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Principles of MIR, Multivariate Image Regression - I:  
regression typology and representative application studies 

 

ABSTRACT 

We present an introduction to MIR: Multivariate Image Regression with a selection of 
illustrative application studies. Generalisation from 2-way multivariate calibration to 
the 3-way regimen leads to - at least - three alternative image regression cases 
depending on the nature of the available Y-data: IPLS-Ydiscrim ; IPLS-Ygrid ; IPLS-Ytotal .  
A systematic image regression typology is briefly introduced.  

We here present the core of the principles of applied MIR: Two major MIR application 
studies are worked through,  a food mass product industrial inspection study (IPLS-
Ydiscrim) and a food product (fruit) storage stability image analytical monitoring (IPLS-
Ygrid). These exemplifications are presented as  archetypes, representing a much wider 
range of potential industrial/technological application areas. 

The present paper represents one major element of our work towards establishing a 
complete, stand-alone facility for MIR (Multivariate Image Regression); the second 
paper in this series deals with the development, implementation and extensive 
exemplifications of a complementary cross-validation facility. 

 

KEYWORDS: multivariate image regression; MIR; multivariate image analysis; MIA; 
multivariate image texture analysis; MIX; 2-D images; 3-D image arrays; image 
regression cases; applications  
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1.0 INTRODUCTION 

The introduction of the Multivariate Image Analysis (MIA) concept in cheometrics 
was not longer ago than Esbensen & Geladi (1989) [1]. In the intervening 10+ years 
the development of MIA has been relatively slow, but would appear to begin to take to 
speed more recently - the entire field was summarised in the comprehensive textbook 
by Geladi & Grahn [2]. Much of the theoretical background for Multivariate Image 
Regression (MIR) necessitates a thorough understanding of the principles and methods 
in MIA, which we shall here assume known. It is especially important that the concept 
of the multivariate image is well understood. 

Because regression calculations on the extensive amount of data in multivariate images 
easily can be a technical challenge (growing quadratically with the number of 
variables, or channels), some important recent evolutions have made it more feasible in 
the last few years. The continuously developing technical improvements in computer 
hardware efficiency is of course a major contributor, but especially the KERNEL PLS 
algorithm introduced by Lindgren et.al. in 1993 [3] has dramatically speeded up the 
present type of calculations, as was outlined in detail in [5]. 

Despite of this, few studies has yet shown the true potential of MIR as a tool for 
predicting quantitative features in multivariate image data. Hopefully, this condition 
will be improved by the current paper. 

1.1 Concepts 

Several concepts are used in this paper, some of which may be relatively unfamiliar. A 
brief introduction of these is given to help the reading of the article. 

1.1.1 Multivariate Image (MI): The MI  is a digital image of one scene, consisting of 
many variables (channels), e.g. colour bands, channels. At the outset the simplest 
situation is the one in which each image pixel  is treated  as an object, which requires 
rigid consistency in scene lay-out for all variables. An object in a given scene position 
in one variable must be found in the same scene position in all other channels; for 
regression cases also in the Y-image. MI’s are usually presented as a 3-D matrix, but 
because the two object-ways can be treated as one way, the MI may also be 
reorganized into a 2-D-matrix prior to modelling, and 2-way methods can be applied  
[2] by way of the so-called unfolding operator. 

1.1.2 MIR: Multivariate Image Regression [2, 4] builds regression models between the 
multivariate X-image and the (uni-/multi-)variate Y-image. MIR is here performed 
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using KERNEL-PLS [3, 5] on reorganized Multivariate Images, i.e. each variable is 
reorganised into a (very long) object vector. In this basic unfolded form, MIR uses only  
the variable-signatures, i.e. the spectral information in the analysis and only indirectly 
makes use of the spatial information analogous to MIA [1, 2]. But even though MIR 
technically uses 2-way analytical methods, there is an enormous visualisation potential 
in image data which is also used fully in MIR. Displaying results not only in score 
space, but also in the so-called backfolded image space, enhances the insight in the data 
structure and the models developed. Applying colour coding to score plots, MIA, or by 
combining three score images in one composite ("R/G/B") colour image, it is often 
possible to capture comprehensive model presentations of great interpretation value 
etc..  

1.1.3 MIX: Multivariate Image teXture analysis. MIX is an extended MIA-MIR 
approach which includes  spatial, especially textural, information in the analysis. In 
cases where spatial information is important, this can be included in the MIR-model by 
e.g. adding derived textural variables calculated from the original variables [6-8]. 
Sometimes enhancing details using e.g. edge-detectors is favourable, in other cases the 
opposite (smoothing details) might be required etc. Also, combining textural filters 
might often give very useful results. MIX has the potential for explosive data growth, 
thus powerful means for variable selection are required. We do not treat the MIX 
aspects in any depth in the present work however. 

1.1.4 Regression typology 

Perhaps surprisingly, going from the 2-way realm in which the concepts of multivariate 
calibration is well-known - and need no further presentation here - there is a 
corresponding three-fold multitude of analogous but in principle different image 
regression modes, Figure 1. 

1.1.4.1 IPLS-Ydiscrim: The Yes/No classificator/discriminator. In every position in the 
Y-image, a pixel is either 1 (one) if it is part of a current class, otherwise 0 (zero). The 
approach is suitable for classifying one class among (many) others. Used as a pre-
processor, this method can easily be taught how to pick out desired classes. This case is 
also easily extended to cover several classes, by using several one-class Y-discrim 
masks, Figure 1. 

1.1.4.2 IPLS-Ygrid: If every Y-condition is not available in one image, several images 
can be juxtaposed in a compound, so-called gridded image. This way the total 
experimental design can be represented in one image, i.e. one model. Extensive 
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illustration of IPLS-Ygrid is given in this work. In some cases, especially when 
predicting an overall value for each sub-image in the grid, the corresponding Y-image 
will have a constant value within each sub-image. When this appears,  some kind of 
smoothing of each sub-image in X will usually be useful, i.e. reducing non-
classification related variations in X. 

1.1.4.3 IPLS-Ytotal: When the entire experimental design is covered in one frame, 
merging images together, as in the IPLS-Ygrid is not required. In these cases, each pixel 
in X also has a separate, unique value in the Y-image. Typical examples come from 
e.g. remote sensing. Because most of the still limited MIR-literature explicitly 
discusses this kind of data, and because it is merely a special, extreme case of the Ygrid, 
it will not be treated further in this paper 

Figure 1. The three different MIR modes, Ydiscrim, Ygrid and Ytotal. 

1.2 Software 

All calculations  in this paper are performed using a self-developed program, described 
in Lied, Geladi & Esbensen [5]. The software is available for Microsoft Windows ® 
(9X NT 4+5) and is written in National Instruments’  LabVIEW  v. 5.1. Both MIA and 

Y discrim Y grid Y total 

X Y 

IPLS-R 

IPCR 

MODES
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MIR is implemented; for MIR regression calculations, KERNEL-PLS [3] is used 
exclusively. 1 

2.0 APPLICATIONS 

Below the terminology IPLS (Image PLS) is used throughout, but it is evident that 
PCR may also be used alternatively should one so desire, albeit with the well-known 
distinctions regarding PCR vs. PLS [9-10] etc. Here PLS is employed exclusively 
because of its well-known chemometric advantages [9-14]. In both major examples 
below, data are mean centred and scaled to uniform standard deviation. All variables 
thus have equal variance weights, making the Kernel-PLS decompositions pertain to 
correlations. 

2.1 IPLS-Ydiscrim : Discrimination Prediction. 

Motivation: A pilot study of image analytical industrial inspection of a mass 
production food article, Swedish crispbread ("knäckebrød") is presented. This item, by 
nature of its mass consumption status, is produced in very large quantities in industrial 
bakeries in many countries. Output from the industrial ovens are necessarily way 
outside complete human inspection capabilities, for which reason an automated, 
industrial image analytical system would be of considerable interest. This in turn could 
form the basis for a truly 100% inspection system. 

In our restricted pilot study involving some 10 pieces of crispbread,  parallel 
representative oven outputs are available, 5 with an "accepted" status and 5 with three 
types of representative faults, typically encountered in the industrial production 
situation. Figure 2 shows these three faults together with examples of the directly 
acceptable product ("normal"). Technical details regarding this image is found in table 
1. 

 

 

 

                                                      

1 When developing this prototype, serious efforts were made to enhance the flexibility and user interaction 
facilities. For large datasets, 10 M pixels or above, calculations starts to become slow however. 
Development of a professional system is now under way. Contact the corresponding author for 
instructions on how to download the freeware prototype. 
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Table 1. Technical Details of the crispbread case 

Image Capture Camera Lens Focal Length 
 JVC 3CCD KYF-50 Micro Nikkor AF 105mm 

Measures With (pixels) Height (pixels) # Variables 
Total Image 1000 666 4 
Sub Images 200 333 4 

Spectral Variables Colour Wavelength Bandwidth 
1 RED N/A N/A 
2 GREEN N/A N/A 
3 BLUE N/A N/A 

Textural Variables Filter Window Size & 
Passes 

Applied to  

1 Variance   

Figure 2. "Normal" and "flawed" Scandinavian crispbread ("knekkebrød"). Three 
representative types of flaws are displayed; broken, perforated and burnt cases. 

Figure 3 shows standard MIA score plot  set-ups for the crispbread case (figure 2) [1, 
2]. 

In the interest of the wider application horizon for this specific IPLS-Ydiscrim regression 
example, a more general IPLS-Ydiscrim regression case will be set up. This is done by 
using a Y-image mask of the areas of interest in the image which are recognised as 
"rejects", i.e. areas which are underlain by those parts of the Y-image which depicts 
flaws of the various type. Figure 4 shows this "flaw"-mask.  
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Figure 3. MIA standard score-plot for the crispbread case in figure 2. 

 

Figure 4. Y-image mask of (0/1) discrimination areas. Note that by using a relevant background 
discrimination feature, it is possible to zoom in only on the true flaws present in the gridded 
calibration imagery, which have been designated white here. 
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Figure 5. IPLS-Ydiscrim t1-t4 score plots showing all three resolved classes in the crispbread 
case: broken/perforated (top panel); burnt (middle) and "accepted" (lower). Note complete 
discrimination. Also comp. with similar t1-t2 scoreplot from the MIA-solution 

 

Figure 5 has been designed to bring forth the full potential of the IPLS-Ydiscrim-case, 
showing (in standard MIA-style) the corresponding t1-t4 score plots  versus the 
original (raw) image domain layouts of three fault classes present in the fully 
background-discriminated crispbread case: shadow (top); burnt (middle) and 
"accepted" (bottom). It is gratifying to observe complete discrimination between all 
relevant classes, i.e. all three types of rejects/accepted and the background as well. This 
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successful discrimination points directly to the desired use of image-based prediction 
of all these types crispbread. This pilot study, while extremely simple, allows full 
conceptual delineation of a complete automated image analysis system, by way of the 
relevant PLS-prediction facility, Figure 7. 

Figure 6. Calibrated X-variance (top) and Y-variance (middle) and validated PRESS (low) for 
the crispbread case in figure 2. 
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Incidentally, observe that in this particular case, there would appear to be very little 
"tilting" of the IPLS-solutions relative to the corresponding simpler PCA-solutions 
(MIA), contrary to many other two-way experiences [4-5, 15-16]. In the present case 
this reflects a rather direct correspondence of the X-block data structure with the Y-
structure(s), i.e. the information gathered in the image analytical X-decription 
"happens" to be directly correlated to the guiding Y-discrimination dummy variable; 
see also below however. 

Figure 7. Predicted Ŷ-image using 1 (one) component. Note how the model distinguishes 
clearly between faults/non faults. 

While figures 4-6 gives the statistical facts in this case, figure 7 shows the actual 
predicted image in scene space using one component. This figure demonstrates that the 
model is excellent for predicting all the relevant types of faults. This result is, needless 
to say, of a much larger generalisation potential than the specific crispbread example 
chosen. The illustration in fact  has merit as an archetype for IPLS-Ydiscrim multivariate 
image regression. 

MIX-aside: In this example a variance filter (table 1) has in fact also been applied to 
extract local textural variations in the X-image. While the background is flat, the 
crispbread has a very distinct, regular texture. The variance filter, which returns the 
local variance in a small window in every position in the image, will thus greatly help 
to distinguish crispbread from background as well as textureless burnt parts, assisting 
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the spectral information in the classification. The effect of this filter addition is 
visualized in figure 8 which shows the loading weights(w) for this example. From this 
figure, it can also be seen that X2 and X3 (Green and Blue) contains mostly the same 
information, indicating that one of them could be left out in later calibrations etc. 

Figure 8. Loading weights 1 vs. loading weights 2 for the crispbread case. Note X-variables 2 
(green) and 3 (blue) which seem redundant. 

Note how judicious use of a relevant background  (colour, texture) is essential to bring 
about the successful discriminations in this case. As in all image analysis applications 
illumination and colouring (not treated here) is often of equal importance compared to 
the data analysis proper etc. 

2.2 IPLS-Ygrid: Monitoring and estimating storage time for fruit 
(bananas). 

Motivation: The objective of this application example is to monitor storage stability by 
a series of (multi-temporal) images of the same fruit(s), with great efforts to keep all 
storage and imaging parameters  constant, the only variable being time elapsed since 
storage start. Successful monitoring will allow for quantitative storage deterioration 
prediction directly from the captured multivariate X-images [5].  

In this context, the calibration-parameter "storage time" shall be represented by 
juxtaposed part-images, making up a complete, so-called gridded, multivariate image, 
hence the suggested name for this second image regression mode: IPLS-Ygrid. This 
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example also serves as an archetype not only of multi-temporal studies but also of 
analogous objectives, conf. below.  

Figure 9 shows the compound, gridded multivariate X-image of a deteriorating banana, 
for which the storage times involved are (from upper left to lower right):  1/2/3/6;  
7/8/9/10;  13/14/15/20 days respectively. This gridded layout is necessary in order that 
all storage times can be analysed together by MIA or MIR. It is emphasized that it is 
the objective of the image analysis (in this case: storage stability monitoring) which 
dictates that the individual grids represent a succession of different storage times. For 
other image regression cases, these individual grid cells will often represent different, 
typical "object-like" categorical entities to be similarly compared, e.g. a series of 
different meats to be characterised, as was the case with Wold et al. [15] (in fact also 
predicting a storage-related parameter, "harshness"), Geladi and Grahn [2] a.o. 

Table 2. Technical Details of banana example 

Image Capture Camera Lens Focal Length 
 SILVACAM Fujinon 120 mm 

Measures With (pixels) Height (pixels) # Variables 
Total Image 800 600 3 
Sub Images 200 200 3 

Spectral Variables Colour Wavelength Bandwidth 
1 NIR 760 - 900 nm  
2 Red 580 – 680 nm  
3 Green 490 - 580 nm  

 

Figure 9. Storage time aging of representative fruit (banana) in the interval 1-20 days. 
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In figure 10, which shows the particular Y-image, the array of grid cells forms the 
basis for an IPLS1. Observe how the deterioration process interval of 1-20 days has 
been mapped into an image analytical appropriate grey-level interval, spanning 0-255. 
Again it is the Y-image mask which makes the regression problem immediately 
appreciable. In one sense, as soon as the multivariate X-image has been defined, it is 
the Y-image which sets up the entire MIR.  

Figure 10. IPLS-Ygrid Y-image, delineating the problem-dependent Y-levels for the banana 
deteriorating process. Figure 10 (Y-image) corresponds to figure 9 (X-block). 

Figure 11 performs an identical role as figure 5, encompassing the essentials of the 
IPLS-analysis. In the t1-t2 score plot  (upper left panel) one may appreciate, in full 
detail, the trace of the fruit deterioration process. 2 We have illustrated two 
representative process stages along this trace, an intermediate stage and the 
penultimate sad, almost totally rotten end of the banana development (upper right and 
lower left panel respectively). With reference to MIA [1, 2, 17] the scene-space back-

                                                      
2 We have elsewhere worked out a complete image analysis strategy, which - while originally presented as 
related to MIA - also applies to the analogous t-t- score plots derived by an IPLS-solution [17]. As but an 
example we there followed another biological process, albeit of considerable greater complexity, i.e. a 
forest clearing regrowth process, using geomorphological analogies in order to characterise MIA score 
plots. From this review [17] a range of interpretation guidelines for t-t score plots were developed, all of 
which may also be applied to the present PLS-solutions. Observe that a slightly different modus operandi 
applies to the t-u plots [18]. These subtle differences will be addressed in several sequel papers on a 
comprehensive MIR strategy, which are in the works.  
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projections of these two classes are self-explanatory in figure 11, especially when 
compared with figure 9.  Fig. 11 shows how it is possible to delineate the entire 
deteriorating process in the X-space because the entire storage time calibration span 
has been compounded in the one (X,Y)-image. 

For IPLS solutions the t-u score plot allows valuable, indeed critical insight into the 
effective regression relationships between the X- and the Y-space [18]. E.g. if already 
the t1-u1 relationships is (close to) linear, this is a certain reflection that a strong 
prediction model will be achieved; likewise, smaller non-linearities in the t1-u1 score 
plots are usually "ironed out" by inclusion of one or a few, additional PLS-components 
t2-u2, t3-u3 etc.  

Figure 11. IPLS of the fruit aging process, in the IPLS-Ygrid regression case. Upper left: t1-t2 
score plot, with two sets of corresponding scene-space (upper right and lower left panels). 
Lower right: corresponding t1-u1 score plot. Note discrtesation along the u1-axis, 
corresponding to the Y-levels presented in figure 9. 

For the present first presentation of the most used features in multivariate image 
regression, these few aspects of the general use of the t-u- plot will be enough to allow 
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appreciation of the way the IPLS-Ygrid-modelling works. Figures 11-13 represents 
salient central aspects of our work leading up to a complete MIR strategy [5,19]. 

Figure 12. Complete predicted vs. measured (P/M) layout of the banana aging process IPLS-
Ygrid-analysis. The standard P/M assessment plot is shown for 1,2 and 3 IPLS-components, 
while only the t1-u1 scoreplot is shown (lower right). Significant improvement of prediction 
precision using 3 components 

For an assessment of the modelling strength of the IPLS-analysis, figures 11-13 will 
also suffice. From these X-Y relationships it is evident that a satisfactory model can be 
achieved using three IPLS-components. Observe e.g. how the P/M (predicted vs. 
measured) relationships improves quite considerably when adding the second - and 
third IPLS-components. From the t1-u1 relationships alone it was however already 
clear that this would per force result. We are also able to follow how one would go 
about identifying outliers etc. by using the appropriate t-u score plots, following [18]. 
In the specific present plots in Figure 11 we did actually not have reason to perform 
any outlier deletion, since none were found. 

 



  17 

 

Figure 13. Calibrated X-variance (top) and Y-variance (middle) and validated PRESS (bottom) 
for banana aging case. 
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3.0 DISCUSSION AND CONCLUSIONS 

The examples above represents our first presentation of a simulation of an automated 
image-analysis monitoring system in the guise of IPLS: MIR (and MIX), in which we 
focused on the general aspects of the IPLS-Ydiscrim and the IPLSgrid cases. 

The specific choices of illustrative food article systems is not in any way an absolute 
indication of the general applicability of this approach. What have been shown feasible 
for perishable fruit articles, and for on-line food product characterisation, is of course 
equally applicable to, say, cereals, bread, meat, fish - indeed the food and feed areas at 
large are potentially opened up for a similar approach, e.g. the berries -, beverages, - 
dairy sectors etc. 

Continuing outside the human, and animal, food and feed areas, an analogous 
automated image monitoring approach can of course equally well be envisaged for 
quite different application areas, at first primarily within the general technological and 
industrial sectors - but  perhaps even further removed. One common denominator 
could be any multi-temporal aspect, which would lend itself to an appropriately 
modified image recording and - analysis approach, similar to the one illustrated here, 
e.g. degradation studies: paints, coatings, corrosion inhabitation - industrial inspection 
in general i.a. Within the field of remote sensing there is also a plethora of similar 
multi-temporal objectives.  

The on-line image monitoring example, while relatively simple in the crispbread case, 
also has many, much broader applications potentials within much of the industrial 
inspection realm, in which there is often a distinct need for automated image analytical 
monitoring. 

For the present feasibility studies we are satisfied with the above results for both the 
IPLS-Ydiscrim and the IPLS-Ygrid approaches. We have shown that the multivariate image 
regression approach (MIR) is now fully established. It bears in mind though, that there 
is always a series of critically important specific associated image-analytical problems, 
e.g. problem-specific illumination, shadows, reflections, non-constant object sizes i.a. - 
Much interesting work remains.   

The present first foray into the possibilities of multivariate image regression has 
focussed on the ways-and-means of modelling (using bilinear IPLS) and prediction. 
What remains is the equally important aspect of multivariate calibration, validation (in 
the form of image-regression validation), which forms the subject-matter of the second 
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paper in this series, in which we also will make use of the third IPLS-regression case 
only identified here: Ytotal [19]. 
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