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Abstract

A 528 order mechanistic model of a paper machine is implemented in Mat-
lab. The model has been developed for advanced control of three key quality
variables, and it is desirable to reduce the size and complexity of the full scale
model. It is shown how the full scale model can be reduced by both system
identification techniques and by utilizing our physical knowledge about the pro-
cess. The prediction abilities of the various reduced order models are compared
with the output from the 528 order model, highlighting some distinct features
of the various models.

Keywords: Paper machine, dynamic model, model complexity, model re-
duction, system identification

1 Introduction

The world’s second largest manufacturer of uncoated magazine paper (SC) is Norske
Skog Saugbrugs, at Halden, Norway (Norske Skog 2000). Magazine paper is char-
acterized by its glossy appearance due to the high content of filler (usually clay).
Typically 30% (weight %) of the paper consists of filler, 65% of fibers and 5% of
water. The filler is added for improving certain properties of the paper, such as
brightness and smoothness, and also often to reduce the production costs. The Saug-
brugs mill incorporates three paper machines (PM), in which PM6 is the largest and
most modern one (build in the 1990’s). A paper machine is in general a multivariable
non-linear complex mixture of mechanical and chemical processes. A model of such a
machine must capture the essential behavior with respect to a set of chosen variables.
Typically the term “essential” will have di erent meaning to scientists working in
di erent areas. A model for control should have input-output properties reasonably
close to the input-output properties of the true system, while still be simple enough
for implementation and use in real-time applications. There are basically two di er-
ent approaches to modeling for control: i) Mechanistic modeling, in which physics,
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material balances, etc. form the basis of the model, and ii) Empirical modeling, in
which collected input-output data are used to fit a non-physical model structure to
the data. The two approaches have some distinct features which will be discussed
later.

At Norske Skog Saugbrugs, a project has been initiated to implement advanced
model based control for some key paper quality variables at PM6. A mechanistic
model of PM6, with three selected output variables and three selected input variables,
has been developed and implemented in MATLAB. This work is thoroughly described
in (Hauge & Lie 2000). The model, which is a non-linear state-space model, is quite
large and complex, and perhaps not a good candidate for model based control. Input-
output data are collected from the process and these indicate that first- or second-
order submodels with time delays may be su cient to describe the process behavior
(at a given operating condition) (Slora 1999). Thus, the problem is to reduce the
complexity of the model so that it is more suitable for advanced control purposes.

There are many benefits of simplified models, e.g. less computational time, and
easier analysis, interpretation and controller design. However, the accuracy of a sim-
plified model will in general decrease. A lot of work has been done in the area of
model reduction - see e.g. (Öhman 1998), (Andersson 1997) and (Diwekar 1994).
These references focus on e.g. model reduction within specified error bounds or along
known trajectories. In this paper we approach the simplification problem by i) system
identification methods - i.e. we identify empirical “low order” models by various well
established methods, and ii) physical knowledge - i.e. we utilize our physical knowl-
edge about the process to reduce the model. Finally, we compare the various reduced
models and test their prediction abilities at di erent operating conditions.

The full scale mechanistic model will be used as a reference for comparison with
models of reduced complexity. The comparison will be done by simulation studies,
and we will investigate how the reduced complexity influence on the input-output
behavior of the system. Thus, we only consider the �̂�|0 predictor in this paper, i.e.
the predicted output �̂ at time �, given � at time 0. Another well known predictor is
the one-step-ahead predictor �̂�+1|�.

2 The Process

A simplified overview of PM6 is given in Figure 1. Cellulose, TMP (thermomechanical
pulp) and broke (repulped fibers and filler from sheet breaks and edge trimmings) are
blended in the mixing chest. The stock is fed to the machine chest with a controlled
total consistency1. Between the mixing and machine chests, filler is added at a con-
stant rate. The filler is usually clay, but occasionally another kind of filler is added
when high whiteness is required. The flow to the machine chest is large in order to
keep the level of the machine chest constant, and an overflow is returned to the mixing
chest. The total consistency in the mixing and machine chests are typically around

1The total consistency is the weight of solids (i.e. filler, fiber and fines) divided by the total
weight of solids and water.



78 Paper A: Simulation for Advanced Control of a Paper Machine: ...

3 to 4%, which is considerably higher than consistencies later on in the process, and
thus the stock from the machine chest is denoted as the “thick stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water2 and a recirculation
flow from the deculator. More filler is added to the stock just after the white water
tank. The first cleaning process is a five stage hydrocyclone arrangement, mainly
intended to separate heavy particles from the flow. The accept from the first stage of
the hydrocyclones goes to the deculator where air is separated from the stock. The
second cleaning process is two parallel screens, which separates larger particles from
the stock. Retention aid is added to the stock at the outlet of the machine screens.
The retention aid is a cationic polymer which, amongst others, adsorb onto anionic
fibers and filler particles and cause them to flocculate. The flocculation mechanism
is the key for retaining small fiber fragments (fines) and filler particles on the wire.
Non-flocculated filler particles will in general be to small to be retained on the wire,
although mechanical entrapment of particles can be a significant mechanism (Bown
1996). In the headbox the pulp is distributed evenly onto the fine mesh, woven wire
cloth. Most of the water in the pulp is recirculated to the white water tank, while
a share of fiber material and filler particles form a network on the wire which will
soon become the paper sheet. The pulp flow from the white water tank, through
the hydrocyclones, deculator, screens, headbox, onto the wire and back to the white
water tank is denoted the “short circulation”.

In the wire section, most of the water is removed by draining. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then accumulated on the reel before it is
moved on to further processing.

3 The Full Scale Model

A black-box overview of the system is given in Figure 2. The manipulated inputs
to the system are the amount of thick stock (��), the amount of filler added to the
short circulation (��), and the amount of retention aid (��). The outputs from the
system are the basis weight (��), the paper ash content (��), and the white water
total consistency (��). The basis weight and the paper ash content are measured
between the dryer section and the reel, while the white water total consistency is
measured in the flow from the wire to the white water tank. The paper ash content is
the amount of filler in the paper (the weight of the ash from a burned piece of paper
approximately equals the weight of filler in the paper).

The model is basically covering those elements (chests, tanks, pipes, etc.) found
in Figure 1. Typically, there are mass-balances of (longer) fiber, fiber fines, and the

2White water is the drainage from the wire. It is stored in the white water tank.
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two filler types for every significant volume, i.e.

���

��
=
X
�

��	�, (1)

where�� is mass of component � in some volume, and ��	� is mass flow 	 of component
� into this volume. In the short circulation there are also mass-balances for floccu-
lated components and retention aid. Most pipelines are modeled by partial di erential
equations (time delays), i.e.


��


�
= � ·


��



, (2)

where �� is the concentration of component �, and � is the velocity of mass flow in
the pipeline. The addition of retention aid causes fibers and fillers to flocculate. The
flocculation takes place in the short circulation, and is here modeled by second order
kinetic equations like


�
���	�


�
= � ·


�
���	�



+

��
�
·�� ·�������, (3)

where �
���	� is the concentration of flocculated mass of component �, �� is the concen-
tration of component � (non-flocculated), �� is a flocculation constant, � is the density
of the mass flow, and ������� is the concentration of retention aid. Elements like
the screens, headbox and wire are basically modeled with static/algebraic equations,
considering the relatively small volumes involved.

The number of ordinary di erential equations (ODE) is 34, and there are 104 par-
tial di erential equations (PDE). The PDE’s are discretized in x-direction, bringing
the total number of ODE’s to 554. In this paper we omit the model for the thick stock,
thus the system to study is between the thick stock pump and the reel. The reason
for this being that new measurements for total consistency and ash consistency in the
thick stock will be installed at PM6, thus making the thick stock model superfluous.
The number of ODE’s and PDE’s are down to respectively 28 and 100, making the
total number of ODE’s (after discretization) 528.

4 Complexity Reduction

4.1 Input signals

Filtered PRBS’s (Pseudo Random Binary Signals) are used as test and identification
inputs to the system, and are shown in Figure 3. This type of input is widely used
in identification experiments for linear systems/models (Ljung 1999) (Söderström &
Stoica 1989).

The data are collected in the neighborhood of a typical operating condition of the
paper machine. The most important variables defining this operating condition are
given in Table 1.
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Figure 3: The filtered PRBS input signals used for identification and model reduction.

Table 1: Variable values describing the operating condition for identification.
Thick stock, flow 370 l� s
Thick stock, total consistency 3�72%
Thick stock, filler consistency 1�47%
Addition of filler to the short circulation 3�1 l� s
Addition of retention aid to the short circulation 1�3 l� s
Basis weight 49�2 g�m2

Paper ash content 29�9%
Wire tray, total consistency 0�78%
Wire tray, ash consistency 0�61%
Headbox, total consistency 1�47%
Headbox, ash consistency 0�83%
Machine velocity 1500m�min
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Table 2: Sum of squared errors for mechanistic models.
Order 383 38 87 161
���� 40 89 18�5 5�4
���� 10�8 28 2�7 1�2
���� 0�011 0�025 0�03 8�5 · 10 4

4.2 Measuring the error

The test signals are the filtered PRBS signals of Figure 3, and the calculated sum of
squared errors (SSE)

���� =
�X

�=1

(�̂�	� ��	�)
2, (4)

is used as a measure of the error introduced by the simplifications. Here, �̂� is the
simulated ��� output from the reduced order model, �� is the simulated ��� output
from the full scale model, and � is the number of samples. The �’s in the SSE’s are
denoted as � (basis weight), � (paper ash content) or � (wiretray concentration). The
predictions �̂� are centered so that they have the same mean value as the full scale
model responses ��, before the SSE’s are calculated.

In this paper we only consider horizons in which only the initial values are known.
This is often written as �̂�|0, i.e. the predicted output �̂ at time �, given � at time 0.
Another well known predictor is the one-step-ahead predictor �̂�+1|�.

4.3 Reduced mechanistic models

The full scale model is based on physical and chemical laws and balances. In this
section we use our physical knowledge about the process, along with common sense,
to reduce the complexity and size of the model.

In Figure 4 the full scale model responses are shown along with a 38�� order model.
Based on the observed sum of squared errors (SSE) for various reduced models, it is
chosen to concentrate on a 38�� order model, an 87�� order model and a 161�� order
model for the comparison with other models. For the 38�� order model it is also
chosen to optimize the behavior by tuning some key parameters in the model. These
parameters are the volumes in the deculator, and in a reject tank between the fourth
and fifth stage of the hydrocyclones, and the clay and fines flocculation constants.
The physical insight of the model is only negligibly degraded by the optimization,
although e.g. the optimized volumes no longer have the correct physical value. The
sum of squared errors (SSE) are given in Table 2.

The reduction in computation time from the 161�� order model to the 38�� order
model was approximately 50%, while the reduction from the full scale model to the
38�� order model was more than 80%.

3Optimized.
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Figure 4: The responses of the full scale model (solid lines) and of a 38�� order reduced
mechanistic model (dashed lines). The PRBS input signals are shown in Figure 3.
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4.3.1 The simplifications

In a model reduction e ort it is natural to look at the discretization of the PDE’s.
In the full scale model each pipeline is discretized into 5 volumes making the pipeline
delays the largest contributor to the number of states in the model. Simulation showed
that by replacing every PDE outside of the main flow (thick line in Figure 1) by one
ODE, the model behavior was essentially the same. This immediately reduced the
number of states from 528 to 256. In addition the pipelines between the machine chest
and white water tank and between the white water tank and the first stage of the
hydrocyclones could also be discretized into one volume without a ecting the model
behavior too much. These simplifications combined with several lumped volumes
in the hydrocyclones, and the inclusion of the volume of the pipeline between the
deculator (left side) and the white water tank into the deculator (left side) gave the
161�� order reduced model.

The 87�� order model is the result of a continuation of reductions and simplifica-
tions on the 161�� order model:

• The pipeline between the deculator (right side) and the screens are discretized
into one volume

• The wire-, press- and dryer sections are discretized into one “volume”

• Several pipeline volumes in the hydrocyclone arrangement are included in a
reject tank between the fourth and fifth stage

• Several pipeline volumes are included in the deculator:

— The pipeline volume between the headbox and the deculator

— The pipeline volume between the machine chest and the white water tank

— The pipeline volume between the hydrocyclones first stage and second stage
pump

— The pipeline volume between the hydrocyclones second stage pump and
the second stage

— The pipeline volume between the hydrocyclones second stage and third
stage pump

— The pipeline volume between the hydrocyclones third stage pump and third
stage

— The pipeline volume between the hydrocyclones fourth stage and third
stage pump.

The 38�� order model results from a continuation of reductions and simplifications
on the 87�� order model:

• The pipeline volume between the deculator (right side) and the screens, is in-
cluded in the deculator
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• The pipeline volume between the white water tank and the first stage of the
hydrocyclones, is included in the deculator

• The pipeline between the screens and the headbox is discretized into one volume.

4.4 Reduced empiric (black-box) models

In this section, several black-box identification schemes will be used to identify “sim-
ple” linear models. Input-output data from the full scale model are collected, and
models will be identified by prediction error and subspace methods. The data are
collected in the neighborhood of a typical operating condition of the paper machine.
The most important variables defining this operating condition are given in Table 1.

4.4.1 Transfer matrix models

The responses of the process to step inputs are saved on file. In turn, the data from
one input and one output are used to fit the parameters in a first- and second-order
model (transfer function) with time delay:

�(�) =
�

�1�+ 1
� �3� · �(�) (5)

�(�) =
�

(�1�+ 1) · (�2�+ 1)
� �3� · �(�) (6)

The time delays are found visually, while the process gains and time constants are
found by applying

� =
lim
�

�� ��=0

�
(process gain) (7)

�̂1 = argmin
�1

X
�

�2� (time constant, first-order model)

[�̂1� �̂2] = arg min
[�1	�2]

X
�

�2� (time constants, second-order model) (8)

where ��=0 is the initial output value, � is the step input size, and �� is the error
between the simulated model output and the output on file, at time �.

A first-order model is preferred whenever the fit of the second-order model is only
negligibly4 better. The transfer matrix is found to be:

��
��
��

=

0�1020
(169�+1)�

50� 0�5583
(1831�+1)(617�+1)�

50� 2�7726
322�2+2·0�5·32�+1�

12�

0�0221
312�2+2·0�5·31�+1�

35� 0�7051
(1867�+1)(549�+1)�

40� 1�6916
1192�2+2·0�37·119�+1�

12�

0�0013
(203�+1)�

20� 0�020
(1826�+1)(623�+1)�

20� 0�1455
(301�+1)�

7�

·
��
��

��

(9)

4That is, when the di erence in SSE (sum of squares) is zero for a rounded three digit number.
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Table 3: Sum of squared errors for N4SID models.
Order 7 28
���� 19�69 9�78
���� 24�15 11�64
���� 0�0126 0�0054
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Figure 5: The responses of the full scale model (solid lines) and of a fitted 7�� order
N4SID model (dashed lines). The PRBS input signals are shown in Figure 3.

4.4.2 N4SID subspace method

The “Numerical algorithms for Subspace State Space System Identification” method
(N4SID) belongs to the subspace system identification family (Van Overschee &
De Moor 1996). The method is an integrated part of the system identification tool-
box (Ljung 1997) in Matlab. The data are pretreated by centering and scaling before
entered into the N4SID function.

The input signals are shown in Figure 3. In Figure 5 the responses are shown
along with a fitted 7�� order model. Based on the observed sum of squared errors
(SSE) for various model orders, it is chosen to concentrate on the 7�� order model
and a 28�� order model for the comparison with other models. The sum of squared
errors, SSE (see Equation 4), are given in Table 3.



Paper A: Simulation for Advanced Control of a Paper Machine: ... 87

Table 4: Sum of squared errors for DSR models.
Order 3 7
���� 46�19 16�98
���� 28�13 20�81
���� 0�0211 0�0156

4.4.3 DSR subspace method

The “combined Deterministic and Stochastic system identification and Realization”
method (DSR) belongs to the subspace system identification family (Di Ruscio 1997).
The method and software (Di Ruscio 1996) are easy to use, requiring only the data and
an additional parameter to be specified. A singular value plot is supplied for helping to
determine the model order. When the model order is specified, the program returns
a state-space model (including the Kalman filter gain matrix, and the innovations
covariance matrix) along with the initial conditions. The data are pretreated by
centering and scaling before entered into the DSR program.

The input signals are shown in Figure 3. In Figure 6 the responses are shown along
with a fitted 7�� order model. It is chosen to concentrate on a third order model and
a 7�� order model for the comparison with other models. The sum of squared errors,
SSE (see Equation 4), are shown in Table 4.

4.4.4 Prediction error method (PEM)

The celebrated prediction error method (Ljung 1999) (Söderström & Stoica 1989) is
an integrated part of Matlab’s System Identification toolbox (Ljung 1997). It o ers a
vast amount of possibilities regarding linear model structures, such as ARMAX, BJ,
FIR and state-space models. However, for MIMO (multi-input multi-output) systems,
the ARMAX-type of models get complicated and they are perhaps not very suitable
for such systems. The state-space model, is however often preferred for representation
of MIMO systems.

Unlike the subspace methods, the PEM is an iterative method, based on minimiza-
tion of the prediction error. The fact that it is iterative limits the possible number
of free parameters in the model structure dramatically, and one should not expect to
be able to identify high order models (even when one is using a canonical form). A
recommended method (Ljung 1997) for identifying MIMO models is to use a subspace
method (such as N4SID or DSR) to identify an initial model, and use the parameters
of this model as initial values for the PEM method. This approach is taken here,
although the 7�� and 28�� order models where not improved by the PEM method,
probably due to too many free parameters involved. The third order DSR model
where improved by the PEM method, and the sum of squares (see Equation 4) are as
given in Table 5.
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Figure 6: The responses of the full scale model (solid lines) and of a fitted 7�� order
DSR model (dashed lines). The PRBS input signals are shown in Figure 3.

Table 5: Sum of squared errors for PEM model.
Order 3
���� 41�02
���� 21�81
���� 0�01716
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Figure 7: The filtered PRBS signals used for validation of the models. The overall
operating condition of the paper machine is the same as when the models where
identified.

5 Comparison of the Models: Prediction Ability

5.1 Prediction of future outputs without change in operating
condition

New input signals are designed and applied to the full scale model. The levels of the
input signals are such that the overall operating condition of the paper machine is in
the neighborhood of that given by the variables in Table 1. The new input signals
are shown in Figure 7.

The SSE’s (see Equation 4) for the empirically identified and reduced mechanistic
models are given in Table 6.

The PEM, DSR and N4SID models have good prediction ability, although the
SSE’s have increased significantly as compared to the identification. The SSE’s of the
mechanistic models are in some cases lower (better), and in some cases higher than
in Chapter 4.3.

5.2 Prediction of future outputs with change in operating con-
dition

Yet another set of input signals are designed, di ering from previously used signals
such that the overall operating condition of the paper machine is changed. The most

5Time delays are not included.
6Optimized.
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Table 6: Sum of squared errors for reduced and identified models. The operating
condition is comparable to that at the time of identification.

Method Order ���� ���� ����

TM* 155 266 76 0�046
PEM 3 76 32 0�036
DSR 3 82 46 0�043
DSR 7 47 29 0�041
N4SID 7 55 32 0�034
N4SID 28 36 12 0�018
Mech.6 38 41 11 0�011
Mech. 38 75 25 0�021
Mech. 87 18 2�2 0�003
Mech. 161 5 0�9 8 · 10 4

*Transfer Matrix

Table 7: Variable values describing a new operating condition for validation.
Thick stock, flow 436 l� s
Thick stock, total consistency 3�72%
Thick stock, filler consistency 1�47%
Addition of filler to the short circulation 5�95 l� s
Addition of retention aid to the short circulation 2�0 l� s
Basis weight 56 g�m2

Paper ash content 32%
Wire tray, total consistency 0�78%
Wire tray, ash consistency 0�62%
Headbox, total consistency 1�47%
Headbox, ash consistency 0�85%
Machine velocity 1650m�min

important variables to describe this new operating condition are given in Table 7.

The input signals are shown in Figure 8, and the SSE’s (see Equation 4) for the
empirically identified and reduced mechanistic models are given in Table 8.

The PEM, DSR and N4SIDmodels are identified at a di erent operating condition,
and thus it is not a surprise that the prediction ability is decreased (except for some
of the �� outputs, for which the ability has improved). The mechanistic models are
producing better predictions than previously (with a few exceptions).

Figure 9 shows the responses from the full scale model and the third order DSR
predictions.

7Time delays are not included.
8Optimized.
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Table 8: Sum of squared errors for reduced and identified models. The operating
condition is di erent from what was used for identification.

Method Order ���� ���� ����

TM* 157 275 57 0�050
PEM 3 110 60 0�035
DSR 3 148 101 0�074
DSR 7 93 63 0�032
N4SID 7 98 59 0�030
N4SID 28 74 31 0�016
Mech.8 38 40 8 0�0078
Mech. 38 43 13 0�011
Mech. 87 17 3 0�0022
Mech. 161 6�5 0�8 8�5 · 10 4

*Transfer Matrix
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Figure 8: The filtered PRBS signals used for validation of the models. The overall
operating condition of the paper machine is di erent from what was used for model
identification and reduction.
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Figure 9: Full scale model responses (solid lines) and third order DSR model predic-
tions (dashed lines), after change in operating condition.
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6 Conclusions

The e orts made in this paper has been to study the possibilities for reducing the
complexity of a paper machine model, and how the reduction a ects the prediction
abilities. The predictions for the various models are compared to the output from
a mechanistic model of 528 ordinary di erential equations (ODE). One should be
aware that the full scale mechanistic model by no means represents the true system,
although it is considered to do so in the comparisons of this paper.

For three di erent sets of input-output data, it is shown that the 528 order mech-
anistic model can be reduced to a 161 order mechanistic model with negligible e ect.
Mechanistic models using 87 and 38 ODE’s are also validated with three di erent
data sets, as are empiric models of order between 3 and 28. The mechanistic models
in this paper are distinguished from the empiric models in several ways:

• The empiric models are much simpler than the mechanistic models. The empiric
models usually have low order and they are linear, while the mechanistic models
are of higher order and they are non-linear.

• The simulation time for the empiric models are much shorter than for the mech-
anistic models.

• It takes much more e ort to develop a mechanistic model of a paper machine
than it does to find an empiric model. However, to find a high order empiric
model demands extensive experimentation on the paper machine, which is often
impossible.

• The prediction ability of the empiric models strongly depends on the operating
condition of the paper machine, compared to the operating condition at which
the model was identified. The prediction ability at the same operating condition
as in the identification, is generally very good. The prediction ability deterio-
rates as the operating condition is shifted away from the condition at the time
of identification.

• The prediction abilities of the mechanistic models are (close to) constant, and
are in most cases only negligibly a ected by changes in the operating condition.

It is not possible, nor was it the intention with this paper, to conclude which model
or model type is best for advanced control purposes. The various models has their
specific attributes which are summarized in the list above, and it will be necessary to
run tests on the real paper machine before one decides which model is best suited for
the purpose.
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