases reduce the influence of noise in the 
image, averaging the effects from highlights and shadows etc. Especially when dealing 
with a two-component mix this is rather straight forward. If three or more classes are 
involved, each with a separate grey-level interval, correlating the mean value with 
concentration becomes somewhat more complicated, quickly becoming useless.  

The Ŷ-Histogram 
Because the histogram of the predicted image can be seen as a spectrum in which the 
bin heights correlate with the concentration of classes associated with the different 
positions,  the histogram can be used as X-data, in principle in the same way as e.g. a 
NIR-spectrum in traditional PLS calibration[17]. Figure 42 shows three histograms of 
pure classes predicted with the same model. Figure 43 shows the histogram for a 1/3 + 
1/3 + 1/3 mix. 
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Figure 42. Histogram for maize, peas and carrots using the carrot model. Note the strong overlap between 
the two leftmost (non-carrot) classes. 
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Figure 43. Histogram of predicted mixed image, 1/3 of each class. Carrot-model. 

 

Figure 44 shows how MIR and 2-way PLS relates to the multivariate Image X, the 
predicted Ŷ-image and its histogram. The MIR model being used for Ŷ-prediction has 
been established earlier using the approach outlined in Figure 30. Likewise, the PLS-
model used to predict the final value(s) has been established on the basis of a 
calibration set of several histograms with known y-values. 

Figure 44. The Ŷ-Histogram prediction approach. An Ŷ -image is predicted from the multivariate Image X 
using an existing MIR model. The histogram of the Ŷ -image is then used for prediction using a traditional 
2-way PLS model. 
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Examples 
Using histograms as shown in Figure 42 and Figure 43 for PLS calibration against 
concentration is now straight forward. Below, in Figure 45 and  Figure 46, is shown 
standard PLS calibration and cross-validation results when predicting the carrot 
concentration in carrot-predicted mixed images. The prediction error (RMSEP) is 
evaluated to be 4.76 measurement units [%] using one component. Results for the other 
vegetable classes predicted with representative models are shown in Figure 47- Figure 
50. See paper V for results from different examples. 

These prediction results pertain to our development of a generic image analysis-based 
mixing process monitoring facility, which is also directed towards other 2- and 3- 
component mixing systems in paper V. 

0

20

40

60

80

100

PC_00 PC_02 PC_04 PC_06 PC_08
 gulrot-avrg, Variable:  c.Total 

PCs

X-variance Explained Calibration Variance

 
0

100

200

300

400

500

600

PC_00 PC_02 PC_04 PC_06 PC_08
 gulrot-avrg, Variable:  v.Total 

PCs

Y-variance Residual Validation Variance

 

Figure 45 Explained X-variance (cal.) (left) and residual Y-variance (val.) (right). Carrot model. 
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Figure 46. Loading Weights (1-3) (left) and Predicted vs. Measured (val.) (right) 1 comp. Carrot Model. 
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Table 1. Cross validation results of PLS Carrot-model on histograms from MIR-predicted Ŷ-images. 

Carrot-Model 
# Comp Slope Offset Correlation RMSEP 

1 0.895 2.457 0.976 4.766 
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Figure 47 Explained X-variance (cal.) (left) and residual Y-variance (val.) (right). Maize model. 
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g Weights (1-3) (left) and Predicted vs. Measured (val.) (right), 2 comp. Maize Model. 

lidation results of PLS Maize-model on histograms from MIR-predicted Ŷ-images. 

Maize-Model 
p Slope Offset Correlation RMSEP 

0.971 1.202 0.980 6.026 
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Figure 49 Explained X-variance (cal.) (left) and residual Y-variance (val.) (right). Pea model. 
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sults of PLS Pea-model on histograms from MIR-predicted Ŷ-images. 

Pea-Model 
Slope Offset Correlation RMSEP 
0.967 0.765 0.995 3.315 
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ing for the future of MIR in image based measurement systems. 
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Using standard PLS on the histograms from MIR-predicted images should now be 
transferable to a large number of similar applications in which quantitative prediction 
is on the agenda. 

Extending MIR with AMT 
In some cases combining the MIR+ histogram with AMT spectra makes it possible to 
combine spectral and spatial information in one calibration model in a very powerful 
manner. In the examples studied in paper V, only marginal improvements were found, 
and are hence not reported. The main reason for this is the already strong regression 
models developed using MIR+ and AMT separately in the present examples. In future 
problems, however, this combination can prove to be very useful. 
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Multivariate Image Cross validation 
In any multivariate model to be used for prediction, it is important to know the 
predicting powers of the model. This is usually done by estimating the prediction errors 
as a measure between known and predicted values. A popular prediction measure is 
RMSEP (Root Mean Square Error of Prediction) which is defined as 

 

 

 

where ŷi refers to the predicted value, and yi,ref is the known value [18]. 

The procedure of testing prediction performance is known as validation. To perform 
this optimally, at least two sets of data are required, one for calibration and one for 
validation. When a model has been established, using the calibration set, the validation 
set is subsequently used for predicting the ŷ-values of the validation set for 
comparison, e.g. according to equation 1. 

At least two variations for this type of validation exist, one is known as “test set 
validation”, the other as “cross validation”. In test set validation, a completely new, 
independently sampled data set is acquired, in addition to the calibration set. This 
demands that an identical sampling procedure is used for both data sets [18].  

If this is not feasible, a different, less optimal, approach will have to be resorted to. 
Cross validation extracts a , set from the calibration set before building the model on 
the remaining complement of data. The extracted data is now used for validation. This 
approach may take several different forms, but all are closely related, in that they must 
correspond to one specific number of so-called segments in the list: 2,3,4,5....N, where 
N stands for the total number of objects in the original calibration set. After prediction 
errors have been estimated for the one left-out segment, it is replaced in the modelling 
base and a new model is created in which a different segment is being kept out of the 
modelling etc. This is continued until every segment, and object, has been used for the 
validation, hence the term cross validation [27]. 

To get realistic validation estimates, it is important that the calibration and validation 
datasets represent two independent samplings from the target (parent) population. The 
degree of difference between them should reflect the variations that can be expected 
associated with the future measurement situation in which the regression model is to be 
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used for prediction purposes [18]. It is easy to see that test set validation is the only 
approach which honours all these requirements. 

In 2-way chemometrics there are steadfast different opinions regarding how exactly to 
divide the data in calibration and cross validation sets or segments [17]. From so-called 
full cross validation (leave one out) on the one hand, to two-segment, so-called "test set 
switch" on the other; the latter represent a singularly unsatisfactory choice of 
terminology, as there is no "test set" present at all. It is always possible to use any 
intermediate number of segments from the list: 2,3,4 ....N. The relationships between 
test set validation and these systematics of cross validation remain an area of some 
confusion and intense debates in conventional 2-way multivariate calibration[18]. In 
multivariate image analysis, however, distinct and special considerations are required. 

There are two major characteristics in image data that are rarely found in 2-way data. 
Most striking is the number of “objects”. In a conventional video image (~500x700 
pixels), there are more than 350.000 “objects”, i.e. pixels, all in the range [0..255]. 
Removing any single object from this amount of data is not going to change the model 
adequately to perform any useful validation (to say the least!) [18]. Also, calculating 
350.000 sub-models, full cross validation, is nonsensical. 

Secondly, and much more important to consider, is the large redundancy that exists in 
image data. Pixels lying close together in the image space are likely to represent the 
same image-object, and therefore often have closely similar values. Two-segment data 
sets, for example in which every second pixel, is allocated for the training – and test 
sets respectively, would necessarily produce two almost identical images, clearly 
leading to inferior validation. This would correspond to some spatial (image space) 
segmentation scheme. With knowledge of object selection traditions in 2-way data 
analysis, the reader might well alternatively ask: “Why not simply use random 
sampling?” This would correspond to a notion of a fair "blind", automated 
segmentation strategy. Again, consider the very large amount of data (pixels) present. 
Sampling 50% randomly out of 350.000 objects would most likely again simply 
produce two practically identical datasets. This is where segmented cross-validation 
would be truly beneficial, based on e.g. 10% segments or similar. 

Multivariate image analysis often requires reconsideration of the strategies employed 
for selecting relevant data sets for calibration and validation. A new a strategy called 
“guided random sampling” is suggested in paper IV. In guided random sampling the 
user decides how the data is to be divided into the pertinent sets. This is neither done 
randomly, nor by a pre-specified "blind" number of segments (representing e.g. 10% or 
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Line 1 

Line 2 

otherwise), but with very specific respect for the empirical data covariance structure 
present (in the score feature space). A different angle from which to attack the data 
segmentation problem is required. Following the MIA experience this angle is to be 
found in the score-space. 

Paper IV discusses the topic of cross validation of multivariate images in pertinent 
detail. It is there shown that segmenting the data in calibration- and validation sets can 
be performed in score space. It is not, however, indifferent which score plots to use for 
the segmentation. Paper IV shows that in strongly correlated score plots, e.g. in the 
primary components, the t-u plots etc., the strong structure in the data will result in 
large differences between the different segmented sub-data sets. When validating, the 
model created with one type of data will try to predict an often very different type of 
data, giving non-representative validation results.  

In paper IV a new procedure for 
delineating a mask in score plots is 
introduced. By drawing two intersecting 
lines, a double Maltese Cross is 
generated (Figure 51), which can be used 
to segment the data in 2, 4 or 8 segments. 
In designing this mask, efforts have been 
made to ensure maximum spanning of 
the covariance structure of the data, 
hence when 2 or 4 segments are 
combined, they are always pair-wise 
opposite with respect of the centre 
(intersection) point of the mask, Figure 

52 in the well-known form of two alternative Maltese Crosses . 

The mask, when drawn in a suitable high-order score plot, will produce validation 
segments that span the data sufficiently representative, but still with some structural 
differences intact, the consequence being  a realistic validation of the predictive 
capabilities of the model. Figure 52 shows the Maltese cross delineated in a high-order 
score plot (t4-t5) with corresponding image space mask projections. The data visualized 
here is presented in detail in paper IV. 

 

Figure 51. Two lines (1 and 2) are drawn in a 
score plot by the image analyst. These lines are 
used as the skeleton of the Maltese Mask, which is 
calculated based on the two lines. 
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Figure 52. Maltese Cross delineated in a t4-t5 score plot with corresponding scene space image 
projections. The mask is shown in white in both score- and image spaces. Data details are found in paper 
IV. 
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Discussion 
An image says more than a thousand words. For image-analytical measurement 
systems, these thousand words often needs to be reduced to a single, or a few 
quantitative values. To be able to do this, some means of data reduction and 
conceptual reorganisation of the objectives are often required. 

Multivariate Image Analysis (MIA) has the power of reducing the original many 
channel multivariate images to a few bilinear components containing all the important 
structural information of the data (if correctly validated models are used only). This is 
the important data reduction characteristic, which has benefited chemometrics ever 
since its start almost 30 years ago.  

Multivariate Image Regression based on PLS multivariate calibration (MIR/ MIR+) can 
be guided to focus on the specific problem in question, and is thus often the most direct 
method for ultimately automated measurement systems (again if correctly validated 
models are used). It has been shown in this thesis, however, that neither of these 
methods can stand alone in every case. 

When the Multivariate Image techniques presented in this work are applied to real-
world, complex issues, there is sometimes also a requirement both for dedicated pre-
processing (AMT, MIR+) as well as post-processing. As an example, we have 
developed the MIR+-approach (paper V), in which post-calibrating an initial MIR-
model based on the histogram of the primary predicted image pixel values, have 
proven to be an effective method to quantify the “contents” of two- and three-
component simple mixing images. This novel method, extended MIR-modelling 
(MIR+), should certainly be applicable to a much larger range of applications than the 
pilot-studies covered by this work. 

It may perhaps be argued that the same type of histogram can be used also for 
calibration without going through an initial MIR for prediction, i.e. based on the 
original channels directly - which is a standard feature in classical image analysis. This 
may be the case in very simple situations, but it is no problem to demonstrate that it is 
downright impossible to find a single spectral channel which can be used to identify, 
classify and quantify the objects in even only moderately complex image data. As a 
general approach, the suggested new procedure should be much more reliable than 
working on raw data alone. 
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Relation to earlier work 
Papers I - V constitute various further developments of  MIA and MIR, based on the 
seminal works by Geladi and Esbensen in the late 80'ies/early 90'ies, followed by the 
fundamental Geladi & Grahn first textbook on MIA. These five papers gives a 
complete reference to all the works from these authors within chemometrics. The 
individual papers discuss these relationships in the pertinent detail.  

There has been very little additional, external work within the realm of multivariate 
image analysis, as defined by the scope set out by the above three founders, since. I 
have tried, to the best of my ability, to give full credit to this in papers I - V. Note that 
the broad and important areas on image analysis within the field of remote sensing and 
related disciplines is not included in the present overview, neither in the individual 
papers I - V. This was a very deliberate choice made by the Applied Chemometrics 
Research Group. 

In themselves papers I - V form a logical development, which will be appreciated when 
preceded by the present introduction to the thesis. 
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Concluding Remarks 
Summary of the most important achievements in the thesis; (.) denotes the five papers 
included (I - V). 

Methodological developments: 

Systematics of applied MIA (I) 

"Stand alone" MIR-implementation (II, III, IV) 

Typology of MIR objectives and corresponding methods (III) 

Systematics of applied MIR (III) 

World's first image analysis validation facility (IV) 

 

Applications: 

Generic remote sensing application (Forest Montmorency) (I) 

Food science and - technology examples, several types (III, IV, V) 

Powder science and - technology examples (V) 

Industrial application examples, several types (III, IV, V) 

 

      Collaborations: 

       MATFORSK, Ås 

       Centre de Recherce en Géomatique, Université Laval, Quebec 

       Chemometric Research Group, University of Umeå, Sweden 

      POSTEC (Powder Science and Technology), Tel-Tek, Porsgrunn 

       IDE-CON, Porsgrunn 
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Future Work 
This thesis has exclusively been oriented towards developing prototype software and 
ditto key exemplifications and applications. Therefore MATLAB and LabVIEW ("G") 
was chosen for the essential development work, as argued in paper II. The "stand 
alone" version of MIA/MIR runs as an independent sw system however, although 
further development of a C++ version may be the target for future commercialisation 
efforts. 

The MIR validation facility today only includes cross-validation (paper IV). It would 
be more satisfactory also to have had the time needed for including a complementary 
test set validation feature. This will have to wait for a possible future C++ version. 

I am happy with the degree to which it has been possible to address basic food science 
and - technology problems in this thesis, in relation to the collaborative context of the 
Ph.D. stipend involved. There is however a host of potential broader technological 
application areas ahead - some of which it has only been possible to touch upon in 
papers I - V. 

 

Much fascinating work remains for the next generation MIA/MIR researchers and - 
users. 
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