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Summary: 

This project examines the feasibility of machine learning based fingerprinting of CAN 
transceivers for the purpose of uniquely identifying signal sources during intrusion 
detection. 

A working multi-node CAN bus development environment was constructed, and an 
OpenCL Deep Learning Python Wrapper was ported to the platform. 

Multiple Machine Learning Algorithms were compared Systematically, and two models 
fully implemented on a SoC ARM/FPGA device, with computationally intensive tasks 
running as Software Defined Hardware using an OpenCL FPGA interface.  

The implementation achieves a higher hit rate than earlier work based on least-mean 
squares and convolution Digital Signals Processing (DSP). Performance on learning 
tasks is comparable to high end CPU devices, indicating that FPGA is a cost effective 
solution for utilizing machine learning in embedded systems. 

While statistical methods are not sufficient on their own, these results demonstrate 
that machine learning based methods are now viable in embedded devices, 
presenting a useful way to circumvent security issues faced by Controller Area 
Networks on the protocol level.  
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Preface 
This project was inspired by the HSN (formerly HBV) AHMOS [1] [2] Project, a honeypot 
based intrusion detection system for use with SCADA (Supervisory control and data 
acquisition) systems in ship engine rooms. However, as this project does not directly 
focus on a specific engine environment, it should not be considered a direct continuation 
of AHMOS. 

As with the two AHMOS projects, Thomas Nordli has acted as main academic advisor. 
Rune Langøy and Christian Hovden have provided additional assistance and equipment. 

In contrast to AHMOS, the current project focuses on the CAN specification independent 
of application, with an emphasis on the physical layer in particular. The project began 
without any prior knowledge of CAN or vehicle networks, but built on former experience in 
System-on-Chip design.  

The CAN (Controller Area Network) bus is increasingly becoming exposed to 
sophisticated security threats. In the absence of source authentication, the CAN bus is an 
easy target for even basic attacks. Most approaches to CAN security have centered 
around cryptography at the protocol layer, but the increased computational and 
communication overhead does not make this a feasible alternative in many practical 
scenarios. The CAN frame data field is just 64 bit followed by a 15-bit CRC, and bus load 
is limited to 1 Mbps, so adding either authentication tags or authentication is not a viable 
approach. 

The aim of this project is to demonstrate source authentication using fingerprinting of 
signal characteristics on the physical level as means of uniquely identifying each 
transducer on the network, and to evaluate the viability of this approach in embedded 
systems. 

The CAN specification allows a great degree of flexibility on the physical layer, and thus 
physical signals are not identical. Even for transducers of the same model from the same 
manufacturer, the physical characteristics of the component will vary, and unique 
identification is possible. 

A wider aim of this project is to demonstrate the extent to which computationally intensive 
tasks such as machine learning can now be performed by small and power friendly 
devices. Part of this is due to the increasing processing power and energy efficiency of 
traditional CPU architectures such as ARM, combined with an equally dramatic decrease 
in associated cost. The other part of the equation is the increasing sophistication of tools 
for configuring field-programmable gate arrays (FPGA), that let developers more easily 
deploy highly complex software as hardware. An exciting new generation of hybrid 
architectures are currently being explored across the industry. 

New tools have been developed in this project to further enhance the overlap between 
computer science and electronics engineering. As far as has been uncovered, this is the 
first project to use a python API to configure an FPGA on-chip, if at all, including functions 
for deep neural networks. It is the hope of the author that this project and the tools 
provided will inspire and lead to further work in complex embedded information 
technology. 

All software developed as part of this project will be made available under a 3-clause BSD 
license. 
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1. Introduction 

1.1. Motivation and Related Work 

1.1.1. AHMOS 

In 2012 Buskerud and Vestfold University College (currently HSN) was approached by 
industry and faculty members with a request to develop an intrusion detection system for 
the campus maritime engine and automation lab. The motivation was the increasing 
number of cyber-attacks experienced by the maritime sector. [3] 

An initial Bachelor project was completed by Andreas Karlsen Monstad and Diana 
Charlotte Paulsen in 2013.[1] The project was further developed by Martin Sundhaug as 
his Bachelor project in 2015.[2] 

Both projects involved building a honeypot consisting of a Raspberry Pi with a PICAN 
CAN-shield. Karlsen Monstad and Paulsen [1] created the configuration for connecting the 
detection unit to the lab CAN-bus environment. Sundhaug [2] expanded on this by 
developing and testing the actual honeypot, including the production of data sets for use 
with future research. 

The honeypot concept involves masquerading as a conventional network unit, whereas in 
reality being a dummy unit designed to detect unauthorized activity. SCADA (Supervisory 
control and data acquisition) is an industrial control system (ICS) for remote control and 
monitoring. These kind of systems have evolved from semi isolated industrial systems to 
increasingly complex networked systems, and have thus become ever more vulnerable to 
attack.[4] Using one or more honeypots it is possible to test the robustness of the SCADA 
system and its ability to withstand attacks.[1] This was the goal of AHMOS part 1 and part 
2. 

There are a few reasons why this project should not be considered AHMOS part 3. 
Machine learning research requires large data sets for learning and testing. Early on it 
became apparent that the HSN engine and automation lab was not an ideal setting for 
high volume sampling and experimentation. For this reason, a research and development 
environment was constructed from scratch using various CAN modules and controller 
boards. This allowed a large number of CAN transceivers to be sampled, as well as great 
flexibility in experimental design. However, this removed SCADA from the setup. Also, the 
data set produced by Sundhaug [2] was based on protocol level information only, which 
made it irrelevant when studying CAN on the physical level. 

As a result of these differences, the current project cannot be said to directly relate to 
maritime systems in particular, as its theoretical implications apply to CAN bus systems in 
general. 

1.1.2. Security in Vehicle Networks 

While ships may represent high value targets for potential attackers, automotive 
transportation represents a much larger quantity of potential targets. This includes both 
commercial heavy transport as well as personal vehicles. In contrast to shipping, where 
high value cargo tends to encourage prioritizing security, on road transportation tends to 
value convenience, which increasingly entails connection to various personal devices, 
often through wireless connections. The growing complexity and interconnectedness of 
automotive embedded systems means it is becoming impossible for manufacturers to 
anticipate possible threat scenarios. Recent papers such as Checkoway, et al. [5], Hoppe, 
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et al. [6] and Rouf, et al. [7] demonstrate that absent source authentication, modern 
vehicle networks are vulnerable even to the most basic attacks. 

1.1.3. CAN Protocol Security Challenges 

The challenges in securing a CAN bus environment stems largely from legacy issues with 
the CAN protocol itself. Development began in 1983, was gradually introduced throughout 
the 1980s, with the current CAN 2.0 standard released in 1991. [8] This predates the wide 
spread adoption of the Internet, and represents a context in which the current 
connectedness was more or less unthinkable.  

As a consequence, the CAN frame lends itself poorly to expansions for cryptographic 
security. Each frame carries only up to 64 bit of data, hence there is not much room for 
adding an authentication tag. With Message Authentication Codes (MACs) commonly at 
128 bit, this is not a realistic option for CAN. Adding additional frames for authentication 
increases bus load, which in CAN is limited to 1 Mbps. With the complexity of modern 
systems, this is an upper bound which is often already reached. [9] 

Van Herrewege, et al. [10] proposes CAN+ to hide authentication bits within the bits of 
ordinary CAN frames. However, few controllers exist that can handle this protocol, and the 
prohibitive cost has prevented the solution from becoming mainstream. Szilagyi and 
Koopman [11] proposes a low cost multicast solution where each node votes on a 
message’s authenticity based on an 8-bit MAC. As discussed above, this is way below 
standard MAC length, and not a viable solution for real life scenarios. 

Clearly, implementing source authentication on CAN protocol level is problematic. 

1.1.4. Physical Layer Security and Digital Fingerprinting 

An alternative approach is focusing on physical layer security. As noted above, The CAN 
specification allows a great degree of flexibility on the physical layer, and thus physical 
signals are not identical. Even for transducers of the same model from the same 
manufacturer, the physical characteristics of the component will vary. 

Hall, et al. [12], [13] has demonstrated radio frequency fingerprinting for intrusion 
detection in wireless networks using a Bayesian filter, with an average success rate of 
(94-100%). Romero-Zurita, et al. [14] used beamforming and artificial noise to disrupt 
eavesdropper activity in both wired and wireless networks. Gerdes, et al. [15] attempted to 
identify Ethernet cards based on their synchronization signal, with some success. Gerdes 
is interesting in particular because their experiment failed to reliably discriminate between 
cards of the same model. This is where the CAN specification may be in a favourable 
position compared to other technologies with more tightly defined physical specifications, 
a notion which has some support in the research. 

1.1.5. Fingerprinting CAN Transducers Using DSP Filtering 

The direct inspiration for the approach taken in this project comes from Murvay and Groza 
[9] Source Identification Using Signal Characteristics in Controller Area Networks . For this 
reason, a more detailed discussion of this paper is necessary. 

Like previous approaches Murvay and Groza [9] used simple digital signal processing to 
filter the physical signals. This is similar to Hall, et al. [12], [13] except Murvay and Groza 
[9] used mean squared error (MSE) and convolution instead of a Bayesian filter. In both 
cases this consisted of comparing an input signal to a previously stored example, either a 
single sample or an average of several. This was attempted using both signals smoothed 
using a low pass filter, as well as using raw unprocessed signal data. 
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Murvay and Groza [9] generated CAN frames using sysWORXX USB-to-CAN devices and 
ZK-S12-B f development boards. Signal sampling was done using a high end Agilent 
MSO6012A oscilloscope with a sample rate of 2 GSa/s and a resolution of up to 12 bits. 

This use of high end equipment is problematic. The motivation for using such an 
expensive oscilloscope was to minimize signal misalignment. However, for results to be 
applicable to practical implementation, they need to be reproducible using cost effective 
off-the-shelf components. For this reason, the current project uses a standard on-chip 20 
MHz Analog-to-Digital Converter (ADC) to sample signals, but that represents a 
challenge. Below is a comparison between samples of the CAN Arbitration field made by 
[9] and sampling done as part of this project. Clearly, the high end oscilloscope is far 
superior when it comes to bit level sampling. To overcome this, it will be necessary to 
locate additional unused sources of information above the bit level. 

 

Figure 1 CAN Arb itration field Murvay and Groza 

 

Figure 2 CAN Arb itration Field sampled using Altera De1 SoC 20 MHz ADC 

Murvay and Groza [9] found similar results for MSE and convolution. The example below 
shows MSE values from 10 different PCA82C251 transceivers: 

 

Figure 3 2×104 MSE values for PCA transceivers 

 The tables below show detection accuracy achieved by Murvay and Groza [9] using MSE 
based detection. Signatures where shown to hold stable over a period of six months. That 
aspect has not been examined in this study, but is assumed to be valid for these results 
also. While many tranceivers are easily distinguised, others have very low accuracy.  
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Interestingly, results appear dependent on CAN ID. Table III uses a different CAN ID, 
which apparantly reduces detection accuracy, yet in some previously difficult cases such 
as T2’ and T3’’ confusion rate now drops to 0%. 

Murvay and Groza [9] uses this apparent curiosity to argue for strategic selection of CAN 
ID. This is not a viable strategy however, as there is no simple method of choosing the 
appropriate setting other than trial and error. Also, with accuracy occasionally dropping as 

low as 0.1%, this method clearly has room for improvement. 

This project aims to improve on Murvay and Groza [9] by replacing MSE and convolution 
filtering with statistical machine learning algorithms. While Murvay and Groza [9] hold that 
collisions between transceiver patterns are random, the working hypothesis of this project 
is that it is not. 

Also, the modified design will aim for independency from frame content. It will do so by 
single pulses rather than entire frames. 

1.1.6. The Case for Machine Learning on FPGA 

Despite the advantages offered by the FPGA for flexibility, power and cooling cost, it has 
so far proven too cumbersome for many to utilize. Chen and Singh [16] in their paper 
“Using OpenCL to Evaluate the Efficiency Of CPUs, GPUs And FPGAs For Information 
Filtering” examine how the increased sophistication of software defined hardware is 
bridging the gap for FPGA when it comes to dynamic and complex computation. With 
traditional HDL it is necessary to clearly understand the flow through the logic fabric, 
which essentially made advanced tasks such as machine learning and neural networks 
exceedingly difficult to implement above the most basic level. With the higher level 
abstraction of parallel programming languages such as OpenCL, this vastly expands the 
areas of application where an FPGA might be useful. This is the reason why Intel recently 

Table 1 Murvay and Groza Model Evaluation 
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acquired Altera, and why they describe the technology as essential to their core strategy. 
[17] 

1.2. Project Goals 

The primary goal of this project is to demonstrate source authentication using machine 
learning based fingerprinting of signal characteristics on the CAN physical level. 

The secondary goal is to demonstrate the viability of machine learning in embedded 
systems based on FPGA and ARM. 

1.3. Research Question and Hypothesis 

Based on the previous work referenced above and the project goals stated, a research 
question can be stated as follows: 

Is it possible to reliably separate overlapping CAN transceiver physical 
signal patterns using Commonly Used Machine Learning Algorithms? 

Specifically, this entails: 

 Two-Class Support Vector Machine One-vs-All Multiclass 

 Multiclass Decision Forest 

 Multiclass Logistic Regression 

 Multiclass Decision Jungle 
 Multiclass Convolutional Neural Network 

The project works from the following hypothesis: 

CAN transceiver physical signal patterns contain persistent non-random 
information that can be extracted with statistical significant reliability 

above single bit level. 

This includes the assumption that the overlap between signals is not random as assumed 
by Murvay and Groza [9], but can be inferred from information present in the signal. 

If this hypothesis is correct, statistical methods should be able to outperform convolution 
and mean squared error filtering. If any of the examined  approaches achieves 
significantly fewer conflicted cases than was found by Murvay and Groza [9], this would 
support the hypothesis that additional information is embedded in the signal. 

1.4. Project Objectives 

Based on the above the project has the following defined objectives:  

 Build a functioning CAN bus with programmable nodes and easily 
interchangeable transceivers. 

 Construct SoC device that can sample and store individual CAN signal 
pulses. 

 Process data on device using SVM and CNN with ARM/FPGA in combination. 

 Outperform convolution and mean squared error filtering on hit rate. 

 Achieve a minimum hit rate of 0.9 for all transceivers. 
 Achieve mean hit rate of 0.99.  

 Perform comparably to Nvidia GTX 980Ti GPU 
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2. Building a CAN Bus Research Platform 
This section describes the development and test environment set up for the project. It was 
used to collect data to compare performance of Machine Learning algorithms to the 
findings of Murvay and Groza [9].  

Because the nature of the project required high frequency sampling and multiple 
interchangeable transceivers, it was necessary to build a completely separate 
environment from the working lab. This included a small CAN bus with multiple 
programmable nodes with easily replaceable components. 

2.1. The CAN Bus 

The ISO 11898-1:2003 [18] standard initially outlined the CAN physical level as a bit-level 
multiple access medium, where access is determined by a succession of dominant and 
recessive states. ISO 11898-2:2003 further developed the details as to voltage, current 
and conductors. [19] Beyond this not much is specified about the mechanical aspects of 
the CAN physical layer, which has resulted in large variation, not only between vendors, 
but also between models from the same manufacturer, and even batches of the same 
model, depending on component availability at the time of production. 

The network design chosen here relies ISO 11898-2:2003 [19] to achieve noise immunity, 
by terminating the bus using two 120 Ω transistors. The design was based on the 
following schematic: [20] 

 

Figure 4 CAN-Bus Topology (Electronic Two Wire Connection) - Wikimedia GFDL 

It was implemented as follows: 
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Figure 5 CAN Bus (own photo) 

 Green: CANH 

 White: CANL 

 Red: 3.3 V 

 Black: Ground 

 

Figure 6 CAN Bus - Connected (own photo) 

Intentionally, only the transceiver pins are soldered. The system is deliberately set up to 
allow fast and flexible reconfiguration.  

Because the SN65HVD230 transceiver uses the somewhat less common 3.3 V source, 
that is also the supply voltage on the network rail. This is not an area that is formally 
standardized, and typical supply voltages on networks can be as much as 30V. However, 
since this is a system designed for computer engineers, the lower voltage makes 
experimentation easier, and makes the system simple to use with inexpensive 
components such as the SN65HVD230. 
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2.2. Generating and Detecting CAN frames 

Although the protocol level is not the focus of this project, certain aspects of the CAN 
frame can be taken advantage of. The signal line can be either in a recessive or a 
dominant state. During a recessive state there is high impedance with respect to both 
rails, and voltages tend towards roughly half that of the supply voltage for both CANH and 
CANL. For this particular installation the recessive state voltage is 1.83 V. During a 
dominant state a low impedance state is induced, CANH is driven towards +5 V and 
CANL falls towards 0 V. 

Most importantly a dominant state can only ever be actively induced, whereas the 
recessive state is the same as a quiet network. 

This means that information is almost exclusively contained in the voltage difference 
during a dominant state. The differences during a recessive state will be indistinguishable 
from noise, especially with off-the-shelf equipment as has been deliberately used in this 
project.  

So for the purpose of data reduction, the recessive state will be ignored, as will any 
voltage difference below + 1 V, including negative differences. That means only 0 bits will 
be measured, focusing on the shape of the difference in between the voltages, as seen in 
the image below: [21] 

 

Figure 7 CAN-Bus-frame in base format without stuffb its (wikimedia, Creative Commons) 

The motivation behind this choice is not just the limitation of the equipment at hand. By 
viewing the voltage pattern as essentially a vector of positive numbers, it is possible to 
treat it as a particularly dense image, which makes it easy to apply algorithms already 
proven for machine vision, which is a much more mature subject in machine learning than 
signal analysis. In particular, the data can be formatted according the MNIST format, a 
flattened 28x28 grayscale image, represented as a single vector with 784 dimensions. [22] 
[23] [24] [25] 

The particulars of the CAN protocol are also useful for synchronization and bit timing 
without the presence of a clock signal. Synchronization is necessary if one wants to have 
equivalent samples. Fortunately, the starting bit will always be a logical 0, and hence a 
dominant state. This project uses a strategy by which the starting bit is listened for as a 
reference, and then a known frame is used to estimate bit time. This is sufficient for the 
kind of goal at hand.     
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2.2.1. TI CAN Bus Physical Layer Transceivers 

The TI SN65HVD230 3.3 V CAN transceiver was 
chosen primarily for its low cost, which made it 
possible to order in large quantities for 
experimentation. Despite its low cost the component is 
compatible with the ISO 11898-2 Standard, and no 
quality issues arose during the project. 

The transceiver module is incredibly simple, and 
only implements the CAN physical level, which 
makes it dependent on a separate controller, 
which makes it an ideal disposable component in 
an experimental environment. 

Pins were soldered on so that transceivers could 
easily be added or removed to the CAN Bus 
board without any wiring. 

2.2.2. Software Controlled Network 
Nodes 

This project was initially intended to be completed within the HSN Maritime Automation 
Lab, but after some review it became apparent that industrial systems are not suited for 
this kind of development. Part of the motivation for the development platform was to 
achieve software controlled node behaviour, which is a lot more flexible than the industrial 
lab, as well as fast. 

The STM32 NUCLEO-F303RE board contains a ARM 32-bit Cortex-M4 CPU, and is 
easily programmed in C/C++ with the ARM mbed platform. Since separate power and 
ground rails are used in this setup, the board is only connected via CTX/CRX as show 
below. Programming and power supply are both through as shown USB. 

 

 

Figure 8 SN65HVD230 Schematic (Texas 

Instruments) 

Figure 9 SN65HVD230 Transceiver (own image) 
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Figure 10 NUCLEO-F303RE Connections (via developer.mbed.org) 

RX is connected to the PA_11 pin, TX is connected to PA_11. 

By default, the 5 nodes are set up to pass around the same message in an eternal loop, 
toggling a led. When sampling, a separate function can send a large amount of frames on 
a single transceiver, before passing the message on to the next in line for the same 
function to be repeated using a different SN65HVD230. This makes it possible to achieve 
continuous sampling, even using more than the 8 transceivers that can fit on the bus. 

Below is a partial example of the code used for sampling, sending 500 000 identical 
frames, in this case a coolant temperature request, before passing the message on to the 
next node in line to take over. 
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Figure 11 Sending 500 000 CAN Frames 

2.3. SoC Detection Device 

The main device is constructed using a De1 Altera Cyclone V SoC from Terasic. While 
based on Altera’s GHRD (Golden Hardware Reference Design) for SoC, it has been 
substantially modified for this project, primarily by including additional processors and 
FIFO shared memory. The full schematics is included in the appendix, and the design files 
included. Below is a description of the most central components. 
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Figure 12 DE1 SoC Layout (provided by Terasic) 

 

Figure 13 Supply Voltage/Ground provided fron the DE1 SoC 

2.3.1. Analog to Digital Converter 

The 8 channel 2 bit ADC is a central component, with 20 MHz / 500 KSPS sample rate. 
This setup uses one channel per bus rail, that is, it samples CANH and CANL on separate 
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channels. In addition, it samples the same signal 
simultaneously in three different locations on the bus, using 
a total of six different 12-bit ADC channels to sample the 
same signal.  

The motivation behind this configuration is the possibility 
that additional information might be hidden in the 
correlations between the six channels, which could 
outweigh the advantage held by the high end samplers 
used by Murvay and Groza [9].  

The ADC is memory mapped and has its own separate controller and clock domain, so if 
set to auto update it can simply be accessed as memory using pointers in C.  

 

Figure 15 ADC Header DE1 SoC (own photo) 

2.3.2.  NIOS II Soft Processor 

To reserve resources for Linux 
operations on the ARM CPU, an 
additional 50 MHz soft processor has 
been implemented in the logic fabric. It 
has attached 64 MB RAM, as well as 
dedicated arithmetic hardware and 
specialized floating point custom 
processor.  

The main task of the NIOS II is 
controlling the custom hardware, but it 
can also be used for pre-processing 
and software filtering when not 
wanting to tax the Linux system. Altera 
provides a high level Hardware 
Abstraction Level library in c for NIOS 

Figure 14 ADC Header (via 
Terasic) 
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II that is not available from Linux, so hardware control is often accomplished easier and 
faster from NIOS II. 

The soft processor uses the minimal MicroC/OS-II Real Time Operating System, so it is 
really ideal for keeping the linux installation running smoothly. 

2.3.3. ARM Cortex-A9 Hard Processing System (HPS) 

The board has a dual core ARM CPU running the lightweight Linux distribution Linaro. 
The system did initially run on Ubuntu, due to the more sizeable software library, but it 
became unstable when doing more computationally intensive tasks. System stability 
improved vastly when changing to Linaro, which is mostly accessed through Eclipse 
integrated SSH, FTP and gdbserver remote debugging.  

The CPU has memory mapped access to the same FPGA connected hardware as does 
the NIOS II processor, but primarily the role of Linux is networking and OpenCL. 

Pre-processed data is passed from NIOS II and the FPGA to the ARM CPU via shared 
memory, and is distributed by Linux via sockets to either to external recipients or as input 
to software written in OpenCL used to reconfigure the FPGA. 

2.3.4. CAN-Bus Controller 

In its current version, the System relies heavily on the ADC for accessing CAN-frames. 
This is relevant in the context of fingerprinting, but certain tasks would be easier if 
including on-board CAN controllers.  For someone with a background primarily in 
computer engineering, identifying and timing bits from analogue signals can be a 
challenge. Using CAN controllers for this seems sensible. 

For this reason, two CAN bus controllers are currently implemented in the hardware, 
connected to the HPS and bridged with the GPIO via the 
FPGA. However, at the moment accessing these controllers 
is only possible using memory mapped registers, which is 
not as convenient as using C on the STM32. Developing a C 
library for this interface is a future goal for further developing 
the system. 

2.3.5. FIFO Shared Memory 

The NIOS II was not designed to be part of an ARM SoC 
setup, and it is not part of Altera’s reference design. One 
challenge is that the two processors have different type of 
operating systems and different clock domains. However, 
the largest challenge was the lack of any conventional 
communication channel between the two systems. Standard 
communication interfaces such as RS-232 UART are not 
compatible between the two systems internally. Altera 
provides a connection fabric and bridge for access to the 
other system’s peripherals, but direct communication is 
more complicated.  

The solution for the particular challenge in this project was to 
set up three large Shared Memory FIFO buffers (up to 8 MB) 
for data processing. While only NIOS II has a HAL library for the buffer, it can be 
accessed and controlled from Linux through memory mapping. However, for this reason 
Linux use is mostly confined to reading processed data. 

Figure 16 Two FIFO Shared 
Memory Buffers 
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The FIFO also functions as a clock domain bridge when necessary. 

Backpressure is optional. When turned on it ensures data is not unintentionally lost from 
the buffer, but performance tends to be better if it is turned off. At least at 20 MHz, the 
challenge is not to keep up with the sampler, but to wait long enough to avoid duplicate 
data. A good balance for decent performance seems to be allowing possible data loss by 
letting data flow freely at the sampler’s pace, and waiting an additional 2000 
microseconds between each reading in Linux. 

2.3.6. Altera Cyclone V FPGA 

Approximately 30% of the 85K Programmable Logic Elements are taken up implementing 
custom hardware, leaving the remainder for reconfiguration using OpenCL. Most of the 
hardware and peripherals are physically connected only to the FPGA, so any access 
granted the hard processing system need to be justified. A borderline case in this project 
has been the frame buffer, which uses the FPGA to implement VGA display support, but 
this was a valuable backup to SSH and serial connection early on in the project when the 
system was still unstable, as well as for connecting to extra displays. In general, hardware 
has aggressively been stripped as much as possible to free up as much as possible of the 
logic fabric for OpenCL. 

A likely scenario now that Linux is working properly is to remove the frame buffer, and 
repurpose the female DE-15 connector now used for VGA as a CAN-bus interface for the 
HPS. 
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Figure 17 DE1 SoC Layout (via Terasic) 

 

Figure 18 The Complete Development Platform 



  Bachelor Project 
      Campus Vestfold 

Page 17 of 34 

 

2.4. PC Development Environment 

All software programming was done c. NIOS II and ARM Linux software was build using 
Eclipse with cross compilers and remote debugging. NIOSII code was written both as 
single thread for the HAL OS and multithreaded for MicroC/RTOS. 
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3. Machine Learning Algorithms 
Despite its recent surge in popularity, machine learning is still mostly the domain of GPUs 
and data centres. However, academics as well as industry leaders such as Google, 
Microsoft, IBM and Facebook are increasingly looking to incorporate specialized hardware 
such as FPGAs into domains that have traditionally been dominated by software. [26] [27] 
[28] [29] 

With frameworks and languages such as OpenCL and OpenCL C becoming ever more 
accessible and applicable across technologies, the line between hardware and software is 
blurring. While machine learning in embedded systems and hardware is still in its infancy, 
there already exists a large selection of well researched and documented methods 
already developed that can easily be ported. 

Zhang, et al. [30] used Rough Set Theory (RST) and Support Vector Machine (SVM) to 
detect network intrusions. This project does not go into anomaly detection, but it does go 
into SVM as a classification algorithm. Clustering is also promising field for security 
applications. 

Because of the immaturity of the field, there is still much that can be desired when it 
comes to efficient development tools. For the sake efficiency, five common approaches to 
multiclass classification were compared using the compiled CAN bus data set in Microsoft 
Azure Machine Learning Studio. This is a cloud based IDE that makes it quick and easy to 
set up multi-tier experiments for comparing different permutations of a model.  

Two models where then implemented on the DE1 SoC using the Altera OpenCL SDK. 
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This section briefly describes the five approaches, and the next section explains the 
experimental setup used to compare them. 

Details of the models will be covered when describing the configuration of the experiment. 

3.1. Two-Class Support Vector Machine 

Support Vector Machine (SVM) is originally a binary classification model, essentially 
drawing a line separating two clusters of objects. In that way it is related to common 
methods in the intersection between linear algebra and statistics, such linear regression. 
What makes it popular is that it can be extended beyond three dimensions, with 
dimensions here representing features as opposed to dimensions in space. The idea is 
that if a solution cannot be found in one dimension, transforming the problem to another 
dimension could result in a solution. Using linear algebra, it is possible solve for infinite 
dimensions, taking SVM close to unsupervised learning and clustering. The highly 
mathematical nature of the approach means that it is one of the few methods where a 
certain level of proof is possible, but it also makes the model less intuitive. Because it 
based in generalized linear models, it is also highly suitable for use in programming. 

The relevant parameters are lambda and the number of iterations. Lambda is a weight 
variable used for L1 regularization. 

However, despite some impressive results, it generally is only directly applicable in clearly 
defined binary cases with labelled data.  

3.1.1. One-vs-All Multiclass 

One way of overcoming the binary restriction of SVM is to combine multiple binary 
classifications in the same model. In this case, each class of object is compared with all 
others as being “one of these” or “not one of these”. These types of model are naturally 
not very scalable.  

3.2. Multiclass Decision Forest 

A Decision Forest is what is known as an ensemble method, based on a theoretical model 
of cooperation and competition. The model generates a large number of solutions in the 
form of decision trees, and then weeds out bad and filters out the good by voting as a 
method of aggregation. The tree structure is efficient in use of memory, and the model is 
flexible when it comes to structure.  

3.3. Multiclass Logistic Regression 

Multiclass or Multinomial Logistic Regression is similar to SVM in that it aims to find a best 
fit through an n-dimensional feature space, but the mathematics is much less convoluted. 
The setup solution procedure is exactly the same as with simple linear regression, only 
with additional feature variables, resulting in a larger matrix. 

3.4. Multiclass Decision Jungle 

Decision Jungles are an extension on Decision Forests. Both generate and then 
aggregate decision trees, but with Decision Jungles there is the additional option of 
allowing branches to merge, resulting in a much reduced memory footprint. Decision 
Jungles are highly flexible, non-parametric and non-linear, meaning they are also highly 
noise tolerant.  
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3.5. Multiclass Convolutional Neural Network 

Convolutional Neural Networks are biologically inspired, highly parallel multilevel 
networks. Nodes in the network perform transformations on data transported through the 
edges, or tensors. It gets its name from having one or more layers performing convolution 
transformations on data, but also have additional visible or hidden layers for operations 
such as reduction and pooling. Often the final layer is a form of logistic regression. 

4. Experimental Design 
Choosing a model for implementation would be difficult simply using the tools available for 
embedded development. Altera SDK for OpenCL delivers excellent performance on-chip 
after compilation, but the experience was seriously degraded by several bugs, especially 
regarding version compatibility and licence setup. The integration with Embedded Design 
Suite and DS-5 Eclipse was severely lacking and unstable. The one provided BSP was 
severely lacking as a workable Linux distribution, and little documentation existed 
concerning how to compile an OpenCL compatible BSP. It therefore soon became 
apparent that a better option was to develop on an Nvidia GTX980Ti GPU before 
recompiling using the Altera compiler through the command line interface. This approach 
worked fairly well. 

Some experimentation was done using MATLAB with FPGA-in-the-loop as well as 
TensorBoard from Google. Eventually the choice fell on Microsoft Azure Machine 
Learning Studio for the final comparison. MLS has the benefit of an intuitive drag-and-drop 
interface for setting up experiment designs, as well as support for Python and R for more 
low level control. It also has probably the fastest and simplest tools for converting between 
data set formats. The design was based on the default template for comparing multi-class 
classifiers, configured for the compiled data set. An additional Deep Neural Net was 
added later in addition to the standard convolutional neural net. 

 

4.1. Data Reduction and Representation 

As mentioned previously, focus was placed completely on voltage differences between 
channels in the dominant state. Also, samples were taken simultaneously at six different 
locations, three for each rail on the bus. A single sample consisted of a vector 784 values 
long, based on the MNIST format used for handwritten letter classification. Based on 
previous research, it was assumed that the exact order was irrelevant as long as it was 
consistent across the experiment. The adjoining CANH and CANL channels where 
combined in The FIFO before parsing, leaving three values representing the voltage 
difference between each of the dual signals. Leaving the first position for the label, that 
gave the final format for the original comma separated CSV-file: 

“$can#,value0,value1,value2…..*261” 

i.e. the input vector consisted of 261 sets of 3 values, representing different perspectives 
of the voltage difference between CANH and CANL at a given time. Value sets within a 
vector was put in chronological order, whereas the order of input vectors were 
randomized. 60K input vectors were reserved for training, and 10K was saved for testing 
and scoring. White space resulting from recessive states was ignored. 
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4.2. Comparing Multi-class Classifiers 

 

A model was constructed from the default template. Each node represents a process, and 
data and activity flows downwards. Each column 
represents a different classifier. The final layers 
are R script pooling and data visualization. 

4.2.1. Two-Class Support Vector 
Machine 

The first level in the model defines the settings 
for the SVM. It was kept at single parameter 
setting with a Lambda of 0.001. The module l 
was set to normalize the data, and it was set to 
accept infinite dimensional and hidden solutions. 

The second level does exactly the same thing for 
the One-vs-All SVM. 

Data is them passed to the training module for 
learning. 

4.2.2. Multiclass Decision Forest 

The Decision Forest is also kept at single parameter. The max depth of any decision tree 
is kept at 32. Bagging is set as the resampling method. This means that resampling is with 
a new random sample of the original dataset, as opposed to simple replication. 
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4.2.3. Multiclass Logistic Regression 

 

4.2.4. Multiclass Decision Jungle 

The Decision Jungle is set to exactly the same settings as the Decision Forest. 

4.2.5. Multiclass 

Convolutional Neural 
Network 

The simple CNN was set as a fully 
connected net with 100 hidden 
nodes, 100 iterations for learning, and 
MIN-MAX as normalisation method. 

A second, deeper network was set up 
using R (source code provided), but 
here the number of iterations where 
kept at 20 due to processing requires. 

This model was also run in a separate session, but on the same data set. 
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5. Results 
Not surprisingly, the deep net outperformed the other models. A more surprising result 
was the poor performance of SVM. 

The Matrix below show results for the deeply connected network analogue to the to the 
results Murvay and Groza [9] presented. Clearly the deep network out-performed Mean 
Square Error and Convolution. However, this required several minutes of cloud based 
GPU processing, so it can hardly be expected to be running on embedded units any time 
soon.
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6. Conclusions 
The results support the 
hypothesis that more 
information is present in an 
analogue signal than is 
immediately available and 
obvious. Unfortunately, the 
only network able to perform 
at the desired standard is one 
that is nowhere close to be 
running on an FPGA or ARM 
system.  

However, that predictions 
even in the low 90s is achievable is very impressive.  

It is fully possible that with additional experience with writing code specifically for the 
FPGA, rather than simply recompiling code written for the GPU, additional improvement 
can be seen in the current generation of hardware. 

In hindsight, the most rewarding part of the project was not getting code to run on the DE1 
SoC, but the experience of building a working CAN-bus research environment. 

7. SoC Hardware Design 
Hardware was designed primarily in Altera Qsys, and compiled for FPGA using Quartus 
Prime. 
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7.1. HPS/FPGA Interface 

The interface between the ARM CPU and the FPGA is kept largely as per the 
Terasic/Altera reference design. The only modification has involving removing an SPI 
interface to make room for the CAN-interface. The two CAN interfaces each has their own 
controller, and each connection seen on the schematic has both an RX and a TX pin. 

7.2. Replacing on-chip Memory for SDRAM 

The reference design for NIOS II is based on on-chip memory. For this design that was 
replaced with 64 MB of SDRAM. This required installing an additional controller and a 

separate clock domain for the NIOS subsystem. 
For this reason, it was necessary to implement 
the FIFO shared memory with a dual clock 
system. The SDRAM time had to be set to be 
board specific. 
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8. DeepCL 
While OpenCL is a vast improvement on using HDL, it is still far from going mainstream. 
Few programmers ever get much experience with programming in a fully parallel 
paradigm, so there is clearly a need for higher level tools to bridge the gap. 

The neural network below is implemented in the DeepCL Python API.  

DeepCL is a set of publically available wrappers for OpenCL with both a Python, LUA and 
C++ API using the OpenCL 1.1 standard. If built from source it should in theory run using 
any OpenCL driver. Several attempts at porting DeepCL to Windows 10 for use in this 
project failed, but it was successfully built on Linux Mint Debian Edition and used to 
compile the included source code to executable aoclx format. The network worked as 
suggested, but performance was not measured. 

Altera has showcased several OpenCL examples that take advantage of the flexible 
memory arrangement in FPGAs, and their neural networks in particular take advantage of 
this, allowing kernels to be much more independent of the host than is possible on the 
GPU.  

Unfortunately, Altera has not yet released the source code for their networks, and have 
recently removed the whitepaper describing their method from their web site. 

So as of yet, while it may be optimized for the GPU, DeepCL remains a workable 
alternative. 

The DeepCL Git repository can be found here: 

https://github.com/hughperkins/DeepCL 

  

https://github.com/hughperkins/DeepCL
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9. Hardware Implementation of Algorithms 

9.1. Support Vector Machines 

The following example is originally published as a case study by AMD on their developer 
network to demonstrate effective memory allocation on the GPU. 

While that is not directly relevant for FPGA, it is an elegant piece of OpenCL C that was 
compiled without difficulty on the DE1 Cyclone V SoC. 

9.2. Convolutional Neural Networks 

The following example DeepCL Python script was successfully used to compile and run 
an aoclx executable on a Cyclone V DE1 SoC ARM/FPGA board: 
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12. Attachments 
 

A compressed project folder is included containing both hardware and software design 
files. The folder names containing software should be self-eplanatory. 

 


