
Paper F

Application of a Nonlinear
Mechanistic Model and an
Infinite Horizon Predictive
Controller on Paper Machine
6 at Norske Skog Saugbrugs

Hauge, T.A., Slora, R., and Lie, B. (2002). Application of a Nonlinear Mechanistic
Model and an Infinite Horizon Predictive Controller on Paper Machine 6 at Norske
Skog Saugbrugs, Submitted to Journal of Process Control.

Extended version.

207



Application of a Nonlinear Mechanistic Model and
an Infinite Horizon Predictive Controller to
Paper Machine 6 at Norske Skog Saugbrugs

Tor Anders Hauge, Roger Slora†, and Bernt Lie‡

Contents

1 Introduction 209

2 Overview of algorithm 215

3 Linearization of model 217
3.1 Analytic linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.2 Numeric linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.3 Example: Linearization of a chemical reactor model . . . . . . . . . . 220

4 Model predictive controller (MPC) 220
4.1 Steady state values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.1.1 Shifting variables . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.2 Optimal input values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5 Estimating the states and parameters 225
5.1 Tuning and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6 Results 230
6.1 Implementation and interface . . . . . . . . . . . . . . . . . . . . . . . 230
6.2 Reduction of variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.3 Other benefits of MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7 Conclusions 235

A Notes about notation 238

Telemark University College.
†Norske Skog Saugbrugs.
‡Corresponding author: Bernt.Lie@hit.no, Telemark University College, P.b. 203, 3901 Pors-

grunn, Norway.

208



Paper F: Application of a Nonlinear Mechanistic Model and an Infinite ... 209

B Example: Finding the steady state values with lssol 238

C Proofs for finite horizon criterion 239
C.1 Reduction to finite horizon criterion . . . . . . . . . . . . . . . . . . . 239
C.2 Formulation as standard QP problem . . . . . . . . . . . . . . . . . . . 242

C.2.1 The criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
C.2.2 The constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
C.2.3 Summary of standard QP problem . . . . . . . . . . . . . . . . 248

D State and parameter estimation 249
D.1 Kalman filter equations for linear time variant processes . . . . . . . . 249
D.2 Extended Kalman filter for nonlinear processes . . . . . . . . . . . . . 252
D.3 O set free control by bias estimation . . . . . . . . . . . . . . . . . . . 253

D.3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
D.3.2 Steady state values, shifting the model and variables . . . . . . 253
D.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
D.3.4 Estimating the states . . . . . . . . . . . . . . . . . . . . . . . 254

D.4 Online parameter estimation by augmented Kalman filter . . . . . . . 256
D.4.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
D.4.2 Steady state values, shifting the model and variables . . . . . . 256
D.4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
D.4.4 Estimating the states . . . . . . . . . . . . . . . . . . . . . . . 257

Bibliography 260

Abstract

A mechanistic nonlinear model of the wet end of paper machine 6 (PM6) at
Norske Skog Saugbrugs, Norway has been developed, and used in an industrial
MPC implementation. The MPC uses an infinite horizon criterion, successive
linearization of the model, and estimation of states and parameters by an aug-
mented Kalman filter. Variation in important quality variables and consistencies
in the wet end have been reduced substantially, compared to the variation prior
to the MPC implementation. The MPC also provides better e ciency through
faster grade changes, control during sheet breaks and start ups, and better con-
trol during periods of poor measurements. From May 2002 the MPC has been
the preferred controller choice for the process operators at PM6.

1 Introduction

Norske Skog Saugbrugs in Halden, Norway, is one of the largest manufacturers of un-
coated super calendered magazine paper in the world. The total production capacity
of the mill is 550� 000 ton per year. The largest paper machine (PM) at the Saugbrugs
mill is PM6, accounting for more than half the total production capacity. PM6 was
built in the early 1990s and produce paper with 8�62 meters width, and with a typical
velocity of 1500 meters per minute.
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Previous work A clear distinction is usually made between CD (Cross Direction)
and MD (Machine Direction) control, when discussing the control of a paper machine.
CD control refers to the profile across the paper web, while MD refers to the average
value. In this paper we only consider the MD control problem.

Several MPC implementations using multivariable empiric paper machine models
are reported, e.g. (McQuillin & Huizinga 1995), (Lang, Tian, Kuusisto & Rantala
1998), (Mack, Lovett, Austin, Wright & Terry 2001), (Kosonen, Fu, Nuyan, Kuusisto
& Huhtelin 2002), and (Austin, Mack, Lovett, Wright & Terry 2002). To the best
of the authors’ knowledge, there exists no reported industrial MPC implementations
utilizing a multivariable mechanistic model of the wet-end of the paper machine.
Some industrial implementations of MPC with mechanistic models are known in other
industry areas, e.g. (Qin & Badgwell 1998) and (Badgwell & Qin 2001) have reported
a few implementations. Papers describing industrial implementations of MPC with
mechanistic models are few, however (Hillestad & Andersen 1994) and (Glemmestad,
Ertler & Hillestad 2002) report several applications to industrial polymer reactors.
Several simulated examples exist, e.g. (Lee, Lee, Yang & Mahoney 2002), (Prasad,
Schley, Russo & Bequette 2002), (Amin, Mehra & Arambel 2001), and (Schei &
Singstad 1998), and also some applications to experimental test stands, e.g. (Ahn,
Park & Rhee 1999) and (Park, Hur & Rhee 2002).

Process description A simplified drawing of PM6 is shown in Figure 1. Cellu-
lose, TMP (thermomechanical pulp) and broke (repulped fibers and filler from sheet
breaks and edge trimmings) are blended in the mixing chest. The stock is fed to the
machine chest with a controlled total consistency1. Filler is added between the mix-
ing and machine chests. The fillers used in paper production depend on the end-user
requirements; typical fillers are kaolin, chalk, talc, and titanium dioxide (Bown 1996).
About two thirds of the filler particles used at PM6 are added to the thick stock; the
rest is added at the outlet of the white water tank. The flow to the machine chest
is large in order to keep the level of the machine chest constant, and an overflow is
returned to the mixing chest. The total consistency in the mixing and machine chests
are typically around 3 — 4%, which is considerably higher than consistencies later
on in the process, and thus the stock from the machine chest is denoted the “thick
stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water2 and a recirculation
flow from the deculator. Filler is added to the stock just after the white water tank.
The first cleaning process is a five stage hydrocyclone arrangement, mainly intended
to separate heavy particles (e.g. sand and stones) from the flow. The accept from the
first stage of the hydrocyclones goes to the deculator where air is separated from the
stock. The second cleaning process consists of two parallel screens, which separate
larger particles (e.g. bark) from the stock. Retention aid is added to the stock at

1The total consistency is the weight of solids (i.e. filler particles and fiber) divided by the total
weight of solids and water.

2White water, which is stored in the white water tank, is the drainage from the wire.
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the outlet of the screens. The retention aid is a cationic polymer which, amongst
others, adsorb onto anionic fibers and filler particles and cause them to flocculate.
The flocculation is a key process for retaining small filler particles and small fiber
fragments on the wire, although the significance of mechanical entrapment of non-
flocculated filler and fines seems to be somewhat controversial in the literature. For
example (Van de Ven 1984) found (theoretically) that mechanical entrapment was low,
while (Bown 1996) reports that mechanical entrapment can be a dominant mechanism.
In the headbox, the pulp is distributed evenly onto the finely meshed woven wire cloth.
Most of the water in the pulp is recirculated to the white water tank, while a share of
fiber material and filler particles form a network on the wire which will soon become
the paper sheet. The pulp flow from the white water tank, through the hydrocyclones,
deculator, screens, headbox, onto the wire and back to the white water tank is denoted
the “short circulation”.

In the wire section, most of the water is removed by drainage. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section, the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then rolled up on the reel before it is moved
on to further processing.

Motivation for multivariable model based control Magazine paper is char-
acterized by its glossy appearance due to a high content of filler in the paper. The
finished magazine paper typically consists of 65% fiber, 30% filler, and 5% water.
The main di erence between magazine paper and e.g. newsprint is the high con-
tent of filler. For newsprint the amount of filler is typically 0-10%. Due to the high
filler content in magazine paper, the couplings between important input and out-
put variables are relatively strong. A project called “Stabilization of the wet end at
PM6” was initiated in 1999 based on the experience of strong couplings and oscillat-
ing behavior in the process. A key goal was to reduce variation in certain variables,
such as consistencies in the short circulation, basis weight, filler content, and more.
Based on experience and reported results from competitive mills (e.g. (McQuillin
& Huizinga 1995), and (Lang et al. 1998)), it was decided to develop a model of the
process and utilize this in a model predictive controller (MPC). Three input and three
output variables were selected

�̄ =
�̄��
�̄�
�̄��

� �̄ =
�̄��

�̄��
�̄�	

, (1)

where the inputs �̄ are the amount of thick stock, filler added at the outlet of the
white water tank, and retention aid added at the outlet of the screens, and where the
outputs �̄ are the basis weight (weight per area), paper ash content (content of filler
in the paper), and wire tray consistency in the recirculation flow from the wire to the
white water tank. The basis weight and paper ash outputs are direct quality variables,
while the wire tray consistency is an indirect quality variable having significant e ect
on variation in other short circulation variables.
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Figure 1: A simplified drawing of PM6. More details are available in (Hauge & Lie
2002).
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Before the project started, single loop controllers and manual control were used.
Grade changes were carried out manually or partly manually by the operators: the
setpoints were changed a number of times before they were equal to the new grade.
During start ups, the controllers were kept in manual mode until the measurements
were close to the desired specifications. In addition, during sheet breaks the ba-
sis weight and paper ash measurements were lost and the inputs controlling these
variables were set equal to the values that they had prior to the sheet break. The
controllers were kept in manual mode until the paper was back on the reel. Thus,
it was also a key goal in the project to be able to have the controllers in automatic
mode during grade changes, sheet breaks, and start ups.

The process model The process model is described in detail in e.g. (Hauge &
Lie 2002) and only a brief description will be given here. Note that some modifications
have been introduced to the model detailed in (Hauge & Lie 2002), as compared to
the model implemented at PM6. The most prominent modification is that a first
order empiric model that was added to capture neglected and unknown dynamics in
the process, has been removed.

The model was originally developed with several ordinary and partial di erential
equations. The model was then simplified, and eventually fitted to experimental
and operational mill data. The implemented PM6 model consists of a third order
nonlinear mechanistic model based on physical and chemical laws. The structure of
the developed process model is

·
�̄ = �̄(�̄� �̄� �̄� �̄) (2)

�̄ = 	̄(�̄� �̄� �̄� �̄),

with �̄ R
 = R3, �̄ R� = R3, �̄ R� = R3 and �̄ R = R4. The bar above the
variable names indicates that these are the variables in their original units and size. �̄
consists of several model parameters, tuned to fit the model outputs to experimental
and operational data.

The manipulated inputs �̄ and the outputs �̄ are shown in eq. 1, while the states
and measured disturbances are

�̄� =
£

̄������ 
̄������� 
̄�����

¤
(3)

�̄� =
£

̄TS,tot � 
̄TS,fil� �̄� �̄

¤
,

where 
̄����� is the concentration of filler in a reject tank in the hydrocyclones, 
̄������

is the concentration of filler in the white water tank, and 
̄����� is the concentration
of fiber in the deculator. The measured disturbances accounted for in the model, are
the total and filler thick stock concentrations 
̄TS,tot and 
̄TS,fil, the paper machine
velocity �̄, and the paper moisture percentage �̄ .

Note that the total- and filler concentrations in the thick stock flow are called
“measured disturbances”, although they are not measured. A model of the thick
stock area has been developed (Slora 2001), and implemented at PM6, providing
estimates of total- and filler concentrations in the thick stock.
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Model Predictive Controller (MPC) A commercial MPC developed by Predik-
tor AS (www.prediktor.no), was chosen by Norske Skog for implementation. The
choice of MPC was based on (i) cost, and (ii) the ability to add and develop certain
features that were important. Important features were the abilities to

• utilize the non-linear model;

• specify future reference changes. This means that the process operators can
specify a setpoint change some time into the future, see how the controller will
respond, and let the controller do the grade change if they are satisfied with the
response. In many systems, the setpoint is constant into the future, so once a
change in setpoint is made, the controller will respond immediately, giving the
operators no time to consider how wise the response is;

• make an interface suitable for gaining operator acceptance of the MPC;

• use the MPC during grade changes, sheet breaks, and start ups.

The commercial MPC is part of a software package named Apis (Advanced Pro-
cess Improvement System), which also consists of a Kalman filter, subspace system
identification, and more. The Apis MPC was intended for linear models, based on
the infinite horizon objective function presented in (Muske & Rawlings 1993). For
the predictive controller implemented at PM6, several extensions were made to the
original MPC, such as

• on-line linearization at each sample;

• on-line estimation of key model parameters/biases;

• future setpoint changes, i.e. the process operators can submit new setpoints to
the controller some time before the actual grade change;

• addition of a direct input to output term;

• inclusion of measured disturbances.

These extensions will be further discussed in later sections. Note that the ex-
tensions discussed in this paper are based on the authors’ work, and the actual im-
plementation in Apis may be based on other solutions and ideas. The use of MPC,
a nonlinear model, extended Kalman filter, and linearization at each sample, has
also been suggested by (Lee & Ricker 1994), although with a finite horizon criterion.
Similarly, (Gattu & Zafiriou 1992) proposed an algorithm for nonlinear MPC, with
linearization at each sample, but with computation of the steady state Kalman gain
at each sample.
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Organization of paper In Section 2 an overview of the algorithm for infinite
horizon MPC with augmented Kalman filter is given. Linearization of the model is
discussed in Section 3, and the MPC equations are outlined in Section 4. In Section
5 the augmented Kalman filter is discussed, and results from using MPC on paper
machine 6 (PM6) at Norske Skog Saugbrugs is presented and discussed in Section 6.
Finally, some conclusions are given in Section 7.

A few notes about the notation are given in Appendix A. Details on how to find the
steady state values are given in Appendix B, and proofs for the finite horizon criteria
are given in Appendix C. State and parameter estimation is detailed in Appendix D.

2 Overview of algorithm

At time � we have available the process model (eq. 2) in its discrete version

�̄�+1 = �(�̄�� �̄�� �̄�� �̄�) (4)

�̄� = 	(�̄�� �̄�� �̄�� �̄�),

as well as the following past measurements and estimates

�̄� �

�̄� �

�̄� �b̄�� �+1

,  = 1� 2� 3���, (5)

where b̄� is an estimated state vector. The following step by step algorithm for con-
trolling the process is suggested, assuming the present time to be �.

1) Linearization of model based on conditions at time � 1 For the chosen
MPC we need a linear model. The linearization is based on the most up-to-date
information about the process, i.e. the variable values at time � 1. Note that we
have no information about �̄� yet, so we can not linearize based on variable values at
time �. The resulting model is

=
��+1 = ��

=
�� +��

=
�� +��

=

�� (6)

=
�� = 
�

=
�� +��

=
�� + ��

=

��.

The linearization is discussed more thoroughly in Section 3. See also notes about
notation in Appendix A.

2) Obtain current measured disturbances and future setpoints and distur-
bances The measured disturbances obtained from the process are �̄�. The future
disturbances and references are

�̄�+�, � = 0� ���� � 1 (7)

�̄�+�, � = 0� ���� � 1,
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which must be provided by the process operators or simply taken as an extention of
the present values into the future.

3) Shift variables corresponding to the linearized model The references,
disturbances, and constraints will be used with the linearized model in eq. 6 for
calculation of target values. The references, disturbances, and constraints must then
be shifted along with the model so that all variables have the same origin before the
calculation of target values.

4) Calculate steady state values The calculation of steady state values is carried
out for several reasons. The steady state values are used as targets in the optimization
criterion. One could use e.g. reference values directly as targets in the criterion.
However, the calculation of steady state values is a way of ensuring that the targets
are feasible. In addition, by calculating steady state values one has the opportunity to
add e.g. an economic type criterion if there are additional degrees of freedom. Finally,
for the special case of an infinite horizon criterion with possibility of changing future
references and measured disturbances, we need the steady state values at the end of
the horizon in order to shift the origin of the model.

5) Shift the origin of the model to the steady state values at time �+� 1
This is a step taken in order to reformulate the criterion to a finite horizon criterion.

6) Shift measured and estimated variables The variables must be shifted along
with the model so that they have the same origin.

7) Update MPC matrices and vectors The matrices and vectors in the MPC
formulation that contain time variant variables, such as linear model matrices, input
variables, estimated states, etc., must be updated.

8) Optimization An optimization algorithm is used to calculate optimal inputs.

9) Apply �̄� to the process Note that only the first input is used.

10) Obtain �̄� from the process

11) Estimate b̄��+1 Unless all states are measured, we need to estimate them (or
some of them). Typically an extended Kalman filter is used for this purpose.

12) Set � := � + 1 and go to step 1
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3 Linearization of model

Consider perturbations
=
��,

=
��, and

=

�� near the variable values at time � 1

�̄� = �̄� 1 +
=
�� (8)

�̄� = �̄� 1 +
=
��

�̄� = �̄� 1 +
=

��.

Inserting these perturbations into eq. 4, and neglecting the parameter vector �̄�,
gives

�̄�+1 = �(�̄�� �̄�� �̄�) = �(�̄� 1 +
=
��� �̄� 1 +

=
��� �̄� 1 +

=

��) (9)

�̄� = 	(�̄�� �̄�� �̄�) = 	(�̄� 1 +
=
��� �̄� 1 +

=
��� �̄� 1 +

=

��).

Define � = {�̄� 1� �̄� 1� �̄� 1}. A first order expansion, with center corresponding
to �, then gives

�̄�+1 �(�̄� 1� �̄� 1� �̄� 1) +
��

��̄�
|�(�̄� 1 +

=
�� �̄� 1) (10)

+
��

��̄�
|�(�̄� 1 +

=
�� �̄� 1) +

��

��̄�
|�(�̄� 1 +

=

�� �̄� 1)

�̄� 	(�̄� 1� �̄� 1� �̄� 1) +
�	

��̄�
|�(�̄� 1 +

=
�� �̄� 1)

+
�	

��̄�
|�(�̄� 1 +

=
�� �̄� 1) +

�	

��̄�
|�(�̄� 1 +

=

�� �̄� 1)

Defining

�� =
��

��̄�
|�, �� =

��

��̄�
|�, �� =

��

��̄�
|� (11)


� =
�	

��̄�
|�, �� =

�	

��̄�
|�, �� =

�	

��̄�
|�

�̄� = 	(�̄� 1� �̄� 1� �̄� 1) +
=
��

and inserting the definitions in eq. 8 into eq. 10 gives

=
��+1 ��

=
�� +��

=
�� +��

=

�� (12)

=
�� 
�

=
�� +��

=
�� + ��

=

��,

where we have assumed that �̄� = �(�̄� 1� �̄� 1� �̄� 1), in accordance with the original
nonlinear model equation. In the remainder of this paper, eq. 12 will be used with
equality sign (“=”) instead of approximation (“ ”).
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Note that the linearization was carried out with center corresponding to variable
values at time � 1. If the linearization is carried out before the computation of
the optimal input �̄�, then the linearized model must have center corresponding to
variable values at time � 1. If the input �̄� is available at the time of linearization, the
center can correspond to variable values at time �, however by the time the linearized
model is used in the MPC the time is � + 1. Thus, it is not important whether the
linearization is carried out prior to, or after, the computation of optimal inputs since
the linearized model will be centered on the variable values at the previous sample in
any case.

The linear system matrices ��� ��� ���� �� can be found by analytic or numeric
methods. These methods are presented next.

3.1 Analytic linearization

Analytic linearization is carried out e.g. by hand, automatic di erentiation, see e.g.
(Griewank 2000), (Griewank & Corliss 1991), and (Solberg 1988), or by software
capable of symbolic computation, e.g. Maple, or Matlab with the symbolic toolbox.
For small and not too complicated systems this is a convenient method. Consider e.g.
matrices �� and ��, computed element by element according to

�� =
��

��̄�
|� =

��1
��̄��1

|�
��1
��̄��2

|� · · · ��1
��̄���

|�
��2
��̄��1

|�
��2
��̄��2

|� · · · ��2
��̄���

|�
...

...
. . .

...
���
��̄��1

|�
���
��̄��2

|� · · · ���
��̄���

|�

�� =
��

��̄�
|� =

��1
��̄��1

|�
��1
��̄��2

|� · · · ��1
��̄���

|�
��2
��̄��1

|�
��2
��̄��2

|� · · · ��2
��̄���

|�
...

...
. . .

...
���
��̄��1

|�
���
��̄��2

|� · · · ���
��̄���

|�

,

where � = �̄� 1� �̄� 1� �̄� 1 is the center of the linearization, �̄��� means the ’th state
variable at time � in the nonlinear model, and similar for other variables. The other
system matrices are computed similar to this. Note that the � matrix consists of �
rows and � columns and is not in general a square matrix.

3.2 Numeric linearization

Numeric linearization is carried out by perturbing the variables and thus finding the
derivatives in the system matrices, see e.g. (Dennis & Schnabel 1996) and (Gill,
Murray & Wright 1981). Assuming �̄� 1, �̄� 1 and �̄� 1 are available, one would
typically use an algorithm similar to the following:

1. Using the nonlinear model and known variables, compute �̄� and �̄� 1.
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2. For every state variable:

(a) Perturb state variable �̄� 1��, by adding a small number �̄� 1�� to its
value. For example one may increase its value by one percent, or a prede-
termined minimum perturbation (e.g. if the variable value is zero we can
not use the one percent rule).

(b) Using the nonlinear model, compute �̄pert� and �̄
pert
� 1�

(c) The ’th column in matrix �� is then

�̄
pert
� �̄�

�̄� 1��

and the ’th column in matrix 
� is

�̄
pert
� 1 �̄� 1

�̄� 1��

3. For every input variable:

(a) Perturb input variable �̄� 1��, by adding a small number �̄� 1�� to its
value.

(b) Using the nonlinear model, compute �̄pert� and �̄
pert
� 1�

(c) The ’th column in matrix �� is then

�̄
pert
� �̄�

�̄� 1��

and the ’th column in matrix �� is

�̄
pert
� 1 �̄� 1

�̄� 1��

4. For every measured disturbance variable:

(a) Perturb measured disturbance variable �̄� 1��, by adding a small number
�̄� 1�� to its value.

(b) Using the nonlinear model, compute �̄pert� and �̄
pert
� 1�

(c) The ’th column in matrix �� is then

�̄
pert
� �̄�

�̄� 1��

and the ’th column in matrix �� is

�̄
pert
� 1 �̄� 1

�̄� 1��
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3.3 Example: Linearization of a chemical reactor model

A model of a chemical reactor (Lie 1995) is


̇� =
�

�
· (
�� 
�) �0 · �

�
�·� · 
� (13)

�̇ =
�

�
· (�� � ) +

1


̄�

·
³

�� · �0 · �
�

�·� ·
� · � +�
´

The � matrix in the linearized model is then

� =

"
�	̇�

�	�

�	̇�

��
��̇
�	�

��̇
��

#

=

"
�
�

�0�
�
�� � �

��2
�0
��

�
��

1
	̄	
· �� · �0 · �

�
�·� · �� �

�
1
	̄	
· �� · �0 ·

�
��2

· �
�

�·� ·
� · �

#

With appropriate parameter values and operating point, as given in (Lie 1995),
we have

�analytic =

·
19� 998 4�6209 · 10 2

3824� 4 8� 301 8

¸
Numeric linearization, with a perturbation according to 1% of the state values,

gives the following � matrix

�numeric =

·
19�998 5�1131 · 10 2

3824�4 9�2926

¸
which is close to the analytic � matrix. The reactor is highly nonlinear and we try
with a smaller perturbation corresponding to 0�1% of the state values. This gives

�numeric,0.1% =

·
19�998 4�6675 · 10 2

3824�4 8�3956

¸
which is seen to be even closer to the analytic solution.

This example has shown the possibilities of analytic and numeric linearization, as
well as the di culty of choosing a proper perturbation for numeric linearization.

4 Model predictive controller (MPC)

Commercial MPC algorithms often consists of two stages (Qin & Badgwell 1997),
first steady state values (or target values) are calculated, and then these values are
used as targets in the calculation of the optimal input values. The calculation of
steady state values is a way of ensuring that the targets are feasible. In addition,
by calculating steady state values one has the opportunity to add e.g. an economic
type criterion if there are additional degrees of freedom. Finally, for the special case
of an infinite horizon criterion with the possibility of changing future references and
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measured disturbances, we need the steady state values at the end of the horizon
in order to shift the origin of the model. The model origin is shifted so that the
variables in the criterion converges exponentially to a zero steady state, thus avoiding
an infinite value of the criterion.

4.1 Steady state values

We assume that a linearized model (eq. 12) and the adjusted reference vector
=
��+�

and disturbance vector
=

��+� are available (at time �):

=
��+� = �̄�+� �̄� 1, � = 0� ���� � 1 (14)
=

��+� = �̄�+� �̄� 1, � = 0� ���� � 1,

The future reference and disturbance vectors are provided by the process operators
or simply taken as an extention of the present values into the future. � is a chosen
control horizon where we allow input changes.

At each future time sample we calculate target values for the states and inputs
of the process. The target values may be calculated using an economic criterion, or
calculated as e.g.

min
�̄

�+�

��̄

�+�

³
�̄��+�

=
��+�

´�
��

³
�̄��+�

=
��+�

´
, � = 0� ���� � 1, (15)

constrained by the steady state solution of the model·
(� ��) ��


� ��

¸ ·
�̄��+�
�̄��+�

¸
=

"
��

=

��+�

��
=

��+� �̄��+�

#
, � = 0� ���� � 1, (16)

with bounds

�̄min
�+� �̄��+� + �̄� 1 �̄max

�+� , � = 0� ���� � 1 (17)

�̄min
�+� �̄��+� + �̄� 1 �̄max

�+� , � = 0� ����� 1,

where �̄min
�+�, �̄

max
�+� , �̄

min
�+�, and �̄max

�+� are minimum and maximum values corresponding
to the original nonlinear model. If there are additional degrees of freedom we may
specify an economic type criterion instead of eq. 15, and use eqs. 16-17 as constraints.
In Appendix B it is shown how one may use the lssol algorithm (Gill, Hammarling,
Murray, Saunders & Wright 1986) for calculating the steady state values.

The origin of the model is then shifted to the steady state values at time � 1³
=
��+1 �̄��+� 1

´
= ��

³
=
�� �̄��+� 1

´
+��

³
=
�� �̄��+� 1

´
+��

µ
=

��
=

��+� 1

¶
(18)³

=
�� �̄��+� 1

´
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�

³
=
�� �̄��+� 1

´
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³
=
�� �̄��+� 1

´
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µ
=

��
=

��+� 1

¶
,
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which gives the shifted model

��+1 = ���� +���� +���� (19)

�� = 
��� +���� + ����,

where

��+1 =
=
��+1 �̄��+� 1 (20)

�� =
=
�� �̄��+� 1

�� =
=
�� �̄��+� 1

�� =
=

��
=

��+� 1

�� =
=
�� �̄��+� 1

The shifting of model origin to the steady state values at time � 1 makes the
variables in the criterion converge exponentially to zero in steady state, thus ensuring
a finite value of the criterion.

4.1.1 Shifting variables

The model origin is shifted twice, once during the linearization and once after the
computation of steady state (target) values. The measured, estimated and calculated
variables must be shifted along with the model as follows

�̂� = b̄�� b̄�� 1 �̄��+� 1 (21)

�� 1 = �̄� 1 �̄� 1 �̄��+� 1 = �̄��+� 1

��+� = �̄�+� �̄� 1

=

��+� 1,  = 0� ���� � 1

���+� = �̄��+� �̄��+� 1,  = 0� ���� � 1

���+� = �̄��+� �̄��+� 1,  = 0� ���� � 1

4.2 Optimal input values

This section is based on the algorithm presented in (Muske & Rawlings 1993), al-
though several extensions are made, notably the inclusion of future reference and
disturbance trajectories.

The infinite horizon criterion is

min
U�

 � = min
U�

X
�=0

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
, (22)

constrained by the model in eq. 19, i.e.

��+1+� = ���+� +���+� +���+�, � = 0� 1� 2� ��� (23)

��+� = 
��+� +���+� + ���+�, � = 0� 1� 2� ���,
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and the following inequality constraints

�̄min
�+� �̄�+� �̄max

�+� � � = 0� 1� ���� � 1 (24)

�̄min
�+� �̄�+� �̄max

�+� � � = �1� �1 + 1� ���� �2

�min
�+� ��+� �max

�+� � � = 0� 1� ���� � ,

and where

��+� = ��+� ���+� (25)

�̃�+� = ��+� ���+�

��+� = ��+� ��+� 1

U� =
£
��� � �

�
�+1� ���� �

�
�+� 1

¤�
.

The output constraints are active from sample �+�1 to �+�2. �1 should be chosen
so that feasibility is ensured from �+ �1, and �2 should be chosen such that feasibility
up to � + �2 implies feasibility on the infinite horizon. Bounds for �1 and �2, so that
feasibility is guaranteed, are developed in (Rawlings & Muske 1993).

Consider the Jordan decomposition of ��

�� = �� ��
1

� =
£
� �
� � �

�

¤ ·  �� 0
0  ��

¸ ·
�̃ �
�

�̃ �
�

¸
, (26)

where � �
� and  �� are respectively the eigenvectors and Jordan blocks for the eigen-

values corresponding to the unstable modes of ��, and � �
� and  �� are respectively the

eigenvectors and Jordan blocks for the eigenvalues corresponding to the stable modes
of ��. The following results can then be obtained.

Theorem 1 Consider the model given by eq. 19, the criterion of eq. 22, and the
definitions provided by eq. 25. Assume that

��+� = 0� � {��� + 1� ���} , which is equivalent to
=
��+� = �̄��+� 1� � {��� + 1� ���}

(27)

��+� = 0� � {��� + 1� ���} , which is equivalent to
=

��+� =
=

��+� 1� � {��� + 1� ���}

���+� = 0� � {��� + 1� ���} , which is equivalent to �̄��+� = �̄��+� 1� � {��� + 1� ���}

���+� = 0� � {��� + 1� ���} , which is equivalent to �̄��+� = �̄��+� 1� � {��� + 1� ���} ,

thus there are no changes in the inputs, measured disturbances, or steady state inputs
and outputs, from sample � and forward. If in addition we add the equality constraint
(ref. eq. 26)

�̃ �
� ��+� = 0, (28)

which corresponds to bringing the unstable modes to zero at time � + � , then the
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infinite horizon criterion can be written as the following finite horizon criterion

min
U�

 � = min
U�

µ
���+�

³
�̃ �
�

´�
�̄��̃

�
� ��+� + ���+�" ��+� (29)

+
� 1X
�=0

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
,

with �̄� given by the discrete Lyapunov equation

�̄� = (� �
� )

�

�
� �
��

�
� + ( 

�
�)

�
�̄� 

�
� , (30)

Proof. See Appendix C.1.

Proposition 2 Consider the model given by eq. 19, the criterion of eq. 22, the
inequality constraints given by eq. 24, the equality constraint given in eq. 28, and the
definitions and assumptions provided by eqs. 25 and 27. This minimization problem
can be formulated as the following standard constrained QP (Quadratic Programming)
problem

min
U�

 � = min
U�

µ
1

2
U�
� #�U� + $�� U�

¶
, (31)

subject to

%���

·
U�

�̄�U�

¸
%��� (32)
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where
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and definitions of P ,H�

� � D�, H 
�, O�, etc. are provided in Appendix C.2. denotes

the Kronecker product.

Proof. See Appendices C.1-C.2.
A possible choice of QP solver is sqopt which solves problems in the form of eqs.

31—32. The sqopt algorithm for solving constrained linear and quadratic problems
(Gill, Murray & Saunders 1997), is available with a Matlab interface in the Tom-
lab environment (Holmström 2001). Other formulations, choice of QP solvers, and
variables are investigated more thoroughly in (Lie, Dueñas Díez & Hauge 2002).

5 Estimating the states and parameters

Using a state space model in an MPC application, as in the previous section, requires
estimation of the states unless all states are measured. A Kalman filter is used at PM6
for estimating the states in the paper machine model. The Kalman filter equations for
a linear time variant process are derived in Appendix D.1. The paper machine model
is nonlinear and thus an extended Kalman filter is used for estimating the states in
the model. An algorithm for estimating the states in a nonlinear model is reviewed
in Appendix D.2.

Due to disturbances and model errors, the MPC presented in previous sections
is likely to exhibit steady state o set from the setpoints. The most common way
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to handle this problem is to assume a step disturbance at the model outputs and
estimate the size of the step in a deadbeat fashion (Qin & Badgwell 1997), (Muske
& Rawlings 1993). Other methods also exist, such as assuming the disturbance to
originate from the process inputs (Muske & Rawlings 1993). In (Muske & Badgwell
2002) various disturbance models which provide o set-free control are discussed, and
conditions for o set-free control are developed. In Appendix D.3 we have shown
how the MPC and Kalman filter can be redesigned to prevent steady state o set by
estimating the bias and adding this to the model outputs. Although this is the most
commonly used method for removing steady state o set, it is often a poor method for
solving the problem, notably if the disturbances enters the inputs or states (Muske
& Rawlings 1993), (Muske & Badgwell 2002). The main point is that o set-free
control can be obtained with many di erent disturbance models, however to obtain
best possible performance the disturbance should be included in the model where it
enters in the real process.

The question of where the disturbances enter in a real process is easy to answer:
everywhere. As pointed out in (Muske & Badgwell 2002), only a limited number of
biases or parameters can be estimated on-line, thus the choice of which parameters or
biases to estimate must be based on experience with the process and model. Three
biases have been selected for on-line estimation in the paper machine model. The first
two are biases on the estimated total- and filler thick stock consistencies (see eq. 3).
These disturbances are estimated using a ballistic estimator (Slora 2001), and thus
they are assumed to be good candidates for having time-varying biases. The third
bias estimated on-line is for the total wire tray concentration, i.e. a bias in one of the
outputs. In Appendix D.4 we have shown how arbitrary parameters and biases in the
model can be estimated on-line by an augmented Kalman filter. It is also shown how
the linearization, calculation of steady state values, and optimization may be carried
out on the augmented system.

5.1 Tuning and validation

In theory, and in the true Kalman filter, the noise characteristics of the process should
be found and used in the Kalman filter equations. However, these characteristics are
hard, if not impossible, to find. Thus, one often aims for a suboptimal Kalman
filter, where the noise characteristics are used as tuning parameters until satisfactory
Kalman filter performance is obtained. Specifically, the tuning parameters are the
process noise covariance matrix �� and the measurement noise covariance matrix !�.
In the augmented Kalman filter (as described in section D.4), the augmented process
noise covariance matrix �̃� is used. Often, it is assumed that only diagonal elements
are non-zero. Thus, for the paper machine model there are three diagonal elements in
!� (three outputs), and six diagonal elements in �̃� (three states plus three estimated
parameters). The first element (upper left corner) in !� corresponds to the variance
of the basis weight measurement, the second element (the element on the second row
and second column) in !� corresponds to the variance of the paper ash measurement,
etc. Similarly for the diagonal elements in �̃�, the first diagonal element corresponds
to the variance of the first state variable (the concentration of filler in the reject
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tank), and e.g. the last element on the diagonal corresponds to the variance of the
last parameter to be estimated (bias in the wire tray total concentration).

When tuning and validating the (suboptimal) Kalman filter, we have used a few
facts and rules of thumb, e.g.:

• The tuning and validation (with di erent data sets) should aim at good tracking
properties (i.e. the estimated outputs should follow the measured outputs to
some extent), good filtering properties (i.e. the estimated outputs should not
track measurement noise), and a sound balance between the updating of states
and updating of parameters (e.g. the parameters should not vary a lot while
the states are more or less resting).

• It can be shown that it is the ratio of the various variances that determines the
performance of the Kalman filter. Thus, one need not be careful about finding
realistic variance values.

• It is possible to estimate the variances, using a parameter estimation method.
This is done for a constant gain Kalman filter (i.e. the individual variances
are not estimated, but the Kalman filter gain matrix is estimated) in (Hauge
& Lie 2002). The drawback with this method is that the Kalman filter will be
rather aggressive, and some de-tuning procedure is needed (but it may give a
good starting point).

• Start the tuning by finding approximate values for the various variances. The
measurement variances can be approximately found by visually studying the
random variations in the measurements. It is harder to find suitable starting
values for the process noise variances and the parameter estimate variances.
However, the expected state and parameter values will give good indications of
reasonable starting values. Consider e.g. a concentration that is expected to
have a value around 0�05 (5%). If one assumes that the noise entering this state
is approximately 1% of the state value, we see that the variance will be a very
small number. In the Kalman filter used at PM6, the measurement variances
are much larger than the process and parameter variances (around 108 larger).

• In general, increasing the measurement variances leads to a slower updating of
state estimates. The same result is obtained by decreasing the process vari-
ance. Thus, decreasing the process variance leads to a slower updating of state
estimates.

• Since the parameters are augmented states, changing the parameter variances
has much of the same e ect as changing the state variances. Increasing the
parameter variances leads to a faster updating of parameter estimates, thus
also leading to a faster elimination of estimation error (the di erence between
estimated outputs and measured outputs).

Validation results for the augmented Kalman filter are shown in Figures 2-4 .
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Figure 2: Validation of Kalman filter performance. The measured basis weight is
shown in solid line and the estimated is shown in dashed line.
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Figure 3: The estimated states for the validation shown in Figure 2.
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Figure 4: The estimated parameters for the validation shown in Figure 2.
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6 Results

6.1 Implementation and interface

The MPC was installed at PM6 in March 2002. During the first two months, the MPC,
the Kalman filter and the model were continuously tuned, retuned, and validated in
open and closed loop. Some structural changes were also made during these months.
From May 2002, the MPC has been in operation more or less continuously. The
process operators still have the original “pre-MPC era” control configuration available,
but the MPC has been the preferred choice from the beginning. Furthermore, the
operators have been very active in making suggestions for improvements and new
features in the system. Some of these suggestions are implemented, and others are
being considered for implementation.

In addition to discussing and involving the operators in the project from the
beginning, it is our opinion that the MPC interface has been very important for the
positive operator attitude. Figure 5 shows part of the MPC interface at PM6. The
upper row in the figure shows the basis weight, setpoint for basis weight, and the
flow of thick stock. The middle row shows the paper ash, setpoint for paper ash,
and the flow of filler added to the short circulation. The lower row shows the total
concentration in the wire tray, the corresponding setpoint, and the flow of retention
aid added to the short circulation. The interface and pairing of inputs and outputs
are based on the pre-MPC control configuration, basically because this is how the
operators and engineers at PM6 are used to see it. The vertical dashed line in the
middle of each row is the current time. When Figure 5 was captured, the paper
machine was in the middle of a grade change, and studying the figure carefully, one
may see the setpoints change at the current time. The setpoints for the new grade
were submitted to the MPC some time before the grade change, so at the time of
the grade change the outputs are actually half way to the new setpoints. In terms of
gaining operator acceptance for the MPC, this feature of previewing the action taken
by the controller has been very helpful. The operators can specify a grade change e.g.
half an hour into the future, and see how the MPC will achieve the change: how the
inputs will be manipulated to reach the new setpoints.

6.2 Reduction of variation

An important objective with the MPC was to reduce variation in consistencies, basis
weigh, paper ash, paper moisture, and more. Figure 6 shows and example with
the wire tray concentration and the paper ash. The bottom line indicates whether
the MPC is on (at 1) or o (at 0). When the controller is o , the original control
configuration is used. The MPC provides a distinct e ect of reduced variation in these
two outputs.

The main objective of the project “Stabilization of the wet end at PM6” was to
increase the total e ciency by 0�47%. This is an objective that is unmeasurable, due
to many factors a ecting the total e ciency. Thus, several sub-goals were defined
which were assumed easier to measure and validate. The sub-goals, and results,
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Figure 5: Part of the MPC interface at PM6.
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Figure 6: Wire tray concentration and paper ash, with (bottom line is 1) and without
(bottom line is 0) MPC. From top to bottom the following variables are shown: Mea-
sured and estimated paper ash (overlapping), wire tray total concentration, retention
aid, filler, and MPC on/o indication.
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concerning reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% OK
Filler cons. in the wire tray 50% OK
Total cons. in the headbox 50% OK
Filler cons. in the headbox 35% OK
Basis weight 20% No change achieved
Paper ash 20% OK
Paper moisture 20% OK

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

6.3 Other benefits of MPC

In addition to reducing the variation in key paper machine variables, several other
benefits are obtained using MPC. Some of these benefits arise from utilizing the devel-
oped model, not only for control purposes, but also as a replacement for measurements
when these are not available or not trustworthy.

Grade changes in automatic mode Previously, grade changes were carried out
manually or partly manually (the setpoints were changed a number of times before
they were equal to the new grade) by the operators. With a mechanistic model,
applicable over a wide range of operating conditions, the grade changes are carried
out using the MPC (see Figure 5). This has resulted in faster grade changes and
operator independent grade changes. During larger grade changes, the use of MPC
results in less o -spec paper being produced during the change. Using one mechanistic
model, the grade change is handled in a straight forward fashion, as there is no need
to switch between various local models.

Control during sheet breaks The basis weight and paper ash outputs can not
be measured during sheet breaks. Previously, during sheet breaks the flow of thick
stock and filler were frozen at the value they had immediately prior to the break.
Usually the sheet breaks last less than half an hour, and the output variables are
not far from target values when the paper is back on the reel. However, occasionally
the sheet breaks last longer periods and there may be e.g. velocity changes during
the break, leading to o -spec paper being produced for a period following the break.
Another frequently experienced problem are large measurement errors immediately
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Figure 7: Sheet break. From top to bottom the following variables are shown: Mea-
sured and estimated paper ash (overlapping), filler, retention aid, measured and esti-
mated wire tray total concentration (overlapping),and MPC on/o indication.

after a sheet break. With the MPC, the Kalman filter estimates the basis weight and
paper ash during sheet breaks, and these estimates are used in the MPC as if no break
had taken place. Thus, when the paper is back on the reel, the outputs are close to
their setpoints.

In Figure 7 a sheet break, followed by a large measurement error, is shown. The
two lines at the top are the measured and estimated paper ash (the lines are over-
lapping to some extent). During the sheet break the measured value is lost, and
thus frozen at the value immediately prior to the break. When the paper is back
on the reel, a large measurement error occurs giving a di erence between measured
and estimated value above 2%. The measured value converges to the estimated value
before the estimate is updated in the Kalman filter. The MPC use the estimated
values and is thus una ected by the erroneous measurement. Studying the inputs, it
is obvious that it is the measurement that is erroneous, and not the estimate. The
rise in measured paper ash from approximately 27% to 29% in less than 10 minutes
is too fast to be realistic by itself, and the fact that this happens during a period
when the dosage of retention aid is constant and the filler is decreasing is very hard
to explain.
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Control during start ups Previously, the controllers were not set to automatic
mode before the outputs were close to the setpoints, following a start up. With a
model based controller using a mechanistic model with a wide operating range, the
MPC is set to automatic mode early during start ups. This results in faster start ups,
and less o -spec paper being produced.

Control during periods with poor measurements Occasionally a special filler
is added to the stock, to increase the brightness of the paper. During these periods the
consistency measurements are not trustworthy as they are based on optical measure-
ment methods. This problem is solved within the MPC / Kalman filter framework
by neglecting the updates of the consistency estimate, relying on the estimate alone.
For each output, there is an option within the MPC to neglect the updating of states
based on this output. This is done based on experience with periods of poor mea-
surements, even when only standard filler is used. Figures 8—9 show an example of
a period of poor wire tray consistency measurement. There are large variations in
all outputs in the first half of the period shown in the figures. When the MPC was
switched on, the updating of states from the wire tray consistency measurement was
switched o . The e ect is pronounced, as the paper ash, basis weight, moisture, and
also all inputs vary considerably less in this latter half. Note that the measurement
of wire tray consistency is the only variable that varies equally much in the first and
second halves.

Filtering of measurements The Kalman filter estimates are used in the MPC
instead of the measurements. This leads to smoother controller action, and eliminates
the need for additional filtering.

Updating of model parameters The model is augmented so that some key pa-
rameters/biases are updated automatically. This reduces the need for model mainte-
nance o -line. However, should there be larger changes in the process, such as if the
white water tank is removed, or a new retention aid is used, then it will probably be
necessary to re-tune the model and controller.

7 Conclusions

A mechanistic nonlinear model of the wet end of PM6 at Norske Skog Saugbrugs
has been developed and used in an MPC application. The MPC uses an infinite
horizon criterion, successive linearization of the model, and estimation of states and
parameters by an augmented Kalman filter.

Variation in important quality variables and consistencies in the wet end have been
reduced substantially, compared to the variation prior to the MPC implementation.
The MPC also provides better e ciency through faster grade changes, control during
sheet breaks and start ups, and better control during periods of poor measurements.
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Figure 8: Period of poor wire tray consistency measurement. During the second half,
the controller relies on the estimated consistency, rather than the measured. From
top to bottom the following variables are shown: Measured and estimated paper ash
(overlapping), measured and estimated wire tray total concentration (overlapping),
filler, retention aid, and MPC on/o indication.
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Figure 9: Period of poor wire tray consistency measurement. During the second half,
the controller relies on the estimated consistency, rather than the measured. From top
to bottom the following variables are shown: Measured and estimated basis weight
(overlapping), flow of thick stock, setpoint for steam pressure, paper moisture, and
MPC on/o indication.
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A Notes about notation

Variables in original units, i.e. unscaled and unshifted, are denoted by a bar above
the variable, e.g. �̄ and �̄. Variables in the linearized model, i.e. variables that have
origin corresponding to the center of linearization are denoted by a double bar above
the variable, e.g.

=
� and

=
�. Finally, variables shifted first by linearization and then by

the steady state values at time � +� 1 are shown as e.g. � and �.

B Example: Finding the steady state values with
lssol

The solution to eqs. 15-17 can be found by using standard optimization software. The
lssol algorithm (Gill et al. 1986) for solving constrained linear least squares problems,
is available with a Matlab interface in the Tomlab environment (Holmström 2001).
The algorithm solves the following problems (amongst others)

min
!

�+�

 ��+� = min
!


1

2
(%��+� ��

�+�(
�
�+�)

� (%��+� ��
�+�(

�
�+�), (34)

with constraints

%���+�

·
(��+�

�̄�(
�
�+�

¸
%���+�, (35)

where � = 0� ����� 1 so that the optimization must in principle be carried out at
each sample in the future horizon. In practice one would only calculate the steady
state values once for every change in the future reference values, measured disturbance
values, or max/min values.

The matrix ��
�+� is then found in eq. 16 as

��
�+� =

·
(� ��) ��


� ��

¸
, (36)

while %��+� is

%��+� =

"
��

=

��+�

��
=

��+� �̄��+�

#
. (37)
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The constraints on �̄��+� is

�̄min
�+� �̄� 1 �̄��+� �̄max

�+� �̄� 1, � = 0� ���� � 1 (38)

and the constraints on �̄��+� can be formulated as

�̄min
�+� �̄� 1 �̄��+� �̄max

�+� �̄� 1, � = 0� ���� � 1

�̄min
�+� �̄� 1 
��̄

�
�+� +���̄

�
�+� �̄max

�+� �̄� 1, � = 0� ���� � 1

�̄min
�+� �̄� 1 ��

=

��+�
£

� ��

¤ · �̄��+�
�̄��+�

¸
�̄max
�+� �̄� 1 ��

=

��+� (39)

, � = 0� ���� � 1.

The constraints can then be written, as in eq. 35, as

%���+� = �̄min
�+� �̄� 1

�̄min
�+� �̄� 1 ��

=

��+�

, � = 0� ���� � 1 (40)

%���+� = �̄max
�+� �̄� 1

�̄max
�+� �̄� 1 ��

=

��+�

, � = 0� ���� � 1

�̄� =
£

� ��

¤
.

C Proofs for finite horizon criterion

C.1 Reduction to finite horizon criterion

We split the infinite horizon criterion in two sums

min
U�

 � = min
U�

X
�=0

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
= min

U�

X
�=�

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
(41)

+
� 1X
�=0

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
,

where the sum from zero to � 1 can be easily calculated, while the infinite sum
from � to infinity must be studied carefully. We take a closer look at each of the
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three terms in that part of the criterion where the sum is infinite. First we study the
�̃ term: X

�=�

�̃��+�!�̃�+� =
X
�=�

¡
��+� ���+�

¢�
!
¡
��+� ���+�

¢
= 0 (42)

which is a direct consequence of the definition of �̃�+� in eq. 25, and the assumptions
in eq. 27. We then study the � term:

X
�=�

���+�" ��+� = ���+�" ��+� , (43)

because of assumptions made in eq. 27. Finally we study the � term:

X
�=�
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X
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=
X
�=�

���+�

�
� �
���+�, (44)

where we have used eqs. 23, 25 and 27. Eq. 44 needs to be studied further, but first
we will establish some facts needed. Consider a decomposition of the �� matrix into
its Jordan form

�� = �� ��
1

� =
£
� �
� � �

�

¤ ·  �� 0
0  ��

¸ ·
�̃ �
�

�̃ �
�

¸
, (45)

where � �
� and  �� are respectively the eigenvectors and Jordan blocks for the eigen-

values corresponding to the unstable modes of ��, and � �
� and  �� are respectively the

eigenvectors and Jordan blocks for the eigenvalues corresponding to the stable modes
of ���Consider ��+�, � = �� ���

��+� = ��+�

��+�+1 = ����+� +��

0z }| {
��+� +��

0z }| {
��+�

��+�+2 = �2���+� +��

0z }| {
��+�+1 +��

0z }| {
��+�+1

· · ·

which gives
��+� = �

� �
� ��+� , � = ��� + 1�� + 2� ��� (46)
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Inserting eq. 45 into 46 gives
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At this point we introduce a new constraint, i.e. we force the unstable modes to
zero at time � +�

�̃ �
� ��+� = 0, (48)

and this gives then
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This result is inserted into eq. 44:X
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where �̄� is given by the discrete Lyapunov equation
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From eq. 41, 42, 43, and 49, we have the criterion

min
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with �̄� given by eq. 50, �̃ �
� found from the Jordan decomposition of �� (see eq. 45),

and with the additional equality constraint given by eq. 48.

C.2 Formulation as standard QP problem

Define
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, (52)
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.

Using the model in eq. 19 to predict future state and output values, we have the
following results
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and
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We then derive equations for Y� and U� in terms of U�, D�, �� and �� 1
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Each term in the criterion in eq. 51, and in the constraints in eqs. 24 and 48 is
now written in terms of the unknown variable U�, and the known variables U�

� , Y
�
� ,

D�, Umin
� , Umax

� , Ymin
� , Ymax

� , Umin
� , Umax

� , �� and �� 1.
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C.2.1 The criterion

We start with the first term in the criterion in eq. 51, using the result in eq. 53
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� ��

¤
&� = �rot90� ��

&  = �rot90� �

and �rot90� is an � × � identity matrix rotated 90 degrees, �� and � are identity
matrices of size ) and 	 respectively, and is the Kronecker product.

We then study the two � terms in the criterion (eq. 51), using the result obtained
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in eq. 55
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Next, the control error term is studied, using the definitions in eqs. 25 and 52,
and the results from eq. 55
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The last term in the criterion to be studied, using the definitions in eqs. 25 and

52, is
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C.2.2 The constraints

First we define the following

Umin
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The constraints are given in eqs. 24 and 48. These are now written in terms of the
unknown variable U�, and the known variables U�

� , Y
�
� , D�, Umin

� , Umax
� , Ymin

� , Ymax
� ,

Umin
� , Umax

� , �� and �� 1. The constraints on the inputs are reformulated using
eqs. 8, 20, 52, and 62
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where 1� is an � dimensional vector with 1 in all elements. Next the constraints on
the outputs are reformulated using eqs. 11, 20, 52, 55, and 62
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The constraints on the input moves are reformulated using eqs. 25, 52, 55, and 62
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Finally, we reformulate the constraint in eq. 48, using eqs. 57, and 58
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C.2.3 Summary of standard QP problem

From eqs. 51, 57, 59, 60, and 61, we can write the criterion as

min
U�

 � = min
U�

µ
1

2
U�
� #�U� + $�� U� + *

¶
, (67)

and using eqs. 24, 48, 63, 64, 65 and 66, we can write the constraints as

%���

·
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�̄�U�

¸
%���, (68)

where
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The criterion and constraints given by eqs. 67 and 68 are in the form used by

e.g. the sqopt algorithm3 (Gill et al. 1997). The sqopt algorithm is available with a
Matlab interface in the Tomlab environment (Holmström 2001).

3The constant term � in the criterion is not part of the sqopt algorithm (or any QP solver), and
can be omitted without a ecting the result of the optimization.
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D State and parameter estimation

In this appendix we do not follow the notation used in other parts of this paper.
For example �̄ is here the a-priori state estimate, and not a state variable in original
“global” units.

D.1 Kalman filter equations for linear time variant processes

In this section we derive the Kalman filter equations for a linear time variant system
with colored process noise. The derivations are in particular based on (Ergon 2001)
and to some extent on (Gelb 1974). We assume that the process is described by

��+1 = ���� +���� +���� ++�,� (70)

�� = 
��� +���� + ���� + ��

where �� R
 is the state vector, �� R� is the (manipulated) input vector, �� R�

is the measured disturbance vector, �� R� is the output vector, and � is the discrete
time variable. ,� and �� are zero mean uncorrelated white noise

� [,�] = 0, � [��] = 0, (71)
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= 0, � 6= �

�
£
,�,

�
�

¤
= ��, �

£
���

�
�

¤
= !�,

where � [·] is the expectation operator, and �� R
×
 and !� R�×� are covari-
ance matrices. In Figure 10 the Kalman filter structure is shown.

From Figure 10 we find the following equations for the Kalman filter

�̄�+1 = ���̂� +���� +���� (72)

�̂� = �̄� +-� · .� = �̄� +-� (�� �̄�)

�̄� = 
��̄� +���� + ����.

Define the covariance matrices

/� = �
h
(�� �̂�) (�� �̂�)

�
i
and &� = �

h
(�� �̄�) (�� �̄�)

�
i
, (73)

where

�̂� = �̄� +-� (�� �̄�)

= �̄� +-� (
��� +���� + ���� + �� 
��̄� ���� ����)

= �̄� +-�
��� +-��� -�
��̄�

= (� -�
�)�̄� +-�
��� +-���.



250 Paper F: Application of a Nonlinear Mechanistic Model and an Infinite ...

q-1

B
k

A
k

C
k

D
k

+ +

q-1

A
k

C
k

D
k

+ +

K
k

+

+

-

Kalman filter

Process

G
k

E
k

d
k

u
k

B
k

E
k

y
k

x
kx

k+1

w
k

F
k

F
k

kx1�kx ky

k�

kx̂

v
k

Figure 10: Structure of Kalman filter for linear time variant process with colored
noise.
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Then
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and where �
£
(�� �̄�)�

�
�

¤
= 0 is a reasonable assumption since

�� �̄� = �� 1�� 1 ++� 1,� 1 �� 1�̄� 1 -� 1(�� 1 �̄� 1)

= �� 1�� 1 ++� 1,� 1 �� 1�̄� 1 -� 1(
� 1�� 1 + �� 1 
� 1�̄� 1)

= (�� 1 -� 1
� 1)(�� 1 �̄� 1) ++� 1,� 1 -� 1�� 1,

where we see that the state estimation error �� �̄� only depends on past noise
sequences.

We now seek to find the gain matrix-� which minimizes the covariance /�, noting
that min (/�) implies min (trace(/�)) and that for a symmetric matrix � we have the
following rule

�

��
trace(���� ) = 2��.

Then the optimal gain matrix, or the Kalman filter gain matrix, is

�

�-�

(/�) = 0

-� = &�

�
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�
�

¢ 1
. (75)

Using the Kalman filter on-line we must find &�+1

&�+1 = �
h
(��+1 �̄�+1) (��+1 �̄�+1)

�
i

= �
h
(���� ++�,� ���̂�) (���� ++�,� ���̂�)

�
i

= �
h
(��(�� �̂�) ++�,�) (��(�� �̂�) ++�,�)

�
i

= �
£
��(�� �̂�)(�� �̂�)

���
� +��(�� �̂�),

�
�+

�
�

++�,�(�� �̂�)
���

� ++�,�,
�
�+

�
�

¤
= ���

£
(�� �̂�)(�� �̂�)

�
¤
��
� +���

£
(�� �̂�),

�
�

¤
+�
�

++��
£
,�(�� �̂�)

�
¤
��
� ++��

£
,�,

�
�

¤
+�
� (76)

= ��/��
�
� ++���+

�
� . (77)
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We see from this last equation that the -� that minimized /� also minimizes
&�+1.

D.2 Extended Kalman filter for nonlinear processes

Assume the process is nonlinear

��+1 = �(��� ��� ��) ++�,� (78)

�� = 	(��� ��� ��) + ��,

with noise characteristics as given by Equation 71. Then the extended Kalman filter
algorithm can be written as (Ergon 2001)

1. At time �, given ��, ��, �̄� ,&�, �� =
��
���
|� and 
� =

�
���
|�.

2. Compute the Kalman filter gain matrix as given by Equation 75

-� = &�

�
�

¡
!� +
�&�


�
�

¢ 1
.

3. Compute updated state estimate

�̂� = �̄� +-� (�� 	(�̄�� ��� ��)) .

4. Compute updated covariance matrix for state error, as given by Equation 74

/� = (� -�
�)&�(� -�
�)
� +-�!�-

�
� .

5. Compute state estimate at time � + 1

�̄�+1 = �(�̂�� ��� ��).

6. Compute covariance matrix for state error, as given by Equation 77

&�+1 = ��/��
�
� ++���+

�
� .

7. Set � � + 1 and go to step 2.

Note that when there is a direct input to output term in the model, and the
model is used in a control loop, we must know the input �� before we can estimate
�̂� or �̄�+1. This means that the controller must rely on the estimate �̄�|� 1 when
computing the inputs ��.
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D.3 O set free control by bias estimation

We will in this section show how the MPC and Kalman filter developed in previous
sections and appendices can be redesigned to prevent steady state o set by estimating
the bias and adding this to the model outputs.

Assume the following augmented process model·
�nonlin�+1

0nonlin�+1

¸
=

·
�(�nonlin� � �nonlin� � �nonlin� )

0nonlin�

¸
(79)

�nonlin� = 	(�nonlin� � �nonlin� � �nonlin� ) + 0nonlin� ,

where the bias 0nonlin� is added to the process outputs. We will now review some of
the stages in the algorithm described in Section 2.

D.3.1 Linearization

The linearization can be carried out on the augmented system, the same way as was
done for the original model in Section 3. However, by studying the structure of the
augmented system we may carry out the linearization in a more e cient way·

�lin�+1
0lin�+1

¸
=

·
��
� 0
0 �

¸·
�lin�
0lin�

¸
+

·
��

0

¸
�lin� +

·
��

0

¸
�lin� (80)
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¤ · �lin�
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¸
+���

lin
� + ���

lin
� .

The linearization can thus be carried out on the original non-augmented system, and
augmentation of the � and 
 matrices can be done after the linearization.

D.3.2 Steady state values, shifting the model and variables

Assuming the steady state value of 0 to be known and equal to 0lin� we may calculate
the steady state values as follows

min
�̄

�+�

��̄

�+�

¡
�̄��+� �lin�+�

¢�
��

¡
�̄��+� �lin�+�

¢
, � = 0� ���� � 1, (81)

constrained by the steady state solution to the model·
(� ��

�) ��
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¸
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¸
, � = 0� ���� � 1, (82)

and

�̄min
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and
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�+� + 0lin�+� +���̄

�
�+� + ���

lin
�+�, � = 0� ���� � 1, (84)
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When shifting the augmented model to the steady state values at time � 1, all
bias terms are set to zero since we assume the bias is constant into the future. Thus,
there is no point in using the augmented model in the MPC.

D.3.3 Optimization

The optimization is carried out the same way as was done in Section 4, due to the fact
that the augmented model reduces to the original model when assuming a constant
bias term, and shifting it to the steady state values at time � 1.

D.3.4 Estimating the states

The process model is given by the augmented model of Equation 79, and we assume
the real process is given by

�̃nonlin�+1 = �̃(�nonlin� � �nonlin� � �nonlin� � 0nonlin� ) + +̃�,̃� (85)

�nonlin� = 	(�nonlin� � �nonlin� � �nonlin� ) + 0nonlin� + ��,

where

�̃nonlin�+1 =

·
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0nonlin�+1

¸
(86)
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¸
+̃� =

·
+�
� 0
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#
�

¸
(87)

,̃� =

·
,�
�

,
#
�

¸
, (88)

and where the noise characteristics are as given by Equation 71 (with tilde above
appropriate elements).

We study the covariance matrices

/̃� = �

·³
�̃nonlin�

ê�nonlin´³�̃nonlin�
ê�nonlin´�¸ (89)

&̃� = �

·³
�̃nonlin�

ē�nonlin´³�̃nonlin�
ē�nonlin´�¸ , (90)

where

�̃nonlin� =

·
�nonlin�

0nonlin�

¸
(91)

ê�nonlin = · �̂nonlin�

0̂nonlin�

¸
ē�nonlin = · �̄nonlin�

0̄nonlin�

¸
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For a linearized model we then haveê�lin = ē�lin + -̃�

¡
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Then
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and finally
&̃�+1 = �̃�/̃��̃

�
� + +̃��̃�+̃

�
� , (96)

where
�̃� = �

£
,̃�,̃

�
�

¤
. (97)

Then the augmented Kalman filter algorithm can be written as

1. At time �, given �nonlin� , �nonlin� ,ē�nonlin� , 
�, �� and &̃�. Augment model ma-
trices

�̃� =

·
�� 0
0 �

¸
, and 
̃� =
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¤
2. Compute the Kalman filter gain matrix
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³
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´ 1

.

3. Compute updated state estimate

ê�nonlin = ē�nonlin + -̃�

¡
�nonlin� 	(�̄nonlin� � �nonlin� � �nonlin� ) 0̄nonlin�

¢
4. Compute updated covariance matrix for state error
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³
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5. Compute state estimate at time � + 1

ē�nonlin�+1 =
ê
�(�̂nonlin� � �nonlin� � �nonlin� � 0̂nonlin� ) =

·
�(�̂nonlin� � �nonlin� � �nonlin� )

0̂nonlin�

¸
.

6. Compute covariance matrix for state error

&̃�+1 = �̃�/̃��̃
�
� + +̃��̃�+̃

�
� .

7. Set � � + 1 and go to step 2.

D.4 Online parameter estimation by augmented Kalman filter

An alternative to bias estimation to obtain o set free control may be to estimate pa-
rameters and biases in the model on-line. The estimation can be done by augmenting
the state vector by parameters and biases that we wish to estimate. The procedure
is similar, but not equal, to the procedure in the previous section where only the
(output) bias was estimated. We will in this section show how the MPC and Kalman
filter developed in previous sections can be redesigned to prevent steady state o set
by estimating parameters and/or biases in the model.

Assume the following augmented process model·
�nonlin�+1

�nonlin�+1

¸
=

·
�(�nonlin� � �nonlin� � �nonlin� � �nonlin� )

�nonlin�

¸
(98)

�nonlin� = 	(�nonlin� � �nonlin� � �nonlin� � �nonlin� ),

We will now review some of the stages in the algorithm described in Section 2.

D.4.1 Linearization

The linearization can be carried out on the augmented system, the same way as was
done for the original model in Section 3. However, by studying the structure of the
augmented system we may carry out the linearization in a more e cient way·
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� .

D.4.2 Steady state values, shifting the model and variables

Assuming the steady state value of � to be known and equal to �lin� we may calculate
the steady state values as follows

min
�̄
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��̄

�+�

¡
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¢�
��

¡
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¢
, � = 0� ���� � 1, (100)
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constrained by the steady state solution to the model·
(� ��

�) ��


�
� ��

¸ ·
�̄��+�
�̄��+�

¸
=

·
�$
��

lin
� +���

lin
�+�


$
��

lin
� + ���

lin
�+� �̄��+�

¸
, � = 0� ���� � 1,

(101)
and
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When shifting the augmented model to the steady state values at time � 1, all
augmented states are set to zero since we assume the parameter values are constant
into the future. Thus, there is no point in using the augmented model in the MPC.

D.4.3 Optimization

The optimization is carried out the same way as was done in Section 4, due to the
fact that the augmented model reduces to the original model when assuming constant
parameters and biases into the future, and when the model is shifted to the steady
state values at time � 1.

D.4.4 Estimating the states

The process model is given by the augmented model of Equation 98, and we assume
the real process is given by

�̃nonlin�+1 = �̃(�nonlin� � �nonlin� � �nonlin� � �nonlin� ) + +̃�,̃� (104)
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where

�̃nonlin�+1 =

·
�nonlin�+1

�nonlin�+1

¸
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·
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¸
,

and where the noise characteristics are as given by Equation 71 (with tilde above
appropriate elements).
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We study the covariance matrices
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�̄nonlin�

¸
For a linearized model we then haveê�lin = ē�lin + -̃�

¡
�lin� �̄lin�

¢
(109)

= ē�lin + -̃�

³

̃��̃

lin
� +���

lin
� + ���

lin
� + �� 
̃�ē�lin ���

lin
� ���

lin
�

´
= ē�lin + -̃�

³

̃��̃

lin
� + �� 
̃�ē�lin´

=
³
� -̃�
̃�

´ ē�lin + -̃�
̃��̃
lin
� + -̃���

where

-̃� =

·
-�

�

-$
�

¸
, and 
̃� =

£

�
� 
$

�

¤
(110)

Then

/̃� = �
h³
�̃lin�

³
� -̃�
̃�

´ ē�lin -̃�
̃��̃
lin
� -̃���

´
(·)�

i
(111)

= �
h³³

� -̃�
̃�

´³
�̃lin� ē�lin´ -̃���

´
(·)�

i
=
³
� -̃�
̃�

´
&̃�

³
� -̃�
̃�

´�
+ -̃�!

�
� -̃

�
� ,

and

-̃� = &̃�
� 
̃

�
�

³
!� + 
̃�&̃

�
� 
̃

�
�

´ 1

, (112)

and finally
&̃�+1 = �̃�/̃��̃

�
� + +̃��̃�+̃

�
� , (113)

where

�̃� =

·
��
� �$

�

0 �

¸
(114)

�̃� = �
£
,̃�,̃

�
�

¤
. (115)

Then the augmented Kalman filter algorithm can be written as
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1. At time �, given �nonlin� , �nonlin� , ē�nonlin� , 
�
� , 


$
� , �

�
�, �

$
� and &̃�. Augment

model matrices

�̃� =

·
��
� �$

�

0 �

¸
, and 
̃� =

£

�
� 
$

�

¤

2. Compute the Kalman filter gain matrix

-̃� = &̃�
� 
̃

�
�

³
!� + 
̃�&̃

�
� 
̃

�
�

´ 1

.

3. Compute updated state estimate

ê�nonlin = ē�nonlin + -̃�

¡
�nonlin� 	(�̄nonlin� � �nonlin� � �nonlin� � �̄nonlin� )

¢

4. Compute updated covariance matrix for state error

/̃� =
³
� -̃�
̃�

´
&̃�

³
� -̃�
̃�

´�
+ -̃�!

�
� -̃

�
� .

5. Compute state estimate at time � + 1

ē�nonlin�+1 =
ê
�(�̂nonlin� � �nonlin� � �nonlin� � �̂nonlin� ) =

·
�(�̂nonlin� � �nonlin� � �nonlin� � �̂nonlin� )

�̂nonlin�

¸
.

6. Compute covariance matrix for state error

&̃�+1 = �̃�/̃��̃
�
� + +̃��̃�+̃

�
� .

7. Set � � + 1 and go to step 2.
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