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Abstract

In this paper we focus on an ongoing project at Norske Skog Saugbrugs, Nor-
way, for stabilization of the wet end of paper machine 6 (PM6). A high-order
order mechanistic model is developed, and model reduction is studied by simula-
tion. Closed loop experiments on PM6 is described and carried out, and empiric
models are identified and validated. The models will be used in a model predic-
tive control (MPC) structure. A solution for estimating missing measurements
during sheet breaks is presented and demonstrated with simulations.

Keywords: Paper machine, dynamic model, optimal estimation, system
identification, closed loop identification, model reduction, model predictive con-
trol

1 Introduction

At Norske Skog Saugbrugs, Norway, a project has been initiated to stabilize the wet
end of paper machine 6 (PM6). Norske Skog Saugbrugs is the world’s second largest
manufacturer of uncoated magazine paper (SC) (Norske Skog 2000), and the mill
incorporates three paper machines, of which PM6 is the largest and most modern
one (build in the 1990’s). The project “Stabilization of the wet end of PM6” will be
described in some detail here, focusing on the results so far and also briefly discussing
future actions.

The objects of the project are to reduce the number of sheet breaks, reduce the
down time when sheet breaks occur and to substantially reduce the variability in key
variables such as basis weight, paper ash, white water consistencies, etc. Another
important objective is to investigate how the methods developed in this project can
be e ciently applied on other paper machines within Norske Skog.
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†Sonton Teknologi, Porsgrunn, Norway.
‡Norske Skog Saugbrugs, 1756 Halden, Norway
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The basic idea is to model selected parts of the paper machine and use model
predictive control (MPC) for improving the stability of selected variables. A similar
approach is reported in (Lang, Tian, Kuusisto & Rantala 1998), although there are
several important di erences, notably the use of a mechanistic model in this project.
The selected variables are the basis weight, the paper ash content and the white water
total consistency.

There are basically two di erent approaches to modeling for control: i) Mechanistic
modeling, in which physics, material balances, etc. form the basis of the model, and ii)
Empirical modeling, in which collected input-output data are used to fit a non-physical
model structure to the data. Both mechanistic and empiric models are presented in
this paper and the two approaches have some distinct features which will be discussed
later. The mechanistic model of PM6, with the three selected output variables and
three selected input variables, is implemented in MATLAB. This work is thoroughly
described in (Hauge & Lie 2000b). The model, which is a non-linear state-space
model, is quite large and complex, and perhaps not a good candidate for model based
control. Input-output data are collected from the process and these indicate that a
transfer matrix with elements consisting of first- or second-order models with time
delays may be su cient to describe the process behavior at a given operating condition
(Slora 1999). Thus, we wish to reduce the complexity of the mechanistic model so
that it is more suitable for advanced control purposes. In this paper we approach the
simplification problem by i) system identification methods - i.e. we identify empirical
“low-order” models by various well established methods, and ii) physical knowledge
- i.e. we utilize our physical knowledge about the process to reduce the model. This
leads to a set of models of various size and complexity, and these are compared by
their prediction abilities at di erent operating conditions.

Included in this paper are also results from identification and validation of dy-
namic models from real time data. The experiments were carried out in September-
October, 2000, and in this paper we chose to focus on empirical models, saving the
mechanistic model fitting for future work. Experiment design problems are addressed
and discussed to some extent. Closed loop data are used with various identification
methods, giving low-order linear models.

During sheet breaks the basis weight and paper ash measurements are lost, leading
to serious problems for the controller. An alternative to “freezing” the controlled
inputs is to estimate the missing measurements and let the controller use the estimates
during sheet breaks. An estimator could be mechanistic or empiric, and in this paper
we focus on a theoretically optimal empiric estimator. The estimator utilizes system
inputs and also secondary measurements (measurements which are of less importance)
as estimator inputs. The optimal estimator is based on an underlying Kalman filter
and an output error (OE) model structure (Ergon 1999b).

The paper is organized as follows: In Section 2 an overview of PM6 is presented.
Section 3 elaborates on mechanistic and empiric modeling of PM6 using simulated
data, while real-time data are used in Section 4. Section 5 deals with an optimal
solution for estimation of missing measurements during sheet breaks. In Section 6
a possible future model predictive control structure of PM6 is presented in addition
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to several ongoing projects for disturbance rejection in connection with the models.
Finally, Section 7 summarizes this paper and presents some conclusions.

2 The Process

A simplified description of the paper machine is given in Figure 1. A short description
of some important aspects is given next, while a more thorough description is found
in (Hauge & Lie 2000a) and (Hauge & Lie 2000b).

Filler is added both to the thick stock and to the short circulation. Various types
of fillers are added depending on the required properties for the finished paper. The
behavior of the various kinds of fillers is very distinct, at least regarding the retention
aid. However, these di erences will not be seen in the present paper, as only one kind
of filler is added to the stock during experimentation and simulation.

The first cleaning process is a five stage hydrocyclone arrangement, mainly in-
tended to separate heavy particles from the flow. The accept from the first stage
of the hydrocyclones goes to the deculator where air is separated from the stock.
The second cleaning process consists of two parallel screens, which separates larger
particles from the stock. Retention aid is added to the stock at the outlet of the ma-
chine screens. The retention aid is a cationic polymer which, amongst others, adsorb
onto anionic fibers and filler particles and cause them to flocculate. The flocculation
mechanism is the key for retaining small fiber fragments (fines) and filler particles on
the wire. Non-flocculated fines and filler particles will in general be too small to be
retained on the wire, although mechanical entrapment can be a significant mechanism
(Bown 1996), (Orccotoma, Paris & Perrier 1999).

3 Modelling and identification from simulated data

3.1 A mechanistic approach

A black-box overview of the system is given in Figure 2. The manipulated inputs
to the system are the amount of thick stock (��), the amount of filler added to the
short circulation (�� ), and the amount of retention aid (��). The outputs from the
system are the basis weight (��), the paper ash content (��), and the white water total
consistency (��). The basis weight and the paper ash content are measured between
the dryer section and the reel, while the white water total consistency is measured in
the flow from the wire to the white water tank.

The model is basically covering the elements (chests, tanks, pipes, etc.) found in
Figure 1. Typically, there are mass-balances of (longer) fiber, fiber fines, and various
kinds of fillers for every significant volume, i.e.

���

��
=
X
�

��	�, (1)
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where�� is mass of component � in some volume, and ��	� is mass flow � of component
� into this volume. In the short circulation there are also mass-balances for floccu-
lated components and retention aid. Most pipelines are modeled by partial di erential
equations (time delays), i.e.

	
�

	�
= � ·

	
�

	�
, (2)

where 
� is the concentration of component �, and � is the velocity of mass flow in
the pipeline. The addition of retention aid causes fibers and fillers to flocculate. The
flocculation takes place in the short circulation, and is here modeled by second-order
kinetic equations like

	
floc	�

	�
= � ·

	
floc	�

	�
+
�
�
· 
� · 
ret.aid , (3)

where 
�
��	� is the concentration of flocculated mass of component �, 
� is the concen-
tration of component � (non-flocculated), � is a flocculation constant, � is the density
of the mass flow, and 
������ is the concentration of retention aid. The flocculation
term in Equation 3 is obviously too simple for describing the complicated flocculation
(and adsorption) process, but it may be su cient for a model for control. The mech-
anistic model is not yet validated with real data, and should the validation fail then
there are some alternative, and more complicated, flocculation terms which can be
derived from the literature. Several sources, e.g. (Swerin, Ödberg & Wågberg 1996)
and (Moudgil, Shah & Soto 1987), state that the flocculation rate can be expressed
as

� = ��2
0 , (4)

where  is a rate constant, � is a flocculation e ciency factor often modelled by
� = �(1 �) where � is the fractional coverage of the solid surface by polymer, and
where finally �0 is the number of particles. (Shirt 1997) uses the following second-
order kinetic equation in his dynamic simulation model

�
��

��
= ��
�
��

+
� ��

µ
����
�� + ��

¶
, (5)

��

��
= att(�0 �)(1 �) det�,

where 
�� is consistency of flocs formed from components � and �, 
� and 
� are
consistencies of component � and �, �+� is the fractional coverage of component �
by cationic polymer, �� is fractional coverage of component � by anionic polymer,
�� and �� are volumes of individual component particles � and �, att and det are
attachment and detachment rate constants respectively, and finally �0 is the dosage
of polymer relative to the amount required to completely cover the particle surface.
Shirt’s model is based on a retention aid system with one anionic polymer and one
cationic polymer, and is not directly applicable to the PM6 model where only cationic
polymer is used. However, from experiments carried out in this project it is observed
that certain important aspects which are covered by Shirt’s model (Equation 5) are
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hardly explained by the flocculation term in Equation 3. It is, for example, observed
that the wire tray consistency is reduced when the thick stock flow is increased.
This can not be explained by a flocculation term as in Equation 3, and a certain
modification is probably necessary.

Elements like the screens, headbox and wire are basically modeled with static/algebraic
equations, considering the relatively small volumes involved.

The number of ordinary di erential equations (ODE) is 34, and there are 104 par-
tial di erential equations (PDE). The PDE’s are discretized in �-direction into five
ODE’s each, bringing the total number of ODE’s to 554. In this paper we omit the
model for the thick stock, thus the system to study is between the thick stock pump
and the reel. The reason for this being that new methods for controlling and calcu-
lating the total consistency and ash consistency in the thick stock are implemented
at PM6 (more on this in Section 6), thus making the thick stock model superfluous.
The number of ODE’s and PDE’s are thus down to respectively 28 and 100, making
the total number of ODE’s (after discretization) 528.

3.2 Reduced order mechanistic models

The full scale model is based on physical and chemical laws and balances. In this
section we use our physical knowledge about the process, along with common sense,
to reduce the complexity and size of the model. Filtered PRBS’s (Pseudo Random
Binary Signals) are used as test inputs to the system. This type of input is widely used
in identification experiments for linear systems/models (Ljung 1999) (Söderström &
Stoica 1989). The data are collected in the neighborhood of a typical operating
condition of the paper machine.

An RMSE (root mean square error) criterion

����� =

vuut 1

�

�X
�=1

(��(�) �̂�(�))
2, (6)

were used for comparing the identification and validation of the various models. Equa-
tion 6 gives the RMSE for output �, � is the number of observations, ��(�) is the
simulated output � from the full scale model at time � and �̂�(�) is the simulated
output � at time � from a reduced order model. The �’s in the RMSE’s are denoted
as ������ (basis weight), ��� (paper ash content) or ����� (wire tray concentration).
The simulated �̂� are centered so that they have the same mean value as the full scale
model responses ��, before the RMSE’s are calculated.

The RMSE is calculated for various reduced models, and we chose to concentrate
on a 38�� order model, an 87�� order model and a 161�� order model for the comparison
with other models. For the 38�� order model we also chose to optimize the behavior by
tuning some key parameters in the model. These parameters are the volumes in the
deculator and in a reject tank between the fourth and fifth stage of the hydrocyclones,
and the filler and fines flocculation constants. The physical foundation of the model
is only negligibly degraded by the tuning, although e.g. the optimized volumes no
longer have the correct physical value.
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The reduction in computational time from the 161�� order model to the 38�� order
model was approximately 50%, while the reduction from the full scale model to the
38�� order model was more than 80%.

The simplifications In a model reduction e ort it is natural to look at the dis-
cretization of the PDE’s. In the full scale model each pipeline is discretized into 5
volumes making the pipeline delays the largest contributor to the number of state
variables in the model. Simulation showed that by replacing every PDE outside of
the main flow (thick line in Figure 1) by one ODE, the model behavior was essen-
tially the same. This immediately reduced the number of states from 528 to 256. In
addition the pipelines between the machine chest and white water tank and between
the white water tank and the first stage of the hydrocyclones could also be discretized
into one volume without a ecting the model behavior too much. These simplifications
combined with several lumped volumes in the hydrocyclones, and the inclusion of the
volume of the pipeline between the deculator (left side) and the white water tank into
the deculator (left side) gave the 161�� order reduced model.

The 87�� and 38�� order models are the results of a continuation of reductions
and simplifications on the 161�� order model. Thus, in the 38�� order model the
remaining volumes are the white water tank volume, a lumped hydrocyclone reject
tank volume, lumped deculator volumes (“right” and “left” side volume) and the
volume of the pipeline between the screens and the headbox. More details on the
simplifications can be found in (Hauge & Lie 2000a).

Further model simplifications are hard to attain without degrading the physical
foundation of the model to a larger extent. However, by allowing the model to be semi
mechanistic it is possible to reduce the number of states considerably. A low-order
semi mechanistic model is being developed at the moment.

3.3 Empiric models

In this section, several black-box identification schemes will be used to identify “sim-
ple” linear models. Input-output data from the full scale model are collected, and
models will be identified by prediction error and subspace methods. The data are
collected in the neighborhood of a typical operating condition of the paper machine.

Transfer matrix with first- or second-order elements with time delays The
responses of the process to step inputs are saved on file. In turn, the data from one
input and one output are used to fit the parameters in a first- or second-order model
(transfer function) with time delay:

�(�) =
 

!1�+ 1
� �2� · �(�) (7)

�(�) =
 

!21 �
2 + 2"!1�+ 1

� �2� · �(�) (8)
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The time delays are found visually, while the process gains, time constants and damp-
ing coe cients are found by applying

 =
lim
�

�� ��=0

#
(process gain) (9)

!̂1 = argmin
�1

X
�

�2� (time constant, first-order model)

[!̂1$ "̂] = arg min
[�1	�]

X
�

�2� (time constant and damping coe cient, second-order model),

(10)

where ��=0 is the initial output value, # is the step input size, and �� is the error
between the simulated model output and the output on file, at time .

A first-order model is preferred whenever the fit of the second-order model is only
negligibly1 better. The transfer matrix is found to be:

��
��
��

(11)

=

01020
(169�+1)�

50� 05583
(1831�+1)(617�+1)�

50� 27726
322�2+2·05·32�+1�

12�

00221
312�2+2·05·31�+1�

35� 07051
(1867�+1)(549�+1)�

40� 16916
1192�2+2·037·119�+1�

12�

00013
(203�+1)�

20� 0020
(1826�+1)(623�+1)�

20� 01455
(301�+1)�

7�

��
��
��

N4SID subspace method The “Numerical algorithms for Subspace State Space
System IDentification” method (N4SID) belongs to the subspace system identification
family (Van Overschee & De Moor 1996). The method is an integrated part of the
System Identification Toolbox for use in Matlab (Ljung 1997). The data are pretreated
by centering and scaling before entered into the N4SID function.

The input signals are filtered PRBS’s (Pseudo Random Binary Signals). Based
on the observed RMSE (root mean square error) for various model orders, we chose
to concentrate on a 7�� order model and a 28�� order model for the comparison with
other models.

DSR subspace method The “combined Deterministic and Stochastic system iden-
tification and Realization” method (DSR) also belongs to the subspace system identi-
fication family (Di Ruscio 1997). The method and software (Di Ruscio 1996) are easy
to use, requiring only the data and one parameter to be specified. A singular value
plot is supplied for helping to determine the model order. When the model order is
specified, the program returns a state-space model (including the Kalman filter gain
matrix, and the innovations covariance matrix) along with the initial conditions. The
data are pretreated by centering and scaling before entered into the DSR program.

1That is, when the di erence in RMSE is zero for a rounded three digit number.
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The input signals are the same filtered PRBS signals as were used for the N4SID
algorithm. We chose to concentrate on a third-order model and a 7�� order model for
the comparison with other models.

Prediction error method (PEM) The prediction error method (Ljung 1999)
(Söderström & Stoica 1989) is an integrated part of Matlab’s System Identification
toolbox (Ljung 1997). It o ers a vast amount of possibilities regarding linear model
structures, such as ARMAX, BJ, FIR and state-space models. However, for MIMO
(multi-input multi-output) systems, the ARMAX-type of models get complicated and
they are perhaps not very suitable for such systems. The state-space model is therefore
often preferred for representation of MIMO systems.

Unlike the subspace methods, the PEM is an iterative method, based on minimiza-
tion of the prediction error. The fact that it is iterative limits the possible number
of free parameters in the model structure dramatically, and one should not expect to
be able to identify high-order models (even when one is using a canonical form). A
recommended method (Ljung 1997) for identifying MIMO models is to use a subspace
method (such as N4SID or DSR) to identify an initial model, and use the parameters
of this model as initial values for the PEM method. This approach is taken here,
although the 7�� and 28�� order models were not improved by the PEM method,
probably due to too many free parameters involved. However, the third-order DSR
model where slightly improved by the PEM method.

3.4 Comparison of the models

Without change in operating condition New input signals were designed and
applied to the full scale model. The levels of the input signals are such that the overall
operating condition of the paper machine is in the neighborhood of the condition at
the time of identification.

The RMSE’s (see Equation 6) for the empirically identified and reduced mecha-
nistic models are given in Table 1.

The PEM, DSR and N4SID models have good prediction4 abilities, although the
RMSE’s have increased significantly as compared to the identification. The prediction
abilities of the mechanistic models are in general good. The higher order mechanistic
models have very good prediction abilities

With change in operating condition Yet another set of input signals were de-
signed, di ering from previously used signals such that the overall operating condition
of the paper machine is changed. The change in operating condition include e.g. an
increase in thick stock flow from around 370 l % s to about 436 l % s, an increase of about

2TM - Transfer Matrix (Equation 11). Time delays are not included in model order.
3Optimized.
4The �̂’s are the simulated response from the deterministic part of the identified model, thus

the phrase “prediction ability” does not mean that e.g. a Kalman filter is applied in the validation
process.
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Table 1: Root Mean Square Error (RMSE) for reduced and identified models. The
operating condition is comparable to that at the time of identification.

Method Order ���������� ������� ��������

TM2 15 0�30 0�16 3�9 · 10 3

PEM 3 0�16 0�10 3�46 · 10 3

DSR 3 0�17 0�12 3�79 · 10 3

DSR 7 0�13 0�098 3�70 · 10 3

N4SID 7 0�14 0�10 3�37 · 10 3

N4SID 28 0�11 0�063 2�45 · 10 3

Mech.3 38 0�12 0�061 1�91 · 10 3

Mech. 38 0�16 0�091 2�65 · 10 3

Mech. 87 0�077 0�027 1�00 · 10 3

Mech. 161 0�041 0�017 0�52 · 10 3

Table 2: Root Mean Square Error (RMSE) for reduced and identified models. The
operating condition is di erent from what was used for identification.

Method Order ���������� ������� ��������

TM2 15 0�30 0�14 4�08 · 10 3

PEM 3 0�19 0�14 3�42 · 10 3

DSR 3 0�22 0�18 4�97 · 10 3

DSR 7 0�18 0�14 3�27 · 10 3

N4SID 7 0�18 0�14 3�16 · 10 3

N4SID 28 0�16 0�10 2�31 · 10 3

Mech.3 38 0�12 0�052 1�61 · 10 3

Mech. 38 0�12 0�066 1�91 · 10 3

Mech. 87 0�075 0�032 0�86 · 10 3

Mech. 161 0�047 0�016 0�53 · 10 3

90% in filler added to the short circulation, an increase of about 50% of retention aid
and an increase in machine velocity from 1500m %min to 1650m %min.

The input signals are shown in Figure 3, and the RMSE’s (see Equation 6) for the
empirically identified and reduced mechanistic models are given in Table 2.

The PEM, DSR and N4SIDmodels are identified at a di erent operating condition,
and thus it is not a surprise that the prediction ability is decreased (except for some
of the �� outputs, for which the ability has improved). The mechanistic models are
producing better predictions than previously (with a few exceptions).

Figure 4 shows the responses from the full scale model and the third-order DSR
model.
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Figure 3: The filtered PRBS signals used for validation of the models. The overall
operating condition of the paper machine is di erent from what was used for model
identification and reduction.
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4 Modeling and identification from real-time data

In Section 3, mechanistic models and empiric models of various orders and complexity
were compared. In this section we will study some of the same concepts with real-time
data. However, we confine ourselves to study empiric models. Fitting of mechanistic
models to real-time data is more time consuming and is saved for future work.

4.1 Experiment design

One data set for identification and one data set for validation were collected. The
type of experiments performed on the simulation model in Section 3 are impossible
in reality, because step changes of a valve opening or a pump velocity are physically
impossible. An approximation of the filtered PRBS signal is possible by changing
the setpoints of the mass flows according to a PRBS scheme and let the valve and
pump controllers work out the correct openings and velocities. However, on a paper
machine even such an experiment is performed with high risk of poor paper quality or
even sheet breaks. A solution to this problem is to perform closed loop experiments,
i.e. in this case experiments where the basis weight, paper ash and wire tray total
consistency controllers are in automatic mode. There is a vast amount of published
material on closed loop system identification, and various approaches and algorithms
are treated in more detail in e.g. (Ljung 1999), (Söderström & Stoica 1989) and
(Forssell 1999). Our approach is the recommended one and it is often called “the
direct approach” (Ljung 1999). In the direct approach we use the process inputs �
and outputs � in the same way as for open loop identification, ignoring the feedback
mechanisms and the reference signals.

Figure 5 shows the experimental plan with the changes in setpoints that the process
operators should follow.

Figure 6 shows the resulting real-time input signals which is used together with
the collected output signals for validation of models. Thus, the experiment plan gives
filtered PRBS signals for the reference values, but only the process inputs (�) and
outputs (�) are used for identification.

A similar procedure is used for collecting the identification data set.

4.2 Identification methods and closed loop data

It is well known that closed loop identification with the direct approach and a predic-
tion error method (PEM) works very well (Ljung 1999), (Forssell 1999), (Söderström
& Stoica 1989). However, problems may arise for poorly excited systems (this is also
the case for open loop identification) and for systems with too simple controllers.
The standard example of a closed loop identification failure uses a single-input-single-
output ARX model with a proportional controller and with the reference value set to
zero. This system is not identifiable in closed loop.

For subspace methods it is a fact that when applied in a straightforward fashion
they do not yield consistent estimates in closed loop. This is due to the fact that
the property of uncorrelated noise and system inputs is a basic assumption in these
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Figure 6: The resulting input signal with the experiment plan of Figure 5.
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Table 3: RMSE values for third-order DSR model.
Identification Validation

RMSEweight 0�410 0�697
RMSEash 0�095 0�410
RMSEconc. 0�0043 0�0173

algorithms. As pointed out by e.g. (Forssell 1999) it is possible to use the reference
signal instead of the input signal in the projection matrix which may cause problems
in closed loop. However when using the subspace software packages in a straightfor-
ward fashion, a bias is introduced due to the correlation between noise and inputs. In
practice this may not be a problem, due to the fact that all consistent system iden-
tification methods rely on several assumptions that do not hold, e.g. that the model
structure equals the real structure. The question is to what extent a closed loop ex-
periment invalidates the assumption of no correlation between noise and inputs, and
to our knowledge there exist no results on this matter. However, it seems intuitively
correct that the larger the signal-to-noise ratio is, the more insignificant is the closed
loop problem. This is due to the fact that the correlation between noise and inputs
will decrease with larger signal-to-noise ratio. Studying figures of inputs and outputs
from experiments is perhaps the easiest way (perhaps not the most scientific way)
of judging the size of the signal-to-noise ratio. In our case, the signal-to-noise ratio
seems quite large, and subspace methods will be used along with the prediction error
method.

4.3 Results

Identification of models with the subspace methods DSR and N4SID for model orders
1-30, and for various user defined parameters were carried out. The raw data obser-
vations were not equally spaced in time and a linear interpolation routine in Matlab
was used for creating time series with five seconds sampling intervals (the sampling
interval was approximately two seconds in the raw data). The identifications were
repeated for data “without” pretreatment, data which were centered and for data
which were centered and scaled. The centering was carried out by subtracting the
value of the first element in each input and output series (centering may also be done
by other methods, e.g. subtracting the mean of the series), and the scaling was car-
ried out by dividing each series with its standard deviation. Note that no particular
consideration was given to the fact that the basis weight and paper ash measurements
are updated less frequently than other variables.

An RMSE (root mean square error) criterion, as in Equation 6, was used for
comparing the identification and validation of the various models.

A third-order model with centered data was identified with the DSR method.
Several higher order DSR models were identified, but non of these improved the
validation RMSE values. The results from the identification and validation of this
model is shown in Figure 7, and Table 3 gives the RMSE values.
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Figure 7: Real data (solid lines) and simulated data (dashed lines). Data set for
identification collected at September 19. 2000, and data set for validation collected
at October 27. 2000. Identification was carried out on centered data.
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With N4SID we identified a fifth-order centered and scaled model, in addition to
several higher order models (11�� to 23�� order models) with RMSE values comparable
to those of the DSR models. The validation gave higher RMSE values for the fifth-
order N4SID model than for the third-order DSR model. None of the higher order
N4SID models improved all three RMSE values at validation. The RMSE values for
the basis weight were improved and the RMSE values for the wire tray consistency
were poorer for all these models compared to the third-order DSR model.

All identified DSR and N4SID models were used as initial values for a corre-
sponding PEM method. Some minor improvements on some of the DSR models were
obtained at identification, however no validation improvements were found.

5 Calibration for estimation of quality variables

System structure Section 3 and 4 focus on various models for control. For these
models we assumed that both the (controllable) inputs and outputs are measured,
and are therefore known. A problem within the paper industry is that some of these
measurements are lost when sheet breaks occur, and a standard solution to this prob-
lem is to “freeze” the corresponding inputs at their present values (the values at the
time of the sheet break). This strategy will in most cases lead to drifts in e.g. head-
box and white water consistencies. It seems more appropriate to estimate the missing
measurements and Figure 8 shows how this may be arranged.

Controller Process

Estimator

Kalman filter

Figure 8: Arrangement for estimating missing measurements during sheet breaks.

In Figure 8 a distinction has been made between the primary �1 outputs, which
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Table 4: RMSE values for OE and DSR models.
���������� �������

DSR 0.4123 0.3840
OE 0.3691 0.3504

correspond to the basis weight, paper ash and wire tray total consistency outputs,
and secondary �2 outputs which are used as inputs to the estimator. The secondary
outputs are the wire tray filler consistency, the headbox total and filler consistency
and the thick stock total and filler consistency. Note that for simplicity Figure 8 does
not take into account that one of the primary outputs (the wire tray consistency) is
available and used as estimator input even during sheet breaks. Whenever a sheet
break occurs the primary measurements �1 are replaced by estimates �̂1. The mea-
surements or estimates are fed to the Kalman filter and the controller. The controller
arrangement consists of e.g. model predictive control (MPC) and some single loop
controllers (SLC) as further discussed in Section 6.

In Figure 8 the estimator and Kalman filter are represented by separate boxes.
This is based on the assumption that the estimator is identified from process data with
the aim of obtaining the best possible �̂1 estimates, while the Kalman filter is based
on a mechanistic model with the aim of obtaining the best possible state estimates
�̂ for control purposes. The best �̂1 estimates will in fact be obtained by use of two
separate estimators, one for each of the primary measurements that will be lost at a
sheet break.

Estimator identification The estimators can be identified by use of a prediction
error or subspace method using both the manipulated inputs � and the secondary
process outputs �2 as estimator inputs. Assuming a well known mechanistic process
model, including noise covariances, the optimal estimator would be a Kalman filter
driven by � and �2 but not by �1 (which is not available when the estimator is needed).
This implies that an output error (OE) model structure should be specified for the
identification, which can readily be done in the prediction error method (Ergon 1999b).
It further implies that a direct subspace method (e.g. DSR) that make use of past
�1 values as estimator inputs will give theoretically non-optimal results, although the
di erence between OE and DSR results may not be of much practical importance.

Di erent identification methods have been tested by use of a mechanistic model
similar to the one presented in Section 3, and noise covariances adjusted to achieve
realistic output noise as compared with process measurement data (Forsland 2000).
The estimator validation RMSE results were as given in Table 4, showing di erences
in line with the theoretical discussion above.

Figure 9 shows the validation responses for the paper weight based on a first-
order OE estimator in the bracketed time period (from sample 20 to sample 320) and
a first-order DSR estimator before and after this time period. Figure 10 shows the
corresponding results for the paper ash content. A further investigation of this based
on real data is part of the future work.
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Figure 9: Basis weight. Mechanistic model output as solid line and estimator output
as dashed line. First-order OE estimator in bracketed time period and first-order
DSR estimator elsewhere. The data are centered and scaled.

Estimation based on multirate sampling data The primary output measure-
ments are obtained with a lower sampling rate then the rest of the process signals,
due to the scanner based sensor. The OE estimators may be identified also in this
case, although some modifications of the Matlab identification functions are necessary
(Ergon 1999a). A further investigation of this based on real data is also a part of the
future work.

6 Control structure and related work

When a suitable model has been developed (possibly identified) it will be used in con-
junction with model predictive control (MPC). MPC refers to a class of algorithms
that compute a sequence of manipulated inputs in order to optimize a chosen crite-
rion. The details of MPC algorithms are not discussed any further in this paper, and
the interested reader is referred to e.g. (Camacho & Bordons 1999) or (Lie 1999).
The interest in MPC has increased significantly since its introduction in the 1970’s,
and (Qin & Badgwell 1997) give an overview of commercial industrial solutions and
implementations. The pulp and paper industry has also several reported MPC im-
plementations, e.g. (Qin & Badgwell 1997) and (Lang et al. 1998).

A model structure has to be selected for the MPC, and commercial packages based
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Figure 10: Paper ash. Mechanistic model output as solid line and estimator output as
dashed line. First-order OE estimator in bracketed time period and first-order DSR
estimator elsewhere. The data are centered and scaled.
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on e.g. impulse response models, step response models, state space models and others
are known to exist (Camacho & Bordons 1999). The development of a mechanistic
model and the use of subspace identification techniques leads to state space models,
and such models may be used in the MPC at PM6. An overview of the control
structure is given in Figure 11.

MPC SLC Process
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Kalman filter

Figure 11: MPC and Kalman filter structure.

Here, a Kalman filter has been added for estimation of internal states that are not
measured. In the figure, we use the abbreviation SLC for single loop controllers oper-
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Disturbances, v and w The mechanistic model which is developed and the em-
piric models which are identified can never cover every aspect of the process. The
underlying physical phenomena are far too complex, and in many cases not known
at all. It is therefore instrumental that those mechanisms that are not modelled but
still a ect the outputs, are not allowed to invalidate the model. Such phenomena
are typically present in the process- and measurement noise � and � (see Figure 11).
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At Saugbrugs several e orts focusing on these disturbances are initiated. A short
description of the most prominent e orts will be given next.

Thick stock stabilization A sixth-order mechanistic model of the thick stock,
including the mixing and machine chests, is developed and used for controlling the
filler consistency. A Kajaani RMi measuring device for on line filler consistency mea-
surements is installed and has been used for validation of the controller performance.
The controller operates in a feedforward fashion, relying on the model and measured
inputs only. The controller is working very well, although it is not operating in closed
loop.

A feedforward controller which utilizes the measured total consistency between
the mixing and machine chests, and compensates for any deviation from the setpoint
by altering the speed of the thick stock pump, is also implemented. The feedforward
controller is based on a dynamic model of the machine chest.

Charge measurement and control A project including Kemira (supplier of reten-
tion aid at PM6) and Neles Automation is initiated for, amongst others, investigating
the need for measurement and control of charge. A Kajaani CATi measurement de-
vice is installed, and is currently being connected to the control system. One reason
for this particular project is that it has been observed that in order to control the wire
tray consistency the amount of retention aid often varies with ±15% at normal and
stable conditions. Problems in the wet end when changes in the dosage of bleaching
chemicals occur are often observed and are probably related to the charge of the stock.
A cationic coagulant will be used for controlling the charge if the project concludes
that this is beneficial.

pH variations and control Some variations in pH are observed, notably from
about 4.4 to about 5.0. The models from Section 3 and 4 will be implemented in the
control system, and on-line simulations in parallel with the process will show whether
these variations in pH invalidate the models. Some preliminary investigations on
control of pH has begun.

Air measurement and control A project for investigating the need for air mea-
surement and control is (temporarily) finished, with no air found in the headbox. It
may be interesting, at a later stage, to measure and control the air content in the
headbox by acting on the amount of defoamer added to the white water tank.

Calibration of measurement devices An intensified calibration program is ini-
tiated, focusing especially on consistency measurement devices.
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7 Conclusions

Various aspects of the project “Stabilization of the wet end of PM6” at Norske Skog
Saugbrugs, Norway, are presented in this paper. The basic idea of the project is to
use model predictive control (MPC) to achieve the objects of reducing the down time
and reducing the variability in selected key variables. In the model structure, the
chosen inputs are the thick stock pump, the addition of filler in the short circulation,
and the addition of retention aid at the screens. The outputs are the basis weight,
the paper ash content, and the wire tray concentration.

A 528 order mechanistic model is developed and an overview is presented. A
lower order model is more beneficial for control purposes and model reduction and
system identification techniques are used to arrive at several lower order models.
These models are compared for their accuracy with respect to the full scale model
(the 528 order model). Linear low order empiric models showed in general good
accuracy, although depending on the operating condition of the paper machine. The
reduced order mechanistic models are nonlinear and of higher order than the empiric
models. The accuracies of these models were in general good and not depending on
the operating condition of the paper machine.

Empiric models were also identified from real time data. Experiments were carried
out in closed loop and subspace and prediction error methods were used for the
identification. A third-order model (identified with the DSR subspace method) gave
good accuracy at validation, and no higher order models were significantly better. For
the validation, the operating condition of the paper machine were somewhat altered
compared to the operating condition at the time of identification.

A solution to the problem of missing measurements during sheet breaks is pro-
posed. One estimator for each of the measurements that are lost is identified, and at
sheet breaks the estimate replaces the corresponding output. The estimator is based
on an output error (OE) model structure and an underlying Kalman filter, and it
utilizes other measurements as estimator inputs. Simulation results, with first-order
estimators, are in line with the theoretical result that the OE model structure is the
optimal one for these estimators.

A possible future model predictive control (MPC) structure is presented. It is
vital that those mechanisms that are not modelled are not allowed to invalidate the
model so that the MPC fails. A range of projects aiming at rejecting disturbances are
established, focusing on thick stock stabilization, charge, pH, air, calibration routines,
and more.

It is expected that the work on model reductions, model validation and identifica-
tion of estimators will go on for a few months, and that a preliminary MPC controller
will be implemented in 2001. The project at PM6 will run throughout 2002.
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