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Summary and conclusions

Abstract A mechanistic nonlinear model of the wet end of paper machine 6 (PM6)
at Norske Skog Saugbrugs, Norway has been developed, and used in an MPC ap-
plication. The MPC provides reduced variability in many key variables, and better
e ciency through faster grade changes, start ups, and improved control during peri-
ods of poor measurements. The model and controller can be rolled-out to other paper
machines, as found by studying and fitting the model to data from PM4 at Norske
Skog Saugbrugs, and PM3 at Norske Skog Skogn, Norway. No changes to the model,
except for parameter values, were introduced, and still the validation results were
good. The time spent on fitting and validating the PM6 model to PM4 and PM3 are
approximately 1% of the time spent on developing the original model. This should be
a strong incentive for focusing on mechanistic modeling in industries were there are
many similar production lines or units.

Motivation Many large- and medium sized industry companies have a number of
more or less similar process-units for processing of raw materials or production of
finished products. An industrial company which has invested, or is about to invest,
in advanced model based control in one of their units / factories, would benefit eco-
nomically if the model and controller could be e ciently rolled-out at similar units.
The main idea of this thesis is to develop a model and a controller for an industrial
process, and then investigate how the model and controller can be applied to similar
processes. Paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway, is used as a
case study for modeling and control throughout the thesis, and the PM6 model is also
applied at Norske Skog Saugbrugs PM4, and PM3 at Norske Skog Skogn, Norway.

The papermaking process is the only process studied in this thesis, however the
field of roll-out should be of interest also to other industries. For example Borealis
(www.borealisgroup.com) has many polymer reactors for producing plastics raw ma-
terials, Norsk Hydro (www.hydro.com) has many plants for fertilizer production, and
Icopal (www.icopal.com) has many production lines for extrusion of plastic pipes. The
idea of e cient roll-out of models is not entirely new, e.g. (Glemmestad, Ertler &
Hillestad 2002) emphasize the advantage of reusing the models developed at Borealis,
and many commercial simulators include model libraries of process units intended for
reuse.

The control method chosen in this work is model predictive control (MPC). The
reason for choosing MPC is that it is perhaps the only advanced model based control

vii



viii SUMMARY AND CONCLUSIONS

scheme used to any extent in the industry, there are commercially available software
systems for implementation, and the reported payback time is low (e.g. 3 months in
(Bassett & Van Wijck 1999)).

Modeling Two basic modeling approaches are mechanistic modeling and empiric
modeling. An empiric model is entirely based on experimental data and an appropri-
ate model structure, and often requires little knowledge of the system to be modeled.
A mechanistic model is a model built from basic principles of physics, chemistry, biol-
ogy, etc., by writing down conservation or balance equations. Obviously this requires
extensive knowledge of the process to be modeled. Emphasis has been on mechanistic
modeling of PM6, however empiric modeling is also carried out and described in this
thesis.

A high order mechanistic model of PM6 was developed and implemented in Mat-
lab. The objective was to make a model of a limited part of PM6, which were suitable
for model predictive control (MPC) , captured the essential dynamic behavior of the
process, and was applicable over a wide range of operating conditions. The out-
put variables are the basis weight, the paper ash content and the white water total
concentration. To make the model suitable for model based control, reduced order
models were developed and fitted to experimental and operational mill data. The
fitted models where validated with historical operational data.

An augmented suboptimal Kalman filter has been developed at PM6 for estimating
the states and some of the parameters in the paper machine model. Three biases have
been selected for on-line estimation in the paper machine model. The first two are
biases in the estimated total- and filler thick stock consistencies. These disturbances
are estimated using a ballistic estimator, and thus they are assumed to be good
candidates for having time-varying biases. The third bias estimated on-line is for
the total wire tray concentration, i.e. a bias in one of the outputs. In theory, and
in the true Kalman filter, the noise characteristics of the process should be found
and used in the Kalman filter equations. However, these characteristics are hard, if
not impossible, to find. Thus, a suboptimal Kalman filter was identified, where the
noise characteristics where used as tuning parameters until satisfactory Kalman filter
performance was obtained.

MPC The MPC was installed at PM6 in March 2002. During the first two months,
the MPC, the Kalman filter and the model were continuously tuned, retuned, and val-
idated in open and closed loop. Some structural changes were also made during these
months. From May 2002, the MPC has been in operation more or less continuously.
The process operators still have the original “pre-MPC era” control configuration
available, but the MPC has been the preferred choice from the beginning. Further-
more, the operators have been very active in making suggestions for improvements
and new features in the system. Some of these suggestions are implemented, and
others are being considered for implementation.

A specific feature of the MPC implemented at PM6 is that the setpoints for
new grades can be submitted to the MPC some time before the grade change. The
operators can specify a grade change e.g. half an hour into the future, and see how
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the MPC will achieve the change: how the inputs will be manipulated to reach the
new setpoints. In terms of gaining operator acceptance for the MPC, this feature of
previewing the action taken by the controller has been very helpful.

Results The work carried out on modeling and MPC of PM6 has been part of a
project called “Stabilization of the wet end at PM6”. The main objective of the
project was to increase the total e ciency by 0�47%. This is an objective that is hard
to measure, due to many factors a ecting the total e ciency. Thus, several sub-goals
were defined which were assumed easier to measure and validate. The sub-goals, and
results, concerning reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% Achieved
Filler cons. in the wire tray 50% Achieved
Total cons. in the headbox 50% Achieved
Filler cons. in the headbox 35% Achieved
Basis weight 20% Not achieved
Paper ash 20% Achieved
Paper moisture 20% Achieved

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

In addition to reducing the variation in key paper machine variables, several other
benefits are obtained using MPC. Some of these benefits arise from utilizing the devel-
oped model, not only for control purposes, but also as a replacement for measurements
when these are not available or not trustworthy.

Previously, grade changes were carried out manually or partly manually (the set-
points were changed a number of times before they were equal to the new grade) by
the operators. With a mechanistic model, applicable over a wide range of operating
conditions, the grade changes are carried out using the MPC. This has resulted in
faster grade changes and operator independent grade changes. During larger grade
changes, the use of MPC results in less o -spec paper being produced during the
change. Using a single mechanistic model, the grade change is handled in a straight
forward fashion, as there is no need to switch between various local models.

The basis weight and paper ash outputs can not be measured during sheet breaks.
Previously during sheet breaks, the flow of thick stock and filler were frozen at the
value they had immediately prior to the break. Usually the sheet breaks last less
than half an hour, and the output variables are not far from target values when the
paper is back on the reel. However, occasionally the sheet breaks last longer periods
and there may be e.g. velocity changes during the break, leading to o -spec paper
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being produced for a period after the paper is back on the reel. Another frequently
experienced problem are large measurement errors immediately after a sheet break.
With the MPC, the Kalman filter estimates the basis weight and paper ash during
sheet breaks, and these estimates are used in the MPC as if no break had taken place.
Thus, when the paper is back on the reel, the outputs are close to their setpoints.

Previously, the controllers were not set to automatic mode before the outputs were
close to the setpoints, following a start up. With a model based controller using a
mechanistic model with a wide operating range, the MPC is set to automatic mode
early during start ups. This results in faster start ups, and less o -spec paper being
produced.

Occasionally a special filler is added to the stock, to increase the brightness of the
paper. During these periods the consistency measurements are not trustworthy as
they are based on optical measurement methods. This problem is solved within the
MPC / Kalman filter framework by neglecting the measured consistency, relying on
the estimate alone. For each output, there is an option within the MPC to neglect
the updating of states based on this output. This is done based on experience with
periods of poor measurements, even when only standard filler is used.

The Kalman filter estimates are used in the MPC instead of the measurements.
This leads to smoother controller action, and eliminates the need for additional fil-
tering.

The model is augmented so that some key parameters/biases are updated auto-
matically. This reduces the need for model maintenance o -line. However, should
there be larger changes in the process, such as if the white water tank is removed, or
a new retention aid is used, then it will probably be necessary to re-tune the model
and controller.

Roll-out The possibility of reusing the PM6 model at other paper machines is
investigated. The paper machines studied are PM4 at Norske Skog Saugbrugs, and
PM3 at Norske Skog Skogn, Norway. PM6 is a new and modern paper machine
producing SC (Super Calendered) magazine paper. PM4 also produce SC paper but
the machine is older and smaller than PM6. PM3 produce newsprint and has a size
comparable with that of PM6. Fitting and validation of the model to PM4 and PM3
were very promising. No changes to the model, except for parameter values, were
introduced and still the validation results were good. The time spent on fitting and
validating the PM6 model to PM4 and PM3 are approximately 1% of the time spent
on developing the original model. This should be a strong incentive for focusing on
mechanistic modeling in industries were there are many similar production lines or
units.
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Chapter 1

Introduction

1.1 Problem description

Many large- and medium sized industry companies have a number of more or less
similar process-units for processing of raw materials or production of finished prod-
ucts. An industrial company which has invested, or is about to invest, in advanced
model based control in one of their units / factories, would benefit economically if
the model and controller could be e ciently rolled-out on similar units. The main
idea of this thesis is to develop a model and a controller for an industrial process, and
then investigate how the model and controller can be applied to similar processes.
Paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway, is used as a case study
for modeling and control throughout the thesis, and the PM6 model is also applied
at Norske Skog Saugbrugs PM4, and PM3 at Norske Skog Skogn, Norway. Pulp and
paper is one of the largest and most important industries in Norway. In 2001, a total
of 25 pulp and paper mills, and 7� 300 employees contributed with aggregate sales
of about NOK1 19� 000 million. Approximately 90% of the Norwegian made paper
and boards are exported, mostly to EU countries, but also to North America, Asia,
Oceania, Eastern Europe, Latin America, and Africa (NPPA (The Norwegian Pulp
and Paper Association) 2002) (Statistics Norway 2002b) (Statistics Norway 2002a).

The papermaking process is the only process studied in this thesis, however the
field of roll-out should be of interest also to other industries. For example Borealis
(www.borealisgroup.com) has many polymer reactors for producing plastics raw ma-
terials, Norsk Hydro (www.hydro.com) has many plants for fertilizer production, and
Icopal (www.icopal.com) has many production lines for extrusion of plastic pipes.

The control method chosen in this work, is model predictive control (MPC). The
reason for choosing MPC is that it is perhaps the only advanced model based control
scheme used to any extent by the industry, there are commercially available software
systems for implementation, and the reported payback time is low (e.g. 3 months in
(Bassett & Van Wijck 1999)).

1NOK is the Norwegian currency. 1 Euro equals NOK 7�3, and 1 U.S. dollar equals NOK 7�3,
November 22, 2002.
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4 CHAPTER 1. INTRODUCTION

1.2 Previous work

There exists very little published material focusing on how to e ciently roll-out mod-
els and controllers in the industry. However, the idea of e cient roll-out of models is
not entirely new, e.g. (Glemmestad et al. 2002) emphasize the advantage of reusing
the models developed at Borealis, and many commercial simulators include model
libraries of process units intended for reuse.

Empirical modeling or system identification of paper machines are reported in
several papers and books. Some of these focus on so-called cross-directional (CD)
modeling, i.e. a model for the profile across the paper web, e.g. (Featherstone,
VanAntwerp & Braatz 2000), (Campbell 1997) and (Heaven, Manness, Vu & Vyse
1996). Others focus on the machine-direction (MD), i.e. changes in average values
across the web, e.g. (Menani, Koivo, Huhtelin & Kuusisto 1998), (Noreus & Saltin
1998), and Papers A—B in this thesis. Note that only the MD modeling and control
problem is studied in this thesis.

The reported works on mechanistic modeling of paper machines are in most cases
constrained to smaller parts of the paper machine. However, (Rao, Xia & Ying 1994),
(Larsson & Olsson 1996) and (Hagberg & Isaksson 1993) consider a larger part of the
paper machine, e.g. the wet end and the wire, press, and dryer sections, although
the chemistry involved in papermaking is not considered at all. Mechanistic mod-
els of a larger part of a paper machine which includes chemical modeling is found
in (Shirt 1997), and Papers A—C in this thesis. In Shirt’s work both chemical as-
pects, which include adsorption and flocculation, and physical aspects, which include
drainage on the wire, refining, tanks, headbox, wire section, etc., are part of the
overall model, although transportation delays in pipelines are neglected and not all
aspects are presented in detail.

Several MPC implementations using multivariable empiric paper machine models
are reported, e.g. (McQuillin & Huizinga 1995), (Lang, Tian, Kuusisto & Rantala
1998), (Mack, Lovett, Austin, Wright & Terry 2001), (Kosonen, Fu, Nuyan, Kuusisto
& Huhtelin 2002), and (Austin, Mack, Lovett, Wright & Terry 2002). To the best of
the author’s knowledge, there exists no reported industrial MPC implementations uti-
lizing a multivariable mechanistic model of the wet-end of the paper machine. Some
industrial implementations of MPC with mechanistic models are known in other in-
dustry areas, e.g. (Qin & Badgwell 1998) and (Badgwell & Qin 2001) have reported
a few implementations. Papers describing industrial implementations of MPC with
mechanistic models are few, however (Hillestad & Andersen 1994) and (Glemmestad
et al. 2002) report several applications to industrial polymer reactors. Several simu-
lated examples exist, e.g. (Lee, Lee, Yang & Mahoney 2002), (Prasad, Schley, Russo
& Bequette 2002), (Amin, Mehra & Arambel 2001), and (Schei & Singstad 1998), and
also some applications to experimental test stands, e.g. (Ahn, Park & Rhee 1999)
and (Park, Hur & Rhee 2002).
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1.3 Outline of thesis

This thesis is composed of two parts. Part I basically gives an overview of the results
obtained in the papers provided in Part II. However, a few results in Part I are not
presented in any paper, either because they did not fit with the scope of the papers
or because the results were not ready at the time of submission or publishing. Due to
the structure of the thesis, some pieces of information are necessarily repeated several
times; for example most papers have a section on description of the process. Also,
some papers have similar scopes, notably papers A—C, and thus some information
is repeated. Note that the papers in Part II are not entirely reproduced from the
original source. In most papers a few corrections are made, e.g. pure spelling errors
are corrected, and some papers are extended by adding material that was thought to
be of interest in this thesis. The character of the modifications for each paper are
given in Chapter 6 as well as at the start of each paper.

Chapter 2 gives an introduction to paper production. Some facts and statistics
for the pulp and paper industry are given, and the production line from tree to paper
is explained. Modeling aspects are discussed in Chapter 3, and results from the
modeling of PM6 is summarized. Chapter 4 concentrates on model predictive control
(MPC). The chapter consists of a short introduction to MPC, as well as results from
the implementation at PM6, Norske Skog Saugbrugs, Norway. Chapter 5 summarizes
the results from applying the PM6 model to other paper machines. Chapter 6 lists
the papers appearing in the thesis, and Chapter 7 lists contributions not included in
the thesis.

Abstract of Paper A A mechanistic model of order 528 of PM6 is implemented
in Matlab. It is shown how the full scale model can be reduced by both system
identification techniques and by utilizing physical knowledge about the process. The
long term prediction abilities of the various reduced order models are compared with
the output from the 528 order model, highlighting some distinct features of the various
models.

Abstract of Paper B This paper summarize some of the results from Paper
A, and also provides results from using industrial data from PM6. Closed loop ex-
periments on PM6 is described and carried out, and empiric models are identified
and validated. A solution for estimating missing measurements during sheet breaks
is presented and demonstrated with simulations.

Abstract of Paper C Details of the mechanistic model of PM6 is presented.
The model is developed as a foundation for the control of three selected variables,
the basis weight, the paper ash content and the white water total concentration.
The model is of high order and reduced order models are developed and fitted to
experimental mill data. The fitted models are validated with historical operational
data.
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Abstract of Paper D Results from a controllability analysis, based on a lin-
earized PM6 model, is given. The analysis indicates the necessity of process operators
acting on measured disturbances to avoid input saturation. A commercially available
MPC algorithm based on a linear model is modified to handle the nonlinear model,
and to allow for future setpoint changes.

Abstract of Paper E Four quadratic programming (QP) formulations of model
predictive control (MPC) are compared with regards to ease of formulation, memory
requirement, and numerical properties. The comparison is based on two example
processes: A linearized PM6 model, and a model of the Tennessee Eastman challenge
process; the number of free variables range from 150—1400. Five commercial QP
solvers are compared. Preliminary results indicate that dense solvers still are the
most e cient, but sparse solvers hold great promise.

Abstract of Paper F The PM6 model is used in an MPC implementation.
The MPC uses an infinite horizon criterion, successive linearization of the model,
and estimation of states and parameters by an augmented Kalman filter. Variation
in important quality variables and consistencies in the wet end have been reduced
substantially, compared to the variation prior to the MPC implementation. The
MPC also provides better e ciency through faster grade changes, control during
sheet breaks and start ups, and better control during periods of poor measurements.
From May 2002 the MPC has been the preferred controller choice for the process
operators at PM6.

Abstract of Paper G The possibility of reusing the PM6 model at other paper
machines is investigated. The paper machines studied are PM4 at Norske Skog Saug-
brugs, and PM3 at Norske Skog Skogn, Norway. PM6 is a new and modern paper
machine producing SC (Super Calendered) magazine paper. PM4 also produce SC
paper but the machine is older and smaller than PM6. PM3 produce newsprint and
has a size comparable with that of PM6. Fitting and validation of the model to PM4
and PM3 data were very promising. No changes to the model, except for parameter
values, were introduced and still the validation results were good. The time spent on
fitting and validating the PM6 model to PM4 and PM3 data are approximately 1%
of the time spent on developing the original model. This should be a strong incen-
tive for focusing on mechanistic modeling in industries were there are many similar
production lines or units.

1.4 Main contributions

The main contributions of this thesis are:

• A mechanistic model of the wet end of a paper machine is developed, fitted with
data, and validated: Chapter 3, and Papers A—C.
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• Extensions to a previously published infinite horizon criterion by (Muske &
Rawlings 1993). Extensions include e.g. the possibility to specify future ref-
erence changes, direct input to output term, and inclusion of measured distur-
bances. Chapter 4, and Papers D—F.

• Algorithm for nonlinear infinite horizon MPC, based on successive linearization
of mechanistic model: Chapter 4, and Paper F.

• Industrial application of nonlinear MPC with a mechanistic model: Chapter 4,
and Paper F.

• Investigation of the roll-out potential of the mechanistic model: Chapter 5, and
Paper G.
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Chapter 2

Paper production

2.1 Facts and statistics

Pulp and paper industry in Norway and worldwide (Sources: (NPPA (The
Norwegian Pulp and Paper Association) 2002), (Statistics Norway 2002b), and (Statistics
Norway 2002a))

Pulp and paper is one of the largest and most important industries in Norway.
In 2001, a total of 25 pulp and paper mills, and 7� 300 employees contributed with
aggregate sales of about NOK1 19� 000 million. Approximately 90% of the Norwegian
made paper and boards are exported, mostly to EU countries, but also to North
America, Asia, Oceania, Eastern Europe, Latin America, and Africa.

On a worldwide basis, the production of paper and boards in Norway is not large.
The total world production of paper and board in the year 2000 was 323 million tons,
and the Norwegian share was “only” 2�4 million tons. The largest producer is by far
USA with a production of 85�5 million tons, with other large producers being Japan,
and Canada. Finland and Sweden are also large on a world wide basis, producing
above 10 million tons each.

Norske Skog (Source: (Norske Skog 2002))
The Norske Skog group is the world’s second largest producer of newsprint, and

the world’s third largest supplier of printing paper. Norske Skog employs 14� 000
people in 24 production units (full- and part-owner) spread around Europe, North
and South America, Asia and Oceania. The operating revenue for 2001 exceeded
NOK 30� 000 million, and the earnings were close to NOK 2� 500 million. In terms
of area, the European revenue accounts for nearly half the total revenue. In terms
of product, the newsprint is by far the largest contributor accounting for 68% of the
revenue, and pulp and SC2 magazine paper accounts for 10% each.

1NOK is the Norwegian currency. 1 Euro equals NOK 7�3, and 1 U.S. dollar equals NOK 7�3,
November 22, 2002.

2 SC = Super Calendered

9
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Norske Skog Saugbrugs (Source: (Sandersen 1999))
Founded in 1859, and a part of the Norske Skog group since 1989, Norske Skog

Saugbrugs is today one of the world’s leading producers of SC magazine paper. Saug-
brugs has a market share in Europe and USA of about 10%. As much as 99% of the
paper is sold for export, and the turnover is approximately NOK 2� 500 million. The
total production capacity at the Saugbrugs mill is 550� 000 tons, and PM6 (Paper
Machine 6) accounts for more than half the total capacity. PM6 was build by Valmet
and started up in 1993. The production speed is around 1500 m�min, and the paper
width is 8�62 m. Many di erent grades are produced, e.g. the basis weight3 range
from 40-60 g�m2.

2.2 From tree to paper

2.2.1 The PM6 production line

Figure 2.1 shows the PM6 production line. The trees are transported from the wood-
yard to the groundwood mill and TMP (Thermo Mechanical Pulp) plant, where pulp4

is produced. The stone groundwood mill produce pulp by pressing a piece of wood
lengthwise against a wetted, roughened grinding stone revolving at high speed. In
the TMP plant, pulp is produced from chips of wood by pressurized steam pretreat-
ment and shredding, and defibering between rotating discs in refiners. The pulp is
bleached and stored in large tanks. The pulp is then transported to the wire section
and blended with chemical pulp, clay (filler particles), color, and other chemicals on
the way. Most of the fiber and filler particles are retained on the wire where they
form a thin mat. The mat becomes the paper sheet when water is pressed out of it
in the press section, and dried in the dryer section. The paper sheet is then accumu-
lated on the pope (or reel), and transported to the super calenders where properties
like smoothness and gloss are added. The paper sheet is cut into appropriate size,
wrapped and transported to the end-users (publishing companies, printing o ces,
etc.).

A proper introduction to the various stages in papermaking, and other issues as
well, can be found in e.g. (Smook 1992). Books more focused on chemical issues in
papermaking are e.g. (Roberts 1996a), and (Roberts 1996b).

The content of this thesis focuses on the PM6 production line approximately from
the outlets of the storage tanks and to the paper is rolled-up on the pope. This
sub-process is described next.

2.2.2 The thick stock and short circulation of PM6

A simplified drawing of the thick stock and short circulation of PM6 is shown in Figure
2.2. Cellulose, TMP (thermomechanical pulp) and broke (repulped fibers and filler
from sheet breaks and edge trimmings) are blended in the mixing chest. The stock is

3Basis weight is the weight per area of finished paper.
4Pulp is a fibrous mass.
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Figure 2.1: PM6 production line (From Norske Skog Saugbrugs leaflet).
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fed to the machine chest with a controlled total consistency5. Filler is added between
the mixing and machine chests. The fillers used in paper production depend on the
end-user requirements; typical fillers are kaolin, chalk, talc, and titanium dioxide
(Bown 1996). About two thirds of the filler particles used at PM6 are added to the
thick stock; the rest is added at the outlet of the white water tank. The flow to
the machine chest is large in order to keep the level of the machine chest constant,
and an overflow is returned to the mixing chest. The total consistency in the mixing
and machine chests are typically around 3 — 4%, which is considerably higher than
consistencies later on in the process, and thus the stock from the machine chest is
denoted the “thick stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water6 and a recirculation
flow from the deculator. Filler is added to the stock just after the white water tank.
The first cleaning process is a five stage hydrocyclone arrangement, mainly intended
to separate heavy particles (e.g. sand and stones) from the flow. The accept from the
first stage of the hydrocyclones goes to the deculator where air is separated from the
stock. The second cleaning process consists of two parallel screens, which separate
larger particles (e.g. bark) from the stock. Retention aid is added to the stock at
the outlet of the screens. The retention aid is a cationic polymer which, amongst
others, adsorb onto anionic fibers and filler particles and cause them to flocculate.
The flocculation is a key process for retaining small filler particles and small fiber
fragments on the wire, although the significance of mechanical entrapment of non-
flocculated filler and fines seems to be somewhat controversial in the literature. For
example (Van de Ven 1984) found (theoretically) that mechanical entrapment was low,
while (Bown 1996) reports that mechanical entrapment can be a dominant mechanism.
In the headbox, the pulp is distributed evenly onto the finely meshed woven wire cloth.
Most of the water in the pulp is recirculated to the white water tank, while a share of
fiber material and filler particles form a network on the wire which will soon become
the paper sheet. The pulp flow from the white water tank, through the hydrocyclones,
deculator, screens, headbox, onto the wire and back to the white water tank is denoted
the “short circulation”.

In the wire section, most of the water is removed by drainage. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section, the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then rolled up on the reel before it is moved
on to further processing.

5The total consistency is the weight of solids (i.e. filler particles and fiber) divided by the total
weight of solids and water.

6White water, which is stored in the white water tank, is the drainage from the wire.
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Figure 2.2: A simplified drawing of the thick stock and short circulation of PM6.
More details are available in Paper C.
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Chapter 3

Modeling

A model of the process is the foundation for every advanced control algorithm. Given
a good model of a process, there are probably a number of algorithms that will
provide excellent control of the process, and given a poor model of a process, there
are probably no algorithms that will provide good control of the process. Also, given
a good advanced control algorithm, there are often no models available for the specific
process or process unit of concern. Thus, today the key factor for success in advanced
control is the development of a reliable and good process model, or as the following
closing sentence in a paper put it:

Nowadays control is easy, modelling will always be the nut to crack...
(Richalet, Estival & Fiani 1995, page 942)

It should be emphasized that even if a perfect model is available, several limitations
to control performance may occur. These limitations may arise from e.g. input
constraints, and right half plane (RHP) zeros (Skogestad & Postlethwaite 1996). In
practice, the model is not perfect, and additional limitations due to model uncertainty
are always present.

Two basic modeling approaches are mechanistic modeling and empiric modeling.
Next, these approaches are presented in more detail.

3.1 Empiric modeling

3.1.1 Introduction

An empiric model is entirely based on experimental data and an appropriate model
structure, and often requires little knowledge of the system to be modeled. In the
literature one often encounters terms like black box modeling, system identification,
time series analysis, and behavioral modeling. All these terms basically mean the
same as empiric modeling, the term which is used in this thesis. Introductory and
advanced text books on empiric modeling are e.g. (Nelles 2001), (Ljung 1999), (Walter
& Pronzato 1997), (Söderström & Stoica 1989), and (Box, Jenkins & Reinsel 1994).

15
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Empiric modeling methods can be further categorized in nonparametric and para-
metric methods.

Nonparametric methods Nonparametric methods typically provide a pictorial
representation of the model. These methods provide information about the process,
but the models need to be converted to parametric models before they can be useful for
e.g. control purposes. Two common nonparametric methods are, see e.g. (Ljung 1999)
and (Söderström & Stoica 1989):

• Transient analysis — Plots of impulse responses or step responses provide infor-
mation about the delay, gain, and time constants of simple systems.

• Frequency analysis — Sinusoidal input signals are applied to the process, and
phase and amplitude are calculated. Various frequencies are applied and the
result is plotted in e.g. a Bode diagram.

Parametric methods Although an iterative procedure, several steps in building
a parametric empiric model can be identified. The steps below are not necessarily
performed successively, see e.g. (Ljung 1999) and (Walter & Pronzato 1997):

1. Choose inputs and outputs

2. Collect experimental data

3. Pretreatment of data, search for outliers, and trends.

4. Choose model structure (state space model, neural net, transfer function, etc.)

5. Choose model order

6. Choose criterion for optimization of model fit

7. Calculate parameters in model, based on optimization of the criterion

8. Validate model

Within the control community, the prediction error method (PEM) is probably
the best known criterion:

�̂��� = argmin
�

���� (�), (3.1)

where �̂��� is the estimated parameter vector that minimize the criterion ���� (�).
The criterion is a function of the �-step-ahead prediction error

� = �̂(	|	 �) �(	), (3.2)

where �̂(	|	 �) are the predicted outputs at time 	 based on data up to time 	 �,
and �(	) are the measured outputs at time 	. Typically the squared prediction error
is used

���� (�) =
� 1X
�=0

��
��, (3.3)
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where 
� is a weight matrix. One-step-ahead predictions are often preferred for
models for control, while � = 	 + 1 is commonly used when long term prediction
abilities are required, such as in model predictive control. Note that setting � = 	+1
means pure curve fitting, i.e. fitting the simulated model output to the measured
data. Normally one need to use some iterative search algorithm, like e.g. Gauss-
Newton, to find the optimal parameter vector, however if the model is linear in the
parameters then the optimal parameters can be found without iterations by the least
squares method.

A statistically founded competitor to PEM is the maximum likelihood method
(MLM):

�̂��� = argmax
�

���� (�), (3.4)

where �̂��� is the estimated parameter vector that maximizes the criterion ���� (�).
The criterion is the likelihood function, reflecting the likelihood of the measured data.
If the measured data are independent random variables, then the likelihood is the joint
probability density function of these data

���� (�) = �	(�obs|�), (3.5)

where �obs is the measured data, and �	(�obs |�) is the probability that the observations
�obs should take place with a given parameter vector �. For a dynamic system, the
observations are usually dependent. However, using an estimator, the prediction
errors are assumed independent and with a certain probability density function. In
such a case the MLM can be seen as a special case of the PEM.

Subspace methods Subspace methods are parametric methods, as the output from
such methods are state space models. However, the subspace methods have some
distinct features and it makes sense to present them as a unique method. (Ljung 1996)
characterize subspace system identification as the most interesting development in
system identification in the past decade. There are a number of di erent subspace
algorithms available, such as DSR, CVA, N4SID, and PO-MOESP. Complete linear
state space models are identified without prior parametrization, except for the system
order which can be decided upon by studying singular values, and without iteration
(Di Ruscio 1997), (Van Overschee & De Moor 1996). The algorithms are very fast
and reliable because no iterations are performed.

The probably best known algorithm is N4SID due to its inclusion in the Matlab
System Identification Toolbox (Ljung 2000). However, in (Di Ruscio 1997) N4SID
is criticized for finding the erroneous column space for the extended observability
matrix1 when colored noise enters the process, as opposed to DSR, CVA and PO-
MOESP. Based on the results in Papers A — B this may very well be correct as it
was experienced that N4SID always found a much higher model order than the DSR
algorithm, without in general improving the model fit.

While e.g. PEM use an iterative search for optimal parameter values, subspace
algorithm use linear algebra to find the parameters without iteration. Uncorrelated

1Estimation of the extended observability matrix is the first and common step in most subspace
algorithms. From this matrix we can find the order � of the system and the � and � model matrices.
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noise and inputs are a basic assumption in subspace algorithms, and thus used in
a straight forward fashion these algorithms will not yield consistent estimates when
closed loop data are used. For PEM, the use of closed loop data is in most cases
un-problematic (Ljung 1999).

3.1.2 Empiric modeling of PM6

Empiric modeling of PM6 are covered in more detail in Papers A — B. In Paper A
a high order mechanistic model is used as starting point for the empiric modeling,
while in B both empiric modeling from experimentation on the high order mechanistic
model and on the real process is carried out. The main results from empiric modeling
of the real paper machine process are presented next.

The manipulated inputs � and the outputs � are

� =
��

��
��

� � =
���
��
���

, (3.6)

where the inputs � are the amount of thick stock, filler added at the outlet of the
white water tank, and retention aid added at the outlet of the screens, and where the
outputs � are the basis weight (weight per area), paper ash content (content of filler
in the paper), and wire tray consistency in the recirculation flow from the wire to the
white water tank. The basis weight and paper ash outputs are direct quality variables,
while the wire tray consistency is an indirect quality variable having significant e ect
on variation in other short circulation variables (see Figure 2.2).

Identification of models with the subspace methods DSR and N4SID for model
orders 1-30, and for various user defined parameters were carried out. The raw data
observations were not equally spaced in time and a linear interpolation routine in
Matlab was used for creating time series with five seconds sampling intervals, the
sampling interval was approximately two seconds in the raw data. The identifications
were repeated for data without pretreatment, data which were centered, and for data
which were centered and scaled. The centering was carried out by subtracting the
value of the first element in each input and output series2 , and the scaling was carried
out by dividing each series with its standard deviation. Note that no particular
consideration was given to the fact that the basis weight and paper ash measurements
are updated less frequently than other variables.

A root mean square error (RMSE) criterion was used for comparing the identifi-
cation and validation of the various models

���� =

vuut 1

�

�X
�=1

(�̂�(	|0) ��(	))
2, (3.7)

where � is the number of observations, ��(	) is the measured output � at time 	, and
�̂�(	|0) is the simulated output � at time 	 from the empiric model. The �’s in the

2Centering may also be carried out e.g. by subtracting the mean of the series.
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Figure 3.1: Real data (solid lines) and simulated data (dashed lines). Data set for
identification collected at September 19. 2000, and data set for validation collected
at October 27. 2000. Identification was carried out on centered data.

RMSE’s are denoted as ������ (basis weight), ��� (paper ash content) or ����� (wire
tray concentration). The simulated �̂� are centered so that they have the same mean
value as the measured responses ��, before the RMSE’s are calculated.

A third-order model with centered data was identified with the DSR method.
Several higher order DSR models were identified, but non of these improved the
validation RMSE values. The results from the identification and validation of this
model is shown in Figure 3.1, and Table 3.1 gives the RMSE values.

With N4SID a fifth-order centered and scaled model was identified, in addition to
several higher order models (11�� to 23�� order models) with RMSE values comparable
to those of the DSR models. The validation gave higher RMSE values for the fifth-
order N4SID model than for the third-order DSR model. None of the higher order

Table 3.1: RMSE values for third-order DSR model.
Identification Validation

RMSEweight 0�410 0�697
RMSEash 0�095 0�410
RMSEconc. 0�0043 0�0173
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N4SID models improved all three RMSE values at validation. The RMSE values for
the basis weight were improved and the RMSE values for the wire tray consistency
were poorer for all these models compared to the third-order DSR model.

All identified DSR and N4SID models were used as initial values for a corre-
sponding PEM method. Some minor improvements on some of the DSR models were
obtained at identification, however no validation improvements were found.

Individual3 gains and time constants in the empiric models are far from the ex-
pected ones, the ones seen in step tests, or the ones in the mechanistic model imple-
mented at PM6. This may be due to the experiments not being informative enough
(Ljung 1999), and it suggests that quite extensive experimentation is needed in order
to obtain a multivariable empiric model. It is however interesting to note that the
validation results based on RMSE values seem to be quite good despite the poorly
identified dynamics of the system.

3.2 Mechanistic modeling

3.2.1 Introduction

A mechanistic model is a model built from basic principles of physics, chemistry,
biology, etc., by writing down conservation or balance equations. Obviously this
requires extensive knowledge of the process to be modeled. In the literature one
sometimes encounters terms like white-, and grey box modeling, see e.g. (Sohlberg
1998). White box models are mechanistic models based on complete knowledge of
the process, i.e. where both equations governing the behavior and the associated
parameters are known a priori. Obviously, such models are rarely found. A grey box
model is a mechanistic model where the equations governing the behavior are assumed
known, but parameter values need to be estimated using experimental or historical
data. Throughout this thesis grey box models are included in mechanistic models.

There is a vast amount of literature on mechanistic modeling. Most sources deal
with specific processes or process units, such as this thesis. However, studying a new
process unit one often finds out that similar but not entirely the same units have
been modeled, and often the models available are developed with another scope. A
search for most of the known processes or process units in a data base will result in
numerous hits.

In subsection 3.1.1 a procedure for parametric empiric modeling was outlined. Sim-
ilar procedures for mechanistic modeling may also be found, e.g. in (Foss, Lohmann
& Marquardt 1998), (Sohlberg 1998), and (Sælid 1984). The procedures for empiric
and mechanistic modeling are similar to some extent, but with some exceptions:

• There are probably many more iterations and unstructured patterns of the itera-
tions for mechanistic modeling compared to empiric modeling (Foss et al. 1998).

• Conceptual modeling enters as a step in the mechanistic modeling procedure.
This step includes e.g. dividing the problem into several subproblems, making

3From one input to one output.
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a list of relevant phenomena, and searching for literature (Foss et al. 1998),
(Sælid 1984).

• Model simplifications enters as a step in the mechanistic modeling procedure
(Sælid 1984).

• For a mechanistic model, the model structure and model order are chosen by
formulating the physical laws and balances describing the process.

3.2.2 Mechanistic modeling of PM6

Mechanistic modeling of PM6 are covered in more detail in Papers A — C. In Papers
A — B the model is not presented in detail, and neither is it fitted to real time data,
nor is it validated with real time data. In Paper C the model is presented in detail,
and it is also fitted to and validated with real time data. Thus, Paper C should be
considered the main source of information about the mechanistic model developed for
PM6. Probably, the most important reference used in the development of the PM6
model was (Shirt 1997):

... this work develops the first large scale dynamic simulation of a paper
machine wet end which incorporates chemical phenomena (Shirt 1997,
page 6).

More references can be found in Papers A — C. Despite the work carried out in
(Shirt 1997), there seems to exist some resistance to mechanistic modeling of paper
machines:

The greatest problem here (concerning wet-end chemistry control. Au-
thors note) is that it is not yet, nor is it likely to be, possible to generate a
comprehensive physico-chemical model for the description of the adsorp-
tion, retention and other processes operative at the wet end of a multi-
component additive system. However, some success in control has been
achieved with more empirical approaches (Roberts 1996b, page 8).

The wet end of the paper machine is perhaps the most complex and
important part of the paper making process, but can also be described
as being one of the least understood sections as well. ... The physical
modelling approach was thought to o er the best possible method for the
papermachine [Humphrey 1986, Nicholson 1980]. However, the loss of
material through the wire into the backwater was thought to be far too
complex for purely physical modelling alone (Rooke 1999, page 31 and
104).

These claims are probably correct, and the objective of the mechanistic modeling
of PM6 was not to make a detailed all-including model which in all aspects had the
correct physical structure. The objective was to make a model of a limited part of
PM6, which were suitable for model predictive control (MPC), captured the essential
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dynamic behavior of the process, and was applicable over a wide range of operating
conditions. A similar thought is presented in (Scott 1996, page 136) which state that
a comprehensive wet end control scheme will not work, and that the solution is to
divide the overall process into subsystems and strive to reduce variability in each of
them.

The deterministic model Some modifications have been introduced to the model
detailed in Paper C, as compared to the model implemented at PM6. The most
prominent modification is that a first order empiric model that was added to capture
neglected and unknown dynamics in the process, has been removed.

The deterministic model was originally developed with several ordinary and par-
tial di erential equations. The model was then simplified, and eventually fitted to
experimental and operational mill data. The implemented PM6 model consists of a
third order nonlinear mechanistic model based on physical and chemical laws. The
structure of the developed process model is

·
�̄ = �̄(�̄� �̄� �̄� �̄) (3.8)

�̄ = �̄(�̄� �̄� �̄� �̄),

with �̄ R� = R3, �̄ R� = R3, �̄ R� = R3 and �̄ R� = R4. The bar above
the variable names indicates that these are the variables in their original units and
coordinate system. �̄ consists of several model parameters, tuned to fit the model
outputs to experimental and operational data.

The inputs and outputs are as shown in eq. 3.6. In the mechanistic model the
states and measured disturbances are

�̄� =
£
�̄������ �̄������� �̄�����

¤
(3.9)

�̄� =
£
�̄TS,tot � �̄TS,fil�  ̄� �̄

¤
,

where �̄����� is the concentration of filler in a reject tank in the hydrocyclones, �̄������

is the concentration of filler in the white water tank, and �̄����� is the concentration
of fiber in the deculator. The measured disturbances accounted for in the mechanistic
model, are the total and filler thick stock concentrations �̄TS,tot and �̄TS,fil, the paper
machine velocity  ̄, and the paper moisture percentage �̄ .

Note that the total- and filler concentrations in the thick stock flow are called
“measured disturbances”, although they are not measured. A model of the thick
stock area has been developed (Slora 2001), and implemented at PM6, providing
estimates of total- and filler concentrations in the thick stock.

Parameter estimation in the deterministic model The model implemented
at PM6 has many parameters. These parameters have physical interpretations and
thus it should be possible to measure them (e.g. the volumes) or estimate them one
by one from local measurements (e.g. measure the flows and concentrations in each
stage of the hydrocyclones and calculate the associated parameters). This approach
would require a very large and detailed model, probably not suitable for on-line use.



3.2. MECHANISTIC MODELING 23

Table 3.2: Parameters estimated in PM6 model.
Name Description Unit
!filler conversion from total flow [ l� s] to filler flow [ kg� s] kg� l
!filler,Wire share of non-flocculated filler retained on the wire —
!�	1�inject inject flow to first stage, relative to flow onto the wire —
!�	1�filler filler accepted in first stage, relative to filler in inject flow —
!�	1�fiber fiber accepted in first stage, relative to fiber in inject flow —
!�	2�filler filler accepted in second stage, relative to filler in inject flow —
!�	2�fiber fiber accepted in second stage, relative to fiber in inject flow —
!fiber,Wire share of non-flocculated fiber retained on the wire —
���
�total bias on estimated thick stock total concentration —
���
�filler bias on estimated thick stock filler share —
	filler flocculation constant for filler 1� s
	fiber flocculation constant for fiber 1� s
	fiber-filler flocculation constant for filler 1� s
"�� volume of deculator (right chamber) m3

"� volume of reject tank m3

"�� volume of white water tank m3

�1�initial initial value for filler concentration in reject tank —
�2�initial initial value for filler concentration in white water tank —
�3�initial initial value for fiber concentration in deculator —

The model implemented at PM6 is a simple approximation of a complex process and
the parameters in the model, although they have a physical interpretation, should not
be measured and/or estimated one by one due to the poor input-output properties of
the resulting model. Consider e.g. the deculator volume, which is important for char-
acterizing the time constant for the sub-model between the thick stock and the basis
weight. The real volume of the deculator is approximately 17m3 (right chamber),
however in the model it is many times larger. The deculator volume in the model
should be regarded as a lumped volume and not a single physical volume. The most
important properties of the model are the input-output properties, i.e. the response
on the outputs from changes in inputs. Thus, we want to estimate the parameters in
the model so that these properties are good. In principle we would therefore like to
tune the parameters so that the model outputs are equal to measured outputs. How-
ever, due to the large number of parameters in the model we set some parameters
equal to values that seem reasonable, and estimate the rest. The parameters that we
have chosen to estimate are shown in Table 3.2.

The function lsqnonlin in the Matlab Optimization toolbox (The MathWorks,
Inc. 2000) is used for solving the minimization problem defined in eq. 3.1 — 3.3.
The prediction errors � are calculated by simulating the system, with only the initial
conditions given, i.e. with � = 	+1 in eq. 3.2. In addition the optimization has been
subject to the constraints

�min �̂ �max, (3.10)

Traditional system identification (see e.g. (Ljung 1999)) is in most cases carried
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out using a one-step-ahead predictor, corresponding to � = 1, however in our case we
wish to emphasize the need for a model with good long term prediction abilities. The
reason for this is that the model will be used for model predictive control (MPC).
Then, it seems natural to use the simulation approach in the parameter estimation
algorithm.

The concept of scaling is very important for robust and rapid convergence to the
optimal parameter values (Betts 2001). Here, we will point at two simple methods
for scaling; scaling of parameters and scaling of the simulation error. Scaling of the
parameters can be done by introducing

� = � × �̃, (3.11)

where �̃ is the scaled parameter vector, � is the original non-scaled parameter vector,
� is a scaling vector, and × is the Hadamard product (an element by element multi-
plication). The scaling vector � may be chosen so that the assumed scaled parameter
values are close to unity. Consider e.g. the following assumed parameter vector

� = [10 5� 108].

Choosing
� = [10 5� 108],

gives the following scaled parameter vector

�̃ = [1� 1].

Any constraints or bounds on the parameters must be scaled accordingly.
The simulation error is defined in equation 3.2 by setting � = 	 + 1. The basis

weight is measured in g�m2 and has a value typically around 50 g�m2, paper ash is
measured in % and has a value typically around 30%, and the wire tray concentration
in measured in % has a value of approximately 0�6%. Based on this, it is easy to
understand that the error for the wire tray concentration is very small compared to
the other two errors, thus any model fitting routine would more or less ignore the
wire tray concentration and concentrate on fitting the basis weight and paper ash.
To compensate for this one may scale the simulation error or outputs, simply by
multiplying with a weight. If all outputs are regarded equally important, one may
weight them so that the outputs are approximately equal. For example, the wire tray
could be multiplied by 50 to make it approximately equal to the paper ash. However,
in our case we define the most important output to be the basis weight, the second
most important output to be the paper ash, and the least important output is the
wire tray concentration. This ranking of importance should thus also be reflected in
the weighting of the outputs.

Validation and re-tuning of deterministic model Validation is the method of
checking how good the model really is. One may find a model fitted almost perfectly
to one data set, and totally failing to explain (failing to simulate outputs close to
measured outputs) another data set. Many methods for validation exist, however
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if possible a proper validation should include testing of the model with a new data
set. Using one half of the data set for model fitting and one half for validation is
not an equally proper method, as slow varying disturbances and parameters , drifts,
and trends, will be very hard to discover. Ideally, data sets spanning all operating
conditions of the process should be used for validation, thus one would have a fair
chance to find areas where the model is not functioning properly.

In subsection 3.1.1 a procedure for parametric empiric modeling is outlined, and
in subsection 3.2.1 some similarities and di erences between the empiric modeling
procedure and a procedure for mechanistic modeling is pointed at. A similar pro-
cedure as the ones found in subsections 3.1.1 and 3.2.1 has been used for the PM6
model, although with some changes. Validating a model by comparing simulated and
real outputs, is in general not enough when the model should be used for control.
The individual responses from each input to each output are also very important.
A procedure is presented next, which is used at PM6 and found to work well, for
model fitting, validation and re-tuning of the model. The procedure is also pictorially
presented in Figure 3.2.

1. Make model.

2. Collect several data sets, at least one for model fitting and one for validation.
The data set used for model fitting should contain well excited data. The data
set for validation must also to some extent be excited. The length of the data
sets obviously depends on the process and size of the model. For the PM6 work,
the data sets ranged from 2 hours to several days. It is usually not important
wether the data are collected in open or closed loop since “a directly applied
prediction error method — applied as if any feedback did not exist — will work
well and give optimal accuracy if the true system can be described within the
chosen model structure” (Ljung 1999, page 434). Check the data for outliers
and that the units are correct, and also consider filtering of the data.

3. Set up tables of approximately expected gains and time constants from inputs
and measured disturbances, to outputs. These gains and time constants could be
found from discussions with process operators and engineers alone, but should
be supported by step tests carried out on the process, if possible.

4. Choose initial parameter values and fit the model to the data. Several re-
optimizations may be needed. For example if the optimal parameter values are
very di erent from the initial values, then the optimal values should be used as
initial values and optimized again (thus, a re-scaling is also carried out). Other
reasons for re-optimizing may be to try other initial parameter values, or other
parameter bounds. If reasonably good model fit is not obtained, changing the
model equations may eventually be necessary.

5. Validate the model by comparing simulated and measured outputs, using a
di erent data set than the one used for model fitting. If the result is not satis-
factory one should probably return to point 4, and try di erent initial values or
parameter bounds. Eventually one may need to change the model equations if
reasonable validation results are not obtained.



26 CHAPTER 3. MODELING

Table 3.3: RMSE values for mechanistic PM6 models.
Fitting M1 Fitting/re-tuning M2 Val. M1 Val. M2

Basis weight 0�21 0�25 1�00 0�71
Paper ash 0�24 0�40 0�87 1�20
Wire tray conc. 0�024 0�020 0�0496 0�042

Table 3.4: Gain ratios (M1/M2) for mechanistic PM6 models.
Thick stock Filler Ret.aid

Basis weight 0�130 � 0�135 1�25 � 1�85 2�98 � 3�98
Paper ash 0�023 � 0�022 1�63 � 2�40 1�66 � 5�10
Wire tray conc. 0�00022 � 0�00057 0�081 � 0�11 0�18 � 0�21

6. Simulate step tests on the fitted model, and compare the gains and time con-
stants with the expected results as found in point 3. If the gains and time
constants are reasonably close to the expected ones, the model fitting and vali-
dation is finished.

7. If the gains and time constants in point 6 are too far from the expected values,
re-tune the model by changing parameter values that move the gains and time
constants towards the expected ones. When reasonable gains and time con-
stants are found, go to point 5 and compare simulated and measured outputs.
Eventually one may need to change the model equations if reasonable gains and
time constants are not found.

Figure 3.3 shows the validation result after fitting the model to an experimental
data set, and Figure 3.4 shows the validation result after re-tuning to obtain expected
gains and time constants. A comparison of the fitting and validation results are also
given in Tables 3.3 and 3.4, based on the root mean square error values as defined in
eq. 3.7 and the gains found in a specific operating point. In the tables we denote the
fitted model by M , and the fitted and re-tuned model by M2, i.e. the implemented
model is denoted M2.

Comparing the RMSE values in Table 3.3, it seems that the basis weight fit be-
came somewhat poorer after re-tuning the model, but the validation result improved
significantly. The paper ash RMSE values became poorer after the re-tuning, while
the wire tray total concentration RMSE values were improved. Studying the gain
matrix in Table 3.4, it is seen that some gains changed dramatically, e.g. the gain
between the thick stock and wire tray concentration more than doubled after the
re-tuning. Similar results are found for the gains from the filler to the paper ash, and
from the retention aid to the basis weight and paper ash.

Both models, M1 and M2, have been tested in MPC applications at PM6. It was
observed that MPC with M1 resulted in e.g. poor grade changes due to the erroneous
gains. These results are in accordance with the results from empiric modeling of
PM6 in subsection 3.1.2. For the identified empiric model, the validation results
were reasonably good, and it seemed that a model suitable for control was obtained.
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Figure 3.2: Procedure for model fitting and validation.
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Figure 3.3: Validation of the model after fitting with lsqnonlin.

However studying the individual gains and time constants suggested that the model
would probably work poorly for control applications due to large di erences between
model dynamics and dynamics in the real process.

Identification and tuning of stochastic model An augmented suboptimal Kalman
filter is used at PM6 for estimating the states and some of the parameters in the paper
machine model. As pointed out in (Muske & Badgwell 2002), only a limited number
of parameters can be estimated on-line, thus the choice of which parameters or biases
to estimate must be based on experience with the process and model. Three biases
have been selected for on-line estimation in the paper machine model. The first two
are biases on the estimated total- and filler thick stock consistencies (see eq. 3.9).
These disturbances are estimated using a ballistic estimator (Slora 2001), and thus
they are assumed to be good candidates for having time-varying biases. The third
bias estimated on-line is for the total wire tray concentration, i.e. a bias in one of the
outputs.

In theory, and in the true Kalman filter, the noise characteristics of the process
should be found and used in the Kalman filter equations. However, these charac-
teristics are hard, if not impossible, to find. Thus, one often aims for a suboptimal
Kalman filter, where the noise characteristics are used as tuning parameters until
satisfactory Kalman filter performance is obtained. Specifically, the tuning param-
eters are the augmented process noise covariance matrix, 
̃�, and the measurement
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Figure 3.4: Validating the model after fitting with lsqnonlin, and re-tuning to obtain
expected gains and time constants.
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noise covariance matrix, �. Often, it is assumed that only diagonal elements are
non-zero. Thus, for the paper machine model there are three diagonal elements in �

(three outputs), and six diagonal elements in 
̃� (three states plus three estimated
parameters).

When tuning and validating the (suboptimal) Kalman filter at PM6, a few facts
and rules of thumb have been used, e.g.:

• The tuning and validation (with di erent data sets) should aim at

— good tracking properties, i.e. the estimated outputs should follow the
measured outputs to some extent;

— good filtering properties, i.e. the estimated outputs should not track mea-
surement noise;

— a sound balance between the updating of states and updating of parame-
ters, e.g. the parameters should not vary a lot while the states are more
or less resting.

• It can be shown that it is the ratio of the various variances that determines the
performance of the Kalman filter. Thus, one needs not be careful about finding
realistic variance values.

• It is possible to estimate the variances, using a parameter estimation method.
This is carried out for a constant gain Kalman filter (i.e. the individual variances
are not estimated, but the Kalman filter gain matrix is estimated) in (Hauge
& Lie 2002). The drawback with this method is that the Kalman filter will be
rather aggressive, and some de-tuning procedure is needed (but it may give a
good starting point).

• Start the tuning by finding approximate values for the various variances. The
measurement variances can be approximately found by visually studying the
random variations in the measurements. It is harder to find suitable starting
values for the process noise variances and the parameter estimate variances.
However, the expected state and parameter values will give good indications of
reasonable starting values. Consider e.g. a concentration that is expected to
have a value around 0�05 (5%). If one assumes that the noise entering this state
is approximately 1% of the state value, we see that the variance will be a very
small number. In the Kalman filter used at PM6, the measurement variances
are much larger than the process and parameter variances (around 108 larger).

• In general, increasing the measurement variances leads to a slower updating of
state estimates. The same result is obtained by decreasing the process vari-
ance. Thus, decreasing the process variance leads to a slower updating of state
estimates.

• Since the parameters are augmented states, changing the parameter variances
has much of the same e ect as changing the state variances. Increasing the
parameter variances leads to a faster updating of parameter estimates, thus
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also leading to a faster elimination of estimation error (the di erence between
estimated outputs and measured outputs).

Refining versus lumping approach Studying Papers A — C, it is obvious that
the mechanistic PM6 model has been developed basically in a lumping approach4: a
large complex model was developed first, and simplifications were then carried out
to establish a smaller and less complex model suitable for model based control. A
refining approach5 would include developing a coarse model, and then gradually refine
the structure by introducing new elements.

In (Sohlberg 1998) a refining approach to modeling of a rinsing process within the
steel industry can be followed closely. A basic model is developed first, consisting
of only one unknown parameter. The model is fitted to data and refined in several
stages before the final model, consisting of nine parameters, is achieved. The refining
approach seems to be the preferred method amongst experienced modelers, although
a certain mixture of the two approaches seems likely to occur in most projects (Foss
et al. 1998). This mixing of approaches is also the case for the PM6 model. Even
though the lumping approach is very pronounced, some elements of refining can be
identified.

Two interesting questions are then: if a refining approach had been used for the
PM6 model, (i) would the result be any di erent, and (ii) would the time spent on
modeling be any di erent? (Sælid 1984, page 6) argues that if a too detailed model is
developed, then much time and work is more or less wasted. This is probably correct
for an experienced modeler having some knowledge about the process to be modeled,
as (s)he will have an a priori feeling of the important phenomena and simplifications
that can be carried out. For an unexperienced modeler, unfamiliar with the process
(s)he is about to model, it will probably be much harder to identify sensible simplifying
assumptions a priori. Consider e.g. the question of whether flocculation at PM6 takes
place throughout the whole short circulation or only between the screens and the
headbox. In the first model developed, the flocculation was assumed to take place in
the whole short circulation, while the flocculation was constrained to take place only
in the pipeline between the screens and the headbox in later versions of the model.
This simplifying assumption was based on results from simulation, and sources such
as (Shirt 1997), (Pelton 1984), (Koethe & Scott 1993), and (Gregory 1988). Next,
consider a simpler example of how to model a pipeline. Assume for simplicity that
no flocculation takes place within the pipeline, thus one expects that a very reliable
model for the concentration in the pipeline is a partial di erential equation (PDE)

#�

#�
=  

#�

#�
, (3.12)

where  is the velocity of the mass inside the pipeline, and � is the variable corre-
sponding to the direction along the pipeline. Using the method of lines (MOL) for
discretization (Schiesser 1991), the choice of discretization level is a trade-o between

4Also called a bottom-up approach.
5Also called a top-down approach.
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Figure 3.5: Step responses at the outlet of a pipeline (40m length, 0�7m2 cross
sectional area, 2500 kg� s mass flow). Discretization carried out with various numbers
of ideally stirred volumes.

factors such as accuracy, complexity and numerical properties. With an increas-
ing number of volumes, the model is more accurate but also more complex and the
sti ness of the overall system is increased. The trade-o can be studied from the re-
sponses in Figure 3.5, where a step change (from 0 to 0�1) in the initial concentration
is applied to the pipeline between the screens and the headbox. The pipeline is 40m
long, it has a cross section area of 0�7m2 and a mass flow of 2500 kg� s. A density
of $ = 1000kg�m3 is assumed. If the pipeline is a pure time delay then the step
change would appear at the outlet at � = %�(��(&$)) = 11�2 s, where % is the length
of the pipeline. For the original PM6 model there were 100 pipelines included in the
model. One advantage of using the lumping approach to modeling is then that the
various choices of discretization can be easily studied using simulation, and one will
have good control of which simplifications are negligible and not. In Paper A various
simplified models are compared with a large basic model, showing that for the PM6
model all PDE’s can be simplified to one ordinary di erential equation (ODE) each
without a ecting the properties of the model to any large extent.

To sum up some thoughts and experiences: The refining approach is used by
most experienced modelers in the field, however combined with some elements of the
lumping approach. It is hard to find arguments supporting that a model will be better
or worse using one approach or the other, however the time spent using the lumping
approach may be longer than for the refining approach. For a novice in mechanistic
modeling, the lumping approach may be more valuable in terms of gaining modeling
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experience.

3.2.3 Linearized PM6 state space model

In this subsection, a typical example of a linearized PM6 state space model is given.
The structure of the linearized model is

��+1 = &�� +'�� +��� (3.13)

�� = ��� +(�� + )��,

where the sample time is 30 seconds, and the states, inputs, outputs, and measured
disturbances are as described in eqs. 3.6 and 3.9. Typical model matrices are

& =
0�9702 0�3283 0
0�0018 0�9596 0�0197
0 0 0�8661

(3.14)

' =
1�3 160�1 0�2
0�1 10�1 33�4
1�3 0 0�7

� =
0�0247 0�0023 0 0
0�0016 0�0001 0 0
0�0134 0�0007 0 0

� =
61 727 13� 109
83 986 1692
3 34 32

( =
0�0029 0�3544 5�3831
0�0040 0�4815 7�1769
0�0001 0�0166 0�0554

) =
54�5613 5�1415 1�9777 51�0179
74�1090 6�9836 0 30�6923
2�5519 0�2405 0 0

3.3 Mechanistic versus empiric models

Table 3.5 summarizes some general properties of mechanistic and empiric models,
although exceptions can easily be found.

The perhaps strongest argument for using an empiric model is that the time for
building such a model is much lower than for a mechanistic model. In (Foss et al. 1998)
it is indicated that the development cost for an empiric model is about 1�10 compared
to a mechanistic model. This was indicated by a person experienced with mechanistic
modeling, and for the paper machine modeling in Papers A — C the ratio is probably
closer to 1�100. Another positive feature of empiric models are that they often have a
simple structure (linear and time invariant) which leads to quick and easy simulation,
analysis, and design of control algorithms. If one has access to experimental data,
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Table 3.5: Mechanistic versus empiric models. Partly reproduced from Støle-Hansen
1998, and Walter & Pronzato 1997.
Properties Mechanistic Empiric
Utilize physical knowledge and insight yes no
The parameters have known range yes no
Number of unknown parameters low high
Time needed to develop a model high low
Resources needed to maintain a model low high
Easy to use for complex/unknown processes no yes
Amount of data needed low high
Applicability to control and training yes yes
Applicability to design yes no
Extrapolation properties good* bad
Increases process knowledge yes no
Complex yes (non-linear) no (often linear)
Simulation long/di cult quick/easy
Possible roll-out of model yes no
*if structure is correct.

and the operating region of the process is only moderately nonlinear, then it seems
reasonable to first try an empiric model.

The strength of a mechanistic model lies in its ability to capture known nonlinear
phenomena and thereby having extraordinary extrapolating properties, and the pos-
sible reuse of the model on similar processes. This and other features are emphasized
in the following quotation:

..., a model based on first principles can operate in a larger domain
than a black-box model. A model based on first principles will in general
contain fewer parameters and will therefore be more parsimonious. From
the parsimony principle we know that the best model is the simplest model
that adequately describes the process, since overparameterization will in
general lead to poor generalization. A consequence of fewer parameters, a
model based on first principles will need fewer experiments to be identified.
On the other hand, a black-box structure is easier to develop. ... To
identify our model (a mechanistic model. Authors note) we have only
used history data from the plant. (Hillestad & Andersen 1994, page 42
and 45)

Consider the paper machine model implemented at PM6. This model has 19
parameters, including two biases and three initial ODE values, which is tuned to fit
the model to data. The model has three inputs, three outputs, three states, and four
measured disturbances. A linear (empiric) state space model of the same dimension
would consist of 63 parameters, including direct input to output matrix and three
initial ODE values. An empiric transfer matrix model would consist of minimum
42 parameters, corresponding to pure first order elements, i.e. one parameter for
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the time constant, and one for the gain, in each element. If a step response model
or impulse response model is used, the number of parameters would increase even
more. In addition, the empiric models mentioned here have a limited operating range
and must either be adaptive or a set of models is needed. In (Kosonen et al. 2002)
an approach where a set of adaptive empiric models are used to cover the operating
region of the paper machine is described.

A point made by (Ogunnaike & Wright 1997, page 49), is that mechanistic model-
ing results in a small number of parameters that can intuitively be understood, thus
reducing long term support cost. Industrial processes do not remain static and it is
likely that the model, whether empiric or mechanistic, will degrade with time. An-
other point, which is often neglected in the literature, is that the un-manipulatable
nature of most measured disturbances makes it impossible to model their e ect on
the model outputs empirically. The empiric PM6 model developed in subsection 3.1.2
consists of none measured disturbances. Submodels from measured disturbances to
model outputs can in some cases be identified from experimental data, however in
most cases the data will not be informative enough and physical knowledge and insight
must be used. For example the thick stock total consistency could be incorporated in
the model by assuming that it a ected the outputs similarly to the thick stock input.
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Chapter 4

Model Predictive Control

4.1 Introduction

Readers not familiar with model predictive control (MPC) may consult one of the
many texts on the subject. Introductory textbooks on MPC are e.g. (Maciejowski
2002) focusing on MPC with state space models, and (Camacho & Bordons 1999)
focusing on MPC with transfer function models. A tutorial is given in (Rawlings
2000), and survey papers focusing on both theory and practice are e.g. (Garcia, Prett
& Morari 1989), (Mayne, Rawlings, Rao & Scokaert 2000), (Qin & Badgwell 1997),
and (Qin & Badgwell 1998).

In model predictive control (MPC) one calculates optimal inputs in a receding
horizon fashion. The inputs at time 	 are calculated by minimizing a criterion aiming
at keeping control errors small, the inputs close to some preferred values, the input
changes small, and the inputs, outputs, and input changes within some predefined
bounds. A typical mathematical formulation of the criterion may be

min
U�

�� = min
U�

X
�=0

£
���+�
��+� + �̃��+��̃�+� + ���+�� ��+�

¤
, (4.1)

constrained by the definitions

��+� = ��+� *	�+� (4.2)

�̃�+� = ��+� * �+�
��+� = ��+� ��+� 1,

the model of the process, e.g.

��+1+� = �(��+� � ��+� � ��+�) (4.3)

��+� = �(��+� � ��+� � ��+�),

37
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and the bounds

�min
�+� ��+� �max

�+� (4.4)

�min
�+� ��+� �max

�+�

�min
�+� ��+� �max

�+� ,

where � and *	 are the outputs and output targets, � and * are the inputs and
input targets, � are the states, � are the disturbances acting on the system, and 
,
, and � are weighting matrices. The input sequence U� covers the inputs from the
present time and � steps into the future, however only the first input is applied to
the process. At the next time instant, the computation is carried out again with the
same length � of the horizon, giving another input to apply to the process. Thus, the
inputs are computed in a receding horizon fashion, and MPC is occasionally called
receding horizon (optimal) control.

The basic MPC principle is shown in Figure 4.1. Here, the principle is illustrated
using only one input and one output (the basis weight of a paper machine), although
a major advantage of MPC is its ability to handle multivariable systems in a straight-
forward fashion. In the figure, the reference changes 15 minutes into the future, giving
the process operators time to evaluate the controller action. Even though this func-
tionality is available and described in many introductory texts on MPC (Camacho &
Bordons 1999) (Maciejowski 2002), most commercial MPC’s have not implemented
this facility. Instead, the change takes place immediately, or a trajectory is calculated
from the present setpoint to the new setpoint.

Linear model predictive control, i.e. MPC with linear models, is the only advanced
control method used to any extent by the industry. The main reasons for its success
are probably

• Intuitive and attractive concept.

• Constraints are handled in an elegant fashion.

• Compensates for dead time.

• Handles measured disturbances by feed forward control.

• Handles coupled multivariable systems with elegancy.

• Short payback time is reported, e.g. 3 months in (Bassett & Van Wijck 1999).

• Commercial MPC software packages are available.

• Linear empiric models can be developed e ciently, with or without commercial
software.

Nonlinear model predictive control, with mechanistic models, is not reported used
in many industrial applications. The reason for this is probably that the modeling
procedure is more expensive and time consuming, and that many of the larger vendors
only support linear models in their MPC’s. However, there are cases where it seems
reasonable to use nonlinear MPC with a mechanistic model, e.g. when:
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Figure 4.1: Basic MPC principle.

• The process is nonlinear, with wide operating range or several grades.

• Limited experimentation can be carried out on the process. Less experimenta-
tion is needed for fitting a mechanistic model compared to an empiric model, e.g.
(Hillestad & Andersen 1994) reports that their mechanistic model is identified
purely from historical data.

• There are a number of similar processes or process units, which the controller
is sought applied to.

Algorithm for MPC with mechanistic model Here, an algorithm for MPC
with a mechanistic model is suggested. The algorithm is detailed in Paper F.

The basic idea of the algorithm is that the nonlinear mechanistic model can be
approximated by a linear model which is updated at each sample, thus using suc-
cessive linearization, extended Kalman filter, and a linear MPC framework. Similar
approaches are also suggested in (Lee & Ricker 1994), although with a finite horizon
criterion, and (Gattu & Zafiriou 1992), with computation of the steady state Kalman
gain at each sample.

At time 	 we have available the process model (eq. 3.8) in its discrete version

�̄�+1 = �(�̄�� �̄�� �̄�� �̄�) (4.5)

�̄� = �(�̄�� �̄�� �̄�� �̄�),



40 CHAPTER 4. MODEL PREDICTIVE CONTROL

as well as the following past measurements and estimates

�̄� �

�̄� �

�̄� �b̄�� �+1

, � = 1� 2� 3���, (4.6)

where b̄� is an estimated state vector. The following step by step algorithm for con-
trolling the process is suggested, assuming the present time to be 	.

1. Linearization of model based on conditions at time 	 1�

The linearization is based on the most up-to-date information about the process,
i.e. the variable values at time 	 1. Note that we have no information about
�̄� yet, so we can not linearize based on variable values at time 	. The resulting
model is

=
��+1 = &�

=
�� +'�

=
�� +��

=

�� (4.7)

=
�� = ��

=
�� +(�

=
�� + )�

=

��.

2. Obtain current measured disturbances and future setpoints and disturbances.

The measured disturbances obtained from the process are �̄�. The future dis-
turbances and references are

*̄�+�, + = 0� ���� � 1 (4.8)

�̄�+�, + = 0� ���� � 1,

which must be provided by the process operators or simply taken as an extension
of the present values into the future.

3. Shift variables, i.e. change variable coordinates, corresponding to the linearized
model.

The references, disturbances, and constraints will be used with the linearized
model in eq. 4.7 for calculation of target or steady state values. The references,
disturbances, and constraints must then be shifted along with the model so that
all variables have compatible origins before the calculation of target values.

4. Calculate steady state values.

The calculation of steady state values is carried out for several reasons. The
steady state values are used as targets in the optimization criterion. One could
use e.g. reference values directly as targets in the criterion. However, the
calculation of steady state values is a way of ensuring that the targets are
feasible. In addition, by calculating steady state values one has the opportunity
to add e.g. an economic type criterion if there are additional degrees of freedom.
Finally, for the special case of an infinite horizon criterion with possibility of
changing future references and measured disturbances, we need the steady state
values at the end of the horizon in order to shift the origin of the model.
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5. Shift the origin of the model to the steady state values at time 	 +� 1�

The model origin is shifted so that the variables in the criterion converge expo-
nentially to a zero steady state, thus avoiding an infinite value of the criterion
in eq. 4.1. The resulting model is

��+1 = &��� +'��� +���� (4.9)

�� = ���� +(��� + )���.

6. Shift measured and estimated variables.

The variables must be shifted along with the model so that they have the same
origin.

7. Update MPC matrices and vectors.

The matrices and vectors in the MPC formulation that contain time variant
variables, such as linear model matrices, input variables, estimated states, etc.,
must be updated.

8. Optimization.

An optimization algorithm is used to calculate optimal inputs.

9. Apply �̄� to the process.

Note that only the first input is used.

10. Obtain �̄� from the process.

11. Estimate b̄��+1�
Unless all states are measured, we need to estimate them (or some of them).
Typically an extended Kalman filter is used for this purpose.

12. Set 	 := 	 + 1 and go to step 1

Note that variables in original units, i.e. unscaled and unshifted, are denoted by a
bar above the variable, e.g. �̄ and �̄. Variables in the linearized model, i.e. variables
that have origin corresponding to the center of linearization are denoted by a double
bar above the variable, e.g.

=
� and

=
�. Finally, variables shifted first by linearization

and then by the steady state values at time 	 +� 1 are shown as e.g. � and �.

Computational e ciency Consider the criterion and constraints in eqs. 4.1 — 4.4.
The choice of unknown variables are here given as the future input sequence U�. By
extensive manipulation (see Paper F) the criterion and constraints can be formulated
as the following quadratic programming (QP) problem

min
U�

�� = min
U�

µ
1

2
U�� ,�U� + ��� U�

¶
, (4.10)
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subject to

-���

·
U�

&̄�U�

¸
-!��, (4.11)

which can be solved by commercial QP software. This choice of unknowns in the
optimization criterion is by no means the only one, however in Paper E it is shown that
reducing the number of variables to a minimum often is beneficial for the computation
time. It is also shown that the e ciency of commercially available QP solvers varies
quite much. Consider a simulated case using the mechanistic model of PM6 and
the MPC algorithm above. The number of variables are down to a minimum, i.e.
only future input variables are computed, and we simulate 100 samples (50 minutes),
with a rather short horizon � = 20 samples. After 20 samples a step change in
the reference values occur. The change is known to the MPC from the start of the
simulation. One instance of outputs from such a simulation are shown in Figure
4.2, and the computation time using qpopt (Holmström 2001) and quadprog (The
MathWorks, Inc. 2000) are shown in Figures 4.3 - 4.4 respectively. It is clear that
qpopt is superior to quadprog when it comes to computing e ciency. No di erence
in computing accuracy has been found between the two solvers in this study. Some
statistics from the two simulations are:

Solver mean comp. time 1.opt. comp. time mean(2:end) comp. time
qpopt 0�013 s 0�11 s 0�012 s
quadprog 0�616 s 14�52 s 0�476 s

Here, “mean comp. time” is the average computation time for all 100 samples,
“1.opt. comp. time” is the computation time for the first optimization carried out,
and “mean(2:end) comp. time” is the average computation time for all 100 samples
except for the first.

4.2 Model predictive control at PM6

Model predictive control at PM6 is covered in more detail in Paper F.

Motivation for multivariable model based control Magazine paper is char-
acterized by its glossy appearance due to a high content of filler in the paper. The
finished magazine paper typically consists of 65% fiber, 30% filler, and 5% water.
The main di erence between magazine paper and e.g. newsprint is the high con-
tent of filler. For newsprint, the amount of filler is typically 0-10%. Due to the
high filler content in magazine paper, the couplings between important input and
output variables are relatively strong. The project “Stabilization of the wet end at
PM6” was initiated in 1999 based on the experience of strong couplings and oscillat-
ing behavior in the process. A key goal was to reduce variation in certain variables,
such as consistencies in the short circulation, basis weight, filler content, and more.
Based on experience and reported results from competitive mills (e.g. (McQuillin &
Huizinga 1995), and (Lang et al. 1998)), it was decided to develop a model of the
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Figure 4.2: Outputs (measured, estimated and reference) after simulation of 100
samples, with horizon � = 20. A change in reference values occurs after 10 minutes.
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Figure 4.3: Optimization time using qpopt. Simulation carried out with 100 samples,
and with horizon � = 20. A change in reference values occurs after 10 minutes (20
samples).
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Figure 4.4: Optimization time using quadprog. Simulation carried out with 100
samples, and with horizon � = 20. A change in reference values occurs after 10
minutes (20 samples).
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process and utilize this in a model predictive controller. Input, output, and measured
disturbance variables were selected as shown in eqs. 3.6 and 3.9.

Before the project started, single loop controllers and manual control were used.
Grade changes were carried out manually or partly manually by the operators: the
setpoints were changed a number of times before they were equal to the new grade.
During start ups, the controllers were kept in manual mode until the measurements
were close to the desired specifications. In addition, during sheet breaks the ba-
sis weight and paper ash measurements were lost and the inputs controlling these
variables were set equal to the values that they had prior to the sheet break. The
controllers were kept in manual mode until the paper was back on the reel. Thus,
it was also a key goal in the project to be able to have the controllers in automatic
mode during grade changes, sheet breaks, and start ups.

APIS MPC A commercial MPC developed by Prediktor AS (www.prediktor.no),
was chosen by Norske Skog for implementation. The choice of MPC was based on
(i) cost, and (ii) the ability to add and develop certain features that were important.
Special features that were important were the abilities to

• utilize the non-linear model;

• specify future reference changes. This means that the process operators can
specify a setpoint change some time into the future, see how the controller will
respond, and let the controller do the grade change if they are satisfied with the
response. In many systems, the setpoint is constant into the future, so once a
change in setpoint is made, the controller will respond immediately, giving the
operators no time to consider how wise the response is;

• make an interface suitable for gaining operator acceptance of the MPC;

• use the MPC during grade changes, sheet breaks, and start ups.

The commercial MPC is part of a software package named Apis (Advanced Pro-
cess Improvement System), which also consists of a Kalman filter, subspace system
identification, and more. The Apis MPC was intended for linear models, based on
the infinite horizon objective function presented in (Muske & Rawlings 1993). For
the predictive controller implemented at PM6, several extensions were made to the
original MPC, such as

• on-line linearization at each sample;

• on-line estimation of key model parameters/biases;

• future setpoint changes, i.e. the process operators can submit new setpoints to
the controller some time before the actual grade change;

• addition of a direct input to output term;

• inclusion of measured disturbances.
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The use of MPC, a nonlinear model, extended Kalman filter, and linearization
at each sample, has also been suggested by (Lee & Ricker 1994), although with a
finite horizon criterion. Similarly, (Gattu & Zafiriou 1992) proposed an algorithm
for nonlinear MPC, with linearization at each sample, but with computation of the
steady state Kalman gain at each sample.

Implementation and interface The MPC was installed at PM6 in March 2002.
During the first two months, the MPC, the Kalman filter and the model were con-
tinuously tuned, retuned, and validated in open and closed loop. Some structural
changes were also made during these months. From May 2002, the MPC has been
in operation more or less continuously. The process operators still have the original
“pre-MPC era” control configuration available, but the MPC has been the preferred
choice from the beginning. Furthermore, the operators have been very active in mak-
ing suggestions for improvements and new features in the system. Some of these
suggestions are implemented, and others are being considered for implementation.

In addition to discussing with and involving the operators in the project from the
beginning, it seems that the MPC interface has been very important for the positive
operator attitude. Figure 4.5 shows part of the MPC interface at PM6. The upper
row in the figure shows the basis weight, setpoint for basis weight, and the flow of
thick stock. The middle row shows the paper ash, setpoint for paper ash, and the flow
of filler added to the short circulation. The lower row shows the total concentration
in the wire tray, the corresponding setpoint, and the flow of retention aid added to
the short circulation. The interface and pairing of inputs and outputs are based on
the pre-MPC era control configuration, basically because this is how the operators
and engineers at PM6 are used to see it. The vertical dashed line in the middle of
each row is the current time. When Figure 4.5 was captured, the paper machine was
in the middle of a grade change, and studying the figure carefully, one may see the
setpoints change at the current time. The setpoints for the new grade were submitted
to the MPC some time before the grade change, so at the time of the grade change
the outputs are actually half way to the new setpoints. In terms of gaining operator
acceptance for the MPC, this feature of previewing the action taken by the controller
has been very helpful. The operators can specify a grade change e.g. half an hour
into the future, and see how the MPC will achieve the change: how the inputs will
be manipulated to reach the new setpoints.

Reduction of variation An important objective with the MPC was to reduce
variation in consistencies, basis weigh, paper ash, paper moisture, and more. Figure
4.6 shows an example with the wire tray concentration and the paper ash. The
bottom line indicates whether the MPC is on (at 1) or o (at 0). When the controller
is o , the original control configuration is used. The MPC provides a distinct e ect
of reduced variation in these two outputs.

The main objective of the project “Stabilization of the wet end at PM6” was to
increase the total e ciency by 0�47%. This is an objective that is hard to measure,
due to many factors a ecting the total e ciency. Thus, several sub-goals were defined
which were assumed easier to measure and validate. The sub-goals, and results,
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Figure 4.5: Part of the MPC interface at PM6.
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Figure 4.6: Wire tray concentration and paper ash, with (bottom line is 1) and with-
out (bottom line is 0) MPC. From top to bottom the following variables are shown:
Measured and estimated paper ash (overlapping), wire tray total concentration, re-
tention aid, filler, and MPC on/o indication.
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concerning reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% Achieved
Filler cons. in the wire tray 50% Achieved
Total cons. in the headbox 50% Achieved
Filler cons. in the headbox 35% Achieved
Basis weight 20% Not achieved
Paper ash 20% Achieved
Paper moisture 20% Achieved

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

Other benefits of MPC In addition to reducing the variation in key paper ma-
chine variables, several other benefits are obtained using MPC. Some of these benefits
arise from utilizing the developed model, not only for control purposes, but also as a
replacement for measurements when these are not available or not trustworthy:

• Previously, grade changes were carried out manually or partly manually; the
setpoints were changed a number of times before they were equal to the new
grade. With a mechanistic model, applicable over a wide range of operating con-
ditions, the grade changes are carried out using the MPC (see Figure 4.5). This
has resulted in faster grade changes and operator independent grade changes.
During larger grade changes, the use of MPC results in less o -spec paper being
produced during the change. Using one mechanistic model, the grade change
is handled in a straight forward fashion, as there is no need to switch between
various local models.

• The basis weight and paper ash outputs can not be measured during sheet
breaks. Previously, during sheet breaks the flow of thick stock and filler were
frozen at the value they had immediately prior to the break. Usually the sheet
breaks last less than half an hour, and the output variables are not far from
target values when the paper is back on the reel. However, occasionally the
sheet breaks last longer periods and there may be e.g. velocity changes during
the break, leading to o -spec paper being produced for a period following the
break. Another frequently experienced problem are large measurement errors
immediately after a sheet break. With the MPC, the Kalman filter estimates
the basis weight and paper ash during sheet breaks, and these estimates are
used in the MPC as if no break had taken place. Thus, when the paper is back
on the reel, the outputs are close to their setpoints.
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• Previously, the controllers were not set to automatic mode before the outputs
were close to the setpoints, following a start up. With a model based controller
using a mechanistic model with a wide operating range, the MPC is set to
automatic mode early during start ups. This results in faster start ups, and less
o -spec paper being produced.

• Occasionally a special filler is added to the stock, to increase the brightness of the
paper. During these periods the consistency measurements are not trustworthy
as they are based on optical measurement methods. This problem is solved
within the MPC / Kalman filter framework by neglecting the updates of the
consistency estimate, relying on the estimate alone. For each output, there is an
option within the MPC to neglect the updating of states based on this output.
This is done based on experience with periods of poor measurements, even when
only standard filler is used.

• The Kalman filter estimates are used in the MPC instead of the measurements.
This leads to smoother controller action, and eliminates the need for additional
filtering.

• The model is augmented so that some key parameters/biases are updated au-
tomatically. This reduces the need for model maintenance o -line. However,
should there be larger changes in the process, such as if the white water tank is
removed, or a new retention aid is used, then it will probably be necessary to
re-tune the model and controller.

Further MPC refinements Based on inputs from amongst others the process
operators, some refinements have been carried out. One of these are the inclusion of
the paper machine velocity as both an input and an output in the model formulation.
A change in paper machine velocity has a direct and distinct e ect on the basis
weight. Previously, the velocity was implemented as a measured disturbance in the
MPC. Thus, when a change in the velocity occurred this lead to a deviation in the
basis weight which it took some time to compensate for. Now, the process operators
can submit a new velocity and the time for the velocity change to the MPC. The MPC
will then know about this change in advance and take corrective action to prevent
disturbance in the other outputs. This is illustrated in a simulated example in Figures
4.7-4.8. The velocity change was submitted to the MPC at the start of the simulation,
and due to constraints on the allowed change per sample, the velocity approach the
new setpoint in a ramp. The other outputs are more or less una ected because the
controller starts to compensate before the velocity change has actually happened.

In Figures 4.9 — 4.11 a sequence of screen dumps from part of the operator interface
is shown. The sequence shows a grade change at October 7th, 2002, and it shows the
paper machine velocity included in the interface in the fourth row.
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Figure 4.7: Outputs during simulation of velocity change from 25m� s to 22m� s.
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Figure 4.9: New setpoints for grade change at October 7th, 2002, have just been
submitted.

Figure 4.10: In the middle of a grade change at October 7th, 2002.
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Figure 4.11: Grade change at October 7th, 2002, is finished.
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Chapter 5

Roll-out of model based
control

5.1 Introduction

Many large- and medium sized industry companies have a number of more or less
similar process-units for processing of raw materials or production of finished prod-
ucts. An industrial company which has invested, or is about to invest, in advanced
model based control in one of their units / factories, would benefit economically if the
model and controller could be e ciently rolled-out at similar units.

The mechanistic model of PM6 at Norske Skog Saugbrugs, Norway, has been
developed , and used in a model predictive control (MPC) implementation, and it is
of interest to investigate if the model can be applied to other paper machines. At the
beginning of Chapter 3, it was argued that the development of a reliable model was
the key factor for success in advanced control. Thus, the reuse of the PM6 model to
other paper machines is the main focus of this chapter. Specifically, it is investigated if
and how the model can be reused at PM4, Norske Skog Saugbrugs, and PM3, Norske
Skog Skogn, Norway.

There exists very little published material focusing on how to e ciently roll-out
models and controllers in the industry. However, the idea of e cient roll-out of models
is not entirely new, e.g. (Glemmestad et al. 2002) emphasize the advantage of reusing
the models developed at Borealis, and many commercial simulators include model
libraries of process units intended for reuse.

5.2 Roll-out at PM4, Norske Skog Saugbrugs

Process description PM4 at Norske Skog Saugbrugs in Halden, Norway, produce
super calendered magazine paper. PM4 started up in 1963 and was rebuild during a
period between 1987 to 1993. The production capacity is 125� 000 ton per year, with
paper width of 4�65 meters and with a typical velocity of 1� 250 meters per minute

55
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(Sandersen 1999). Both PM6 and PM4 at Norske Skog Saugbrugs produce super
calendered magazine paper, but PM6 is 30 years younger, and has more than twice
the production capacity of PM4.

The largest di erences between PM4 and PM6 are probably found in the thick
stock area. At PM4, no filler is added to the thick stock. Thus the only filler present
in the thick stock area comes with the flow of broke and recovered stock. At PM6 disc
filters are used to reclaim usable fiber and filler particles from the white water tank
overflow, while another technology is used at PM4. Starch is a polymer of glucose
derived from e.g. corn and potatoes (Scott 1996). Starch is added to the thick stock of
PM4 through the TMP flow, while no starch is added at PM6. Starch is mainly added
to improve the dry-strength of the paper, however it may also improve fines retention
and drainage on the wire, and it may have a negative e ect on paper formation1

(Marton 1996). At PM6 the thick stock pump is manipulated to control the flow
of thick stock, while at PM4 the thick stock pump is set at a constant speed and a
thick stock valve is manipulated. This di erence should be of no concern since the
measured flow of thick stock is the flow entering the white water tank in both cases,
and the MPC calculates the setpoint for this flow. Whether the lower level controller
manipulates a pump or valve to obtain the setpoint, is irrelevant for the MPC.

The accept from the second and third stages of the hydrocyclone arrangement goes
to the inlet of the white water tank via the deculator (left chamber) at PM6. At PM4
the accept goes straight to the inlet of the white water tank. This is probably not
an important di erence since the volume of the left chamber of the deculator is very
small. Finally, a di erence in the number of stages in the hydrocyclone arrangement
can be found; at PM6 a five stage arrangement is used, while it is a seven stage
arrangement at PM4.

Model fitting results Open loop experiments were carried out during a 5-hour
period on the 10th of December 2002. These experiments were used to find approx-
imate values for gains and time constants in the process, and for model fitting, as
described in subsection 3.2.2 and Figure 3.2. Another data set was collected on the
12th of December 2002 for validation of the model. The validation data set was col-
lected partly in open loop and with the process operators manually carrying out some
step changes and a grade change. The measured and simulated outputs during vali-
dation are shown in Figure 5.1. Note that no state updating takes place during the
validation, and only the initial values are given. Some statistics from the validation
are given in Table 5.1. The term RMSE in Table 5.1 denotes the Root Mean Square
Error value defined by

RMSE� =

vuut 1

�

�X
�=1

(��(�) �̂�(�))
2, (5.1)

where � is the number of observations, ��(�) is the measured value of output � at
time �, and �̂�(�) is the predicted or simulated value of output � at time �.

1The distribution of fibres in the paper sheet.
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Figure 5.1: Validation of fitted model. The outputs were collected at PM4 on the
12th of December 2002. The validation is carried out by simulating the system with
only the initial state values given.

Table 5.1: Statistics from validation of model with PM4 data.
Properties Basis weight Paper ash W.t. conc.
Bias 0�52 0�97 0�04
RMSE* 0�37 0�19 0�013
*Bias corrected
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5.3 Roll-out at PM3, Norske Skog Skogn

Process description Norske Skog Skogn is the largest producer of newsprint in
Norway. The production of newsprint started in 1966, and the mill has three paper
machines as of today. PM3 is the largest and most modern paper machine at the
Skogn mill. The production capacity of PM3 is 227� 000 ton per year, with paper
width of 8�47 meters, and with a typical velocity of 1� 350 meters per minute. The
basis weight has a more limited range than the Saugbrugs machines; typical values are
42�5, 45, and 48�8 g�m2. PM3 started up in 1981 and had a major rebuild/updating
in 1995. PM3 is the only paper machine in Norway using DIP2 for production of
newsprint. The DIP content, or the amount of recycled fiber, is approximately 50-
55% (Norske Skog 2002), (Heggli 2002). Note that PM3 in Skogn produce newsprint
while both PM6 and PM4 at Saugbrugs produce super calendered magazine paper. In
terms of production capacity and paper width, PM3 at Skogn, and PM6 at Saugbrugs
are comparable.

Filler is added via the DIP and broke flows, thus no other filler is added to the
thick stock or short circulation. The thick stock flow is manipulated through the thick
stock valve, with the thick stock pump set to a constant speed. The number of stages
in the hydrocyclones are 6. The accept from the second stage of the hydrocyclones
goes to the inlet of the white water tank, and the accept from the third stage goes
to the white water tank. At PM6, the accept from the second and third stage goes
to the left chamber of the deculator. The screens and the deculator appear in reverse
order at PM3, compared to PM6 and PM4 at Saugbrugs. Also, the retention aid is
added before the screens, and not after as is done at PM6.

Model fitting results Figure 5.2 shows the first attempt to fit the PM6 Saugbrugs
model to data collected at PM3 Skogn during December, 4th, 2002. The basis weight
is the only output excited to any extent in this data set, the paper ash and wire tray
concentration being more or less at rest. This is a general feature of PM3 due to the
low filler content in the stock. Thus, the multivariable PM6 model does not come to
full appraisal at PM3 yet, however there is an increasing trend of using more filler in
newsprint, and test runs at PM3 with filler added to the short circulation will soon
take place (Heggli 2002).

Studying data from PM3, it is clear that there is not much to gain in terms of sta-
bilizing the process during normal operation. However, during start ups, sheet breaks,
and grade changes, e ciency may be improved. Figure 5.3 shows the validation of
the model during a grade change. At the beginning of the grade change a sheet break
occur. This is recognized in Figure 5.3 by the basis weight and paper ash outputs
being frozen at the values that they had immediately prior to the break. When the
paper is back on the reel, the measured basis weight is 52 g�m2, while the setpoint is
48�8 g�m2. The simulated basis weight is close to the measured basis weight when the
paper is back on the reel, and the simulated basis weight follows the measured basis
weight closely during the whole simulation. The bias in the basis weight is approxi-
mately 0�25 g�m2. If the controller had relied on the simulated model output during

2DIP = De-Inked Pulp, i.e. pulp produced from recovered paper.
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Figure 5.2: First trial fitting of PM6 Saugbrugs model to data from PM3 Skogn. Data
collected at 4th of December, 2002, with 30 seconds sampling time (resampled from
5 seconds sampling time).
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Figure 5.3: Validation of fitted model. The outputs were collected at Norske Skog
Skogn PM3 on the 12th of December 2002 during a grade change. The validation is
carried out by simulating the system with only the initial state values given.

the combined grade change and sheet break, the basis weight would probably have
been close to the setpoint when the paper was back on the reel. Thus, less o -spec
paper would be produced.

Figure 5.4 shows the basis weight and wire tray concentration outputs during
a start up. The basis weight measurement is frozen at 44�8 g�m2 during the first
330 minutes. In Figure 5.5, it is shown in detail what happens to the basis weight
measurement and simulated output when the paper is back on the reel for the first
time after the start up. The measured basis weight is close to 49 g�m2, with the
setpoint being 45 g�m2. This deviation was more or less predicted by the model
simulation, thus the basis weight could have been much closer to the setpoint after
the start up if the controller had relied on the simulated model outputs when the
measurements were not available.

5.4 Comments on roll-out of PM6 model

Data and information from PM4 at Norske Skog Saugbrugs, and PM3 at Norske Skog
Skogn were gathered in order to investigate the possibility to roll-out the PM6 model
at other paper machines. Fitting and validation of the model are very promising. No
changes to the model were carried out, except for tuning of parameter values, and
still the validation results are good. The time spent on fitting and validating the
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Figure 5.4: Validation of fitted model. The outputs were collected at Norske Skog
Skogn PM3 on the 11th and 12th of December 2002 during a start up. The validation
is carried out by simulating the system with only the initial state values given. During
the first 330minutes paper is not produced and the basis weight measurement is frozen
at 44�8 g�m2.
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Figure 5.5: Validation of basis weight during start up. The outputs were collected at
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PM6 model to PM4 and PM3 are approximately 1% of the time spent on developing
the original model. This should be a strong incentive for focusing on mechanistic
modeling in industries were there are many similar production lines or units.
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