
Paper E

A Comparison of
Implementation Strategies for
MPC

Lie, B., Dueñas Díez, M., and Hauge, T. A. (2002). A Comparison of Implementation
Strategies for MPC, in Proceedings of International Symposium on Advanced Control
of Industrial Processes, June 10-11, 2002, Kumamoto, Japan.

A few corrections are made to the original paper.

191

A Comparison of Implementation Strategies for
MPC

Bernt Lie, Marta Dueñas Díez, and Tor Anders Hauge
Telemark University College, P.O. Box 203, N-3901 Porsgrunn, Norway

Abstract

Four quadratic programming (QP) formulations of model predictive control
(MPC) are compared with regards to ease of formulation, memory requirement,
and numerical properties. The comparison is based on two example processes: a
paper machine model, and a model of the Tennessee Eastman challenge process;
the number of free variables range from 150 — 1400. Five commercial QP solvers
are compared. Preliminary results indicate that dense solvers still are the most
e cient, but sparse solvers hold great promise.

Keywords: Model predictive control; Quadratic programming; Problem
formulation; Analysis of formulation; Comparison of QP solvers

1 Introduction

Model based predictive control (MPC) is the repeated use of optimal control over a
given horizon; many introductory books dealing with MPC exist, e.g. Maciejowski
(2002), Camacho and Bordons (1999), and Seborg et al. (1989). Most of the work on
MPC has been centered on the use of linear models and quadratic performance indices.
Common model types are impulse and step response models, ARMAX/CARIMA
models, and state space models. In many cases, such models are input-output equiv-
alent, and the choice of model is less important for the resulting value of the control
input.

The performance index typically puts quadratic weights on the control deviation,
the control variable, and/or quadratic weight on the control increment. In practice,
control inputs will be constrained to lie within lower and upper bounds, while it is
also of interest to introduce constraints on response variables, e.g. that the outputs
are constrained to lie in a given region, etc. The most common MPC formulations
are thus posed as quadratic programming (QP) problems.

The development of the MPC algorithms typically include relatively lengthy for-
mula manipulations in order to end up with a QP problem with future control inputs

Corresponding author: Bernt.Lie@hit.no

192

Paper E: A Comparison of Implementation Strategies for MPC 193

as the unknowns. An alternative approach is to keep variables such as states, outputs,
control deviations, etc. as unknowns, and include the model and various definitions
as linear equality constraints in the QP problem.

In this paper, we compare various formulations of the QP problem. In section
2, we formulate a standard MPC problem using state space models, and pose it as
QP problems with a complete set of variables, with an intermediate set of variables,
and with the basic future control inputs as variables (the common formulation). In
section 3, we analyze the various formulations via two case studies. In section 4, we
compare the computation time for various optimization algorithms and various QP
formulations. In section 5, we draw some conclusions.

2 The MPC problem

We consider the state space model

��+1 = ��� +��� (1a)

�� = ��� +���, (1b)

where �� R�×1 is the control input, �� R�×1 is the controlled output, �� R�×1

is the state, and the performance index �� is:

�� =
X
�=0

¡
	��+�
	�+� + ���+����+�

+ ���+�� ��+�

¢
.

Here, the output error 	� is
	� = �� �, (2)

where � is the set point, and the control increment �� is

�� = ��� �� 1. (3)

For open loop stable systems and some mild additional conditions, we can trans-
form the infinite performance index into the following finite horizon index, see e.g.
Muske and Rawlings (1993):

�� = ���+�
̄��+� + ���+� 1���+� 1 (4)

+
� 1X
�=0

¡
	��+�
	�+� + ���+����+�

+ ���+�� ��+�

¢
,

where
̄ is found by solving the discrete Lyapunov equation:

194 Paper E: A Comparison of Implementation Strategies for MPC

̄ = ��
� +��
̄�. (5)

With �� known, denote the optimal input sequence by ��+�|�, � {0� � � � � � }.
By repeatedly solving the optimal control problem for each time index �, letting the
control input be �� = ��|� leads to a nominally stable closed loop system, Rawlings
and Muske (1993).

One of the main advantages of MPC is the direct handling of constraints in the
calculation of the control input. This feature is importanct, since all processes are
subject to constraints. Actuators have a limited range of action

�� � �	 (6)

and a limited control increment

�� �� �	. (7)

Ouput constraints are mainly introduced for safety and quality reasons. Such con-
straints also arise when the exact values of some output variables � are less important
as long as they remain within specified boundaries or “zones”. These constraints can
be expressed as

�� � �	. (8)

Other types of inequality constraints are viable, such as funnels and constraints
on states. These extensions are in principle straightforward, and here we limit the
discussion to the constraints discussed above.

3 The MPC problem formulated as QP problems

3.1 Standard QP problem

The general MPC formulation outlined above can be posed as a quadratic program-
ming (QP) problem of the form

min

� (�) =
2
���� + �� � + � (9)

s.t. A� = �

B� �

�� � �	.

where the value of � does not change the optimal solution �, and hence is not discussed
further. If inequality constraints are passive, the solution can be found by solving the
linear equation L� = � where

L =

µ
� A�

A 0

¶
� � =

µ
�

�

¶
� � =

µ
�

�

¶
, (10)

and � is the Lagrange multiplier.

Paper E: A Comparison of Implementation Strategies for MPC 195

Table 1: Notation used in MPC formulation.
Notation Matlab form
�� R�×� eye(n)

���� = diag
¡

� |�|×1� �
¢

diag(ones(n-abs(k),1),k)

0�×� R�×� zeros(m,n)

�×� R�×� ones(m,n)

� R�×� :
dim1� = �

dim2� = �
[m,n] = dim(A)

� � kron(A,B)

diag (�1� � � � � ��) – (block diagonal)
rot90 �� rot(eye(N),1)

3.2 Complete set of variables

Although not the most common formulation, we first define the vector of unknowns
� as:

�� =
¡
��� � � � ���+� 1 ���+1 � � � ���+�

��� � � � ���+� 1 	�� � � � 	��+� 1

��� � � � ���+� 1

¢
(11)

Matrix � and vector � of eq. 9 are determined from the requirement that �� of eq. 4
should equal � (�) in eq. 9. The constraintsA� = � contain the dynamic model in eq. 1
and the definitions in eqs. 2 — 3. For the MPC problem defined here, inequality B� �

is empty, while physical, safety, and quality constraints of Section 2 is contained in
�� and �	.

In formulating the matrices, the notation of Table 1 is used. The following
matrices result:

� = diag (2 (�� 1 �) � 2 (�+ �) � (12)

0(� 1) dim1 �̄×(� 1)·dim2 �̄
�

0dim1 �×� ·dim � 2
̄� 0� dim×� ·dim �

2 (��
) � 2 (�� �))

� = 0�·(2�+�+2�)�1 (13)

A =

(�� �) A12 0 0 0
(�� �) A22 �� ·� 0 0
0 0 �� ·� �� ·� 0
A41 0 0 0 �� ·�

(14)

where matrices A�� are defined in Table 2.

196 Paper E: A Comparison of Implementation Strategies for MPC

Table 2: Matrices for complete variable set QP-formulation.
A12 = ��·� ��� 1 �

A22 = ��� 1 �

A41 = �� ·� + ��� 1 ��

� =

Ãµ
���

0(� 1)·�×1

¶�

�

µ
���

0(� 1)·�×1

¶�

� (15)

s
� �

µ
�� 1

0(� 1)�×1

¶�
!

�� =

�×1 ��

· �
� ·�×1

�×1 ��

· �
� ·�×1

�×1 ��

� �	 =

�×1 �	

· �
� ·�×1

�×1 �	

· �
� ·�×1

�×1 �	

(16)

The dimensions of the complete variable set QP problem are given by dim � = � ·
(�+ 2�+ 2�)× and dim� = � · (�+�+ 2�)× . Typically, the definition of � as
in eq. 11 leads to sparse matrices � and A.

3.3 Intermediate set of variables

From the full QP formulation, we eliminate 	�, ��, and ��. The resulting vector of
unknowns is:

�� =
¡
��� � � � ���+� 1 ���+1 � � � ���+�

¢
� (17)

The matrices and vectors in the QP formulation are

� = 2

µ
�11 �12

�21 �22

¶
, (18)

� =

µ
2
¡
����

�
� ��� 1�
¢�

0(� 1)�+��×1

¶
(19)

A =
¡

�� � �� ·� ��� 1 �
¢

(20)

� =

µ
���

0(� 1)�×1

¶
(21)

�� =

µ
�×1 ��

· � ·�×1

¶
� �	 =

µ
�×1 �	

· � ·�×1

¶
(22)

B =

B11 B12
B11 B12
B31 0�·�×� ·�

B31 0�·�×� ·�

� � =

�1
�2
�3
�4

. (23)

Paper E: A Comparison of Implementation Strategies for MPC 197

Table 3: Matrices for intermediate variable set QP formulation.
�11 = ��

¡
2� +�+��
�

¢
��� 1 � ���+1 �

�12 = ���+1 ��
� = ��
21

�22 =

µ
�� 1 ��
�

̄

¶
B11 = �� �� B12 = ��� 1 �

B31 = �� ·� ��� 1 ��

�1 =

µ
�	 ���

� 1×1 �	

¶
� �2 =

µ
�� +���

� 1×1 ��

¶
�3 =

µ
�	 + �� 1

� 1×1 �	

¶
� �4 =

µ
�� �� 1

� 1×1 ��

¶

The matrices encountered in equations 18 — 23 that have not been defined yet, are
defined in Table 3. The dimensions of the intermediate variable set QP problem are
given by dim � = � · (�+ �) × , dim� = � · � × , and dim � = � (� +�). The
definition of � as in eq. 17 leads to sparse matrices �, A, and B.

3.4 Basic set of variables

The most common QP formulation is found by using the equality constraints to
eliminate all unknowns except the future control inputs, hence:

�� =
¡
��� � � � ���+� 1

¢
� (24)

In this case, there are no equality constraints. The matrices and vectors of the QP
formulation are

� = 2 (H� 1 (��
)H� 1 + (�� �) (25)

+ � (�� �) + + �C��
̄C�
¢
�

�� = 2 (O��� s)� (��
)H� 1 (26)

+ 2��� 1!
� (�� �) + 2���

¡
��
¢�

̄C�

B =
H� 1

H� 1

� � =

�×1 �	 !�� 1

�×1 �� + !�� 1

�×1 �	 O���

�×1 �� +O���

(27)

�� = �×1 ��� �	 = �×1 �	 (28)

The matrices encountered in equations 25 — 27 that have not been defined yet, are
defined in Table 4.

The dimensions of the intermediate variable set QP problem are given by dim � =
� · �× and dim � = 2� · (�+ �)× . The definition of � as in eq. 24 leads to dense
matrices � and B.

198 Paper E: A Comparison of Implementation Strategies for MPC

Table 4: Matrices for basic variable set QP formulation.
= �� ·� ��� 1 ���

! =

µ
��

0(� 1)×�

¶
� s

� =
¡
�� · · · ��+� 1

¢
=

µ
0� 1×� 1 0� 1×1

01×� 1

¶
�� = rot90(�� ·�)

C� =
¡
� �� � � � �� 1�

¢
�

O�
� =

³
�� (��)� � � �

¡
��� 1

¢� ´
�

H� =

� 0dim� · · · 0dim�

�� � · · · 0dim�

...
...

. . .
...

��� 1� ��� 2� · · · �

3.5 Basic variable set from QR factorization

It is possible to eliminate equality constraints by means of e.g. QR factorization.
This is an alternative to the formula manipulation needed to reach the results in the
previous section. Denoting the matrices in section 3.2 by subscript ", we have:

A� =
̃�̃, (29)

where
̃ is orthogonal and �̃ is an upper triangular matrix, and dim �̃ = dimA�. �̃
is then partitioned into:

�̃ =
¡
�11 �12

¢
(30)

where �̃11 is square and invertible for well posed MPC problems; �� is partitioned
into:

��� =
¡
��1 ��2

¢
(31)

where dim �1 is the number of columns in �11 and dim �2 = � ·�. This leads to

�1 = � 1
11

³

̃��� �12�2

´
. (32)

By eliminating the equality constraint, the matrices in the QP formulation become:

� =

µ
� 1
11 �12
�

¶�

��

µ
� 1
11 �12
�

¶

�� =

µ
� 1
11
̃

���
0

¶�

��

µ
� 1
11 �12
�

¶

B =

µ
B1
B1

¶
� B1 =

µ
� 1
11 �12
�� ·�

¶

Paper E: A Comparison of Implementation Strategies for MPC 199

Table 5: Case studies.
1a 1b 1c 2a 2b 2c

Process PM PM PM TE TE TE
N 50 100 200 50 100 200

� =
�	�

µ
� 1
11
̃

���
0� ·�×�·�

¶
��� +

µ
� 1
11
̃

���
0� ·�×� ·�

¶
��2 = · � ·�×1� �	2 = · � ·�×1.

When �2 is found, we can compute �1 from eq. 32. However, since the first
element of �2 is ��, we can find the desired �� as �� + �� 1, hence �1 is really
not needed. The dimensions of the QR reduced basic variable set problem are given
by dim �2 = � ·�× and dim � = 2 · dim ��. Since �̃� may change with time index
�, it is necessary to also store � 1

11
̃
� which is of dimension dim�� × dim��. This

formulation leads to dense matrices � and B, and a dense
̃ matrix.

4 Analysis of QP problems

The formulations with a complete set of variables (C, section 3.2), an intermediate
set of variables (I, section 3.3), the basic set of variables (B, section 3.4), and the
basic set of variables as found via QR factorization (QR, section 3.5) are compared
with regards to sparsity, the use of computer memory, and the conditioning of the
formulations.

In the discussion of sparsity and conditioning, we assume that possible inequality
constraints are passive, and thus consider the sparsity and condition number of matrix
L in eq. 10.

The comparisons are based on two example processes. The first example process
is a linearized fourth order paper machine (PM) model, with three inputs and three
outputs; see Appendix A.1 for some details. The second example process is an iden-
tified 23 order model of the Tennessee Eastman (TE) Challenge Process, with seven
inputs and ten outputs; see Appendix A.2 for some details. All computations in this
paper are based on Intel Pentium III PCs running at 750MHz, and with 256 Mbyte
RAM.

The case studies are described in Table 5, where the first row is our reference
name for the case study, the second row describes which process is used (Paper Ma-
chine or Tennessee Eastman), and the third row is the prediction horizon used in the
formulation.

The B and QR formulations have totally dense Lagrange matrices L, while the
sparsity patterns for the C and I formulations are displayed in Table 6.

Table 7 displays the memory used by the matrices and vectors in the MPC for-
mulation.

200 Paper E: A Comparison of Implementation Strategies for MPC

Table 6: Sparsity patterns for sparse QP formulations, case 2a.

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nz = 99247
0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 97042

C I

Table 7: Memory used (kbytes) for case studies.
1a 1b 1c 2a 2b 2c

B 740 2919 11598 4962 19443 76965
QR 2888 11535 ** 27380 ** **
I 79 158 317 955 1919 3846
C 78 154 308 722 1445 2892

Elements marked with “**” denotes that the computer ran out of memory during
computation.

Table 8 displays the condition number of matrix L.

5 Comparison of algorithms for solving the QP prob-
lems

The QP solvers used in this study are (i) quadprog, (The MathWorks, Inc. 2000); (ii)
qld, available in Tomlab, Holmström (2001); as well as the following solvers which
are available with a Tomlab interface: (iii) lssol, Gill et al. (1986); (iv) qpopt, Gill
et al. (1995); and (iv) sqopt, Gill et al. (1997). The sqopt solver is the only one
of these that fully handles sparse matrices. The quadprog solver can be used with

Table 8: Condition number for QP formulations. Some computations required virtual
memory. Computations were terminated after 1 hour of computing time, and are
marked with “**”.

B QR I C
1a 2� × 03 8× 05 �3× 019 8�9× 018

1b 2�3× 03 2�7× 06 �4× 019 � × 019

1c 2�3× 03 ** �4× 019 � × 019

2a 7× 012 2�7× 015 6�5× 013 �6× 014

2b 7× 012 ** 6�6× 013 **
2c 7× 012 ** ** **

Paper E: A Comparison of Implementation Strategies for MPC 201

Table 9: Identification of solver and QP formulation.
Formulation Solver Notation
B lssol B1
B qpopt B2
B qld B3
B quadprog B4
QR lssol QR
I sqopt I
C sqopt C

Table 10: Total computation time (seconds) for case studies.
1a 1b 1c 2a 2b 2c

B1 0.91 4.82 46.9 (7.84)* (76.8)* (592)*
B2 1.38 10.1 91.4 8.1 80.1 600
B3 1.42 7.45 54.5 15.4 97.1 3320
B4 15.3 49.7 283 19.5 96.9 **
QR 16.2 133 ** (754)* ** **
I 3.86 20.3 85.8 96 (313)* (994)*
C 7.10 32.1 119 196 (382)* (139)*

sparse matrices only if there are no inequality constraints in the problem formulation.
We use the case studies of Table 5, with the notation of Table 9 to identify which

solver is used in the formulations. In all cases, we simulate the controlled process for
= 20 time steps.

Table 10 displays the total time used by the computer to simulate the case studies
with various MPC formulations and solvers. Table elements marked with “*” denotes
that an optimization failure or optimization problem occured. Elements marked with
“**” denotes that the computer ran out of memory during computation.

Table 11 displays the time spent on the first optimization. The reason for includ-
ing these results is that most solvers solve the optimization problem much slower the
first time than the remaining iterations. Typical computation times for the remaining

Table 11: Computation time for first iteration (seconds) for case studies.
1a 1b 1c 2a 2b 2c

B1 0.12 0.4 2.6 (0.33)* (3.22)* (27.2)*
B2 0.13 1.3 11 0.35 4.4 27
B3 0.15 0.67 3.26 0.72 4.28 200
B4 1.75 6.5 40 1.13 4.5 **
QR 0.12 1.11 ** (4.6)* ** **
I 0.82 3.29 11.3 10 (35)* (88.7)*
C 0.72 3.2 11 21 (57)* (266)*

202 Paper E: A Comparison of Implementation Strategies for MPC

Table 12: Typical computation time for remaining iterations (seconds) for case stud-
ies.

1a 1b 1c 2a 2b 2c
B1 0.03 0.15 1.9 (0.29)* (3.14)* (23.9)*
B2 0.025 0.15 1.94 0.30 3.18 24.2
B3 0.05 0.29 2.28 0.67 4.14 150
B4 0.6 1.6 8.2 0.85 4.2 **
QR 0.05 0.26 ** (0.6)* ** **
I 0.15 0.9 3.9 4.5 (14.6)* (3)*
C 0.33 1.5 5.6 9.0 (17.2)* (37)*

iterations are given in Table 12.

6 Conclusions

In this paper, we have discussed four formulations of a standard MPC problem. The
formulation of section 3.2 (C) is, in our view, the most straightforward formulation
from the pedagogical point of view. The formulation in section 3.5 (QR) only requires
knowledge of linear algebra in addition to formulation C, and is also easy to present.
The formulations in sections 3.3 (I) and 3.4 (B) utilize various degrees of elimination
of equality constraints, where formulation B is the most demanding to present, yet it
is also the most common formulation.

Formulations C and I both lead to sparse matrices, Table 6, and thus the memory
requirement increases more or less linearly with the horizon � of the performance
index, Table 7, while for the dense matrix formulations B and QR the memory
requirement increases quadratically with � ; the QR formulation is most demanding.
In fact, the formulations C and I can be said to be supersparse in the sense that it
is possible to introduce special sparse matrix structures that take advantage of the
fact that the involved matrices are constructed from the Kronecker product, where
typically the system matrices and horizon length � contain all necessary information,
and the size becomes independent of � . To take advantage of this, it would, however,
be necessary to develop special matrix libraries for such data structures. Table 8
indicates that the sparse formulations (C, I) may be poorly conditioned, but this
may also be a result of how the conditioning is defined.

A number of commercially available QP solvers have been tested and compared.
Overall, the best combination of formulation and solver in our investigation appears
to be the B formulation of section 3.4 and the qpopt solver, which manages to solve
all test problems where the number of free variables ranges from 150 to 1400, see
Tables 10 — 12: the largest problem requires less than 30 s computation time for each
iteration. The relatively poor performance of theQR formulation is mainly caused by
the added memory requirement. The sparse solvers give relatively poor performance.
With the memory advantage of the sparse formulations, it is to be hoped that sparse
solvers will be tailor made to handle the (super-) sparse structures found in MPC

Paper E: A Comparison of Implementation Strategies for MPC 203

Model

Thick stock

flow [l/s]

Filler flow [l/s]

Retention aid

flow [l/s]

Basis weight

[g/m2]

Paper ash

content [%]

White water total

consistency [%]

Figure 1: Inputs and outputs in PM6 model.

problems; such contributions are starting to appear, see Bartlett et al. (2002).

A Overview of example processes

A.1 Paper machine

A paper machine model has been developed for controlling certain key variables at
paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway. The original model is
a fourth order nonlinear model with three inputs, three outputs and seven measured
disturbances, and is described in detail in Hauge and Lie (2002). The model used
in this paper is a linearized version where the measured disturbances are assumed
constant. The inputs and outputs of the model are seen in Figure 1.

A.2 Tennessee Eastman Challenge Process

The Tennessee Eastman Challenge Process was defined in Downs and Vogel (1993),
and a basic control structure for the process was suggested in McAvoy and Ye (1994).
Recently, several subspace models for a part of this process were identified and com-
pared, (Juricek, Seborg & Larimore 2001)Juricek et al. (2001). The subspace models
all have 7 control inputs and 0 outputs, and the model that was found to give best
predictions was based on the Canonical Variate Analysis (CVA) method and has 23
states. The seven inputs are (i) compressor recycle valve, (ii) condenser cooling water
flow, (iii) setpoint for A feed, (iv) setpoint for D feed, (v) setpoint for C feed, (vi)
set point for purge rate, and (vii) set point for reactor CW temp. The ten outputs
are (i) recycle flow, (ii) reactor feed rate), (iii) reactor pressure, (iv) reactor tem-
perature, (v) product separator temperature, (vi) product separator pressure, (vii)
stripper pressure, (viii) stripper temperature, (ix) compressor work, and (x) separator
CW temperature. The inputs and outputs have not been scaled, and the system that
has been identified is rather sti . The most promising prediction model from the
subspace identification was graciously made available to the authors of this paper by
the authors of (Juricek et al. 2001)Juricek et al. (2001).

204 Paper E: A Comparison of Implementation Strategies for MPC

References

Bartlett, R. A., Biegler, L. T., Backstrom, J. & Gopal, V. (2002), ‘Quadratic pro-
gramming algorithms for large-scale model predictive control’, Journal of Process
Control . In press.

Camacho, E. F. & Bordons, C. (1999), Model Predictive Control, Springer-Verlag
London.

Downs, J. & Vogel, E. (1993), ‘A plant-wide industrial process control problem’,
Computers and chemical engineering 17(3), 245—255.

Gill, P. E., Hammarling, S. J., Murray, W., Saunders, M. A. & Wright, M. H. (1986),
User’s guide for lssol (version 1.0): A fortran package for constrained linear
least-squares and convex quadratic programming, Technical Report SOL 86-1,
Systems Optimization Laboratory (SOL), department of operations research,
Stanford University.

Gill, P. E., Murray, W. & Saunders, M. A. (1995), User’s guide for qpopt 1.0: A
fortran package for quadratic programming, Technical Report SOL 95-4, Systems
Optimization Laboratory, Dept. Operations Research, Stanford University.

Gill, P. E., Murray, W. & Saunders, M. A. (1997), ‘User’s guide for sqopt 5.3: A For-
tran package for large-scale linear and quadratic programming’. (Draft, October
1997).

Hauge, T. A. & Lie, B. (2002), ‘Paper machine modeling at Norske Skog Saugbrugs:
A mechanistic approach’, Modeling, Identification and Control 23(1), 27—52.

Holmström, K. (2001), The TOMLAB optimization environment v3.0 user’s guide,
Technical report, HKH MatrisAnalys AB.

Juricek, B. C., Seborg, D. E. & Larimore, W. E. (2001), ‘Identification of the tennessee
eastman challenge process with subspace methods’, Control Engineering Practice
9, 1337—1351.

Maciejowski, J. (2002), Predictive Control with Constraints, Prentice Hall, Harlow,
England.

McAvoy, T. & Ye, N. (1994), ‘Base control for the tennessee eastman problem’, Com-
puters and chemical engineering 18(5), 383—413.

Muske, K. R. & Rawlings, J. B. (1993), ‘Model predictive control with linear models’,
AIChE Journal 39(2), 262—287.

Rawlings, J. B. & Muske, K. R. (1993), ‘The stability of constrained receding horizon
control’, IEEE Transactions on Automatic Control 38(10), 1512—1516.

Seborg, D. E., Edgar, T. F. & Mellichamp, D. A. (1989), Process Dynamics and
Control, John Wiley & Sons, Inc.

Paper E: A Comparison of Implementation Strategies for MPC 205

The MathWorks, Inc. (2000), ‘Optimization toolbox for use with matlab, user’s guide
(version 2)’.

