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Summary

This thesis mainly presents the use of process tomography to study and measure flow parameters
in two phase horizontal and near horizontal flows. All static measurements were made using a
horizontal separator section while dynamic flow measurements were performed using the flow
facility at Telemark University College. Most of the study was based on Electrical Capacitance
Tomography (ECT) and Electrical Resistance Tomography (ERT) measurements. Unlike typical
tomographic applications, here, the focus was on extracting information from measurements and
not constructed tomograms.

Artificial Neural Network (ANN) algorithms based inferential models were first developed
for interface level estimation of layered flows. The results were tested and validated with both
static and dynamic measurements. Separate models for oil-air, water-air and oil-water two phase
combinations were developed to compare with the measurements. After having very satisfac-
tory estimations with 12 electrode sensor data, the study was extended with the possible reduced
number of electrode sensors. Here the selections were 6, 5 and 4 selected electrode combina-
tions. Corresponding measurements of the selected electrodes were employed in the estimations.
The speed of the estimation with the reduction of electrode of the sensor was also studied se-
parately. The experimental analysis demonstrates that interface estimates of the layered flows
are possible with ANN based algorithms. It is further evident that even with the reduced 6, 5
and 4 electrode sensor arrangements, acceptable results can be observed quickly but with some
increased uncertainty. The possibility of using as a redundant system is also an added advantage
of having this type of estimators separately.

Some Gamma measurement results presented by (Vestøl 2013) were tested with the ECT
tomographic technique. Here, tomograms were used in this study. For oil-air two phase flows the
comparisons were acceptable despite the low resolution with ECT. But, ECT does not produce
acceptable tomograms when water was the dominant medium.

Slug flow parameters, such as slug translational velocity, slug front and tail velocities, liquid
film thickness, slug frequency and slug length, were estimated using ECT and ERT measure-
ments. The cross-correlation technique was used in the slug translational velocity calculation.
This calculated slug translational velocity, then used in the other parameter estimations. High-
speed camera images captured provided that the estimations are acceptable, though the capturing
frequency (100Hz) is not high enough. Time series of differential pressure measurements were
also captured along with the tomographic measurements for the verification purpose. They were
separately studied with different techniques for the slug flow parameter estimations. Power
Spectral Density (PSD) was applied in the calculation of slug frequency. Results show a good
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agreement between ECT and ERT based estimations and differential pressure based calculations.
Possible use of capacitance measurement data matrix properties for the flow regime detec-

tion was tested with experimental data. Here independent capacitance measurements of each
frame are arranged in a symmetric matrix and the eigenvalues of them are calculated. How
the eigenvalues are related to the flow parameters such as liquid fractions are studied here. A
good agreement with both measurement data and mathematical model based results are given by
(Fang & Cumberbatch 2005). A solid relationship between leading eigenvalue and the volume
fractions could be observed. Possible identifications of flow regimes with the second and third
dominant eigenvalues were also discussed with the experimental results.

Dynamic time warping technique which is commonly applied to align two time series signals
are used in the liquid slug length estimations. The fusion of both tomometric and differential
pressure measurements is done with this approach. Then, the relationship between liquid slug
length and warped pressure peak was also investigated. The relationship between differential
pressure and liquid slug length could be identified as linear. The results are proven with different
experimental data.
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Chapter 1

Introduction

An introduction to the main research works and an overview on each research activity are given
briefly in this chapter. Background research works are also addressed with a short review on
relevant current literature. The thesis structure and main contributions are also presented in this
chapter.

1.1 Background

In industrial applications, multiphase flows are typically constrained to pipes or vessels. Powder
or particulate material transportation using pneumatic conveying, fluidization and liquid and gas
transportation are some examples of multiphase flows.

When it comes to the oil and gas industry, most commonly considered phases are natural
gas, oil and water, since the sand is separated in preliminary stages. This three phase flow
mixture is complex to measure/observe and control. One of the challenges in the industry is to
understand this complex flow behavior. Different kinds of technologies are currently being used
in observations and identifications of the flow behaviors and patterns (regimes). Simulations
of flow phenomena are also performed using some complex simulation tools like FLUENT for
different conditions.

Obviously, first study should be on identification of different flow patterns. Then the flow
parameters and their relationships with those patterns and their transitions can be investigated.
Those relationships can be useful in flow control applications.

Most of these complex flow pattern/regime observations are still made visually by using
high-speed cameras, but there are some issues regarding the speed of the data acquisition and
processing to produce the data of interest. When it comes to the non transparent vessel or
pipe/tube or sometimes with formation of emulsions, such visual methods are not suitable. Some
analytical techniques with available process tomographic measurement information can be used
to find the flow regimes. The non-invasive nature of the process tomography technology is one
of the reasons for its latest popularity. Here, the sensors used are of either electrical impedance
or radiation based techniques. Different mathematical techniques may be used to analyse the
signal fluctuation characteristics and thus to determine the flow patterns.

1
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Analyses presented in this thesis are based on the electrical capacitance and resistance tomo-
graphic measurements. In the context of process tomography, the main focus is on the construc-
tion of better tomograms (images) based on the inter-electrode measurements. Instead of dealing
with complex image constructions and image processing, possibility of using raw measurements
in the estimations of flow parameters are studied in this thesis.

When performing online measurement of multiphase flow parameters, it may not be possible
to use images (tomograms). This is mainly due to the time taken by the image reconstruction
algorithms. Such delays involved may not be accepted by the control programs. Since numbers
of capacitance measurements are less than number of pixels in the tomograms, the construction is
under determined and with all other processing techniques it is not possible to get very accurate
images. But, higher accuracy is not so important compared with the response time in the control
process. Hence with simple inferential models, it may be possible to estimate the parameter of
interest. Here, prior data is needed in the model development. Estimations using such models
will be fast but the accuracy may not be high.

Artificial Neural Networks (ANN) is mainly used in the estimate of interface levels. Property
of the measurement matrix are also studied and analysed in the identification of flow regimes
and slug flow parameter estimations.

Differential pressure measurements and high-speed camera images are also used to verify
some analysis and relationships. Specially with slug flow studies, high-speed camera images
are important to identify slug boundaries. Effects on measurements with emulsion in the system
have not been a part of this study.

1.2 Objectives

Objectives of the research are mainly to study what briefly is given in the above section. They
can be explained as:

1 Tomometric approach on estimation of stratified interfaces:

Interface level of stratified flows can be estimated using different techniques. Possibility
of calculating with the tomometric measurements would be more convenient. Apart from
the estimation of the interface level, estimation time is also important and needs to be
studied.

2 Multimodal process tomometry, Electrical Capacitance Tomography (ECT) and Electri-
cal Resistance Tomography (ERT) for the estimation of slug flow parameters in horizon-
tal/near horizontal flows.

The main objective of the research was on flow regime observations with much focus on
slug flow study. Main focus was on identification without going into image observations
of the flow and possible component velocity and parameter estimations especially with
slug flows.

3 Study of measurement data matrix properties to identify flow regimes.
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4 Studying the detection of flow reversal involved with some slug phenomena with twin
plane tomometric data.

5 Studying the fusion of tomometric signals and pressure signals using Dynamic Time War-
ping (DTW) technique to estimation improved parameters.

1.3 Contributions

1 Interface level estimations with tomometric measurements have been investigated before
by (Alme 2007) and here possibility of fast estimations is further studied. Interfaces cor-
respond to ECT measurements used in this work are measured separately for the model
training and verification. Possibility of gaining fast estimations by reducing number of ca-
pacitance measurement electrodes was further studied. Interface estimations were perfor-
med based on the developed Feed-forward ANN model. Then, the study was extended to
see how the number of hidden neurons affects the estimation time and uncertainty. Study
was limited to horizontal pipe flows. Chapter 4 and Paper 1 in the attached collection of
articles, describe the work done on interface detection.

Some of the results were tested and compared with the Gamma measurement performed
separately under the same flow conditions. ECT images were used along with correspon-
ding camera images in the comparison. Results can be found in Paper 3.

2 Sensor information captured from flows is fused using the mathematical tools and tech-
niques in the estimations. Identification of Interface boundaries, flow patterns and para-
meterization of each flow conditions are interested in investigation. Both ECT and ERT
measurements were successfully used in the estimation of slug parameters such as slug
frequency, translation velocity and slug length. Differential pressure measurements and
high-speed camera images were also useful in the verification of estimations. The impor-
tance of data capturing rate on velocity estimations are also discussed under this. Detailed
information is given in Chapter 5 and Paper 4.

3 How to use the measurement data matrix properties to identify flow regimes was studied.
The non-intrusive nature in the identifications and timely recognition of the flow regimes
were the main reasons for testing this approach. Mathematical simulations on this ap-
proach have been presented in (Fang & Cumberbatch 2005). How the eigenvalues of the
measurement matrices vary with the flow regime variations and their regions are studied.
Results were compared with the simulations given in (Fang & Cumberbatch 2005).

4 Detection of flow reversing with the twin plane ECT measurement systems was also a part
of this study. The results are verified using high-speed camera images. Cross-correlation
of time series of raw capacitance values captured from twin plane ECT systems was used
in detection of the flow direction.

5 Possible estimation of slug parameters by fusing pressure signals and Electrical Capaci-
tance Tomometry (ECTm) using Dynamic Time Warping (DTW) technique was studied.
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Aligning pressure signals and ECTm signals which were not captured simultaneously was
done with DTW. Relationship between warped pressure peak and liquid slug length was
tested with high-speed camera image. Camera images are processed to get time series si-
gnals which are compared with ECT signal and warped Differential Pressure (DP) signal
for validation. Chapter 7 and attached Paper 5 give more details on the DTW techniques
used and the combined study of high speed camera images and DP based results.

1.3.1 Dissemination of results

Some important parts of the work were presented in conferences and published in journals. The
following gives a list of publications in journals and conferences:

1 Ru, Y., Pradeep, C., Mylvaganam, S. (2010) Artificial neural networks for ECT based
interface detection in separators, in ‘at 6thWorld Congress on Industrial Process Tomo-
graphy’, Beijing, China.

2 Pradeep, C., Ru. Y., Mylvaganam, S., (2011). Interface detection in pipe separators using
ECT: Performances with reduced number of sensing electrodes’. IEEE Sensors Applica-
tion Symposium in San Antonio, Texas, February 2011.

3 Ru, Y., Pradeep, C., Mylvaganam, S. (2011), ‘Neural networks in electrical capacitance to-
mography (ect)-based interface detection’, Measurement Science and Technology 22(10),
104006.

4 Pradeep, C., Ru. Y., Mylvaganam, S., (2012). Neural Network-Based Interface Level
Measurement in Pipes Using Peripherally Distributed Set of Electrodes Sensed Symme-
trically and Asymmetrically, IEEE Transactions on Instrumentation and Measurement,
Vol:61 , Issue: 9, September 2012, pp: 2362-2373

5 Pradeep, C., Ru. Y., Mylvaganam, S., (2012). Reverse Flow Alarm Activation using
Electrical Capacitance Tomometric (ECTm) Correlation. Proceedings of IEEE Sensors
Application Symposium in University of Brescia, Brescia, Italy, February 2012, pp: 1-5

6 Pradeep, C., Ru. Y., Vestøl, S., Melaaen, M. C., Mylvaganam, S., (2012). Electrical capa-
citance tomography (ECT) and Gamma radiation meter for comparison with and valida-
tion and tuning of (CFD) modeling of multiphase flow. Proceedings of IEEE International
conference on Imaging Systems and Techniques, Manchester, UK in July 2012.

7 Pradeep, C., Ru. Y., Vestøl, S., Melaaen, M. C., Mylvaganam, S., (2014). Electrical
capacitance tomography (ECT) and Gamma radiation meter for comparison with and va-
lidation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow.
Transactions of IOP journal of Measurement science and technology, Vol:25, Issue: 7,
March 2014, pp: 075404-075411.

8 Pradeep, C., Ru. Y., Mylvaganam, S., (2012). Multimodal Tomometry for Slug Detection
in two Phase Flow. Proceedings of 6th International Symposium on Process Tomography
(ISPT) in Cape Town, South Africa, March 2012, pp:OR11
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9 Pradeep, C., Ru. Y., Mylvaganam, S., (2012). Co-operative sensor fusion using time
warping in multimodal tomometry for process control. IEEE conference on Systems and
Industrial Informatics (ICCSII), Bandung, Indonesia, September 2012, pp: 219-224.

1.4 Previous work

Though tomographic imaging was developed for medical applications in the middle of 20th cen-
tury, it was not introduced to the industrial applications till 1980s. Due to increasing demand
in non-invasive process studies, by 1990s industries were gaining confidence that tomography
would have the potential in industrial process studies (Beck & Williams 1996). Use of ca-
pacitance measurement for imaging industrial processes was first introduced in University of
Manchester (UMIST), UK (Huang et al 1980). Due to long exposure time involved with the ra-
diation based tomographic methods; they were not feasible to be used in real-time measurements
in industrial applications (Beck & Williams 1996).

There are many different types of measurement techniques used in tomographic measure-
ments. Electrical capacitance, electrical resistance, ultrasonic and gamma ray are more common
among many. But tomographic construction is more similar despite the modality. There are
different types of reconstruction algorithms to have improved tomograms, but it involves high
construction time. So, in practice, most of the dynamic flow visualizations, simple linear back
projection technique is used to construct the tomograms (Niedostatkiewicz et al. 2009). Some
algorithms have been developed to have calibrations while in operation to have improved mea-
surements (Yang et al. 2004). Possible image fusions algorithms for dual plane tomography
systems can be found in (Sankowski et al. 2006). Current developments on tomography are lar-
gely on 3D image constructions called Electrical Capacitance Volume Tomography (ECVT) and
improved image resolutions. But in practice it is still difficult due to computational difficulties
(Yang 2010).

Primary objective of process tomography is process visualization, but analysis of raw mea-
surements to extract the parameter, instead of image constructions, can also be more convenient
and useful (Niedostatkiewicz et al. 2009). Such approaches are also called as tomometric ap-
proach. These approaches create opportunities for the tomographic techniques in the process
control applications due to fast responses. Variations in calculated parameters can also be mo-
nitored easily in real-time. This approach has been used by (Bennett et al. 1999) in analysis of
bubble columns dynamics. Principle Component Analysis (PCA) and Support Vector Machines
(SVM) techniques are some of the techniques used in analyzing the raw measurements in the
flow regime identification by (Zou et al 2001) and (Wang & Zhang 2009) respectively.

When gas liquid mixture is flowing in vertical pipes, gas component will not get a chance to
have a physical contact with the pipe wall. But in horizontal flows, due to gravitational forces,
this will not happen. This reason has restricted the use of ERT for vertical flows and hence ERT
with horizontal flow measurements can hardly be seen in most of the literature (Ma et al. 2001).
Novel approach on level measurements in horizontal flows without going into tomograms have
been tested and discussed by (Ma et al. 2001). Horizontal flows and slug parameter estimations
presented in attached Paper 4 and this thesis also discuss the possibilities of using ERT.

Different flow regimes generated due to flow rates of gas and solid particles in fluidised beds
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has been investigated using ECT as explained by (Dyakowski & Jaworski 2003). Since fluid
component involved with most of the fluidised bed applications are non conductive, ECT is more
suitable for measurements and flow visualizations. (Rautenbach et al. 2011) and (Rautenbach
et al. 2012) explain experimental studies on fluid particles and their influences in parameters
using ECT and x-ray tomographic techniques. Investigations of pneumatic conveying of solid
particles has also been done by (Dyakowski & Jaworski 2003) and (Datta 2007).

Multiphase flow measurements in petroleum industry are very complex and most of the flow
metering are flow regime dependent (Ismail et al. 2005). Process tomographies for possible
multiphase flow metering systems are explained in (Primrose et al. 2010). Level measurements
in subsea separators can be found in (Hjertaker et al 2001a).

Development of a microwave tomographic system for the oil and gas flow measurements
has been studied by (Wu et al. 2009). Studies on process flow measurements with Gamma ray
tomography has been done by (Johansen et al. 2014) dealing with two and three phase flows
related to the oil and gas industries.



Chapter 2

Measurement and analysing techniques

Since a major part of this thesis work is based on measurements from ECT and ERT techniques,
giving an overview of those methods is a part of the content of this chapter. Brief explanations of
data analyzing techniques used in different chapters of this thesis are also given here. Processing
of a sequence of images captured by high-speed camera to be compared with other time series
signals is explained separately in Chapter 7.

2.1 Electrical tomography

A brief mathematical formulation on electrical capacitance and resistance tomographic systems
are first discussed in this section. Tomographic systems and sensors used in the measurements
are described in the Chapter 3

2.1.1 Electrical capacitance tomographic systems

Calculation of the permittivity distribution of material covered by the sensor plane based on the
inter-electrode capacitance measurements is the main functionality of the ECT system. Most
of the ECT sensors are non-invasive, lying outside the wall and non-intrusive, touching but not
penetrating the wall of the vessel as shown in the Figure 2.1. Construction of the capacitance
sensors depends on the physical shape of the object or vessel to be observed, but most of the
standard industrial sensors are designed to be mounted on the cylindrical shaped vessel or pipe.
A cross-sectional view of a pipe with mounted ECT sensor is shown in Figure 2.1. The sensor
shown has 12 electrodes. All sensor electrodes have to be covered by a grounded screen to
shield the system from external disturbances. Resistors with larger resistance (around 1MΩ) are
connected between the shield and the electrodes to avoid electrostatic build up (Alme 2007).
Co-axial cables which reduce the environmental noise and interference connect each electrode
of the sensor to the data acquisition system.

There are different measurement strategies available in the data acquisition; the most com-
mon one is adjacent measurement strategy which is named as protocol 1 in (Byars 2001). As
illustrated in Figure 2.1, an alternative voltage Vs is supplied to one of the electrodes (source

7
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electrode) and the currents flow between source electrode and the remaining electrodes (detec-
ting) are measured separately. These currents are proportional to the capacitances between the
source and detector electrodes. The set of capacitances measured by exciting one electrode (as
the source) is called a projection. Then, the voltage, Vs is applied to the neighboring electrode
and current measurements are repeated. Sequentially, all electrodes of the sensor are excited and
the current flow to the remaining electrodes are measured . For a sensor with Nc electrodes, there
will be a total Nc(Nc−1) possible capacitance measurements. However, as half of these are reci-
procal measurements, there are only Nc(Nc−1)/2 independent capacitance measurements. One
set of these independent measurements which is needed in the construction of a single image is
called a frame.

Vs (the alternative source voltage) used in the PTL M300 system is 15V peak to peak square
wave. The excitation frequency is in the range 1 to 2 MHz. However, some latest capacitance
tomographic systems have increased the excitation frequency up to 10 MHz.

The capacitance measurements are related to the permittivity of the materials present in the
sensor between electrode pairs. The relationship between the electric potential and the permitti-
vity distribution can be given in the Poisson Equation (2.1) as explained by (Wang et al. 2009).

Figure 2.1: Measurement principle of ECT when electrode 1 is excited with Vs and the other
electrodes earthed

ε (x,y)52 u(x,y)+5ε (x,y)5u(x,y) = 0 (2.1)

where ε (x,y) is the permittivity distribution and u(x,y) is potential distribution for M inter-
electrode combinations (M = Nc(Nc−1)/2).

Then, the measured capacitance between ith and jth electrodes, Ci, j, can be calculated by the
ratio between stored charge, Q j, on the jth electrode and the potential difference, ∆Vi, j, between
ith and jth electrodes as in Equation (2.2). Stored charge on the jth electrode can be further
explained as a function of the permittivity distribution of the content in the sensor.
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Ci, j =
Q j

∆Vi, j
=

1
∆Vi, j

∮

Γ j

ε (x,y)5u(x,y) n̂nndl (2.2)

where Γ is the surface area of the jth electrode and n̂nn is a unit vector normal to Γ j. To solve the
Equation (2.2), for a known permittivity distribution, ε (x,y), Finite Element Methods (FEM)
or a similar numerical method is to be used. The potential distribution can also be given as a
function of permittivity distribution. Then, the above equation can be rewritten for any pair of
electrodes as,

C = ξ (ε) (2.3)

where C is the capacitance between a pair of electrodes. ξ is the function defining the capaci-
tance C as a function of permittivity ε .

The change in capacitance when a slight change in permittivity distribution gives,

∆C =
dξ

dε
(∆ε)+O

(
(∆ε)2

)
(2.4)

where, ∆C is the change in capacitance, dξ

dε
is called the sensitivity of the capacitance against

permittivity distribution, ∆ε is the change in permittivity distribution, Since, ∆ε is very small,
the higher order terms of the equation, O((∆ε)2) can be neglected (Yang & Peng 2003).

∆C ≈ s∆ε (2.5)

where s = dξ

dε
is the sensitivity of the capacitance measurements.

To visualise the permittivity distribution across the sensor cross-section, cross-sectional
areas of the sensor plane is discretised in to number of pixels, npix. Permittivity inside each pixel
area is considered constant. This cross-sectional area is typically divided into 32×32 pixel grid
and then total number of pixels, npix, will be 1024. Circular image constructed contains only 812
pixels since others lie outside the circular sensor cross-section. Figure 2.2 illustrates a typical
pixel grid. Since change in permittivity distribution causes changes in capacitance measure-
ments, change of capacitance measurement is a function of all npix pixel values. So, ∆ε in the
Equation (2.5) can be written as an npix×1 column vector and s has to be presented as a 1×npix

raw vector.
Similarly, for all inter-electrode measurements in one frame, M number of equations exists

(for a 12 electrode sensor M is 66). Hence all M number of equations can be arranged to be
expressed in a matrix form as,

∆∆∆CCC = Jc∆∆∆εεε (2.6)

where ∆∆∆CCC ∈ RM×1. Jc is the Jacobean of ξ .
This process of calculating the inter-electrode capacitances from a known permittivity dis-

tribution is called as the forward problem. This is the linear approximation to the non linear
forward problem (Yang & Peng 2003). Since the range of permittivity and capacitance values
are very small, normalised form is used.

cn = SKn (2.7)



10 CHAPTER 2. MEASUREMENT AND ANALYSING TECHNIQUES

Figure 2.2: A typical 32× 32 pixel grid. Pixel grid is square and tomogram is cylindrical.
Hence, only 812 (marked in grey) out of the 1024 pixels are sufficient for the construction of a
tomogram

where cn is the normalised capacitance vector, Kn is the normalised permittivity vector and S
is the Jacobian matrix which relate normalised capacitance vector and normalised permittivity
vector.

Before going for the measurement in a process application, calibration of the sensor has to
be performed by filling the sensor vessel with high and low permittivity components of the mix-
ture separately. All capacitance values in c (c is the capacitance measurement vector) are then
normalised to have values between zero (sensor is filled with low permittivity material) and 1
(sensor is filled with high permittivity material) (PTL 2009). Equation (2.8) shows the norma-
lisation of the capacitance measurements c. The relationship between a normalised capacitance
measurement and an absolute capacitance measurement can also be illustrated as shown in the
Figure 2.3.

cn = (c− cmin) ./(cmax− cmin) (2.8)

where c is the absolute capacitance measurement vector, cmax is the capacitance vector measured
at higher permittivity calibration point and cmin is the capacitance vector measured at lower
permittivity calibration point. Here ./ denote dividing each element in the vector c−cmin by the
corresponding element in vector cmax− cmin.

Similarly, pixel values of permittivity distribution image are also normalised.

Kn = (K−Kmin) ./(Kmax−Kmin) (2.9)
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Cmin
CmaxC

Cn

Figure 2.3: Normalisation of an inter-electrode capacitance measurement (C). The inter-
electrode capacitance measured at the lower permittivity calibration point (Cmin) is assigned
to 0 while the measurements at the higher calibration point (Cmax) is assigned value 1.

where Kn is the normalised permittivity vector. K is the permittivity vector. Kmax is the permit-
tivity vector at higher calibration point and Kmin is the permittivity vector at lower calibration
point.

In process of the tomography image construction, permittivity distribution map has to be
generated based on the capacitance measurements. This is termed as inverse problem. Simply, it
can be explained as finding unknown Kn from known cn in the Equation (2.7). But there are two
main problems as explained in (Yang & Peng 2003). First one is, the number of unknowns are
larger than the number of equations. The second one is, the sensitivity matrix is not constant and
varies with the change in permittivity distribution. When materials with permittivities within a
close range are present in the process, the tomograms will not have clearly defined boundaries,
leading to distortion and fuzziness of the images at interfaces of different materials.

Different kinds of algorithms are used in the image construction (calculation of Kn). The
simplest one among them is Linear Back Projection (LBP).

Equation (2.7) can be rearranged to isolate Kn as,

Kn = S−1cn (2.10)

In practice, cn is taken from inter electrode measurements. Kn is calculated using S−1 and
cn. But, S is not a square matrix and inverse does not exist. However, LBP algorithm uses
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the transpose of S as its inverse. Though this is not correct according to the mathematical
point of view, it is widely used in many online image construction applications. This is mainly
due to its simplicity and hence lower time taken by the algorithm. Even though this algorithm
produces poor-quality images, it is still useful in some online applications, where processing
time is important (Yang & Peng 2003).

2.1.2 Electrical Resistance Tomographic systems

Similar to ECT system, ERT system also produces cross-sectional images, but it shows the
distribution of electrical conductivity of the contents filled in the process vessel or pipeline.
Measurements are taken at the boundary of the vessel or pipe, but unlike in ECT, ERT electrodes
should have a physical continuous contact with the conductive components inside. It shows ERT
measurements are invasive, even though it is still non intrusive.

Principles behind the construction of tomograms are more similar to ECT. Cross-sectional
distribution of the resistivity/conductivity is generated as a tomogram based on the boundary
measurements. In the measurement process, a current is injected (eg:- M3000 system of ITS1

and Current pulse ERT system of UCT2), between a pair of electrodes and the resultant voltage
differences between remaining electrode pairs are measured according to a pre-defined measu-
rements protocol.

Adjacent protocol is the more common measurement strategy. Here, current is applied
through two neighboring electrodes (eg: electrode 1 and 2) and voltages are measured from
the remaining pairs of neighboring electrodes (eg: electrodes 3-4, 4-5, ect ...). Then current
is applied through the next adjacent pair of electrodes and the voltage measurements are re-
peated. This is repeated for all adjacent pairs (current injection) by measuring all independent
measurements.

Similar to ECT, electrodes are arranged at equal intervals around the boundary of a circular
pipe (in multiphase flow applications). Typical number of electrodes in an ERT sensor is 16.
Electrode arrangement and adjacent measurement protocol is illustrated in the Figure 2.4. Elec-
trodes of the ERT sensors should be more conductive compared to the continuous flow inside the
pipe to avoid contact impedance (ITS 2005). Typically, electrodes are made of stainless steel,
brass or silver palladium alloy (ITS 2005). In the designing of the electrodes, diameter of the
pipe, flow velocity and the conductivity range of the media being measured should be taken in
to consideration.

Since the conductance dominates in ERT, the governing Poisson’s equation which relates po-
tential distribution, u(x,y), and conductivity distribution, σ (x,y), can be expressed as in (Alme
2007).

O.σ (x,y)Ou(x,y) = 0 (2.11)

How to derive the Equation (2.11) from Maxwell’s equations has been explained well in
(Cheney et al. 1999). Since a current is applied to the external electrodes in measurement pro-
cedure, the integral of the current density over the electrode will be equal to the current applied,

1Dual modality tomography instrument of Industrial Tomography Systems
2Product of University of Cape Town
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Figure 2.4: Typical adjacent measurement principle of ERT. A current is applied between elec-
trode 1 and 2. Then, voltages between remaining pairs of electrodes are measured. Then current
is applied through next adjacent pair (electrode 2 and 3) and voltage measurements are repeated.
This current injection method is repeated for all adjacent pairs.

I j. For the gaps between electrodes this will be zero. To model the very high conductivity of the
electrodes, u(x,y) is constrained to a constant. These three boundary conditions can be given as
in (Cheney et al. 1999).

∫
el σ

∂u
∂v ds = I j j = 1,2, ...,NR,

σ
∂u
∂v = 0

u =Vj on electrode j j = 1,2, ...,NR,

(2.12)

where NR is the number of electrode in ERT sensor. Vj is the voltage on jth electrode. Here,
V = u on the electrode surface.

Solving Equation (2.11) to find σ (x,y) for given V and I, boundary voltages and currents is
called as inverse problem. In analogy to Equation (2.6) discussed in conjunction with ECT, this
can be expressed by

vn = JRICn (2.13)

where vn is the normalised voltage vector, ICn is the normalised conductivity vector and JR is
the Jacobian matrix which relates normalised conductance vector and normalised voltage vector.
Forward problem has to be solved using numerical methods, such as FEM (similar to ECT).
Principles of image construction and inverse problem are very much similar to ECT, but the
constructed tomograms in ERT show conductivity map instead.
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2.2 Signal Processing Techniques

Artificial neural networks were used for the model identification mainly in the interface level
estimation. Cross-correlation technique and power spectrum analysis were used for velocity
estimations and frequency estimations in slug flow. DTW was important technique in the ali-
gnment of two signals Differential pressure, Dp and liquid volume fraction, α . In the palette
of techniques used for analysis of raw data, a matrix consisting of raw data from each frame is
analysed using eigenvalues and making use of the dominant eigenvalues in finding relationships
to some of the characteristic parameters associated with the flow or flow regimes.

2.2.1 Artificial Neural Networks (ANN)

Nervous system of the human body processes information using biological neurons for iden-
tification and managing the physical functionality of the body (eg: human vision, odor, etc.).
The brain is doing nonlinear highly complex computations to do all functionality. The proces-
sing elements called neurons are working collectively to fulfill those requirements. ANN is also
made to act as same way for the particular application it is used, such as pattern recognition or
data classification, through a learning process. Learning in ANN systems is principally same
as biological systems, but, ANN involves adjustments of synaptic weights between the neurons
and biases.

There are many different types of neural networks. Three types of them are widely used
depending on the application requirements. They are feed-forward, recurrent and self-organizing
neural networks. The work presented in the Chapter 4 mainly used feed-forward neural networks
for interface estimations.

2.2.2 Feed-forward neural network

A brief overview on a feed-forward neural network is given in this section. Generally these kind
of networks are named also as multilayer Perceptron ((Haykin 2008)). As illustrates in Figure
2.5, a neuron which is the building block of the ANN contains inputs x = [x0,x1, ...xm]

T where
x ∈ R(m+1)×1, synaptic weights w which weight the inputs before further computation and the
activation function φ which should be differentiable. As explained in (Matlab 2002), there are
three common types of transfer functions, φ . They are given in Equation (2.14). (Marsshdeh
2006) says that a neural network with continuous transfer functions given in Equation (2.14) in
it’s output layer is a universal approximator.

Linear φ (x) = x

Logsigmoid φ (x) =
1

1+ e−x (2.14)

Tansigmoid φ (x) =
1

1+ e−2x −1

In each neuron, inputs are weighted and summed before sending through the activation func-
tion. Input x0, which is always 1, is also weighted and added to the summation at each neuron.



2.2. SIGNAL PROCESSING TECHNIQUES 15

wk0

w
k1

w
k2

w
km

Ok

Figure 2.5: Basic components of an artificial neuron with inputs x1, x2, ..., xm and output Ok

This term is called as bias input. The output of a given neuron k in a selected layer l can be
calculated according to the Equation (2.15) given below.

Ol
k = φ

(nnu,(l−1)

∑
i=0

wl−1
ki xi

)
(2.15)

where wki is the weight used to multiply the ith input before sending to kth neuron. Ol
k denotes

the output of kth neuron in lth layer. nnu,l is the number of neurons in lth layer.
To handle the more complex mapping, a network consists of these kind of neurons are

constructed. The structure is typically organised in layers as given in Figure 2.6. Outputs of
a layer are inputs to the next layer, unless it is the output layer. Network shown in the figure has
4 layers. The number of input to ANN considered as the first layer, even though there are no
active neurons available there. When the whole network is considered, its outputs are functions
of a given set of inputs only. All other parameters involved are fixed after the ’training’. In
the process of training, synaptic weights are adjusted to map the ANN outputs with the given
outputs. Prior data are necessary in the training of these kind of networks.

Since there are no any active neurons in 1st layer of the 4 layer ANN, outputs of the 1st layer
are same as inputs.

Ol = x (2.16)

Output of a middle layer neuron ( jth neuron of lth layer) can be given as,

Ol
j = φ

(nnu,(l−1)

∑
i=0

wl−1
ji Ol−1

i

)
(2.17)

Then, Output vector of a middle layer l, can be expressed as,

Ol = φ

(
Wl−1Ol−1

)
(2.18)

where Ol =
[
Ol

1, Ol
2, · · · Ol

j, · · · Ol
nnu,l

]T
. Wl−1 is the weight matrix which relates lth layer and

(l−1)th layer.
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Figure 2.6: Architecture of a multilayer perceptron with two hidden layers. Here, inputs are x1,
x2, ..., xm and outputs are Oo

1, ..., Oo
o, ..., Oo

n.

Wl =
wl

ji f or j = 1, 2, , ....., nnu,(l+1) and
i = 0, 1, , ....., nnu,l

(2.19)

Then, the forward calculation of the feed-forward neural network can be given as,

Oo = φ

(
W3

φ

(
W2
(

φ

(
W1x

))))
(2.20)

Back propagation learning procedure with gradient descent algorithm

Back propagation technique, adjust the weights in the direction opposite the instantaneous error
gradient. Let ζ denote the error at the output layer, where:

ζ
4
=

1
2

nnu,o

∑
i=1

(di−Oo
i )

2 =
1
2

nnu,o

∑
i=1

e2
i (2.21)

nnu,o = is the number of neurons in the output layer layer. Then gradient of ζ can be defined as,

g =
∂ζk

∂wk
(2.22)

Here, wk is the vector of all weights of the whole network after kth iteration. Then weight
updation at (k+1)th iteration can be given as,

wk+1 = wk−ηgk (2.23)
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where η is the scalar parameter called learning rate. This algorithm given in Equation (2.23), is
called gradient descent algorithm. There is no guarantee that this algorithm brings the error to
the global minimum.

Levenberg Marquardt algorithm

Levenberg Marquardt (LM) algorithm is used to have fast second order training without having
computation of Hessian matrix (Matlab 2002). Here, the Hessian matrix of ζ , H is approximated
as,

H = JTJ (2.24)

where J is the Jacobian of ζ . Gradient, g can also be computed as,

g = JTe (2.25)

J of ζ is computed using back propagation technique and hence computation of Hessian
matrix is easy (Matlab 2002). Then, the LM algorithm can be shown with the given Hessian
matrix approximation.

wk+1 = wk−
[
JTJ+ηI

]−1 JTek (2.26)

When η gets a larger value, this will be like gradient descent algorithm with a small step
sizes. When η is very small, this will become Newton’s method. More information can be found
in (Matlab 2002).

2.2.3 Cross-correlation of signals from two plane tomographic systems

Cross-correlation function can be used to characterise against the variations in time lag between
two initial signals. The time delay, τ , corresponding to the maximum value of cross-correlation
function gives the transit time (τmax) between two sensors assuming that there are no conside-
rable changes in the signal within the short distance between two sensors. Cross-correlation of
the periodic signals from sensor plane 1,Spl1 , and sensor plane 2, Spl2 , (from ECT or ERT) with
the same fundamental frequencies can be explained mathematically as in Equation (2.27) below.

ρSpl1 Spl2
= lim

T→∞

1
T

∫ T

0
Spl1 (t)Spl2 (t− τ)dt (2.27)

where ρSpl1 Spl2
is the cross-correlation function of Spl1 and Spl2 . T is the time span of signals. τ

is the time lag between two signals.
This technique has been used to estimate the slug translational velocities by many resear-

chers ((Al-Lababidi 2006)). Figure 2.7 illustrates how to select τmax between given signals, Spl1
and Spl2 .
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Figure 2.7: Cross-correlation technique to identify the time lag based on correlation peak

2.2.4 Power Spectral Density (PSD)

This technique has been used in many signal processing applications. This is a time series
analysis method in frequency domain. Power spectral density (PSD) function produces power
distribution of a signal along with corresponding frequency. Changes in volume fraction signal
change the magnitude of the power spectrum and band width. These variations in PSD can be
used in the estimation of dominant frequency of a flow signal. The ultimate output of this tech-
nique gives the relationship between signal powers against the frequency. Then, the frequencies
which give higher power and lower power of the signal can be easily identified. The frequency at
the strongest power is selected as the dominant frequency. Mathematically PSD can be defined
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as Fourier transform of auto-correlation sequence of a time series data. Fast Fourier Transform
(FFT) algorithm is used to transforms time domain signals to frequency domain where the do-
minant frequency can be extracted.

If zn is a time series signal, zk, the discrete Fourier transform of zn can be given as,

zk =
nz−1

∑
n=0

zne− j 2π

nz
kn (2.28)

where n,k = 0, 1, 2, ...., nz−1 and nz is the length of zn. Then, the power spectrum can be given
as;

Ffk =
1
nz

nz
2

∑
k=− nz

2

|zk|2 (2.29)

where, Ffk is the power spectrum of the signal zk. |zk| is the magnitude of zk. Power spectrum
signal is symmetric and only the positive half of the spectrum is defined for positive frequencies.
Frequencies of the power spectrum signal lies between 0≤ fk ≤ fsam/2 (Figure 2.8). Here, fsam

is the sampling frequency of the signal zn.
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Figure 2.8: PSD technique to identify the dominant frequency of water volume fraction signal,
αw, with peaks at 0.17Hz and 0.34Hz in this case

Power spectrum plot of a typical water volume fraction signal of a slug flow, αw (α is defined
in Chapter 3) is shown in the Figure 2.8. Points correspond to the first two dominant frequencies
are marked on the plot.
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2.2.5 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) technique is used to compare two time series signals. Here the
warping path and two time series signals are defined as Pw = (p1, p2, ..., pnp), x = (x1,x2, ...,xnx),
and y = (y1,y2, ...,yny) respectively. nx and ny are number of elements in the x and y time series
signals and np is length of the warping path. Warping path aligns the points in time series x and
y in such a way that the distance between them are minimised. Squared distance between ith

element of x and jth element of y can be defined as:

δ (xi,y j) = (xi− y j)
2 (2.30)

Similarly, calculating the local cost of each pair of elements of the signals x and y, a 2D
matrix called distance matrix can be obtained. Figure 2.9 shows the distance matrix of a typical
x and y time series signals and the Warping path, Pw.

The total cost function, Coδ of a warping path between x and y signals with respect to δ can
be defined as:

Coδ (x,y) =
np

∑
k=1

δ (xi,y j)k (2.31)

An optimal warping path between x and y is selected minimising the total cost function,
Coδ (x,y). The DTW distance, DTW (x,y), between x and y is then defined as the total cost of
P∗w

3.

DTW (x,y) =Co∗
δ
(x,y) (2.32)

DTW (x,y) =
min
Pw

np

∑
k=1

δ (pwk) (2.33)

where, each Pwk corresponds to a point (i, j)k of the cost matrix.
The DTW distance measure shown in Equation (2.33) is found using dynamic programming.

Further information on dynamic programming and DTW can be found in Müller (2007) and
Keogh & Pazzani (2000).

2.2.6 Eigenvalues of raw ECT measurements for flow study

Capacitance data matrix of a single ECT measurement frame can be arranged to have an upper
triangular matrix, Cm.

Cm =

{
ai, j =Ci, j+1 f or i 6 j

ai, j = 0 f or i > j
(2.34)

where ai, j is the element a at row and column indices i and j. Ci, j is the normalised capacitance
measurement between ith and jth electrodes, when ith electrode is excited. i = 1,2,3, ...,NC and
j = 1,2,3, ...,NC−1. Cm ∈ RNC×(NC−1)

3* denotes the optimal
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Figure 2.9: The distance matrix and warping path, pw with two time series of signals

Since only independent inter-electrode measurements are captured by the ECT system, ele-
ments below diagonal of Cm are zero. Then, elements below diagonal are filled with available
measurements by considering Ci, j = C j,i to construct a square matrix called constructed mea-
surement data matrix, Cm̄ (to make Cm̄ a square matrix, last row of the Cm is removed at the
beginning).

The matrix Cm̄ ∈ R(NC−1)×(NC−1) can simply be defined as;

Cm̄ =

{
ai, j =Ci, j+1 f or i 6 j
ai, j =Ci+1, j f or i > j

(2.35)

Eigenvalues of these matrix Cm̄ are then used in the studies in Chapter 6. (Strang 2009)
explains that a number (Ei) is an eigenvalue of a matrix (Cm̄), if and only if Cm̄−EiIei is

singular. This can be explained mathematically as,

det(Cm̄−EiIei) = 0 (2.36)

where det denotes determinant of a matrix (here Cm̄−EiIei).
Since Cm̄ ∈ R(NC−1)×(NC−1), the Equation (2.36) gives NC− 1 eigenvalues. However, all of

them may not be dominant. Relationship between flow regimes and dominant eigenvalues have
studied by (Fang & Cumberbatch 2005) with theoretical approaches. Three basic flow pattern
and identification of them with the help of dominant eigenvalues can be given as presented in
(Fang & Cumberbatch 2005).



22 CHAPTER 2. MEASUREMENT AND ANALYSING TECHNIQUES

1 Stratified flows

Leading eigenvalue Eid has a linear relationship with liquid height hl . Next two eigenva-
lues Ei2 and Ei3 are more likely to have opposite signs. (Eid is the largest eigenvalue, Ei2
and Ei3 are second and third largest eigenvalues)

2 Annular flows

Leading eigenvalue Eid has a linear relationship with liquid fraction αl . Next two eigen-
values Ei2 and Ei3 are approximately equal and have positive signs.

3 Core flows

Leading eigenvalue Eid has a linear relationship with liquid fraction αl . Ei2 and Ei3 are
approximately equal and negative.

This eigenvalue based method is further studied with experimental data as given in Chapter 5

2.3 Discussions of Techniques

All these techniques as presented in this study are mainly implemented offline, i.e. using logged
data from different experiments. All data analysis was performed using MATLAB and dedicated
toolboxes.

Only the main techniques used in this thesis work are briefly discussed in this chapter. Other
techniques are briefed at the appropriate sections and chapters. More information on each tech-
nique or method can be found in the relevant references. In this study, analyzing is done with
tomograms and tomometry using ANN, cross-correlation, PSD, and DTW. Whenever, it is pos-
sible comparisons of the performances of these methods are presented with focus on flow related
parameters.



Chapter 3

Experimental set-up with sensors and
instrumentation

All of the experimental works were performed in TUC. Test facilities, measurement systems
and sensors used are described in the following sections of this chapter. Dynamic measure-
ments were performed with the flow generated in the multiphase flow facility while static mea-
surements were mainly performed with the same sensor arrangement but separately from flow
facility.

A brief review of the basic parameters used in the flow experiments is given before descri-
bing the experimental set up and instrumentation.

3.1 Basic definitions in two phase flows

In gas-liquid multiphase flow experiments, inlet conditions of liquid and gas components are the
only controllable parameters. Other basic quantities and definitions can be derived from inlet
flow parameters with the known pipe cross-sectional information. If the gas flow rate is qG and
liquid flow rate is qL, superficial velocity of each liquid (USL) and gas (USG) is defined as given
in Equations (3.1) and (3.2).

ULS =
qL

A
(3.1)

UGS =
qG

A
(3.2)

the mixture velocity,Umix, will be
Umix =UGS +ULS (3.3)

and liquid and air fraction (no slip), αl and αg, are defined as,

αl =
qL

qL +qG
=

ULS

ULS +UGS
(3.4)

αg =
qG

qL +qG
=

UGS

ULS +UGS
(3.5)

When liquid phase is water or oil, αl is denoted as αw or αo respectively.
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3.2 Multiphase flow facility

Simplified P and ID (Piping and Instrumentation Diagram) of the experimental flow rig used in
this study is shown in Figure 3.1. The experiments were performed using liquid (oil or water) and
air at room temperatures and atmospheric outlet pressure. The liquids are transparent mineral
oil (Exxsol D60) and tap water with the properties given in Table 3.1. Oil and water are stored
in separate tanks (T100 and T101 for oil and water, respectively, as shown in Figure 3.1) and
circulated using volumetric pumps P100 and P101. Both water and oil flow rates below 80
kg/min can be selected from centrifugal pump P102 and volumetric pumps P103 and P104.
Volumetric flow ranges of each pump are given in the Table 3.2. The mass flow, density and
temperature were measured for each phase, before the components enter the test section using
Coriolis flow meters. The test section is a 15m long steel pipe with inner diameter 56mm.
Pipe inclination can be adjustable within the range of −10◦ to +10◦ to the horizontal. Liquid
and air flow travel 12.5 m from the inlet of the test section to pass the first tomography sensor
plane. Coriolis flow meters (FT109B, FT110, FT114B and FT115) provide high accuracy with
uncertainty ± 0.01kg/min. Proportional Integral Derivative (PID) controllers implemented in
LabVIEW controls the liquid flow rates.

Table 3.1: Properties of fluids used in experiments
Fluid Density[kg/min] Relative permittivity εr Conductivity σ

Air 1 1 0
Water 996 ≈80 2mS/cm
Oil 790 2.7 0

Table 3.2: Pump specifications
Pump Type Flow rate [l/min] Flow per revolution [ml/rev] Fluid
P100 Positive displacement 80-428 946 Oil
P101 Positive displacement 80-542 1285 Water
P102 Centrifugal 1.74-13.9 3.48 Water/Oil
P103 Positive displacement 0.158-1.5 0.316 Water/Oil
P104 Positive displacement 0.455-4.2 0.910 Water/Oil

3.2.1 Differential pressure measurements

The outlet pressure of the test section is atmospheric due to storing of the fluids at the outlet
of pre-separator tank before going to the gravity separator R100. Total differential pressure
between points indicated by red arrows in Figure 3.2 is measured using pressure transducers
PDT120 and PDT121. The system is capable of logging the pressure drop data up to the rate of
20Hz. These pressure measurements are more useful especially in the study of slug characteris-
tics. Specifications of the pressure transducers are given in the Table 3.3.
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Oil flow
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Figure 3.1: P and ID of the multiphase flow loop with installed tomography and gamma sensor
systems as explained in (Pradeep et al. 2014) and (Kumara 2010)

Table 3.3: Sensors and transducers used in experiments with their respective measurement un-
certainties

Transducer Type Model Range [mbar] Accuracy [mbar]
PDT120 Differential pressure Rosemount 3051CD 0-100 ±0.1
PDT121 Differential pressure Rosemount 3051CD 0-50 ±0.05
PT131 Differential pressure Vika S-10 0-100 ±2.5

3.2.2 Transparent section

A Plexiglas transparent section has been inserted to the test section about 10m from the pipe
inlet. This section is very useful in visual observation of flow patterns and high-speed camera
imaging. It had facilitated for Particle Image Velocimetry (PIV) measurements in previous flow
studies (Kumara 2010).
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Figure 3.2: Test section with sensor placements as part of the tilted pipe with multiphase flow.
Transparent section for high-speed camera based studies, multimodal tomographic system at the
far right of the pipe section.

3.3 Tomographic systems and sensors

The sensor systems are going to be used in these research activities would mainly be ECT or
ERT with commercially available measurement systems. Here, when the vessel or pipe wall is
constructed from a dielectric material such as plastic or glass, the electrodes of the sensor can be
located either inside, within or outside the vessel wall in the capacitance tomographic system.
If the system is resistance or impedance tomography, the sensors must have contacts with the
medium inside the vessel or pipe. When the measurement of the velocities is needed two plane
of sensors are to be mounted.

3.3.1 Sensors used in experiments

Static measurements were mainly performed using 94mm diameter single plane ECT sensor.
Other two sensors shown and explained in Figure 3.3 a), b) and Table 3.4 are used for measure-
ments with multiphase flow experiments.

Table 3.4: Details of sensors shown in Figure 3.3
Type No: of electrodes No: of Internal Image

per plane planes diameter (mm)
ECT 12 1 94 Figure3.3. a)
ECT 12 2 56 Figure3.3. b)
ECT/ERT Multimodal 12/16 2 56 Figure3.3. c)
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     a)       b)        c) 

 

Figure 3.3: Tomography sensors used in the experiments. a) ECT sensor b) ECT/ERT multimo-
dal sensor unit c) Multimodal sensor system mounted in the multiphase flow rig.

3.3.2 Commercial tomographic systems

PTL 300E ECT system from Process Tomography Limited was used in capacitance tomography
measurements. Visualization is made on a 32× 32 pixel layer. Measurement from two planes
can be captured simultaneously. More information can be found in (PTL 2009).

System developed by University of Cape Town is used for ERT measurements. Up to 8, 16
electrode sensors can be coupled and operated with this system. This system utilises a switch
DC current pulse technique to get high data capturing rates (Randall et al. 2008).

Table 3.5 summarises the systems and Figure 3.4 shows images of them.

Table 3.5: Tomographic instruments
Instrument Model No: of planes Max: frame rate [fps] Sensor type
ECT System PTL300 2 100 8/12
Current pulse
ERT system

UCT-ERT 8 37 16

3.4 High-speed camera

High-speed camera was used in flow visualizations. This motion PRO X camera can produce
images up to 1000fps (fps - Frames per second) rate with 1280×1024 pixel resolution. However,
due to the limited 4GB internal memory, capturing rate has to be lowered to get a series of images
for a longer time. Capturing rate had to be reduced to 50fps to have 40s measurement period.
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Figure 3.4: a) PTL 300E ECT Module b) 8 plane ERT Module developed by UCT



Chapter 4

Interface detection

4.1 Introduction

In recent years, there has been renewed interest in multiphase flow separations and hence pos-
sibility of developing techniques to identify interfaces became an important part. Since the
identification of interfaces is a part of flow regime studies, techniques developed can be used in
addressing many problems related to flow regimes with other parameters. Possibility of fusion
of measurements from different types of techniques can produce much improved and reliable
estimations.

Since the ultimate goal of any tomographic system is to construct an image of a cross-
sectional distribution of the materials filled in the sensor planes, tomograms can be used to
select the interface parameter. Capacitance sensors can be found in interface measurements in
many industrial process applications, such as identification of flow patterns, level detection in
vessels with multiphase and multilayer and the volume percentage estimations of the different
phases in conjunction with production, transport and storage of oil and gas in the petroleum
industry (Primrose et al. 2010) and (Zorgani et al. 2010). There are many types of capacitance
sensors for level measurements, (Yang & Peng 2003). Since most of the multiphase applications
use circular pipes, cylindrical capacitance sensors explained in Chapter 3 are the most frequently
used even for estimating levels in process measurements and control applications. Interface de-
tection using ECT has become an interesting application particularly because of the fairly good
experience with this established technique of level measurement using capacitance sensors (Bu-
khari & Yang 2006) and (Ismail et al. 2005). An ECT system, properly designed to encompass
the process volume can be used in timely and fairly accurate measurements in process variables.
These measurements can then be used in the estimations of parameters such as positions of the
different interfaces and the volume fractions α of materials in the separator, (Isaksen et al. 1994).
Common number of electrodes in an ECT sensor is 8 or 12, as the focus in ECT has been on
generating better tomograms and parameter estimations based on them.

From the point of view of process control engineers, a very accurate tomogram generated
using many electrodes and a long CPU time, is not always necessary, since the main focus is on
timely actions needed to address crucial problems encountered in the process. Safety systems
installed in oil and gas industries also need fast information from unpredictable complex flows

29
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such as a series of slugs coming into the process vessel. Such information can be useful to avoid
hazardous situations happened in “The Deep Water Horizon” off-shore platform in the Gulf of
Mexico. In this chapter, the possibilities of using ANN based inferential methods along with
measured inter-electrode measurements to estimate interface levels are explained.

This tomometric approach is then further extended to see the performances with reduced
number of electrodes. Performance of a 12 electrode ECT system is assessed by studying its
performance with only 6, 5 and 4 electrodes. The detection/estimation of interfaces is done
effectively and in much shorter time compared to the processing of data with tomograms using
a 12 electrode system. The inferential method can handle non-linearity and results from it can
be easily integrated into other control algorithms addressing the actuators used in separators.

4.2 Interface levels in pipe separators

Interface level measurements of multilayer’s in process vessels are still interesting in many in-
dustrial applications and academic researches. ECT has been used in interface identifications in
three phase separators in recent studies done in the University of Manchester (Bukhari & Yang
(2006), Dyakowski & Jaworski (2003)). Research groups in the University of Bergen have stu-
died the detection of interface in bulky horizontal separators. A model based study has done by
(Isaksen et al. 1994). Some relevant experimental results have been published by (Hjertaker et
al. 2001a) and (Hjertaker et al. 2001b).

A new generation of separators is currently being assessed as a possible replacement of the
bulky traditional horizontal separators. The current interest in these pipe separators has trig-
gered interest in the use of ECT, ERT or multimodal tomography in separators, particularly
in Norway. This interest in process tomographic methods for usage in pipe separators is very
relevant. Recent studies done in Telemark University College have shown that process tomo-
graphic methods produce feasible engineering solutions for multi interface detection (Alme &
Mylvaganam (2006), Alme (2007)).

These pipe separators have horizontal pipes of diameters in the range of 20–50 cm. A typical
structure of a latest pipe separator is shown in Figure 4.1, with the possible localizations of
the ECT sensors. In these pipe separators, layered flows are maintained and oil and water are
separated in a very efficient manner (Alme 2007). The possibilities of getting fast interface
level measurements are important. This has opened a window to ECT to enter the interface
measurements due to its non-invasive and fast acquisition nature.

Some results based on lab scale experiments using ECT, performed on pipe separators with
static and dynamic flows, are presented in this chapter. These results are based on experiments
performed for detecting interface levels in pipe separators using the data driven soft sensor ap-
proach with artificial neural networks (ANNs). A very brief discussion on the concept of related
soft sensors can be found in the attached Paper 1. The studies presented in this thesis are limited
to the measurements and simulations run on lab models of pipe separators with diameters of 94
mm and 56 mm.
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Figure 4.1: Pipe separator for the separation of three phases with suggested locations for ECT
sensors as explained in (Ru et al. 2011) and (Alme 2007)

4.3 Capacitance values for varying interface distributions

Generally, the pipe separators are kept horizontally and contain all three phases, water at the
bottom, oil in the middle and gas at the top, with unavoidable emulsions and foam as explained
in (Alme 2007) and (Ru et al. 2010). After releasing the gas in the earlier stages of the separation,
only water/brine and oil are to be separated.

In this experimental study, measurements were made mainly to acquire the inter-electrode
capacitance measurements for varying levels of the two phases in stratified form as found in
horizontal separator model shown in Figure 4.2.

Figure 4.2: Separator section used in the experiments

Measurements were taken for level detection when two phases were present in the separator.
The studies were performed for water-air, oil-air and water-oil two phases separately. For ve-
rification purposes, corresponding interface levels were measured manually for each and every
sample acquired. Steps involved in the measurement procedure are:
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• Filling the vessel completely with the low dense component (Air or oil) and acquiring
capacitance measurements.

• Introduce the high dense component from the lower bottom part of the side flange, while
letting the low dense component to flow out from the top.

• Increasing the high dense component to the separator Draining the low dense liquid out of
the separator interface level increase ∆hl is maintained at approximately around 3 mm in
each step.

• Recording the capacitance measurements and corresponding interface levels at each step.

• Repeating the second and third steps above, until the separator vessel is filled with high
dense fluid.

During the first series of studies, experiments were performed with oil and water/brine alone
(Air is the second component) with focus on the interface between them, i.e. estimating the
interface height. Here, the electrode orientations should be unchanged during the whole expe-
riment.

4.4 Tomometric approach for interface estimation

4.4.1 ANN based soft sensor approach

ANN can be structured to estimate the parameters related to material properties and geometrical
positioning of the sensor. Since most of the separators are horizontal and fixed. The parameteri-
sation can be simplified to estimate height of water or oil as follows;

Since interface height of the dense component, hl is the only output; output of the ANN can
be defined as,

hl ∈ [0 D] (4.1)

Inputs are inter-electrode capacitance measurements. Hence, NC number of electrode sensor
gives, M = NC (NC−1)/2 number of inputs to the ANN.

c = [C1,2 · · ·Ci, j · · ·CNC−1,NC ] ∈ RM×1 (4.2)

Then the measurements are arranged for training and validation sets of the model.

ct = [ct,1, ct,2 · · ·ct,nct ] ∈ RM×nct hlt = [hlt,1, hlt,2 · · ·hlt,nct ] ∈ R1×nct

cv = [cv,1, cv,2 · · ·cv,ncv ] ∈ RM×ncv hlv = [hlv,1, hlv,2 · · ·hlv,ncv ] ∈ R1×ncv
(4.3)

where subscript t ans v indicate training and validation. nct and ncv are length of training and
validation data. Data matrices defined above are then calibrated based on the established norma-
lization routine explained in Equation (4.4). Normalisation of the kth sample of the capacitance
and interface measurements is shown here.
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cn,k = (ck− ck,min) ./(ck,max− ck,min)
hln,k = (hlk−hlk,min) ./(hlk,max−hlk,min)

(4.4)

where ./ denote dividing each element in the vector (ck− ck,min) by the corresponding element
in vector (ck,max− ck,min).

Then the normalised quantities are structured to be used in the ANN model training and
validation as given in Equation (4.5).

cnt = [cnt,1, cnt,2 · · ·cnt,nct ] ∈ RM×nct hlnt = [hlnt,1, hlnt,2 · · ·hlnt,nct ] ∈ R1×nct

cnv = [cnv,1, cnv,2 · · ·cnv,ncv ] ∈ RM×ncv hlnv = [hlnv,1, hlnv,2 · · ·hlnv,ncv ] ∈ R1×ncv
(4.5)

Depending on the success of the model, it can later be used for the estimation of parameter
hln with new experimental data. Architecture of the ANN used is explained briefly in following
sections.

4.4.2 ANN architecture

For different number of electrode sensors, ANN architecture has to be changed to get a better
estimation, but two hidden layered architecture with tan-sigmoid activation function was used
for all estimations. The selected architecture might not be optimum one with 12 electrode sensor
measurements, but this was selected with the view of comparing different number of electrodes
as explained in following sections. The selected architecture is shown in Figure 4.3. It has 15
and 5 neurons in first and second hidden layers. Number of electrode in sensor decides the
number of inputs to the input layer. Input layer gets 6, 10, 15 and 66 inputs for selected 4, 5, 6,
and 12 electrode sensors respectively. The only output of the network is interface level.

4.5 Estimation of interface level

4.5.1 Overview of the capacitance data

First, sample sets of absolute inter-electrode measurements were investigated to see the typical
variations and then, the normalised values of capacitance measurement frames of each two phase
flows are taken for the analysis. Figure 4.4 shows the absolute capacitance values and normalised
values of air-water two phase flow level measurements. Typical "U" form and their deformations
along with the interface changes can be seen with absolute measurements, but normalised data
shows the increase of magnitudes against the interface level increases.

The normalised values of capacitance measurement frames of each interface levels of air-oil
and oil-water can also be presented along with absolute measurements as did with air-water.
Similar dynamics can be seen against the interface variations. The presentation of the measure-
ment in Figure 4.4 is for information only. Relevant estimations and analysis are presented in
the following sections.
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Figure 4.3: ANN architecture used in the estimations. Here inputs are normalised capacitance
measurements (cn,k = [C1,n,k · · ·Ci,n,k · · ·CM,n,k]∈RM×1) and output is corresponding normalised
interface height of the dense liquid (hln,k).

4.5.2 Results from ANN based interface detection

Figure 4.5 shows the level estimates produced using the ANN model for air-water, air-oil and
oil-water two phase layered flows separately. The symbol ’�’ indicates the training data used in
the ANN model development. ’♦’ represent the ANN estimates.

Root Mean Square (RMS) errors of validation were ±6 mm and ±3 mm for air-water and
air-oil two phase level estimations. For oil-water experiments RMS was ±3 mm. Higher RMS
uncertainty can be seen in air-water experiments. This is mainly due to the higher permittivity
of water which can affect the capacitance values. Though RMS uncertainty involved with oil-
water interface level shows±3 mm which is similar to air-oil interface estimations, Figure 4.5 c)
illustrates some data points with relatively larger deviations in comparison with air-oil. A larger
number of data samples in the model training in oil-water experiments has helped to produce an
improved model. This may also be a reason to have an improved estimation uncertainty over the
air-oil combination.

4.6 Performances with reduced number of electrodes

As mentioned earlier, ECT technique and its development are mainly working for getting better
cross-sectional images of the sensing area. However, image construction time may be a draw-
back in some applications where the fast acquisition is more important than accurate tomogram
- especially in safety related applications and control applications. In such cases, information
extracted from the raw measurements would be more useful. If the information needed is still
with the reduced number of electrode sensors, it would be even better. How measurement speed
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a) 

 

b) 

Figure 4.4: Overview of a set of ECT measurements of water-air experiments a) Absolute capa-
citance values showing typical "U" shaped frame. b) Variations in Capacitance values after the
normalization with some negative values

is improved with the reduction of the electrodes can be found in attached Paper 1 with more
details.

Selected capacitance measurements for given 6 and 4 electrode sensors are shown in Fi-
gure 4.7. It can be seen in Figure 4.7 that even with the limited number of experiment points,
relationship between capacitance measurements and interface level are observable.
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Figure 4.5: Estimate results for 12 electrode sensor, with calculated Root Mean Square (RMS)
uncertainties ±6 mm, ±3 mm and ±3 mm for each a) air-water b) air-oil and c) oil-water two
phase flows
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Figure 4.6: Schematic diagram of selection of electrodes a) symmetrically placed six b) symme-
trically placed four c) asymmetrically five

Similarly, for asymmetric excitation of 5 electrode sensors shown in Figure 4.6 (c), inter-
electrode capacitance measurements of the 2nd, 3rd, 5th, 8th and 12th electrode combinations
were chosen from 12 electrode sensor data. These data are used for training and validation in an
inferential method based on neural networks available in MATLAB, neural network toolbox.

4.7 Estimation with 6 selected electrode sensor data

As given in the Figure 4.7 a) c) and e), distribution of inter-electrode measurement samples
shows relatively strong dynamics in comparison to corresponding 4 electrode sensor selections.

Then, ANN model estimations for each two phase flow setup were developed preserving the
same architecture explained in section 4.4.2.

4.7.1 Results from ANN based algorithms for interface detection

In comparison to the result produced by 12 electrode sensor model shown in Figure 4.5, estima-
tions of 6 electrode sensor based model have higher uncertainty. When two phases are air-water
or oil-water, interfaces below 20 mm gives higher uncertainties in estimations as shown in Fi-
gure 4.8. Though estimations above 20 mm are also showing some more deviations compared
to the results with 12 electrode sensor based model, they are not so significant.

RMS errors of validation were±5 mm for air-water and oil-water two phases. It was±4mm
for air-oil. Higher RMS uncertainties shown in air-water and oil-water experiments are mainly
due to higher permittivity of water compared to the air and oil as stated earlier. Hence, the
lower RMS uncertainty involved with air-oil estimations can be understandable. Figure 4.8 b)
illustrates the estimation results, when air-oil are the flow components. in the detection of air-oil
interfaces due to the values of permittivities of air and oil lying close to each other, certainty will
be somewhat higher compared to the interface detection in the cases of air to water and oil to
water transitions.
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a) b)

d)c)

e) f)

Figure 4.7: Overview of capacitance values for each 4 and 6 selected electrode sensors. a), b)
from air-water two phase flows with 6 and 4 electrode sensors, c), d) from air-oil with 6 and 4
electrode and e), f) from oil-water with 6 and 4 electrode respectively
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Figure 4.8: Estimate results for 6 electrode sensor, with calculated RMS uncertainties ±5 mm,
±4 mm and ±5 mm for each a) air-water b) air-oil and c) oil-water two phase flows
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4.8 Estimation with 4 selected electrode sensor data

As shown in the Figure 4.7 b), d) and f), capacitance measurements equivalent to 4 electrode
sensor have the least information, but it still shows that there is some useful information that can
be used in the interface level estimations.

Figure 4.7 clearly shows how capacitance values are increased when interface level is in-
creased. Hence, interface level estimations with ANN model are tested with all two phase com-
binations.

4.8.1 Results from ANN based algorithms for interface detection

Figure 4.9 a) shows the results related to the interface detection from air-water flow measu-
rements by comparing the measured values against estimated values. ANN model shows an
increased uncertainty in the ranges 20 mm to 50 mm and 55 mm to 70 mm of water levels. RMS
based uncertainties are ±7 mm for air-water flow and ±5 mm for air-oil flows.

RMS uncertainty of oil-water combination is ±6 mm. It is bit higher compared to air-oil
case. Uncertainty has increased with the reduction of the electrode combinations as expected.
In addition to the 6 electrode case higher uncertainties can be seen around 15 mm and 30 mm
water levels.

4.9 Asymmetric electrode arrangement

Possible selections of asymmetric electrode arrangements for the ANN based interface estima-
tion are studied. 5 electrodes selected from 12 electrode sensor are 2nd, 3rd, 5th, 8th and 12th for
this study (Figure 4.6). Results are more similar to the 6 selected electrode sensor, when two
phases are water and air. 6 selected electrode sensor model shows the largest RMS uncertainty
at around interface height 10 mm, but 5 electrode sensor based model does not show sensitivity
till interface level reaches 30 mm.

When two phases are air-oil, 5 electrode sensor model shows results similar to correspon-
ding 6 and 4 electrode systems. Largest RMS error 10mm is observed at interface height 12
mm. Results shown in Figure 4.10 clearly indicate that 5 electrode based model produces better
estimation compared to the 4 selected electrode model (Figure 4.9).

Same can be observed with the results of air-water two phase model. Slopes of the regression
line of estimated vs. measured interfaces and RMS errors have been included in the Table
4.1. Among many possible 5 asymmetric electrode selection combinations, 2nd, 4th, 5th, 7th

and 10th was also studied and results were included in the Table 4.2 with Root Mean Square
Error (RMSE) values. This was done mainly to see whether the electrode position affects the
estimations.

4.10 Execution times of the ANN

The time taken by ANN to produce the estimations is considered as the execution time. The
reduction of execution times in algorithms with many repeat runs in a program is crucial in
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Figure 4.9: Estimate results for 4 electrode sensor, with calculated RMS uncertainties ±7 mm,
±5 mm and ±6 mm for each a) air-water b) air-oil and c) oil-water two phase flows
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Figure 4.10: Estimate results for 5 electrode sensor, with calculated RMS uncertainties ±8 mm,
±5 mm and ±5 mm for each a) air-water b) air-oil and c) oil-water two phase flows
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Table 4.1: Root mean square error estimates from actual measurements and ANN estimates
Phases No: of electrodes Training Validation

Water Air

12
RMSE 4 mm 6 mm
Slope 0.97 0.95

6
RMSE 4 mm 5 mm
Slope 0.98 0.91

5
RMSE 6 mm 8 mm
Slope 0.98 0.92

4
RMSE 5 mm 7 mm
Slope 0.93 0.91

Oil Air

12
RMSE 2 mm 3 mm
Slope 0.97 0.95

6
RMSE 3 mm 4 mm
Slope 0.96 0.96

5
RMSE 3 mm 6 mm
Slope 0.97 0.97

4
RMSE 3 mm 5 mm
Slope 0.96 0.94

Water Air

12
RMSE 3 mm 3 mm
Slope 0.98 0.96

6
RMSE 4 mm 5 mm
Slope 0.97 0.96

5
RMSE 5 mm 6 mm
Slope 0.96 0.97

4
RMSE 5 mm 6 mm
Slope 0.97 0.94

Table 4.2: Root mean square error estimates with different electrode selection
Phases No: of electrodes Electrode selection RMSE

Water Air

6 2-4-6-8-10-12 5 mm
5 2-3-5-8-12 8 mm
5 2-4-5-7-10 10 mm
4 2-5-8-11 7 mm

Oil Air

6 2-4-6-8-10-12 4 mm
5 2-3-5-8-12 6 mm
5 2-4-5-7-10 6 mm
4 2-5-8-11 5 mm

achieving better and fast response in real time applications of ECT or ERT systems. Then the
information can be easily integrated with other measurements to be used in the applications such
as flow control and flow prediction.

Relationship between number of measurement inputs and the time taken by the interface
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estimation model is studied here. It is clear that the same ANN network architecture is used
after weight training in the estimation. Hence, the time taken by estimation depends only on the
forward calculation time of trained model. Time involved with the forward path of this ANN
model can be calculated using Equation (4.6) as did in (Vuurpiji 1998). A simplified equation
for the estimation time is given in (4.7).

TANN =
nlay

∑
l=2

(
nnu,l

((
nnu,(l−1)+1

)
(Tadd +Tmul)+Tf un

))
(4.6)

TANN = ncon (Tadd +Tmul)+(nnu,h +nnu,o)Tf un (4.7)

where, nlay is the number in layers of ANN, and ncon is the number of connections. nnu,l repre-
sents the number of neurons in lth layer. nnu,h and nnu,o are the number of hidden and output
neurons in the network. Tadd , Tmul and Tf un are the times taken for performing addition, multi-
plication and executing the activation functions respectively.

Estimation models used in 12, 6, 5 and 4 electrode sensors have same structure except the
number of inputs. Hence, only the number of connections,ncon are different. For 12, 6, 5 and 4
selected electrodes models, ncon would be 1091, 326, 251 and 191 respectively. These numbers
of connections make the difference in addition and multiplication times involved among each
models.

4.10.1 Estimation of execution time

Each trained ANN model was run for 6000 times and average time taken was selected and results
from each model are included in Table 4.3.

Execution times were separately calculated using the Equation (4.7). Here Tf un, Tadd and
Tmul needed were measured independently by running those operations separately for 1× 107

times. All these calculations and estimations were performed in MATLAB platform on a dual
core personnel computer with 2.8 GHz CPU clock frequency and 4GB RAM. Implementation
in a parallel processing architecture can lower the estimation time.

Relationship between number of connection and the execution time was then studied sepa-
rately. Both theoretical and experimental results are shown in the Figure 4.11. Here, only the
number of connections in the input layer is changed while keeping the remaining architecture
unchanged. Both results indicated that the relationship between execution time and the number
of network connections is linear.

Table 4.3: Total time required for estimation of one sample

No: of electrodes in sensor
Estimation time (µs)

Theoretical MATLAB ANN
12 8.1 9.87
6 3.4 5.95
5 2.84 5.91
4 2.25 5.7



4.10. EXECUTION TIMES OF THE ANN 45

0 500 1000 1500 2000 2500
0

5

10

15

20

25

Number of connections

E
st

im
at

io
n 

tim
e 

[µ
S

]

 

 
Theoretical estimation
MATLAB NNToolbox

Figure 4.11: ANN estimation time, with the number of inputs changed and the rest of ANN
architecture unchanged

Then the studies extended further to investigate the relationship between number of hidden
neurons in each layer and execution time. Two hidden layered networks used for 12, 6 and 4
electrode sensor based estimations were studied separately. Here, all possible combinations of
hidden neurons in two layers were taken in to account as clearly shown in Figure 4.12. Figure
clearly shows how execution time varies with the different combinations of the hidden neurons.
Meshes correspond to each models show that execution time is increased when number of inputs
increased. Figure 4.13 shows the simplified representation of what was given in Figure 4.12. It
can be clearly seen from the figure that for all three models, the relationship between execution
time and the number of hidden neurons are linear. This has been fist investigated by (Alme 2007)
with three layered ANN. It can be further extended that at least with 4 layered ANN networks
number of hidden neurons has a linear relationship with execution time and it is independent of
the number of layers.

As mentioned earlier, the architecture used may not be the optimal for the estimations, since
it was preserved for the comparison of the models. More simplified architectures may be possi-
bly specially with the measurement from a fewer number of electrodes. This was just checked
with 6 and 4 electrode sensors and results are shown in Figure 4.14. Here, the hidden layers
were assigned 12 and 9 neurons respectively. The two phases used in this study were oil and air.
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Figure 4.12: ANN estimation time when combinations of hidden neurons in each layer are
changed

4.10.2 Uncertainty of estimation time

As stated in a previous section the time taken by ANN models to produce estimations are calcu-
lated by running each model a number of times and averaging. Here, for the Standard deviation
calculations, it was run for 500 times in MATLAB and mean estimation time, µTANN and standard
deviation, ST DTANN of each ANN model were included in the Table 4.4. It can be seen that des-
pite varied average estimation time involved with each models, RMS uncertainty is more similar
to each other, except 12 and 4 electrode sensors with dynamic measurements.

Table 4.4: Time taken in the forward calculation of ANNs with different number of inputs

No: of electrodes in sensor
ANN estimation time (µs) (µTANN ±ST DTANN )

Static measurements Dynamic measurements
12 9.87±0.30 10.1±0.06
6 5.95±0.25 5.23±0.23
5 5.91±0.30 4.92±0.44
4 5.7±0.22 4.5±0.61

Lowest estimation time is achieved with the estimations based on 4 electrode sensor as ex-
pected.
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Figure 4.13: ANN estimation time variation against the number of inputs as given in (Figure
4.12)

4.11 Performance with two phase dynamic flows

Interface estimation of dynamic flows was studied for air-water two phases. Flow was generated
in the multiphase flow facility at HIT and ECT measurements were captured. Inlet water and
air flow conditions were 40 kg/min and 0.01 kg/min. Flow was +1◦ upwardly inclined flow in
56 mm diameter pipe. Here, the interface height was calculated using pipe geometry and liquid
fraction, αl . Results with 4 and 6 electrode sensor selection can be found in attached Paper 1.
ANN estimation times with dynamic flows given in Table 4.4, are also from this experimental
results. The inter-electrode measurements were captured in real-time, though ANN models were
run in offline. But this approach is good enough to show that these real-time estimations will
also produce good results.

4.12 Comparison of Interface estimations

Interface measurements in horizontal and near horizontal flows are being studied at HIT for
many years. Gamma ray densitometry and PIV measurements were used in the experimental
studies by (Vestøl & Melaaen 2006). Some of his results with gamma ray densitometry were
compared with the ECT images as explained in this section. Two phase flows (Gas-liquid)
in horizontal pipe and 1◦ downward pipes were studied with ECT measurements. A typical
tomogram of ECT along with a vertical beam GRM at the mixture velocity Umix, of 5 m/s and
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Figure 4.14: Estimation with better ANN architecture for 4 and 6 electrode sensors

liquid fraction αl , of 0.01 are shown in the Figure 4.15. Air-oil interface can be clearly visible
with both ECT and GRM results under given inlet conditions. It is around position 0.5 (as given
in the figure) even the camera image captured through the transparent section proves the validity
as shown in Figure 4.16.

Air-oil two phase flows

Flows in horizontal pipes are studied with 5 different oil fractions αo. They were 0.001, 0.0025,
0.005, 0.0075 and 0.01. Mixture velocities Umix were maintained at either 5 m/s or 10 m/s
depending on the experiment. Results with both GRM and ECT techniques are shown in Figures
4.17 and 4.18. ECT based Interface profile indicates deviations either upward or downward near
the pipe wall. Unlike in the GRM measurements, the interface profile is bending downward for
the low oil fractions, 0.001 and 0.0025 . GRM measurements show more uniform interface levels
throughout the pipe cross-section, but curves upward at the pipe wall. Both techniques correctly
indicate that increase in oil fraction αo at both mixture velocities Umix, 5 m/s and 10 m/s would
increases the interface level height. Figure 4.19 shows both GRM and ECT based calculation of
interface levels. It can be clearly observed that the ECT image (pixel) based calculations always
stay above the GRM based calculations. When interface level goes down, the difference in the
interface levels using these two techniques increases. Uncertainties involved with each ECT
calculations and Camera images evidence that these layered flows are wavy stratified.

The same sets of experiments were performed with 1◦ downward flows with the same set
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Figure 4.15: ECT and GRM measurements of horizontal flow with mixture velocity, Umix, of 5
m/s and oil fraction, αo, of 0.01. The interface levels are clearly seen to be around position -0.5
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Figure 4.16: a) ECT measurements for horizontal flow with mixture velocity, Umix, 5 m/s and oil
fraction, αo, 0.01. b) A still camera image of a corresponding flow

of oil fractions. Results are shown separately for mixture velocities Umix, of 5 m/s and 10 m/s
in Figures 4.20 and 4.21. ECT based interface profile clearly shows downward deviations near
the pipe wall as observed with horizontal flows. The similarities in interface profile from both
techniques can be clearly seen and the trends discussed in the case of horizontal flows are seen
here too. Interface level increases with the increase of oil fractions αo, but compared with the
horizontal flows interface heights are less.

Comparison of GRM and ECT based estimations are given in Figure 4.22. As observe with
horizontal flows, ECT base calculations give slightly higher interface heights and uncertainties
involved are larger than horizontal flows. However, the two measurement methods show a ten-
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Figure 4.17: Interface level measurements with ECT (left) and vertical beam GRM (right) for
air-oil flows with mixture velocity, Umix, 5 m/s and different liquid fractions, αl , when pipe
inclination is 0◦. Oil fractions, αo, used are given in legend on top
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Figure 4.18: Interface level measurements with ECT (left) and vertical beam GRM (right) for
air-oil flows with mixture velocity, Umix, 10 m/s and different liquid fractions, αl , when pipe
inclination is 0◦. Oil fractions, αo, used are given in legend on top
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Figure 4.19: Interface levels based on ECT and GRM for horizontal flows with RMS uncertain-
ties

dency to give a higher estimate of the interface levels when comparing them with the interface
levels obtained from external measurements performed through the transparent pipe section.

This may be attributed to wetting of the pipe walls by the oil in this set of experiments.
Both techniques show higher interface levels compared to the level observed through camera
images. As (Vestøl & Melaaen 2006) explained, gamma ray passing through the middle of the
pipe has less uncertainty. It will increase when come closer to the wall, because a large portion
of the Gamma beam occupies the pipe wall. More details can be found from (Kumara 2010)
and (Vestøl & Melaaen 2006). Mainly due to soft-field effect, ECT tomograms get distorted and
it results the unclear interface boundaries. Since only 32 layers of pixels cover the whole pipe
cross-sectional height, spatial resolutions goes down and increases the uncertainties in interface
level and α calculations.

GRM results show the interface curvature near the pipe wall in all experiments. As explained
by (Vestøl & Melaaen 2006), the measurements near the wall were performed using angular
gamma beams through the pipe center. GRM Results show that the interface is uniform except
the near the pipe walls. This may be due to wetting of the pipe wall, which is not so easy to
observe.

Comparison of these ECT and GRM techniques is given in the Table 4.5. GRM used in these
measurements is no match with the ECT when speed of the measuring is vital. However, long
measurement time taken by the GRM makes the measurements much accurate. Speed of the
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Figure 4.20: Interface level measurements with ECT (left) and vertical beam GRM (right) for
air-oil flows with mixture velocity, Umix, 5 m/s and different liquid fractions, αl , when pipe
inclination is −1◦. Oil fractions, αo, used are given in legend on top
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Figure 4.21: Interface level measurements with ECT (left) and vertical beam GRM (right) for
air-oil flows with mixture velocity, Umix, 10 m/s and different liquid fractions, αl , when pipe
inclination is −1◦. Oil fractions, αo, used are given in legend on top
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Figure 4.22: Interface levels based on ECT and GRM for −1◦ downward to horizontal flows
with RMS uncertainties

GRM measurements can be improved to a certain level by increasing the strength of radioactive
source. But according to the government health and safety regulations, it cannot be increased
beyond 20mSv per year (Norwegion radiation protection authority 2005). This GRM does emit
0.2µSv per year and is well below the allowable limit.

Table 4.5: Performance comparison of ECT and GRM
Selected parameters of the
ECT/GRM systems GRM ECT
Horizontal Resolution 3 3
Vertical Resolution 1 3
Dimention of data 1×32-1D array 32×32-2D pixel grid
Measurement speed 25min 0.01s
Measurement mode Time average measurements Online

ECT Results presented are averaged pixel values. So, it is useful to study how pixel values
varies or disperse from the mean value. It can be done by calculating the standard deviation,
STD, of each pixel over a specified time interval. The standard deviation of pixel arrays presents
the fluctuations or variations over the whole pipe cross-section.

For the mixture velocity Umix = 5 m/s and αo = 0.01, standard deviation of the pixel values
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of first 6000 tomograms were calculated and then plotted in a mesh as shown in Figure 4.23.

Figure 4.23: Standard deviation of pixel grid arrays at mixture velocity, Umix, 5 m/s and αo 0.01
for horizontal flow

It can be observed in Figure 4.23 that the standard deviation is higher around the interface
boundary. This implies that the variation or fluctuation near the air-oil interface is higher and
towards the above and below seems more stagnant (no or less changes in the flow dynamic).
This is a very acceptable indication since the flow pattern is uniform and wavy stratified.

Both ECT and GRM have their own strong features to be used in measurements as given in
Table 4.5. Possible fusions of these two measurements can be useful in making control decisions.
Such combinations may be helpful in avoiding disadvantages involved with the separate use.

CFD flow simulation under corresponding experimental conditions has been performed by
(Vestøl 2013) using the OLGA simulator, which is used for one dimensional simulation of gas,
oil and water flows. Comparison of the results with −1◦ and 0◦ inclined flows with the mixture
velocity Umix=5 m/s are given in Figure 4.24. Results show that both measurement techniques
follow the same trend as OLGA simulator. However, it gives a slightly higher interface boundary
over the measurements. ECT gives about 3 mm and 4 mm offsets to the simulated results with
−1◦ and 0◦ inclined flows. GRM results always lies between simulated and ECT results. Since
the interface heights are very low, it is still hard to come to any conclusion with these limited
information. It would be interesting to study the performances with different interface heights.
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Figure 4.24: Measured and simulated interface level as a function of oil (liquid) fraction, αo for
flow of air-oil at inclinations a) −1◦ and b) 0◦. Both figures show that interface level measure-
ments (ECT and GRM) are getting closer when the liquid fraction, αl , is increased

4.13 Discussion of the results

This study was mainly to see the possible estimation of interface level in horizontal pipe flows
using capacitance measurements captured from ECT systems. Then, the study was extended for
reduced number of electrode sensors accepting some losses in accuracy. Estimation with 6 elec-
trode sensor produces better results compared to 5 and 4 electrode sensor results. Lower RMS
error with 6 electrode sensor estimations shows that it is better among all reduced electrode sen-
sors. With 4 electrode sensor RMS error goes almost up to 9 mm. To have a better comparison
of 4, 5, 6 and 12 electrode models, architecture was unchanged. This might be the case of get-
ting some relatively poor estimates of heights. When the two phases are air-oil, all 6, 5, and 4
selected electrode sensors can produce acceptable results with the loss of some accuracy. The
higher relative permittivity of water leads to high capacitance changes making the differences
between other media in the layers less discernible.

Even a few drops of water in air phase can make very significant changes in capacitance
values. Hence, in the static layered flow measurements, we had to make sure that there were
no water drops in the gas phase. However, this is not happening in practice and liquid droplets
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would always be in the gas phase. Tomograms of air-water two phase flows do not show clear
interfaces due to this reason. But, the air-oil two phase flow tomograms indicate better interface
boundary. Results based on ECT measurements compared with GRM measurements (Vestøl
2013) evident that the interface heights calculated from pixel data are comparable, though they
are slightly higher than the estimates based on GRM. Possibility of using a fewer number of
selected electrodes to estimate interface, would be very helpful in increasing the redundancy in
case of a failure of some electrodes. Separately trained ANN models have to be used in such
cases.

ECT with reduced number of electrodes can be used in applications where fast estimation of
interface level is important with acceptable uncertainties. When water is present in the flow, it is
difficult to lower the number of electrodes below 6 without jeopardizing the performance of the
system. When water is not a part of the in the pipe, even 4 electrodes sensors can be used. That
would easily speed up the estimation. Accuracy of the measurements will be further improved,
if 4 electrode sensor is used instead of selected 4 electrode sensor (selection of 4 electrodes from
12 electrode sensor.).

It would be very helpful to get much reliable estimations, if the ANN model is validated
separately using other measurement techniques. Possibility of fusion with different techniques
would further improve the estimation and the reliability. This model can be further improved to
estimate air, oil, water three phase flow interfaces and hence component fractions.



Chapter 5

Slug flow studies - Detection of
characteristic parameters

5.1 Introduction

Slug flow is one of the common flow patterns observable in multiphase flow applications. Gas
liquid slug flow in pipelines can be explained as an alternating flow of elongated gas bubble
and liquid slug shown in Figure 5.1 (Perez 2007). Slugs generated in horizontal and inclined
pipes are called hydrodynamic slugs and typically, length of such a slug will be less than 500
pipe diameters (Cook & Behnia 2000). In horizontal and inclined pipe flows, increase of gas
velocity, increases the amplitude of the wavy interface. Once the air velocity is sufficient to
take the water to the top of the pipe by blocking the gas flow, this fast moving volume is called
as a slug. As slug moves forward liquid is shed uniformly from its back and finally makes a
stratified area called liquid film region. Studying the complex dynamics governs the gas liquid
slug flows are very challenging. Slug flow patterns occur under a wide range of flow rates and
other flow conditions like inclination angle. This further increases the complexity of the slug
flow characterizations and predictions. A lot of experimental and theoretical studies have been
done on slug flows for many years. Fluid flow models developed by (Dukler & Hubbard 1975)
and (Ruder et al. 1989) on gas liquid flows in horizontal pipes are still being investigated and
used in many research and simulation works.

Characterization of slug flows is very useful in developing correlation for the flow simula-
tions and slug flow control applications. Possibilities of studying slug flow characteristics using
existing ECT and ERT measurements are discussed in this chapter. Raw measurements from
ECT and ERT are used in the analysis here instead of tomograms. Parameters calculated in
these studies are slug translational velocity, slug front and tail velocities, liquid film thickness,
slug frequency and liquid slug length.
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Figure 5.1: Slug unit representation with characteristic parameters, hl- film thickness, Us- liquid
slug velocity, Ls- liquid slug length, L f - film length, Ut- translational velocity

5.2 Slug parameter estimations using ECTm/ERTm and high-speed
camera

Figure 5.1 shows a simplified physical representation of a single slug unit including the bubble.
Basic slug unit consists of a slug body (A in figure) and a liquid film with their lengths given
as Ls and L f respectively in Figure 5.1. The gas pocket called as Taylor bubble (B in figure),
(as defined by (Perez 2007)) and the liquid film zone underneath (C) are also shown in the same
figure. Height of liquid hold up (or the film thickness) is hl . The velocity of the whole slug unit
at the front of the slug body is called as slug translational velocity Ut . When slug is moving
forward, liquid (in film region) at the slug front is scooped up and moved with the slug velocity,
Us. Since the slug flow is by nature a random phenomenon, even with precisely controlled inflow
conditions, these slug parameters vary with time.

By using time series of raw ECT and ERT measurements, characterization of slugs in a
liquid gas two phase flows can be easily done. Possibilities of using ECT techniques in the flow
parameter estimations have been discussed in details by (Ismail et al. 2005) and (Bertani et al.
2010). However, main concern in tomography technique is the construction of very accurate
tomograms, which is not so critical in many flow control applications in process industries as
explained in Chapter 4. ERT technique fails to construct accurate tomograms in horizontal and
inclined flow measurements, unless conducting fluid component is having electrical contacts
with all ERT sensor electrodes. However, with the tomometric approach, it is still possible to
extract some useful flow information.

Slug characterization using time series of two capacitance probe signals and two conduc-
tance probe signals has been tested and validated in (Perez 2007) and (Al-Lababidi 2006) res-
pectively. Pressure fluctuations associated with the slug phenomena can also be used to estimate
the slug flow parameters. As explained in (Reinecke et al. 1988), pressure drop information
along the slug unit can be used to study the characteristics of the flow patterns. Possibilities
of usage of differential pressure signals in slug flow control have been investigated by (Havre
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et al. 2000). Differential pressure between points A and B shown in Figure 3.2 is measured
using pressure transducer PDT121. Typical plots of time series for the pressure signals with
corresponding slug flow is given in Figure 5.2.
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Figure 5.2: Typical time series from the differential pressure signals as registered by PDT121

5.2.1 Measurements and experiment matrix

Experiments were performed in the multiphase flow facility explained in the Chapter 3. Incli-
nation of the test section, β , was maintained at +1◦ to the horizontal to generate slug flows.
Inter-electrode capacitance and resistance measurements were captured separately using ECT
and ERT systems with the loop running under the experimental conditions given in Table 5.1.
MotionPRO X high-speed camera was also used to capture the flow phenomena. Differential
pressure measurements given by PDT121 also captured while the experiments were running.

All experiments were performed maintaining inlet volumetric flow rates of water and air at
the set values. Superficial air and water flow rates of each experiment along with the measure-
ment modalities are given in the experiment matrix in Table 5.1.

5.2.2 Calculation of slug translation velocity

Cross-correlation of the time series data of liquid volume fraction from twin plane tomography
sensors can be used to calculate the slug translational velocity of each experimental run. . Typi-
cal time series of two separate ECT and ERT twin plane systems are shown in Figures 5.3 and
5.4 respectively.
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Table 5.1: Superficial air and water velocities of each set of experiments and the measurement
techniques used for each set of experiments conducted in the current study. For some values of
superficial water velocity, corresponding high speed camera images of usable quality were not
available.

Superficial water velocity (m/s)
0.20 0.27 0.33

Su
pe

rfi
ci

al
ai

rv
el

oc
ity

(m
/

s) 0.28
0.56
0.83
1.11
1.39 ECT ECT
1.67 ERT ECT PDT121
1.95 Images Images
2.22
2.50
2.78

(Al-Lababidi 2006) has used the same technique with conductivity probe signals to estimate
slug translational velocity. Results have been compared with ultrasonic measurements. Volume
fraction data calculated by averaging in the pipe cross-sectional distribution of water and air
two phases have been used to estimate the slug translational velocity by (Rogero 2009). Here,
the measurements have been acquired from wire-mesh sensors. The approach explains in this
thesis is also based on the cross-correlation technique, but the time series signals from twin plane
tomography sensors were calculated in a similar manner explained by (Rogero 2009). Liquid
volume fraction can be easily calculated using ECT measurements as given in Equation (5.1).

αl =
2

NC (NC−1)

NC

∑
i=1

(
NC

∑
j=1

Ci, j

)
∀ i < j (5.1)

where NC = 12 and Ci j is capacitance measurement between electrode i and j.1

The same method does not work with ERT measurement of horizontal flows, since some
electrode loose contact with conductive medium. Hence, the average of each voltage measure-
ment frame is calculated as given in the Equation (5.2).

Vmean =
2

NR (NR−3)

(
NR−1

∑
i=1

(
NR−1

∑
j=i+1

(Ei,i+1−E j, j+1)

)
+

NR−2

∑
i=2

(Ei,i+1−ENR,1)

)
(5.2)

where Ei,i+1−E j, j+1 denotes the voltage measurement between jth and ( j+1)th when current is
applied between ith and (i+1)th electrodes. The time delay, τmax, corresponding to the maximum
value of the cross-correlation function gives the transit time of the flow between the two sensors.
From the calculation of the cross-correlation as given in Equation (2.27), time delay, τmax, can

1More on this αl calculation can be found in (PTL 2009)
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Figure 5.3: Typical slug pulse as obtained from ECT time sequences. The point where the
volume fraction exceeds the threshold value is considered as the liquid slug front boundary and
where it crosses to go below the threshold is selected as the tail boundary
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Figure 5.4: Typical slug pulse as obtained from ERT time sequences. The point where the mean
voltage drops below threshold value is considered as the liquid slug front boundary and where it
crosses to go over the threshold is selected as the tail boundary. Time length between slug front
and tail is liquid slug region. Time length between slug tail and front is gas bubble region

be found by selecting the correlation peak. Slug velocity, Us, can be evaluated using the time
delay, τmax, and distance between the two sensor planes, Lpla, as:
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Us =
Lpla

τmax
(5.3)

Distance between two sensor planes is 0.19m in both ECT and ERT sensor modules. Both
ECT and ERT measurements were used in the estimation of the slug velocity. Captured raw
capacitance and resistance measurements were correlated separately. Flowan software develo-
ped by Process Tomography Limited was used to estimate the slug velocities for verifying the
results. Flowan software uses pixel correlation for velocity estimation.

5.2.3 Slug front and tail velocity

Slug front and tail velocities, (Us and U f ), were estimated using volume fraction signals based
on ECTm. When volume fraction crosses the threshold values at slug front and tail, time stamps
corresponding to these events, are selected from both sensor planes of ECT module. Then the
time taken by each slug front and tail to pass the distance between two sensor planes can be
calculated using correlation Equation (5.3). Slug front and tail velocities can be computed using
this information.

5.2.4 Liquid film thickness

Time series volume fraction signal, α , of a typical slug flow clearly shows the slug body region
(A) and bubble region (B). Then, the liquid film thickness, hl ,(under the Taylor bubble region)
shown in Figure 5.1 can be easily calculated using the pipe geometry as given in Figure 5.5.

hl

D/2

Figure 5.5: Cross-sectional geometry of liquid layer in two phase flow with arc angle θ descri-
bing the section occupied by the liquid of height hl
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5.2.5 Slug frequency estimation

The number of slugs moving past these two sets of sensors in the two different planes pl1 and
pl2 within the observation period can be counted and used to calculate the slug frequency as
given in Equation (5.4).

fs =
ns

Tob
(5.4)

where fs is the slug frequency, ns is the number of slugs passed during the observation period
Tob.

A threshold value has to be defined to decide the existence of slug (Al-Lababidi 2006). When
the signal exceeds the threshold, one is added to the slug count. Figure 5.4 shows the threshold
value as 1V for the signals from ERT system. It is 0.7 (70% of the volume fraction of liquid) for
the ECT signals as marked on the Figure 5.3.

Average of the inter-electrode ECT/ERT measurements was used to construct signals shown
in figures. This averaging process helps to identify the boundaries of the slug bodies. Images
captured from the high-speed camera were also run frame by frame to count the number of slugs
to verify the results.

5.2.6 Slug lengths

Length of the liquid slug body (A in Figure 5.1) is marked as Ls. Time window, ts, associated
with the slug body as indicated in the Figure 5.3 is first calculated. Here, the same ts, defined
based on the threshold values in the slug frequency calculation, is applied to locate the time
window of the slug body.

Then, with the corresponding estimated slug flow velocities, each slug length, Ls, is calcula-
ted as follows.

Ls = tsUs (5.5)

Images of a typical slug front and tail captured by high-speed camera are also shown in
Figure 5.6.

5.3 Results from slug flow studies

Estimates of slug translational velocity, slug front and tail velocity, slug frequency and slug
length are given here. Results based on high-speed camera images, differential pressure data
and the ’Flowan’ software are also presented.

Careful examinations on time series measurements indicates the complex nature involved
with the slug flows. Especially in the slug frequency and length estimations, sudden waves,
which cross the thresholds might be considered as slugs. Such observations correspond to the
superficial gas and water velocities 0.28 m/s and 0.2 m/s are briefly discussed here. Time series
signals calculated based on ERT measurements are given in Figure 5.7. Liquid slug lengths, Ls,
calculated using ERT measurements of sensor plane 1, as explained above, are shown in Figure
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Figure 5.6: Images of slug front and tail based on high-speed high resolution photographs cap-
tured from Motion PRO X camera at 50 fps speed
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Figure 5.7: Time series of mean voltage captured from ERT under ULS 2 m/s and UGS 0.28 m/s
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Figure 5.8: Liquid slug lengths calculated from the ERT measurements shown in Figure 5.7

5.8. This figure can be used to get clarifications in doubts involved in deciding the variations
in the signal due to slug or a wave. A small slug length, about 0.1m, shown at around 140s
time stamp in the Figure 5.8 looks doubtful. Then, time series signals (shown in Figure 5.7)
were zoomed and observed at around 140s as shown in Figure 5.9. It can be seen that the signal
from plane 1 crosses the threshold limit, but the signal from plane 2 does not. Hence, it can’t
be considered as a slug, it looks merely a rolling-wave. The next smallest slug appeared at
around 296 s and it’s length was 0.19m. This can be considered as a short slug, since it has been
observed in both sensor planes as shown in the Figure 5.10.

5.3.1 Slug translation velocity

Slug translation velocity calculated based on the ECT and ERT measurements are presented
in Figure 5.11. Variations in slug translation velocities against the increase in superficial gas
velocities are discussed here.

It can be seen in Figure 5.11, that all three curves show an increase in slug velocities with
increasing superficial gas velocities. ERT measurements show an increase of slug velocity about
0.1 m/s at 0.8 m/s superficial gas velocity and decrease of about 0.13 m/s at superficial gas velo-
city 1.1 m/s compared to the ECT and ’Flowan’ based calculations. Highest velocity difference
0.35 m/s (between ECT and ERT) is observed at the superficial air velocity 2.2 m/s as shown in
the figure.

To determine whether these estimation differences are due to different data capturing rates of
ECT and ERT systems, sensitivities of the slug velocities to the data capturing rates were tested.
Since, the data capturing rate is 100 fps in ECT system, uncertainty involved with the time delay,
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Figure 5.9: Typical wave captured with
ERT system
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Figure 5.10: Typical small slug observed
with ERT system
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Figure 5.11: Slug velocity with water superficial velocity at 0.2 m/s
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Figure 5.12: Estimated uncertainties for different slug velocities. Time delays calculated here
are always a fraction of the data capturing rate. Hence, calculations may miss the values lying in
between. This error uncertainty increases when capturing rate decreases and the slug velocities
increase. Error bars given in figure show the range. ECT is showing relatively small errors
compared to ERT. This is due to the high capturing rate of ECT.

τmax, becomes ±0.005 s. The corresponding uncertainty associated with ERT is ±0.013 s.
When τmax is increased, slug flow velocity is decreased and hence uncertainties of the cal-

culated slug velocities are also decreased. When the time delay, τmax, is decreased, both slug
velocity and uncertainty are increased. Figure 5.12 presents the uncertainty increase in the velo-
city range considered of this work. This may be one of the reasons for higher velocity estimates
resulting from ERT data.

5.3.2 Slug front and tail velocity

Slug front and tail velocities (Us and U f ) calculated from the experimental data captured under
the superficial air velocity 0.28 m/s and water velocity 0.2 m/s for each slug are given in Figure
5.13. It can be clearly seen that these velocities vary from slug to slug. However, slug front
velocity is always slightly higher than the corresponding tail velocity. The mean slug front
and tail velocities from each experiment are calculated and plotted along with the translational
velocity as shown in Figure 5.14. When the superficial air velocity is increased, slug front and
tail velocities are also increased. The velocity difference between slug front and tail also seems
to be increasing.
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Figure 5.13: Calculated slug front and tail velocities Under UGS=0.28 m/s and ULS= 0.2 m/s

5.3.3 Liquid film thickness

As given in Figure 5.15, liquid film thickness is not varying much with the increases superficial
velocities. Film thickness calculated using high-speed camera images are a bit lower than the
ECT based calculations. Most of the time, presence of air bubbles and uneven nature of the
interface made it difficult to measure the interface level from captured images. The ECT based
calculation is affected by the wetted inner pipe wall, it may give higher water volume fractions
and the hl calculated from water volume fraction also affected. This might be the cause for
getting slightly increased hl shown in Figure 5.15.

5.3.4 Slug frequency

Slug frequency decreases when the superficial gas velocity increases as explained in (Kang et al.
1999). The results given in Figure 5.16, show a slight decrease in slug frequency. It can be easily
understood that results based on the image data are showing higher slug frequencies compared
to the ECT and ERT based calculations even though they follow similar trends. An offset of
about +0.05 Hz, compared to the other ECT/ERT based calculations is observed. Limitations
in the memory storage in the camera restrict the possibilities of data capturing time period to
40s. The addition of one slug increases the slug frequency (image based calculation) by 0.025
Hz due to the limited observation time period. The ECT and ERT measurements were made for
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Figure 5.14: Calculated slug front and tail velocities with ULS= 0.2 m/s

4 min and hence the calculations were more reasonable. The maximum difference in frequency
calculations between ECT and ERT is about 0.01 Hz at the superficial air velocity of 1.1 m/s.

The differential pressure measurements cannot be used for validation of the slug frequencies,
if the above mentioned method is employed. This is due to the peaks of the pressure signals does
not indicate similar magnitude even though the pattern is similar. However, the slug frequency
can be determined using PSD (Power Spectral Density) analysis of differential pressure signals.
Here, the frequency corresponds to the maximum power is picked as the slug frequency.

Another set of experiments was performed by changing the water superficial velocity to 0.33
m/s. Results based on the ECT measurements and the frequencies calculated with differential
pressure based estimates are given in Figure 5.17. PSD of the differential pressure signals at
given experimental conditions are shown with power spectrums in Figure 5.18. Both calculations
show that the slug frequency is increased with the increase of superficial gas velocities.

5.3.5 Slug lengths

Each individual liquid slug length calculation was made using Equation (5.5) as explained ear-
lier. Slug velocities plotted in Figure 5.11 are used in the liquid slug length calculation.

Slug lengths calculated using ECT measurements at superficial water velocities 0.2 m/s and
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Figure 5.15: Liquid film thickness calculated with water superficial velocity 0.33 m/s

0.28 m/s with different gas velocities are given in the Figures 5.19 and 5.20. It can be clearly seen
in both figures that the slug lengths of each experiment vary randomly. The longest from these
experiments is 4m and the shortest is less than 0.5m. The Figure 5.21 illustrates how the mean
slug length (calculated using ECT measurements) with uncertainties varies, when gas velocity
increases. Uncertainty range is approximately ±0.2 m and is more similar for all experimental
points. Lower gas velocities may generate shorter liquid slugs, but higher gas velocities tend
to produce longer slugs as explained in (Cai et al. 1999). Figure 5.22 shows the slug length
estimations with ECT, ERT and image based measurements. All 3 curves show decrease in slug
lengths with an increase in superficial water velocities. At superficial gas velocity 2.2 m/s, image
data based calculation gives 1.7 m for the mean slug length. Difficulties involved in estimating
exact time window of the slug are one of the reasons for the variations in image based approach.
The slug translational velocity used in the slug length calculation was based on the ERT signals.
This might also be a reason for getting some higher and lower slug length values. To see whether
the trend observed exists with different flow conditions, another two sets of experiments were
performed varying superficial water velocities to 0.27 m/s and 0.33 m/s separately. Results after
the ECT measurement based calculations are presented in Figure 5.23. It can be seen clearly in
Figure 5.23 that the mean liquid slug length decreases with increase in superficial gas velocity.

5.3.6 Variations in velocities in cross-sectional area

Cross-correlations between corresponding measurement signals from both planes were perfor-
med to see the possible dynamic across the pipe cross-section. Observations with ERT measu-
rements are given in the Figure 5.24. Velocity range given by the correlations varies between 0
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Figure 5.16: Slug frequencies with water superficial velocity at 0.2 m/s based on ECT, ERT raw
data and pixel based analysis from different frames of images.

m/s and 7 m/s. Figure 5.24 shows that measurements from electrode combinations E1,2−E3,4
2,

E1,2−E10,11, E1,2−E1,16, E2,3−E5,6, E2,3−E1,16, E4,5−E14,15 and E5,6−E14,15 give velocity as
7 m/s. The combinations E2,3−E6,7, E3,4−E7,8 and E4,5−E7,8 covering the pipe bottom give an
estimated velocity of 2.3 m/s. Since all signal combinations are not having information related
to the pipe flow fluctuations, contribution to the average velocity estimation varies. Those cover
a larger sensing area of the pipe cross-section; especially the interface may contain better infor-
mation related to the real velocities and variations. Low measurement frequency has limited the
possible velocity variations to three values discussed earlier.

The resolution of the correlation can be improved by interpolating the values near the corre-
lation peak. Then the peak is found by a fitting a quadratic function of the three values surroun-
ding the peak (Long 2006). Correlation results with ECT measurements given in Figures 5.25,
5.26 and 5.27 are with these improved resolutions.

Figure 5.25 shows the cross-correlation of capacitance measurement C1,8 , C1,9, C1,10, C1,11,
C7,9, C7,10, C7,11 and C8,12 at both planes, shows estimated velocities over 4 m/s. Those will
be over 3 m/s, for the experimental results presented in Figure 5.26 under given conditions.
Measurement combinations across the cross-section can be seen in each inset of corresponding
figures. Those combinations correspond to the measurements from the top part of the pipe
and indicate in blue lines. During the most of the time in slug flows, this top part contains

2E1,2−E3,4 - Current is applied through electrode 1 and 2 and voltage between electrode 3 and 4 is measured
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Figure 5.17: Slug frequencies with water superficial velocity at 0.2 m/s based on differential
pressure and ECT measurements.

air. Measurement near pipe walls where liquid is always occupying gives lowest velocities.
Combinations correspond are C1,2 , C1,12, C2,3, C3,4, C4,5, C5,6, C6,7 and C7,8 and given in red
lines. Less dynamic in liquids near bottom of the pipe wall would be the reason for having such
lower values. Even within the Taylor bubble region, these areas contain liquid. ECT results
show much variation compared to the ERT.
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Figure 5.18: PSD of the differential pressure signal at superficial water velocity 0.33 m/s and air
velocities a) 0.28 m/s b) 0.56 m/s c) 0.83 m/s d) 1.11 m/s e) 1.39 m/s f) 1.67 m/s g) 1.95 m/s h)
2.22 m/s i) 2.5 m/s j) 2.78 m/s. Dominant frequency (peak) of spectrum is selected as the slug
frequency of the given flow
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Figure 5.19: Slug lengths calculated from ECT signals at superficial water velocity 0.2 m/s and
air velocities a) 0.28 m/s b) 0.56 m/s c) 0.83 m/s d) 1.11 m/s e) 1.39 m/s f) 1.67 m/s g) 1.95 m/s
h) 2.22 m/s i) 2.5 m/s j) 2.78 m/s
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Figure 5.20: Slug lengths calculated from ECT signals at superficial water velocity 0.28 m/s and
air velocities a) 0.28 m/s b) 0.56 m/s c) 0.83 m/s d) 1.11 m/s e) 1.39 m/s f) 1.67 m/s g) 1.95 m/s
h) 2.22 m/s i) 2.5 m/s j) 2.78 m/s
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Figure 5.21: Mean slug length calculated from ECT measurements for ULS=0.2 m/s and given
UGS with STD

5.4 Discussions of slug parameter estimation results

The estimation results show that tomometric approach on slug flow parameter estimation is pos-
sible. Data acquisition frequency is very important mainly for better slug velocity estimations.
However, the number of data points are not so large, verification with other techniques evident
that estimation results are satisfactory. Study of the dynamic based on the measurements across
the sensor cross-section using cross-correlation also gives promising results, though they cannot
be used to determine the liquid film thickness.
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Figure 5.22: Mean slug length estimations with ECT, ERT and image data for ULS=0.2 m/s and
given UGS
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Figure 5.24: Slug velocities with cross-correlation of individual ERT measurements at superfi-
cial gas and water velocities 2.78 m/s and 0.2 m/s
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Figure 5.25: Slug velocities with cross-correlation of ECT measurements at superficial gas and
water velocities 2.78 m/s and 0.2 m/s. The capacitance values indicated on the axis refer to the
respective electrode combinations on plane 1 and plane 2.
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Figure 5.26: Slug velocities with cross-correlation of ECT measurements at superficial gas and
water velocities 1.95 m/s and 0.2 m/s. The capacitance values indicated on the axis refer to the
respective electrode combinations on plane 1 and plane 2.
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Figure 5.27: Slug velocities with cross-correlation of ECT measurements at superficial gas and
water velocities 0.83 m/s and 0.2 m/s. The capacitance values indicated on the axis refer to the
respective electrode combinations on plane 1 and plane 2.
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Chapter 6

Flow regime identification for
multiphase flow control

Use of the properties of capacitance data matrix from electrical capacitance tomography in flow
regime identification and some flow parameter estimations is discussed in this chapter. Detection
of reverse flow in pipes with ECTm is also discussed separately.

6.1 Properties of the capacitance matrix

Characteristic in the eigenvalue distribution of normalised capacitance matrices for three basic
flow patterns have been analysed and compared by (Fang & Cumberbatch 2005).

Core flow, annular flow and stratified flow are the flow patterns investigated with numerical
simulations and theoretical analysis. Possibilities of identifying flow regimes mainly annular
flow, stratified flow and slug flows in horizontal pipes are investigated following the approach
given by (Fang & Cumberbatch 2005) with experimental data. Here, the analyses were first done
for static flow patterns and then extended to dynamic flow measurements.

As explained in the Chapter 2, typical single measurement frame captured using an ECT
system contains only independent inter-electrode measurements. This is mainly to reduce the
time involved with the measurement sequence. Measurements in such a typical data frame
captured using 12 electrodes sensor can be arranged in an upper triangular matrix as explained
in the matrix given in Equation (6.1).

Cm =




C1,2 C1,3 C1,4 · · · C1,NC

0 C2,3 C2,4 · · · C2,NC

0 0 C3,4 · · · C3,NC
...

...
...

. . .
...

0 0 0 · · · CNC−1,NC




=

{
ai, j =Ci. j+1 f or i 6 j

0 f or i > j
(6.1)

where NC Number of electrode in the sensor. i = 1,2,3, ...NC and j = 1,2,3, ...(NC−1).
To make the complete measurement matrix, which fills all combinations of inter-electrode

measurements, lower triangle elements are filled with relevant available measurements. Then
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the constructed measurement data matrix would be as given in Equation (6.2).

Cm̄ =

{
ai, j =Ci. j+1 f or i 6 j
ai, j =Ci+1, j f or i > j

(6.2)

Properties of the data matrix, Cm̄, given in Equation (6.2) are then used in the analysis.
Theoretical analysis given in (Fang & Cumberbatch 2005) explains that there is a strong re-
lationship between the leading eigenvalue of the data matrix and corresponding liquid volume
fraction. The following sections provide the results of three basic flow patterns.

6.1.1 Identification of stratified/layered flows

Static layered flows of liquid were generated in the horizontal pipes. 56 mm and 94 mm diameter
pipes were used in the experiments. Liquid level was increased from 0 mm to the pipe diameter
and inter-electrode measurements correspond to each level was collected. Interface levels were
measured by using a ruler.

Static layered flows

Calculated eigenvalues of normalised capacitance data matrix against the interface level are in-
vestigated. Figures 6.1, 6.2 and 6.3 show results of water-air, water-oil and oil-air two phase
flows respectively. It can be seen clearly that leading eigenvalue increases linearly with inter-
face level, despite the type of components available in the separator section. The magnitude
of the second largest eigenvalue increases with the increment of the interface height until the
interface level reached around 60 to 70 mm and drops down to zero afterwards. Variations in
other eigenvalues are not so significant compared to the first two leading ones. Dominant eigen-
values plotted against corresponding dense fluid fractions αw in Figures 6.1 b) and 6.3 b) and
αo in Figure 6.2 b) show linear relationships between these two variables. Parameters of linear
regression lines are given in the Table 6.1 below.

Table 6.1: Regression parameters which explain relationship between leading eigenvalue,Eid ,
and liquid fractions,αw/o,αw and αo.

Phases regression line
Water and oil αw/o = 0.12Eid−0.28
Oil-air αo = 0.11Eid−0.13
Water-air αw = 0.12Eid−0.19

Gradient of the regression line is almost same in all three instances, though there is around
0.15 and 0.05 offsets between them. Figure 6.4 shows the variation in leading eigenvalue in all
three two phase combinations together. Linear relationship between interface level and magni-
tude is more similar despite the flow components in the pipe section.

When one of the components is water, the uncertainty around the linear regression line is
high. Deviation from the linear relationship is significant around α = 0 and α = 1, when water
is present. Such a behaviour was also observed in the ANN based interface level estimation
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Figure 6.1: a) The eigenvalues Ei plotted against the interface height for oil-water stratified
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discussed in the Chapter 4. However, when two components are oil and air, variation is more
linear and deviations from the regression line are minimal even at the zero and fully developed
oil levels. It can be clearly noticed in Figure 6.4 a) and b) that leading eigenvalue has a better
linear relationship with interface level compared to the volume fraction. Figure 6.4 b) shows
that the magnitude of the eigenvalues corresponds to volume fractions between 0- 0.2 and 0.8-1
is not linear. Corresponding interface levels shown in Figure 6.4 a), do not show such variations.
This can be clearly observed with oil-air two phase flow results. Though, larger uncertainties at
zero are common with most of the measurement systems. Here, the uncertainty of the interface
level measurements has also contributed to increase of non-linearity mainly at lower volume
fractions. However, the parameter, interface level (hI) can only be available with stratified flows
while volume fraction is applied in other flow pattern characterization. Hence, further analysis
is done with increased focus on volume fractions.

Dynamic Layered flows

Measurements from the horizontal layered flow (two phase) in 56 mm diameter pipe was uti-
lised in the further studies. An overview of a layered flow under inlet superficial velocities
UWS = 0.33 m/s and UGS = 0.33 m/s is given in the Figure 6.5. As the figure clearly illustrates,
interface level indicates in the camera image shows a good agreement with the interface in-
formation shown in tomogram. Measurement results also show that capacitance measurements
between the electrodes pairs below the interface are larger (close to 1). Further investigations
were performed by comparing Gamma measurement results presented by (Vestøl 2013) on the
layered flow under the same conditions. Here, the liquid volume fractions were calculated ba-
sed on the pipe geometry and interface level measured using single beam Gamma densitometry.
Results, when two phases are air-oil and air-water, are given in Figures 6.6 and 6.7.

Figure 6.6 indicates a linear relationship between dominant eigenvalue and volume fraction
as observed in the stagnant two phase layered flow studies.

The measurements available are not so sufficient to provide a firm conclusion that this re-
lationship is linear for every possible layered heights and volume fractions. However, available
dynamic and static layered flow results give strong evidences on such a linear relationship. Re-
gression parameters calculated in static and dynamic flow measurements are somewhat different.
This might be due to various reasons. One of them is due to incorrect volume fraction calcu-
lation. Volume fraction was calculated using interface level measurements and pipe geometry
information. However, the interface height near the pipe wall is slightly different and do not
take into consideration in the calculation. Some other primary cause might be the wetted pipe
wall. Most of these layered flows are stratified wavy flows and therefore the larger wetted area
an above the interface level can be followed. Since ECT measurements are very sensitive near
the pipe boundary, it increases the capacitance values and thus the magnitude of the eigenvalues.

As shown in Figure 6.7, when two phases of the flow are water and air, this gets worse. Apart
from the above given reasons, this might be due to common issue involved with conductivity and
sensitivity effect involved with water in ECT measurements.

Despite all the reasons, identification of the stratified flow pattern looks possible with this
approach without having many issues. All layered flow results shown in corresponding figures
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b)a)

c) d)
Measurement.no:.of.the.frame

Figure 6.5: Layered flow observation with a horizontal flow under inlet component velocities
UWS = 0.33 m/s and UGS = 0.33 m/s. a) High-speed camera image b) Constructed ECT tomo-
gram c) Data matrix d) Measurement in the data frame.
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with regression line for comparison

clearly suggest that second and third largest eigenvalues are having opposite signs as mentioned
by (Fang & Cumberbatch 2005).
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6.1.2 Slug flow identification

Same 56 mm diameter test section attached to the flow rig was utilised in the slug flow studies,
but the test pipe section kept at +1 degree to the horizontal to generate slugs.

Inlet flow rates were first maintained at 30 kg/min, water and 0.35 kg/min, air. As explained
in Chapter 5, slug body region and bubble region are the two clearly recognizable sections in a
typical slug unit. High-speed camera images, corresponding ECT tomograms and constructed
data matrices of those two typical flow regions are presented in Figures 6.8 and 6.9.

Figure 6.8 a), which is a high-speed camera image, shows a fully developed slug body region.
Constructed ECT tomogram and capacitance data matrix explained in Figures 6.8 b) and c) also
prove that most of the pipe cross-section covered by the sensor plane is filled with the water.
Normalised inter-electrode capacitance measurements, used in the construction of the above
tomogram are shown in Figure 6.8 d). Most of them have normalised capacitance values above
0.6. This observation indicates the dominance of the high permittivity component. Figure 6.9
corresponds to a typical bubble region of a horizontal slug flow. It is more like a stratified
flow regime representation. Inter-electrode measurement distribution tomogram resembles the
scenario presented in Figure 6.5, which represents a typical stratified flow.

Eigenvalue variations with regard to the water fractions under the above mentioned inlet
flow conditions are given in Figure 6.10 a). Here, water volume fraction was calculated based
on inter-electrode capacitance measurements as explained in Equation (5.1). Figure 6.10 a)
clearly illustrates that the leading eigenvalue is positive and nearly linear as explained in (Fang
& Cumberbatch 2005). The linear relationship shows the usability of the dominant eigenvalue
in estimation of the water volume fraction as given in Figure 6.10 b). Figure 6.10 b) exhibits
clearly a linear fit between αl and Eid . The overall RMSE of the volume fraction estimate was
0.01 and the largest uncertainty of an estimate is found to be around volume fraction 0.4.

Transitions involved with slug flows in horizontal pipes can be described as sequential col-
lections of levels in layered flows, which are increasing and decreasing their levels in transients.
Similarities in eigenvalue variations in layered and slug flow presented in this chapter provide
evidences.

Second and third leading eigenvalues marked in red and dark blue colours in Figure 6.10
a) show that their signs are opposite as observed with stratified flows. Even the distribution of
eigenvalues and their variations along with increased water volume fraction shows that these
types of slug flows are derivations of stratified flows.

Figure 6.10 c) which explains corresponding leading eigenvalue variations and volume frac-
tion variations with respect to the time, clearly illustrates the fact again that largest (dominant)
eigenvalue has similar dependency on the volume fraction signal. Hence, it should be possible to
use this largest eigenvalue variation to extract some slug parameters as did with volume fractions
in Chapter 5.

Unlike layered flow studies, there was no any method available to measure the actual water
volume fraction to compare with dominant eigenvalue variations. To make a clear conclusion,
these results should be verified with different techniques.
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a) b)

c) d)
Measurement.no:.of.the.frame

Figure 6.8: Liquid slug body observation with a inclined flow under inlet component veloci-
ties UWS = 0.20 m/s and UGS = 2.39 m/s. a) High-speed camera image b) Constructed ECT
tomogram c) Data matrix d) Measurement in the data frame.
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Measurement.no:.of.the.frame
c)

b)a)

d)

Figure 6.9: Taylor bubble of a typical inclined flow under inlet component velocities UWS =
0.20 m/s and UAS = 2.39 m/s. a) High-speed camera image b) Constructed ECT tomogram c)
Data matrix d) Measurement in the data frame.
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c)

b)

a)
Water.volume.fraction

Figure 6.10: Eigenvalues of normalised capacitance matrices against water fraction for the slug
flows
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6.1.3 Annular flows identification

To create static annular flow distributions, plastic hollow tube arrangements with different dia-
meters were used. Figure 6.11 shows core sizes and distances from the center line. Though,
there are only three different core sizes available, constructed tomograms can be used to dis-
tinguish the sizes. These static core flow representations cannot be useful to identify how the
eigenvalues vary with the varying liquid fractions due to insufficient data points, but it shows
where first three eigenvalues are and hence can be used in detecting flow regime as explained
by (Fang & Cumberbatch 2005). The results correspond to the cross-sections given in Figure
6.11 are shown in Figure 6.12. As shown in the figure, dominant eigenvalue has the highest
magnitude and second and third largest eigenvalues approximately same in magnitude but signs
are opposite. Both air-water and air-oil two phase flows show the same behaviour.

Figure 6.11: Core sizes and corresponding tomograms when two phases are air-water and air-oil.
Distance between pipe center and core center for given three different cases are given with core
diameters as in a) 28 mm and 31 mm d) 21 mm and 45 mm g) 15 mm and 64 mm

ECT measurements of the annular flow generated in the multiphase flow loop were also ana-
lysed and the results are given in the Figure 6.14. It can be found out in the figure that dominant
eigenvalue is positive and increasing with the addition of the high dense component, oil (in this
experiment).The second eigenvalue is almost similar in magnitude, but has the negative sign.
Third and fourth show similarity in magnitude, but has the opposite signs.
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Figure 6.12: Eigenvalues corresponds to the flow representations given in Figure 6.11
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Figure 6.13: Eigenvalues corresponds to centric annular flow
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Figure 6.14: Eigenvalue of capacitance matrices corresponds to air-oil two phase flow experi-
ments

Though (Fang & Cumberbatch 2005) says that second and third dominant eigenvalues have
opposite signs, both are observed on the negative side of the figure.

Third dominant eigenvalue would not be so significant, if volume fraction goes over 0.55, as
discussed by (Fang & Cumberbatch 2005).

6.1.4 Discussions on basic flow identifications using matrix properties

(Fang & Cumberbatch 2005) has explained that the leading eigenvalue is a solid indicator of
the liquid volume fraction variation based on simulation results. Results from both static and
dynamic layered flow experiments show that relationship explained is similar. They have further
explained the possible verification with second and third eigenvalues. According to them, second
and third dominant eigenvalues should have opposite signs. A very good agreement can be found
from the analysis of experimental data given in Section 6.1.1. The slug phenomena in horizontal
flows can be represented as a collection of layered flows with increasing interface height as
explained in an above section. Corresponding results show that this explanation is acceptable.

Since just three different phantoms were used in the annular flow studies, it is hard to esta-
blish a statement based on those results. But, one thing can be distinctly observed that second
and third dominant eigenvalues are approximately same in magnitude, while having opposite



6.2. REVERSE FLOW DETECTION 97

signs. This does not agree with the results made by (Fang & Cumberbatch 2005). According to
them, they should be positive and approximately equal. Results from dynamic flow experiments
contain very low liquid fractions (less than 0.015). In accordance with further explanations gi-
ven by (Fang & Cumberbatch 2005), for such small liquid fractions those characterizations may
not be accurate. Hence, more experiments with higher liquid fractions are required for further
investigations and validations of these techniques.

6.2 Reverse flow detection

In multiphase flow applications involved with oil and gas production and transportation safety
is the key focus due to the high risk involved. Apart from the studies on the risks involved with
forward flow and their relationships with different flow patterns and parameters, reverse flow
detection and prevention also important in practice. It can be seen in recent developments in
multiphase flow metering instruments that apart from the flow component estimations, they are
trying to include the reverse flow detection as an additional option. Though ECT is a promising
technique in multiphase flow metering in pipelines, possibilities of detection of flow reversing
has not been investigated using this technique.

Construction of tomograms from inter-electrode capacitance measurements and image qua-
lity improvements were among the main research focusing for last couple of decades. But, the
feasibility of getting flow component information from such images is minimal as explained by
(Yang 2011).

After the extraction of oil with other fluids in sub-sea installations, they are transported to
the offshore platforms and then to onshore platforms. The orientations of the transportation
pipelines among platforms and oil wells are varied and upward inclined sections can be seen
frequently. Possible reverse flow detection within such sections is studied experimentally in the
lab scale facilities explained in Chapter 3. Reverse flows, which are associated with slug flow
patterns are investigated here, with the view of detecting the reversing immediately to prevent
possible damages to the actuators and other system components. Electrode arrays of twin plane
capacitance sensor connected to the ECT systems are used here in measurements from each
plane. Here, the flow reversing is studied without making any modification to the available ECT
systems.

Possibilities of using cross-correlation technique for the detection of the reverse flow in
similar two phase gas-liquid flows have been mentioned in the (Bertani et al. 2010). Conducting
probes have been used in measurements there. Electromagnetic flow-meters, which are used to
measure conducting liquid flows, can detect both forward and reverse flows.

As emphasised in the Chapter 4, fast estimation is more important in measurement and
control applications than the accurate tomogram construction, which is time consuming. To
cope with such requirements, tomometric approach that is discussed in this section would be
more reasonable. Recent experimental studies on inclined pipe flows indicate that depending on
various settings of the parameters such as pressure, flow rate, inclination angle etc influence on
both flow velocity and the flow direction (Corneliussen et al. 2005). Change in flow direction
can affect the hardware installations of pipelines, particularly if the flow is dominated by slugs.

This section explains how to detect the flow direction using twin plane electrical capacitance
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Figure 6.15: Cross-correlation of volume fraction signals from plane 1 and 2 in time and fre-
quency domains

tomometry, and cross-correlation of the time series of raw capacitance values. This kind of
information is very useful for process engineers to take actions to prevent possible damages to
the system.

6.2.1 ECTm Correlation approach

Data processing in tomometric approach is same as explained in Chapter 4. Results of the expe-
riments under air-water mixture velocity, Umix, 5 m/s and liquid fraction, αw, 0.01 is discussed.
According to the Equation (5.3) used in the slug flow velocity estimations in Chapter 5, the
maximum measurable velocity with the use of cross-correlation technique will be at time lag
0.01s (1/ fcap). This discriminate the time lag between two signatures by 1/2 fcap. This can be
obviated to a certain extent by interpolating data points around the peaks of correlation profile.
This approach has been discussed with more details by (Long 2006).Capturing high-speed ca-
mera images are used to verify the reversing. More information can be found in attached Paper
2. Typical cross-correlation function of two time series signals of volume fractions is shown
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Figure 6.16: Reverse and forward flow indication with cross-correlation

in Figure 6.15. Since two signals correlated are 60s long, time lag extracted is mainly from
slug front, which is the most dominant. Since the reversing appears in the Taylor bubble region,
selection of the correlation window is the key thing in the reverse flow identification.

Several sets of experiments with flow reversing were performed with different inlet flow
parameters. Measurements of the twin plane ECT system were sufficient to identify the reversing
without any modification to the arrangement.

How this correlation based approach works, is depicted in Figure 6.16. Here a moving
window of the 2s was used in each cross-correlation and only the sign of normalised velocity is
sufficient to identify the flow direction.

6.2.2 Discussion on reverse flow identification using tomometric signals

When the correlation window becomes too large, this reversing information cannot be observed
and dominant slug translational velocity will be indicated. Hence, the selection of correlation
window is more important. But, the possibility of implementing a system to detect flow reversing
without having any modification to the system would be an added advantage.
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Chapter 7

Dynamic Time Warping (DTW)
technique for slug length estimation

7.1 Process description

ECT measurements can easily be combined with other measurements to extract process parame-
ters. Most of the research groups are now getting ECT systems in their facilities with the view
of fusing them with other measurements and having improved estimations. Almost all measu-
rement techniques have different strengths and weaknesses. Hence, a fusion of measurements
from different types of techniques produces much improved and reliable information.

Pressure is one well known governing parameter in flow processes. Hence having pressure
measurements are vital in process studies. Differential pressure measurements facilities are
available at the multiphase flow rig at TUC and DP measurement points and placements of ECT
sensors are as given in Chapter 3.

Pressure and liquid volume fraction signals (from ECT) are warped to identify liquid slugs
in water air two phase flows here. Results are discussed in this chapter. The studies are restricted
only to slug flows with focus on early slug detection and timely characterization of those slugs.

Dynamic Time Warping (DTW) is typically used to align two signals optimally. Characte-
ristic slug pulses occur in time series signals of the pressure and ECT are warped in this study.
Unlike a typical DTW application, two signals are being warped are not captured simultaneously.

7.2 Signal arrangement and DTW

Experiments were restricted to slug flow studies. Some measurements of air-water two phase
flows performed under atmospheric outlet pressure and room temperature are used in the ana-
lysis. Signals from the twin plane ECT system and differential pressure signals from PDT120
were selected. Pipe inclination was kept at +1◦ to the horizontal plane to generate slugs conve-
niently. More details on flow and measurement facilities can be found in Chapter 3. Data from
experiments performed under inlet flow rate of water 50 kg/min was selected. Here, only inlet air
flow rates were changed for each experiment. They were between 0.05 kg/min and 0.5 kg/min

101
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as given in Table 7.1.

Table 7.1: Inlet flow parameters of each experiment.
Air flow rate warer low rate

Test no kg/min kg/min
1 0.10
2 0.25
3 0.3 50
4 0.35
5 0.4
6 0.45

Volume fraction, αw, was calculated utilizing the equation given in (5.1).
Dynamic time warping is a widely practiced technique in many speech and image processing

algorithms, especially in similarity study of various signatures. Typically signals used in DTW
are time series. DTW is a versatile tool in data mining applications, where there is a need
for detecting “matches” in many sets of time series. The sets of time series are warped in the
temporal domain somewhat non-linearly under some constraints. As such, DTW is a useful tool
in sensor data fusion in process industries, where the tags can run into thousands and data can
run into the Taylor Bubble (TB) regions. Basic formulation of DTW technique for two time
series signals is explained briefly in Section 2.2.5

7.3 Slug characterization

Slug flow parameter estimated under above mentioned experimental conditions were also part
of the studies discussed in the Chapter 5. Inter-electrode measurements from the twin plane
ECT system were used for the calculation of water volume fractions (αw) separately as given
in Equation (5.1). Then, they were cross-correlated to estimate the slug velocities (Us) for each
test. These calculated slug velocities are important in the slug length calculation. Using Equation
(5.5), each slug length (Ls) can be estimated. ts is the difference between times in tail and front
of the particular slug. Similarly, lengths of all slugs are estimated.

Due to the complex nature of the slug boundaries, as given in the Chapter 5, a threshold
value was introduced to locate the liquid slug body region. Selected threshold was 0.7 for this
analysis. Once αw crosses this threshold from a lower value, that point is selected as the slug
front. When the threshold is reached from higher αw that point is registered as the slug tail. This
is how the time difference, ts, used in the Equation (5.5) is calculated.

Differential pressure signal, Dp, from DP121 sensor was also captured along with ECT
measurements. Dp signal and αw signal were warped to have optimum signal alignments. Unlike
αw signals, Dp signals alone do not indicate any clear information on individual slugs. However,
the warped signal of Dp on to the αw follows the variations more similar to the αw with different
peak magnitudes, which are proportional to the slug lengths. The magnitude of a typical peak
of a warped Dp is marked as hDp in Figure 7.5. It can be clearly seen in the figure that warped
Dp signal gives its peak within the liquid slug body region of the corresponding slug. It eases
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Figure 7.1: Distance matrix and warping path along with two signals, differential pressure, Dp,
and water fraction, αw,captured from test 2
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Figure 7.2: The warped signal of differential pressure, Dp, and water fraction, αw, correspond
to test 2, represented in a common time axis
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Figure 7.3: Warping of differential pressure, Dp, and water fraction, αw, signals captured from
test 1 along with distance matrix and warping path (white line).
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Figure 7.4: The warped signal of differential pressure, Dp, and water fraction, αw, correspond
to test 1, represented in a common time axis
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Figure 7.5: Warping differential pressure,Dp, on to water fraction signal, αw, and selection of
pressure peak, hDp, and time window of the slug

the selection of the hDp. Likewise, Ls of all slugs appeared in the experiment and corresponding
hDp are collected. Flow chart given in Figure 7.6 summarises the whole procedure of estimation
of slug lengths.

7.4 Co-operative data fusion to estimate slug parameters

Dp signal and αw signal are given on left and bottom sides of the corresponding distance matrix
in the Figure 7.1. Inlet flow rates maintained throughout the experiment were 0.25 kg/min air
and 50 kg/min water (test 2). Warping path, Pw, is indicated in white on the distance matrix
plot. Then, the warped Dp signal extracted from the warping path information with reference
to water volume fraction signal is selected and plotted as in the Figure 7.2. Figure shows the
mapping of differential pressure signal, Dp, onto the volume fraction signal αw visualizing its
hidden information.

Similar results are shown in Figure 7.3, where experiments were performed under 0.05kg/min
air and 50 kg/min water inlet flow rates (test 1). It can be seen from Figures 7.2 and 7.4 that
positive-going ups and negative going downs of water volume fraction αw and warped Dp are
aligned properly with the plateau parts of these two time series also falling in the same time
slots. It is interesting to note that for plateaus for a water volume fraction αw with wider time
slots, higher amplitudes of the differential pressure signals, Dp, can be observed.

Each individual slug length, Ls, was calculated as explained in the Section 7.3. Results
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Water volume fraction 
calculation

Select peak of 
warped

Figure 7.6: Structure of calculation of slug length with DTW of differential pressure signal,Dp
and water fraction signal, αw, with cooperative data fusion.

corresponds to the first 100s of test 2 are given in the Figure 7.7. Calculated liquid slug length
(Ls) and magnitude of the Dp peak, which lies within the corresponding slug body (hDp) is also
then studied with respect to both the time slots and their respective amplitudes. Then the liquid
slug lengths and corresponding pressure peaks of each 23 slugs observed were plotted against
each other as illustrated in Figure 7.8.

It can be seen clearly in Figure 7.7 that liquid slug length is proportional to the hDp value.
This can be clearly observed in hDp vs αw plot in Figure 7.8. Though quadratic regression line
evidences the proportionality, some data points can be seen resting far away from the regression
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Figure 7.7: Slug lengths,Ls, as calculated using slug velocities,Us from test 2 data and corres-
ponding warped differential pressure,Dp.

curve while others are scattered around. Linear data fitting also look reasonable, if the studied
slug length range is considered, though there are some disagreements with quadratic fit for slugs
shorter than 0.5m and longer than 2.5m. Each slug was individually checked with the pressure
peak, but the data show no evidence to consider any of them as outliers. Slugs around 2m
lengths lie much away from the regression lines as shown in the Figure 7.8. To have a clearer
picture while handling uncertainty involved, slug lengths and corresponding pressure peaks were
classified into 6 different groups as given in Table 7.2. The mean values of hDp and their standard
deviations are given in the other columns for the given conditions of test 1 and 2.

Analysis was repeated with other data sets under the given experimental condition in Table7.1.
Here the study of the slug lengths and corresponding pressure peaks were done with the help of
high-speed camera images for further confirmation.

As illustrated in Figure 7.10, sequence of images are captured from high speed camera for
the observation time period, Tob. 600th pixel column of each image is picked as shown in the
figure. Since the time taken to move from one image to other is 1/ fcaps, it is applied for these
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Figure 7.8: Variation of normalised pressure peak (hDp) with increasing Slug lengths under the
experimental conditions of test 2

Table 7.2: Pressure Peak variation under different slug lengths.
Normalised Pressure Peak

(
h̄Dp±ST DhDp

)

Slug Length m Test 1 Test 2
0-0.5 0.38±0.0
0.5-1 0.31±0.11 0.30±0.09
1-1.5 0.41±0.0 0.37±0.09
1.5-2 0.55±0.14 0.49±0.2
2-2.5 0.62±0.15 0.61±0.07
2.5-3 0.78±0.21 0.73±0.10

pixel columns as well. Hence, by sequentially stacking those selected pixel columns, an image,
which represents the flow variations with respect to time, can be constructed.

Images were captured at fcap = 50fps for the construction of the image in Figure 7.11 a).
Hence, 5× fcap=250 number of images are needed for a 5s view of Figure 7.11 a). For the same
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period of observation, the corresponding Dp signal train was identified by DTW technique. The
process was repeated for every 5s time slot containing the slug images.

Figure 7.11 shows the comparison of time series signals of image data and αw data of test 5.
Signals from the two modalities indicated a very good agreement with slug flow measurements.
The waves appeared at 13s and 23s of the Figure 7.11 a) also visible in the Figure 7.11 b) as
well. The warped Dp does not exhibit any sign of dynamic at those waves. Slug encircled
on both Figure 7.11 a) and b), is identified as a possible outlier as marked in black circle in
corresponding Ls vs hDp plot shown in Figure 7.9.
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Figure 7.9: Variation of normalised pressure peak (hDp) with increasing slug lengths under the
experimental conditions of test 1. Circled data point looks like an outlier

This is mainly due to a larger pressure peak compared to its relatively small slug body length
(Ls). It can be observed in both Figures 7.11 a) and b) that there are two slugs close to each other.
It is hard to consider these two as a one slug. This portion of the fluid formation seems to be
not a single slug, but a collusion of one or more slugs. These two slugs are too close to each
other for the warped signal processing to differentiate. The prominent pressure changes can
be observed in the selections (in the elliptical ring) shown in Figure 7.11 b). By considering
only the pressure information, this special case can be explained as a one longer slug. However,
image information and ECT based αw calculation indicates the existence of two slugs located
closer to each other.

Similar events were observed in the other experimental data (test 3, 4 and 6) as well. Re-
gression of αw vs hDp of each experiment was calculated excluding such misleading slug infor-
mation. Results correspond to each of these experiments are shown in Figures 7.12.

Slopes and intercept of the regression lines are not varying much with increased inlet air
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Figure 7.10: Procedure followed to get time series representation of the camera image informa-
tion

flow rates. It looks like that slug units with structures different from the rest, are lying away
from the regression line. This fact indicates that they are outliers. Waves, which do not develop
to obstruct the air flow as liquid slug, do not get any significant pressure increase within it.
However, it always produces a significant pressure build up even for a very short slug as shown
in Figure 7.11.
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Figure 7.11: Closely overlapping signal trains from time warped signal, Dp and high-speed
camera images. Although the flow discussed here is horizontal, the view is shown vertically to
enable details of signal train and high speed images visible
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Chapter 8

Main conclusions and future works

8.1 Main conclusions

1 Capacitance measurements form 12 electrode sensor were successfully used in interface
level estimation of two phase flows, though uncertainties varies little in different phase
combinations of air, water and oil. However, results with 6 electrode sensor give around
9% of error uncertainty for air-water two phase flows. With other flow combinations, they
are much less than 9%. This is acceptable for most of the multiphase flow applications. 4
electrodes sensor is also working well in estimations. Uncertainty involved is sometime
lower than 5 electrode asymmetric sensor selection. This is mainly due to inability of
the sensing electrodes to cover much of the interface area. But, the possibility of using
this arrangement with separately trained ANN gives an opportunity to get the estimations
when some electrodes fails and ECT images are not usable.

Effect of higher permittivity of water has increased the estimation uncertainty, when num-
ber of electrodes of the sensor is lowered this can be seen clearly. But, even with the
reduced number electrodes better estimation can be achieved by selecting a better ANN
architecture. Most of the ANN Architectures used in these studies tried to preserve the
hidden architecture with the view of comparison of estimation time. But, in practice with
different flow components along with water, this higher permittivity effect would be si-
gnificant, especially with wetted inner pipe wall and water droplets in air or oil phases.

ECT systems with reduced number of electrodes can be used for estimating interfaces of
layered flows with acceptable estimation uncertainties. For air-water, 6 electrodes sensor
works well and further reduction of sensor electrode would show significant loss in the
accuracy. But, with air-oil two phases even 4, 5 electrode sensors can also be used with
acceptable uncertainty. ANN based inferential method with 4 or 5 electrode sensors gives
faster and timelier responses, which could be implemented in a pipe separator.

In practice, ANN models used in the estimations should be verified frequently to maintain
reliable estimations in operation.

2 Tomogram of stratified layered dynamic flows of air-oil and GRM measurements shows
somewhat higher levels than the corresponding camera image based measurements. Both
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techniques are affected by the wetting of the pipe wall. It can be relatively large with ECT
technique.

3 Slug flow parameters for two phase air-water flows such as slug frequency, slug length,
slug velocity, liquid film thickness can be successfully estimated using ECT, ERT mea-
surements. Average of inter electrode voltage measurements time series signal could be
used to extract the flow parameters, even though ERT cannot be used when there is no
conductive media covering all electrodes. Some high-speed camera images are used for
verifications. Differential pressure signals correspond to some measurements proved the
reliability of slug frequencies. Trends in slug parameters variations against superficial air
velocities are similar with the literature. Cross-sectional information especially near the
pipe wall is indicating some dynamic there. Due to the lower measurement frequencies, it
is difficult to make any conclusion.

4 Same cross-correlation algorithm used in the slug flow studies could be used in the identi-
fication of flow reversing. This lab scale experimental study show that simultaneous mea-
surements of flow velocities, volume ratios and flow direction are possible with ECTm
data. Selection of the correlation window is a critical factor here.

5 Dynamic time warping technique (DTW) was used to align two signal, capacitance, and
pressure with the slug. Here aligned signals of pressure and volume fraction, shows that
possibility of identifying liquid slug with both signals. This cooperative data fusion tech-
nique provides better estimation of the liquid slug length. Linear relationship observed
between normalised pressure peak and liquid slug length will be the easiest way of slug
length estimation.

6 ECT Measurement matrix properties were used successfully in the annular flow stratified
flow and slug flow identifications. Relationship between leading eigenvalue and the liquid
volume fraction was successfully tested and verified. For the water fractions lower than
0.2, this relationship does not work well, but for other ranges, it worked well. Second
and third eigenvalues have opposite signs for layered flows and agree with the literature.
But, for the annular flows, it is very difficult to judge the signs of the second and third
eigenvalues with the limited measurements.

8.2 Future works

1 Arrangements should be made to capture all measurements simultaneously, especially
pressure parameters with ECT and ERT. Therefore, the fusion of the various signals from
different measurements is possible and would yield better results. The synchronised set
of data will provide better fusion results and will improve the quality of results based
on comparative analysis of the fused and individual data. A high-speed camera with a
larger memory capacity will also be helpful in the measurement verifications. A series of
pressure sensors along the pipe flow directions should be placed. Then the measurements
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from those sensors can be used in the comparison of slug flow parameters estimated using
ECTm and ERTm.

2 Pressure fluctuations and their effects on permittivity and hence tomographic image construc-
tions should be studied separately. This would be help to gather more and better pixel
information.

3 How wetting of pipe inner wall affects the ECT and GRM measurements should be studied
along with CFD model. Fusion of model data and measurement data would be helpful to
correct the interface estimation errors.

4 Properties of matrices containing raw data from ECT/ERT of different flow patterns should
be studied further. Main focus should be on the annular flows and relationship between
second and third leading eigenvalues.

5 Data capturing rates of ECT and ERT should also be improved, so that studies can be
extended to extract more information and hence improved tomometrical results with cross-
correlations.

6 Investigating the system in real time with increased number of sensor modalities will give
more information on different system parameters as well as flow phenomena.

7 For process technical solutions for measurement and control of multiphase flow a solu-
tion based on multimodal sensor data fusion as well as fusion of conventional control
algorithms with AI-techniques (such as ANN, Fuzzy, Support Vector Machines) would
be advantageous, as solutions based on mechanical models alone may be inadequate to
describe all the features encountered in different flow regimes.
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ABSTRACT 
 
Electrical Capacitance and Resistance Tomometric (ECTm/ ERTm) approaches are attractive for 
measurement and control applications in the process industries. By using the time series of raw resistance 
and capacitance values R(i,j,t) and C(i,j,t)  ( i=1, …, NR, j = 1, 2, …, NR and i ≠ j for ERT modules with NR 
electrodes; i=1, …, NC, j = 1, 2, …, NC and i ≠ j for ECT modules with NC electrodes), it is shown in this paper 
(with NR=16,NC=12) how the intermittent occurrence of slugs in a liquid/gas two phase flow can be detected 
using the time series data consisting of the measured resistances and capacitances  R(i,j,t) and C(i,j,t).  In a 
pipe transporting oil and gas, the slugs can be characterized by their sizes, occurring instants and 
frequencies. The signal processing employed to estimate these parameters associated with the slugs is 
based on the analysis of the pulse generated from the ECT/ERT module, both in time and frequency 
domains. Some measurements are also performed using high speed camera, thus making this effort 
multimodal. Due to the very much reduced estimation times involved in this process as compared to 
tomographic image processing, this tomometric method has many advantages in real time measurement and 
control applications. Signal processing of the volume ratio data of tomography systems and image analysis 
of high speed camera images can be done to extract various slug parameters. Slug length, velocity and 
frequency in a slightly inclined upward two phase water/air flow are estimated using fusion of data from the 
multimodal system. The results obtained are compared to verify the various parameters estimated using 
different modalities. 
 
Keywords: ERTm, Slug parameters, oil and gas flow, cross-correlation, power spectral density, ECT, ERT 
 

1 MOTIVATION 
 
Electrical Capacitance/ Resistance Tomography (ECT/ERT) is gaining ground in industrial multiphase flow 
metering (Ismail et al 2005). Some key industrial actors in the oil and gas industries have ECT/ERT systems 
in their test facilities. In conjunction with multiphase flow metering, the identification of the regions of different 
phases and hence the flow regimes, is an important application of ECT/ERT. This paper focuses on the 
detection of slugs very often found in multiphase flow using ECT/ERT. When the slug passes the sensor 
head containing the resistance/capacitance sensors, a characteristic pulse is formed showing the spatial 
variations of resistivity or permittivity, given by the raw capacitance/resistance values C(i,j,t) and R(i,j,,t). 
Many parameters characterizing the slug can be obtained by studying the characteristic pulse associated 
with the slug in frequency and time domains.  
 
Slugs in multi-phase flow can lead to hazardous situations involving pressure build-up and blow out as was 
the case on Deepwater Horizon platform in the Mexican Gulf. Timely detection of slug formation can help the 
operators in preventing such disasters. Tomometric methods may well be suited for such applications. From 
raw resistance/capacitance data, sensor level fusion can be performed using inferential methods involving 
such as fuzzy-logic or neural network based algorithms. Fusion at a higher level leading to features easily 
assignable to slugs can also be advantageous, but this might need longer time to process. This paper deals 
with sensor level fusion and addresses some aspects of feature level fusion using inferential methods. 
 

2 MULTIPHASE FLOW FACILITY 
 
A schematic diagram of the multiphase flow facility used for the generation of slug flow is shown in Figure 1. 
The test section consists of 15m long pipe of 56mm internal diameter with flow meters to monitor water and 
air flow at the inlet and some pressure and temperature sensors. The ECT/ERT systems are placed about 13 
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m from the inlet. Pipe inclination is maintained at +1 degree with the horizontal.  The outlet pressure is 
atmospheric due to the storing of the fluids at the outlet in an open tank. 
 

 
Figure 1. Schematic diagram of the test section with ECT/ERT system 

 
Inter-electrode capacitance and resistance measurements were recorded separately using ECT and ERT 
systems with the flow loop running under a selected set of inlet conditions. The ECT system used for these 
experiments is PTL300E. It is capable of measuring up to 100 data frames per second. The current pulse 
ERT system (Randall et al 2004) developed by the UCT (University of Cape Town) was used and resistance 
data were acquired at 37 frames per second in the experiments. 
 
A MotionPRO X Digital camera is used to obtain detailed data regarding slug characteristics such as slug 
frequency, slug lengths and the height of the liquid film. The capture rate used was 40 frames per second.  
 

3 EXPERIMENTAL PROCEDURE AND DATA ANALYSIS 
 
In a typical ERT application, the first set of results are the raw resistance, as well known comprising of 
(NR(NR-3)/2) measurements for an ERT system with NR-electrodes using the pulsed current mode of 
excitation (Daily et al 2000). A schematic of the ERT module is shown in Figure 2. These values are usually 
processed using rather time consuming algorithms to generate images, called tomograms in the context of 
process tomography. By focusing on the ERT signal train (shown in Figure 3) obtained during the transit of 
the slug past the ERT system, and employing signal processing of the pulse generated at the ERT 
electrodes, we can estimate various parameters associated with this particular slug. 
 
Experiments were performed maintaining volumetric flow rate of water at the inlet of the testing unit at 
30kg/min (hence superficial velocity 0.2m/s) while the air flow rate was increased from 0.05 kg/min to 0.5 
kg/min in 0.05 kg/min steps (superficial velocity from 0.28m/s to 2.78 m/s). Inclination of 56 mm diameter test 
pipe was +1◦ to the horizontal plane. Separate ERT, ECT sensors and a high speed camera were also used 
as indicated in Figure 2. 
 
3.1 Slug velocity 
 
Time series of volume ratio data obtained from twin plane capacitance and resistance sensors were cross-
correlated to calculate slug velocity. Figure 2 illustrates how both sensor planes capture the slug flow, 
assumed to have not undergone any change considerably due to the short distances between the twin 
planes for ERT and ECT sensors. The time delays between the two signals from the two sets of ERT and 
ECT sensors are calculated using cross-correlation of signals (Ahmed 2011) as given in equation (1). If 

 tS pl1
 and  tS pl2

 are the signals at the sensor planes 1 and 2 at time instant t  and t respectively, 

then the typical cross-correlation function 
     

tplS,tplS 21
 is defined by the following equation (Datta 2007): 

   dttStS
TT

lim T

plpl
plSplS  




0
2121

1      (1) 

The time delay max  corresponding to the maximum value of cross-correlation function gives the transit time 
of the flow between the two sensors. From the estimate of cross-correlation as given in equation (1), the time 
delay max  can be found by finding the correlation peak. Using the time delay max  and distance L  between 

the two sensor planes, the axial slug velocity, sV  can be evaluated as:  
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s
L

V


   (2) 

Both ECT and ERT measurements were used in the estimation of the slug velocity. Measured row 
capacitance and resistance measurements were correlated separately. Flowan software developed by 
Process Tomography Limited was used to estimate the slug velocities for verifying the results. Flowan 
software uses pixel correlation for velocity estimation. 
 

  
 

Figure 2. Resistance and Capacitance sensors on the periphery of a pipe distributed in two different planes with water and air 
delivering capacitance values C(i,j,t) with i= 1, 2, ..12, j=1, 2, …12 and resistance values R(i,j,t) with i= 1, 2, ..16, j=1, 2, …16 in 

this case  

 
3.2 Slug frequency 
 
Counting the number of slugs moving past these two sets of sensors placed in the two different planes 1pl  

and 2pl  within the observation period can be used to calculate the slug frequency as given in equation (3). A 
threshold value has to be defined to decide the existence of slug (Al-Lababidi 2006). 

 
T

n
f s
s    (3) 

Where sf  is the slug frequency, sn is the number of slugs passed during the observation periodT . 
Average of the ECT/ERT measurement signals was used. The averaging process helps to identify the 
boundaries of the slug bodies. Images captured from the high speed camera were also run frame by frame to 
count the number of slugs to verify the results.  
 
3.3 Mean Slug body length 
 
As indicated in Figure 3, time window st  associated with the slug body is calculated. Then with the estimated 

slug flow velocity, each slug length sL  can be calculated.  
 

 sss VtL    (4) 

The threshold selected in the algorithm used in the slug frequency calculation is used here to find the time 
window of the slug body. Typical slug front and tail images produced by the High speed camera, are shown 
in Figure 4. ECT and ERT signals used in the analysis of slug frequency are shown here to see some clear 
boundaries of slug fronts and tails. 
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Figure 3. Typical Slug pulse as obtained from ERT and ECT time sequences 

 

        
(a)                                                             (b) 

Figure 4. Images of slug front (a) and tail (b). Bottom part of the slug is water and top part air. 
 

4 RESULTS 
 
Estimates of slug velocity, slug frequency and slug length are given in Figures 5, 6 and 7. It can be seen in 
Figure 5, that all three curves show an increase in slug velocities with increasing superficial gas velocities. 
Compared to the ECT and Flowan based calculations, ERT measurements show an increase of slug velocity 
about 0.1m/s at 0.8 m/s superficial gas velocity and decrease of about 0.13 m/s at superficial gas velocity 1.1 
m/s. At superficial air velocity 2.2 m/s the highest velocity difference of 0.35 m/s is observed.  
To see whether these estimation differences are due to different data capturing rates of ECT and ERT 
systems, uncertainty of the slug velocities due to the data capturing rate of each ECT and ERT systems were 
tested. There is ±0.005 s uncertainty to the time delay, max  in the ECT, since its data capturing rate is 100 

frames per seconds. The corresponding uncertainty associated with ERT is ±0.013 s.   
 
When max  increases, slug flow velocity decreases and hence uncertainties of the calculated slug velocities 

also decrease. When the time delay max  decreases, slug velocity and uncertainty increase. Figure 8 shows 
the uncertainty increase in the velocity range considered of this work. This may be one of the reasons for 
higher velocity estimates resulting from ERT data. 
 
Slug frequency decreases when the superficial gas velocity increases as explained by Kang et al (1999). 
Results show slight decrease in slug frequency. It can be easily seen that results based on the image data 
are showing higher slug frequencies compared to the ECT and ERT based calculations even though they 
follow similar trends. An offset of about +0.05 Hz is observed compared to the other ECT/ERT based 
calculations. Limitations in the memory storages in the camera restrict the possibilities of capturing data to 
40s. The increase of one slug increases the slug frequency by 0.025 Hz due to the limited observation time 
period. The ECT and ERT measurements were made for 4 min. Maximum difference in frequency 
calculations between ECT and ERT is about 0.01 Hz at superficial air velocity of 1.1 m/s. 
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Figure 5. Slug velocity with water superficial velocity at 0.2 m/s 
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Figure 6. Slug Frequency with water superficial velocity at 0.2 m/s 

 
Slug length calculations were made using equation (4) and calculated velocities given in Figure 5. Lower gas 
velocities should result in a shorter slug but higher gas velocities should show increases in slug length as 
explained by Cai et al (1999). All 3 curves in Figure 7, show decrease in slug lengths with increase in 
superficial water velocities. At superficial gas velocity 2.2 m/s, image data based calculation gives 1.7m for 
the mean slug length. Difficulties involved in estimating exact time window of the slug is one of the reasons 
for the variations in image based approach. The slug velocity sV  used in the calculation was from the ERT 
system and it might also be the reason for getting some higher and lower slug length values. To see whether 
the trend observed exists with different flow conditions, another two sets of experiments were performed 
varying superficial water velocities to 0.27m/s and 0.33 m/s. Results after the ECT measurement based 
calculations are given in Figure 9. It can be seen clearly in Figure 9 that the mean slug length decreases with 
increase in superficial gas velocity. 
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Figure 7. Slug Length with water superficial velocity at 0.2 m/s 

 

 
Figure 8. Estimated uncertainties for different slug velocities 
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Figure 9. Slug Length for varying superficial gas velocities at superficial water velocity 0.27 m/s and 0.33 m/s 
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4.1 Variations in Velocities in cross-sectional area 
 
Correlations between corresponding inter-electrode measurements of ERT signals were performed to see 
the possibilities of observing the velocity variations in the pipe cross-section. Figure 10 shows some selected 
combinations of electrodes to see the effects of flow regime on capacitance values.  As given in Figure 11 
correlations based on the electrode combinations E1E2‐E3E4, E1E2‐E10E11, E1E2‐E1E16, E2E3‐E5E6, 
E2E3‐E1E16, E4E5‐E14E15 and E5E6‐E14E15 give the slug velocity as 7 m/s. Since some of the combinations 
of electrodes given above, cover a larger sensing area of the pipe section, these particular combinations may 
lead to better estimates of the velocity and its variations. Not all combinations are sensitive to velocity 
variations, although they all give the average velocity as 3.5m/s.  
 
The combinations E2E3‐E6E7, E3E4‐E7E8 and E4E5‐E7E8 covering the pipe bottom give an estimate of 2.3 
m/s velocity.  
 
Figure 11 shows only 3 different velocities from all different combinations. These 3 velocities are the same 
velocities discussed Figure 8.  
 

     
 

Figure 10. Electrode arrangements of ERT and ECT sensors 

 
Figure 11. Slug velocities with cross-correlation of individual ERT measurements at superficial gas and water velocities 2.78 

m/s and 0.2 m/s  
 
Figure 12 shows the slug velocities obtained with ECT measurements. Correlation measurement of signals 
of the capacitance values C1,8 , C1,9, C1,10, C1,11, C7,9, C7,10, C7,11 and C8,12  at both planes,  give  the estimated 
velocity as 4.7m/s. These combinations are from the top half of the sensor and cover a larger area of the 
medium air, i.e. the top part as shown in Figure 4.  Signals  of adjacent electrode combinations C1,2 , C1,12, 
C2,3, C3,4, C4,5, C5,6, C6,7  and C7,8 show lower slug velocities (most of them are around 3.1 m/s). Most of 
these combinations are from the bottom half of the pipe. The ECT results give better estimates of the slug 
velocities compared to those estimated using the ERT data.  

ERT 
sensor 

ECT 
sensor 
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Figure 12. Slug velocities with cross-correlation of ECT measurements at superficial gas and water velocities 2.78 m/s and 0.2 

m/s. The capacitance values indicated on the axis refer to the respective electrode combinations on plane 1 and plane 2.   
 

5 CONCLUSION 
 
The study presented here compares the estimates of the following parameters for a two phase air/water flow: 
slug frequency, slug length, slug velocity and some information on velocity distribution across the pipe 
section. For the estimation a data fusion methodology based on cross-correlation of inter-electrode 
resistance/capacitance values from ERT and ECT systems is used. From the estimates thus obtained, 
uncertainty of the slug velocity is also calculated. Some parameters are verified using high speed camera. 
These results show that the trend is the same for the slug parameters calculated as functions of superficial 
air velocities. Increasing frame rates of both ECT/ERT systems and simultaneous capturing of the raw 
resistance and capacitance values may improve the quality of all the estimates. 
 
 

6 NOMENCLATURE 
 

RN  
Number of electrodes in ERT 
sensor  

 
st  Time window of the slug (s) 

CN  Number of electrodes in ECT 
sensor  

 T  Observation time period (s) 

M  Number of measurements per 
frame 

 
max  Time delay at correlation peak 

S  Signal  L  Distance between two sensors (m) 

ipl  Plane i   
21 plSplS

  Cross-correlation function of 
signals from 1st and 2nd planes 

  Time delay (s)  
j,iC  Capacitance between i th and j th 

electrode 

sV  Slug velocity (m/s) 

sn  Number of slugs 

 
lkji EEEE   Voltage measurement between k  

and l  Electrodes when i  and 
j electrodes are used for injecting 

the current (ERT) 

sf  Slug frequency (Hz)  ERT Electrical Resistance Tomography 

sL  Slug length (m)  ECT Electrical Capacitance tomography 
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Abstract- Recent studies in process tomography have mostly 
focused on image processing and enhancement of images 
obtained from Electrical Capacitance, Electrical Resistance, 
Electrical Impedance, Gamma- and X-ray- tomographic 
modalities. In the process industries, there is a growing need for 
fast acting measurement and control procedures, architectures 
and their implementation within existing sensor and control 
suites. With this industrial relevance, a multimodal tomometric 
sensor fusion is studied involving pressure and capacitance 
measurements in a two phase flow rig. Pressure is measured 
using standard pressure sensors, whereas the capacitance are 
measured using arrays of capacitance electrodes placed on the 
periphery of a section of the pipe in the multiphase flow rig.  
These capacitance measurements are performed by using ECT-
modules. In this paper, the focus is on early slug detection and 
timely characterization of these slugs formed in the two phase 
flow. To associate simultaneous occurrence of slug based 
phenomena in the time series of the pressure and ECT-signals, 
dynamic time warping (DTW) algorithms are used. The usage of 
DTW and the multimodal tomometric sensor suite with pressure 
and ECT-modules leads to a co-operative sensor data fusion, 
which can help to identify characteristic features of slugs in two 
phase flows, which can be significant inputs to the process control 
unit in the assessment/implementation of necessary actions, such 
as activating choke valves, reducing pump outputs of one or more 
of the phases flowing in the rig. Time series of pressure and ECT-
signal are studied using DTW and results are compared and 
fused with some discussions on how these could be used in 
process control. 

Keywords- Multimodal tomometry, ECT (Electrical 
capacitance Tomography),  sensor fusion, soft sensor, two 
phase flow, Dynamic Time Warping (DTW)   

NOMENCLATURE 

ECT Electrical Capacitance Tomography 

DTW Dynamic Time Warping 
TB Taylor Bubble 

LIST OF SYMBOLS 

N Number of capacitance Electrodes 

αw Water volume ratio 
Cij Capacitance measurement between electrodes i and j.   

Pw Warping path 
X ,Y Time series signals 

d Squared distance between two time series elements 

Cod Cost matrix 

Dp Differential pressure (mbar) 

ts Time window of the slug (s) 
Vs Slug Velocity (m/s) 

d Distance between two ECT sensor planes 
  Time lag  (s) 

Ls Liquid slug length (m) 

hDp Pressure peak (normalized) 

Dph  Mean of the Pressure peak 

Dph  Standard deviation of the Pressure peak 

I.  INTRODUCTION  

Electrical capacitance tomography (ECT) is gaining 
increased acceptance in multiphase flow measurements. Most 
of the research facilities of leading industries have included 
ECT in their measurement systems. Pressure signals coming 
from well-established sensors in the study of flow in pipes, 
have vast amount of information on multiphase flows.  The 
information from pressure signals has been used to 
characterize some flow parameters. In this paper, ECT 
measurements and differential pressure ( Dp ) measurements 

are fused and the results from the fusion are used to identify 
and characterize the liquid slug.  

Dynamic time warping (DTW) technique has been used 
mainly in speech recognition applications  [1]. DTW 
techniques are used here to fuse the Dp  and ECT signals. 

II. TEST FACILITY WITH THE MEASUREMENT SYSTEM  

 

(a) 

 

(b) 

Figure 1. (a) The actual sensor head used in experiments (b) Schematic 
diagram. Cij is the capacitance measured between the elctrodes i and j 

covering all the combinations excluding i=j. i, j= 1, 2, …,12. 



  

Figure 2. Test section in the multiphase flow rig  containing  pressure and ECT-modules with details of relevant dimensions. Inset: Photo of the actual test section 
with twin-plane ECTm module and other sensors

A. Electrical Capacitance Tomography  

Electrical capacitance tomography (ECT) is a non-invasive 
method of imaging the cross sectional permittivity distribution 
of a mixture of materials with different permittivities inside 
vessels, based on inter-electrode capacitance measurements, 
 [2]. In generating images needed for estimating the distribution 
of materials, the capacitances between all possible 
combinations of the electrode pairs are measured, using an 
array of electrodes placed externally around the periphery of 
the vessel,  [3]. A schematic showing the assembly of all the 
electrodes on the sensor head is shown in Fig. 1 (b). 

As shown in Fig. 1, the electrodes are arranged very often 
symmetrically taking necessary precautionary measures to 
improve the signal to noise ratio. These measures are mainly 
based on avoiding spurious capacitance values, e.g. inclusion 
of guard electrodes, shielding etc. In the context of this paper, 
the arrangement shown in Fig. 1 is called the ECT sensor 
module. In our application, the ECT sensor consists of one 
circumferential set of N capacitance electrodes placed around 
the pipe separator (in the experiments described below, N=12). 
During the experiments performed in conjunction with this 
study, the pipe is kept horizontal, as shown in Fig. 1 (b). 

B. Multi-phase flow loop 
Simple flow Diagram of the testing section of experimental 

flow-rig used in this study is shown in Fig. 2. Experiments 
were performed using water and air at room temperatures and 
atmospheric outlet pressure. Differential pressures between the 
points marked in red arrows were captured from sensors 
PDT120 and PDT121.water is circulated using volumetric 
pumps. The mass flow, density and temperature were measured 
for each phase, before the components enter the test section 

using Coriolis flowmeters. The test section is a 15m long steel 
pipe with inner diameter 56mm. with the test section of the 
pipe having adjustable inclination in the range of -10º to +10º 
to the horizontal. Liquid and air flow 12.5 m from the inlet of 
the test section to pass the first tomography sensor plane. 
Distances between points where the differential pressure is 
measured are also given in the same figure. Coriolis 
flowmeters provide high accuracy with uncertainty ± 
0.01kg/min. PID controllers implemented in LabVIEW 
controls the liquid flow rates. In this experimental study, the 
inlet air and water flow rates were maintained at 0.25kg/min 
and 50kg/min while the pipe inclination was fixed at +1º to the 
horizontal.  

Volume ratio, w  can be calculated using (1) based on 
inter-electrode capacitance measurements as explained in  [3] 
and  [5]. 

( ) jiC
NN

N

i

N

j
ijw <=

= =1 11
1           (1) 

Where N=12 and ijC is the capacitance between electrodes 
i and j.   

III. DYNAMIC TIME WARPING (DTW) 

Dynamic Time Warping is implemented in many 
algorithms in the field of speech and image processing for 
establishing similarities in two or more sequences of 
observations (Usually measurements) in the form of time 
series. DTW is a versatile tool in data mining applications, 
where there is a need for detecting “matches” in many sets of 



time series. The sets of time series are warped in the temporal 
domain somewhat non-linearly under some constraints.  As 
such, DTW is a useful tool in sensor data fusion in process 
industries, where the tags can run into thousands and data can 
run into TB regions.  

The use of DTW is to compare two time series signals. 
Here the warping path and two time series signals are defined 
as  Lw p,p,pP 21 ,  rx,x,xX 21  and 

 sy,y,yY 21  respectively. r and s are number of elements 

in the X and Y time series and L is length of the warping path. 
Warping path aligns the points in time series X and Y in such a 
way that the distance between them are minimized. Squared 
distance between two elements can be defined as: 

   2jiji yxy,x    (2) 

Then total cost Co  of a warping path Pw between X and 

Y signals with respect to    can be defined as: 

   



L

k
kji yxY,XCo

1

          (3) 

Here, i and j corresponds to the location in the  Y,XCo  
matrix and k is the corresponding point of the warping path 
Pw. Then the best alignment between X and Y, is found 
following the path through the minimum points of the 

 Y,XCo  matrix  [4]. 

   



L

k
kp

P

min
Y,XDTW

1

           (4) 

The DTW given in (4) is found using dynamic 
programming  [5]. 

IV. CHARACTERIZATION OF FLOW REGIME AND SLUGS 

Under the experimental conditions given above slug flows 
can be observed. Water volume ratio signal ( w ) calculated 
from ECT measurements using (1) can then be used to estimate 
liquid slug parameters. As shown in Fig 3, a threshold value is 
selected to locate st . In this analysis, a threshold of 0.7 was 

selected. When the volume fraction w reaches the threshold 

value of 0.7 from lower values of w , the corresponding time 

stamp is picked.  When the volume fraction w reaches the 
threshold value of 0.7 again in the descending mode, on its way 
back to the stratified region, the second time stamp is picked. 
Then the difference between these two time stamps is 
calculated giving the value of st . Then this time difference 

st is used in the slug length sL calculation as given in (5). Here 

sV  is the velocity of the slug. 
sss tVL              (5) 

 

Similarly, sL of each slug observed using the time series of 

pressure Dp and volume fraction w  is calculated. Since a 
twin plane ECT sensor is used in these measurements, two time 
series of w  can be calculated. Cross-correlation of those 

two w signals gives the time lag,  , between two signals 
corresponding to the correlation peak. Since the distance 
between two sensor planes is known ( d =190mm). The slug 
velocity sV can easily be calculated using (6) as explained in 
 [7]. 


d

Vs               (6) 

Differential pressure signal ( Dp ) from DP121 sensor was 
also recorded along with the capacitance measurements from 
ECT-module. Then the sets of time series consisting of 
differential pressure Dp  and water volume fraction w  signals 
are warped to get the optimum alignment. The warping of Dp  

signal on to the w  is selected here for the estimation of the 

magnitude of Dp ( Dph ) at the liquid slug region as shown in 

Fig 4. As illustrates in Fig 4 the warped Dp signal indicates its 
peak within the corresponding liquid slug body. Hence, 
maximum Dp value ( Dph ) can easily be selected. Similarly 

Dph  values correspond to all slugs can be selected. 
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Figure 3. Typical slug pulse as obtained from ECT-module based water 
volume fraction, shown here as part of a  time series with characteristic 

features depicting slug formation 
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Figure 4. Warping  Dp on to w signal and selection of Dph  

V. EXPERIMENTAL RESULTS 

Signals used in the analysis are given in the Fig 5. Warping 
path wp  is indicated in white of Co matrix plot shown in Fig 

6. Then the warped Dp  signal with reference to water volume 
ratio signal is extracted from the warping path information. Fig 
7 illustrates the mapping of differential pressure signal Dp  

onto the volume fraction signal w  
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Figure 5.  Typical sets of time series (water volume fraction w  and 

differential pressure Dp signals) used in the data mining algortihms 
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Figure 6. The cost matrix  and warping path (white line)  using the time series 

of differential pressure Dp and water volume fraction w  
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Figure 7.  The warped versions of Dp  and w  signals represented using a 

common time axis. 

It can be seen from Fig 7 that positive-going and negative 
going flanks of water volume fraction  w  and warped Dp  are 

aligned properly with the plateau parts of these two time series 
also falling in the same time slots. It is interesting to note that 
for plateaus for water volume fraction w with wider time 

slots, higher amplitudes of differential pressure signals Dp  can 

be observed. 



0 5 10 15 20 25
0

2

4

Slug number

L s 
[m

]

 

 

0 5 10 15 20 25
0

0.5

1

h D
p 

w

Warped Dp

 
Figure 8. Slug lengths as calcualted using slug velocities for slugs found using 

Figure 7 
The lengths of different slugs ( sL ) calculated using (4) 

with the help of the slug velocities are given in Fig. 8. The 
liquid slug length ( sL ) and magnitude of the Dp peak which 

lies within the corresponding slug body ( Dph ) is then studied 

both with respect to the time slots and their respective 
amplitudes. The results for 23 slugs observed are presented in 
Fig 8. From Fig. 8, it can be seen that for longer liquid slugs 
higher Dph  values are generated, whereas for shorter slugs the 

values of Dph  are lower.  

The variations of slug lengths for different inflow 
conditions of air and water as estimated using the DTW based 
algorithm is given in Table 1. 
TABLE I.  PRESSURE PEAK VARIATION UNDER DIFFERENT SLUG LENGTHS   

Pressure peak  (
DphDph  ) 

Slug Length 
(m) Inlet Flow rates  

Air -- 0.25kg/min  
Water-- 50kg/min 

Inlet Flow rates 
Air -- 0.10kg/min  
Water -- 50kg/min 

0-0.5 0.38 -- 

0.5-1 0.30 ± 0.09 0.31 ± 0.11 

1-1.5 0.37 ±0.09 0.406 

1.5-2 0.49 ± 0.2 0.55 ± 0.14 

2-2.5 0.61± 0.07 0.62 ± 0.15 

2.5-3 0.73± 0.10 0.78 ± 0.21 

 

The pressure peaks observed using the DTW algorithm follow 
the trend shown in Fig 9. The lengths of slugs and 
corresponding pressure peaks were then classified into  6 
different groups as given in Table l. The mean of Dph  and 

their deviations are given in the other columns for the 
experimental conditions given.  
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Figure 9. Variation of Normalized pressure peak ( Dph ) with increasing 

Slug lengths 
VI. SOFT SENSOR APPROACH USING PROCESS TOMOMETRY 

The results from the multimodal tomometric approach 
involving capacitance values from ECT-module and 
differential pressure sensors indicate that useful information 
on flow regime and slug can be extracted from a fusion of 
these two sets of time series. This is an example of a soft 
sensor approach giving the process engineer parameters such 
as Vs, Ls and the time slots of the occurrences of slugs.  The 
system integration of the differential pressure Dp and ECT-
sensor with the soft sensor outputs related to the flow 
regime/slug are shown in Fig 10 with a schematic of the 
control architecture for mitigating the detrimental effects of 
heavy slug formation and its transportation to sensitive 
hardware like valves and pumps is a multiphase loop. 

 

Figure 10. Block diagram for the system with soft sensor outputs in a control 
scenario to ascertain slug length and mitigate slug induced flow problems. 

VII. CONCLUSIONS 

The simultaneous observations of differential pressure and 
capacitance values form an ECT-module in a pipe section in 



multiphase flow gives the process engineer a set of time series, 
which can then be subjected to data mining using various 
procedures. In the present study, differential pressure signals 
and water volume fraction signals as estimated with 
capacitance values from ECT-sensor modules form a good set 
of cooperative sensor data for data fusion. The data mining 
and data fusion are done using dynamic time warping (DTW).  
With the dynamic time warping, some physical phenomena 
are clearly captured and their characterizations are facilitated, 
especially with respect to slug and pressure peaks.  The 
aligned signals of pressure and volume fractions clearly 
indicate the possibility of identifying the time of occurrence 
and the extent of slugs. With a set of two time series, based on 
two physical measurands, viz. pressure and capacitance, the 
soft sensor approach described in this paper gives rise to water 
volume fraction, flow regime identification, slug velocity, 
frequency and length and the time of occurrence and duration 
of these flow regimes.  The interdisciplinary group in the 
Telemark University College looking into CFD codes for 
multiphase flow is looking into the ways and means of 
unambiguously identifying input parameters giving rise to 
certain type of slugs. These could be compared with the results 
given in this paper, especially those given in Table 1 and Fig 
10.   

This is a valuable tool for the process engineer in making 
decisions as to what kind of control actions are to be taken. 
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