
 Bachelor Project
 Campus Vestfold

i

 Bachelor Project
 Campus Vestfold

ii

Machine Learning Based Intrusion
Detection in Controller Area Networks

Innbrudds-deteksjon pa CAN-buss

basert pa maskinlæring

Project number: DA-2016-06

Project group: Roar Elias Georgsen

Submission date:

19.05.2016

Restrict ion:

By Agreement

Summary:

This project examines the feasibility of machine learning based fingerprinting of CAN
transceivers for the purpose of uniquely identifying signal sources during intrusion
detection.

A working multi-node CAN bus development environment was constructed, and an
OpenCL Deep Learning Python Wrapper was ported to the platform.

Multiple Machine Learning Algorithms were compared Systematically, and two models
fully implemented on a SoC ARM/FPGA device, with computationally intensive tasks
running as Software Defined Hardware using an OpenCL FPGA interface.

The implementation achieves a higher hit rate than earlier work based on least-mean
squares and convolution Digital Signals Processing (DSP). Performance on learning
tasks is comparable to high end CPU devices, indicating that FPGA is a cost effective
solution for utilizing machine learning in embedded systems.

While statistical methods are not sufficient on their own, these results demonstrate
that machine learning based methods are now viable in embedded devices,
presenting a useful way to circumvent security issues faced by Controller Area
Networks on the protocol level.

 Bachelor Project
 Campus Vestfold

iii

Skjemaet skal leveres sammen med besvarelsen.

 Obligatorisk erklæring

Jeg erklærer herved at min:

Eksamensbesvarelse i emnekode: FE-BAC3000 Fakultet:

1. er utført av undertegnede. Dersom det er et gruppearbeide, blir alle involverte holdt

ansvarlig og alle skal undertegne blanketten.

2. ikke har vært brukt til samme/en annen eksamen ved HSN eller et annet institutt/
universitet/høgskole innenlands eller utenlands.

3. ikke er kopi eller avskrift av andres arbeid, uten at dette er korrekt oppgitt.

4. ikke refererer til eget tidligere arbeid uten at dette er oppgitt.

5. har oppgitt alle referanser/kilder som er brukt i litteraturlisten.

Jeg/vi er kjent med at brudd på disse bestemmelsene er å betrakte som fusk og

behandles i hht. §18 i Forskrift om eksamen og studierett ved HSN og U-loven Kap. 4

§ 4-7.

Dato: 19.05.2016 Sted: Borre

Underskrift1:

Kand.nr.: 6128

 Bachelor Project
 Campus Vestfold

iv

Machine Learning Based Intrusion Detection in Controller Area Networks

Innbrudds-deteksjon på CAN-buss basert på maskinlæring

Forfatternes navn: Roar Elias Georgsen

Veiledernes navn: Thomas Nordli

Kurs/avdeling:

Dato: _19.05.2016______________________

Rett til innsyn, kopiering og publisering av bacheloroppgave

Høgskolen ønsker å gjøre gode bacheloroppgaver tilgjengelig ved å publisere dem i papirutgave
og legge dem på internett. Høgskolen trenger studentenes tillatelse til dette.

Hovedprosjektet vil fortsatt være forfatterens åndsverk med de rettigheter det gir.

Høgskolens bruk vil ikke omfatte kommersiell bruk av studenters hovedprosjekt.

Tillater du/dere at din/deres hovedprosjekt blir publisert både i papir og nettutgave?

X ja ___ nei

Signatur av alle forfattere:

 Bachelor Project
 Campus Vestfold

v

Preface
This project was inspired by the HSN (formerly HBV) AHMOS [1] [2] Project, a honeypot
based intrusion detection system for use with SCADA (Supervisory control and data
acquisition) systems in ship engine rooms. However, as this project does not directly
focus on a specific engine environment, it should not be considered a direct continuation
of AHMOS.

As with the two AHMOS projects, Thomas Nordli has acted as main academic advisor.
Rune Langøy and Christian Hovden have provided additional assistance and equipment.

In contrast to AHMOS, the current project focuses on the CAN specification independent
of application, with an emphasis on the physical layer in particular. The project began
without any prior knowledge of CAN or vehicle networks, but built on former experience in
System-on-Chip design.

The CAN (Controller Area Network) bus is increasingly becoming exposed to
sophisticated security threats. In the absence of source authentication, the CAN bus is an
easy target for even basic attacks. Most approaches to CAN security have centered
around cryptography at the protocol layer, but the increased computational and
communication overhead does not make this a feasible alternative in many practical
scenarios. The CAN frame data field is just 64 bit followed by a 15-bit CRC, and bus load
is limited to 1 Mbps, so adding either authentication tags or authentication is not a viable
approach.

The aim of this project is to demonstrate source authentication using fingerprinting of
signal characteristics on the physical level as means of uniquely identifying each
transducer on the network, and to evaluate the viability of this approach in embedded
systems.

The CAN specification allows a great degree of flexibility on the physical layer, and thus
physical signals are not identical. Even for transducers of the same model from the same
manufacturer, the physical characteristics of the component will vary, and unique
identification is possible.

A wider aim of this project is to demonstrate the extent to which computationally intensive
tasks such as machine learning can now be performed by small and power friendly
devices. Part of this is due to the increasing processing power and energy efficiency of
traditional CPU architectures such as ARM, combined with an equally dramatic decrease
in associated cost. The other part of the equation is the increasing sophistication of tools
for configuring field-programmable gate arrays (FPGA), that let developers more easily
deploy highly complex software as hardware. An exciting new generation of hybrid
architectures are currently being explored across the industry.

New tools have been developed in this project to further enhance the overlap between
computer science and electronics engineering. As far as has been uncovered, this is the
first project to use a python API to configure an FPGA on-chip, if at all, including functions
for deep neural networks. It is the hope of the author that this project and the tools
provided will inspire and lead to further work in complex embedded information
technology.

All software developed as part of this project will be made available under a 3-clause BSD
license.

 Bachelor Project
 Campus Vestfold

vi

Contents

1. Introduction .. 1

1.1. Motivation and Related Work.. 1

1.1.1. AHMOS .. 1

1.1.2. Security in Vehicle Networks ... 1

1.1.3. CAN Protocol Security Challenges.. 2

1.1.4. Physical Layer Security and Digital Fingerprinting ... 2

1.1.5. Fingerprinting CAN Transducers Using DSP Filtering.................................... 2

1.1.6. The Case for Machine Learning on FPGA .. 4

1.2. Project Goals... 5

1.3. Research Question and Hypothesis ... 5

1.4. Project Objectives ... 5

2. Building a CAN Bus Research Platform .. 6

2.1. The CAN Bus .. 6

2.2. Generating and Detecting CAN frames .. 8

2.2.1. TI CAN Bus Physical Layer Transceivers ... 9

2.2.2. Software Controlled Network Nodes ... 9

2.3. SoC Detection Device... 11

2.3.1. Analog to Digital Converter.. 12

2.3.2. NIOS II Soft Processor ... 13

2.3.3. ARM Cortex-A9 Hard Processing System (HPS) ... 14

2.3.4. CAN-Bus Controller ... 14

2.3.5. FIFO Shared Memory .. 14

2.3.6. Altera Cyclone V FPGA ... 15

2.4. PC Development Environment ... 17

3. Machine Learning Algorithms .. 18

3.1. Two-Class Support Vector Machine ... 19

3.1.1. One-vs-All Multiclass ... 19

3.2. Multiclass Decision Forest .. 19

3.3. Multiclass Logistic Regression ... 19

3.4. Multiclass Decision Jungle.. 19

3.5. Multiclass Convolutional Neural Network ... 20

4. Experimental Design.. 20

4.1. Data Reduction and Representation .. 20

 Bachelor Project
 Campus Vestfold

vii

4.2. Comparing Multi-class Classifiers .. 21

4.2.1. Two-Class Support Vector Machine.. 21

4.2.2. Multiclass Decision Forest ... 21

4.2.3. Multiclass Logistic Regression .. 22

4.2.4. Multiclass Decision Jungle .. 22

4.2.5. Multiclass Convolutional Neural Network.. 22

5. Results ... 23

6. Conclusions ... 24

7. SoC Hardware Design ... 24

7.1. HPS/FPGA Interface ... 26

7.2. Replacing on-chip Memory for SDRAM ... 26

8. DeepCL .. 28

9. Hardware Implementation of Algorithms ... 29

9.1. Support Vector Machines ... 29

9.2. Convolutional Neural Networks .. 29

10. Bibliography ... 32

11. Term list ... 34

12. Attachments ... 36

 Bachelor Project
 Campus Vestfold

Page 1 of 34

1. Introduction

1.1. Motivation and Related Work

1.1.1. AHMOS

In 2012 Buskerud and Vestfold University College (currently HSN) was approached by
industry and faculty members with a request to develop an intrusion detection system for
the campus maritime engine and automation lab. The motivation was the increasing
number of cyber-attacks experienced by the maritime sector. [3]

An initial Bachelor project was completed by Andreas Karlsen Monstad and Diana
Charlotte Paulsen in 2013.[1] The project was further developed by Martin Sundhaug as
his Bachelor project in 2015.[2]

Both projects involved building a honeypot consisting of a Raspberry Pi with a PICAN
CAN-shield. Karlsen Monstad and Paulsen [1] created the configuration for connecting the
detection unit to the lab CAN-bus environment. Sundhaug [2] expanded on this by
developing and testing the actual honeypot, including the production of data sets for use
with future research.

The honeypot concept involves masquerading as a conventional network unit, whereas in
reality being a dummy unit designed to detect unauthorized activity. SCADA (Supervisory
control and data acquisition) is an industrial control system (ICS) for remote control and
monitoring. These kind of systems have evolved from semi isolated industrial systems to
increasingly complex networked systems, and have thus become ever more vulnerable to
attack.[4] Using one or more honeypots it is possible to test the robustness of the SCADA
system and its ability to withstand attacks.[1] This was the goal of AHMOS part 1 and part
2.

There are a few reasons why this project should not be considered AHMOS part 3.
Machine learning research requires large data sets for learning and testing. Early on it
became apparent that the HSN engine and automation lab was not an ideal setting for
high volume sampling and experimentation. For this reason, a research and development
environment was constructed from scratch using various CAN modules and controller
boards. This allowed a large number of CAN transceivers to be sampled, as well as great
flexibility in experimental design. However, this removed SCADA from the setup. Also, the
data set produced by Sundhaug [2] was based on protocol level information only, which
made it irrelevant when studying CAN on the physical level.

As a result of these differences, the current project cannot be said to directly relate to
maritime systems in particular, as its theoretical implications apply to CAN bus systems in
general.

1.1.2. Security in Vehicle Networks

While ships may represent high value targets for potential attackers, automotive
transportation represents a much larger quantity of potential targets. This includes both
commercial heavy transport as well as personal vehicles. In contrast to shipping, where
high value cargo tends to encourage prioritizing security, on road transportation tends to
value convenience, which increasingly entails connection to various personal devices,
often through wireless connections. The growing complexity and interconnectedness of
automotive embedded systems means it is becoming impossible for manufacturers to
anticipate possible threat scenarios. Recent papers such as Checkoway, et al. [5], Hoppe,

 Bachelor Project
 Campus Vestfold

Page 2 of 34

et al. [6] and Rouf, et al. [7] demonstrate that absent source authentication, modern
vehicle networks are vulnerable even to the most basic attacks.

1.1.3. CAN Protocol Security Challenges

The challenges in securing a CAN bus environment stems largely from legacy issues with
the CAN protocol itself. Development began in 1983, was gradually introduced throughout
the 1980s, with the current CAN 2.0 standard released in 1991. [8] This predates the wide
spread adoption of the Internet, and represents a context in which the current
connectedness was more or less unthinkable.

As a consequence, the CAN frame lends itself poorly to expansions for cryptographic
security. Each frame carries only up to 64 bit of data, hence there is not much room for
adding an authentication tag. With Message Authentication Codes (MACs) commonly at
128 bit, this is not a realistic option for CAN. Adding additional frames for authentication
increases bus load, which in CAN is limited to 1 Mbps. With the complexity of modern
systems, this is an upper bound which is often already reached. [9]

Van Herrewege, et al. [10] proposes CAN+ to hide authentication bits within the bits of
ordinary CAN frames. However, few controllers exist that can handle this protocol, and the
prohibitive cost has prevented the solution from becoming mainstream. Szilagyi and
Koopman [11] proposes a low cost multicast solution where each node votes on a
message’s authenticity based on an 8-bit MAC. As discussed above, this is way below
standard MAC length, and not a viable solution for real life scenarios.

Clearly, implementing source authentication on CAN protocol level is problematic.

1.1.4. Physical Layer Security and Digital Fingerprinting

An alternative approach is focusing on physical layer security. As noted above, The CAN
specification allows a great degree of flexibility on the physical layer, and thus physical
signals are not identical. Even for transducers of the same model from the same
manufacturer, the physical characteristics of the component will vary.

Hall, et al. [12], [13] has demonstrated radio frequency fingerprinting for intrusion
detection in wireless networks using a Bayesian filter, with an average success rate of
(94-100%). Romero-Zurita, et al. [14] used beamforming and artificial noise to disrupt
eavesdropper activity in both wired and wireless networks. Gerdes, et al. [15] attempted to
identify Ethernet cards based on their synchronization signal, with some success. Gerdes
is interesting in particular because their experiment failed to reliably discriminate between
cards of the same model. This is where the CAN specification may be in a favourable
position compared to other technologies with more tightly defined physical specifications,
a notion which has some support in the research.

1.1.5. Fingerprinting CAN Transducers Using DSP Filtering

The direct inspiration for the approach taken in this project comes from Murvay and Groza
[9] Source Identification Using Signal Characteristics in Controller Area Networks . For this
reason, a more detailed discussion of this paper is necessary.

Like previous approaches Murvay and Groza [9] used simple digital signal processing to
filter the physical signals. This is similar to Hall, et al. [12], [13] except Murvay and Groza
[9] used mean squared error (MSE) and convolution instead of a Bayesian filter. In both
cases this consisted of comparing an input signal to a previously stored example, either a
single sample or an average of several. This was attempted using both signals smoothed
using a low pass filter, as well as using raw unprocessed signal data.

 Bachelor Project
 Campus Vestfold

Page 3 of 34

Murvay and Groza [9] generated CAN frames using sysWORXX USB-to-CAN devices and
ZK-S12-B f development boards. Signal sampling was done using a high end Agilent
MSO6012A oscilloscope with a sample rate of 2 GSa/s and a resolution of up to 12 bits.

This use of high end equipment is problematic. The motivation for using such an
expensive oscilloscope was to minimize signal misalignment. However, for results to be
applicable to practical implementation, they need to be reproducible using cost effective
off-the-shelf components. For this reason, the current project uses a standard on-chip 20
MHz Analog-to-Digital Converter (ADC) to sample signals, but that represents a
challenge. Below is a comparison between samples of the CAN Arbitration field made by
[9] and sampling done as part of this project. Clearly, the high end oscilloscope is far
superior when it comes to bit level sampling. To overcome this, it will be necessary to
locate additional unused sources of information above the bit level.

Figure 1 CAN Arb itration field Murvay and Groza

Figure 2 CAN Arb itration Field sampled using Altera De1 SoC 20 MHz ADC

Murvay and Groza [9] found similar results for MSE and convolution. The example below
shows MSE values from 10 different PCA82C251 transceivers:

Figure 3 2×104 MSE values for PCA transceivers

 The tables below show detection accuracy achieved by Murvay and Groza [9] using MSE
based detection. Signatures where shown to hold stable over a period of six months. That
aspect has not been examined in this study, but is assumed to be valid for these results
also. While many tranceivers are easily distinguised, others have very low accuracy.

 Bachelor Project
 Campus Vestfold

Page 4 of 34

Interestingly, results appear dependent on CAN ID. Table III uses a different CAN ID,
which apparantly reduces detection accuracy, yet in some previously difficult cases such
as T2’ and T3’’ confusion rate now drops to 0%.

Murvay and Groza [9] uses this apparent curiosity to argue for strategic selection of CAN
ID. This is not a viable strategy however, as there is no simple method of choosing the
appropriate setting other than trial and error. Also, with accuracy occasionally dropping as

low as 0.1%, this method clearly has room for improvement.

This project aims to improve on Murvay and Groza [9] by replacing MSE and convolution
filtering with statistical machine learning algorithms. While Murvay and Groza [9] hold that
collisions between transceiver patterns are random, the working hypothesis of this project
is that it is not.

Also, the modified design will aim for independency from frame content. It will do so by
single pulses rather than entire frames.

1.1.6. The Case for Machine Learning on FPGA

Despite the advantages offered by the FPGA for flexibility, power and cooling cost, it has
so far proven too cumbersome for many to utilize. Chen and Singh [16] in their paper
“Using OpenCL to Evaluate the Efficiency Of CPUs, GPUs And FPGAs For Information
Filtering” examine how the increased sophistication of software defined hardware is
bridging the gap for FPGA when it comes to dynamic and complex computation. With
traditional HDL it is necessary to clearly understand the flow through the logic fabric,
which essentially made advanced tasks such as machine learning and neural networks
exceedingly difficult to implement above the most basic level. With the higher level
abstraction of parallel programming languages such as OpenCL, this vastly expands the
areas of application where an FPGA might be useful. This is the reason why Intel recently

Table 1 Murvay and Groza Model Evaluation

 Bachelor Project
 Campus Vestfold

Page 5 of 34

acquired Altera, and why they describe the technology as essential to their core strategy.
[17]

1.2. Project Goals

The primary goal of this project is to demonstrate source authentication using machine
learning based fingerprinting of signal characteristics on the CAN physical level.

The secondary goal is to demonstrate the viability of machine learning in embedded
systems based on FPGA and ARM.

1.3. Research Question and Hypothesis

Based on the previous work referenced above and the project goals stated, a research
question can be stated as follows:

Is it possible to reliably separate overlapping CAN transceiver physical
signal patterns using Commonly Used Machine Learning Algorithms?

Specifically, this entails:

 Two-Class Support Vector Machine One-vs-All Multiclass

 Multiclass Decision Forest

 Multiclass Logistic Regression

 Multiclass Decision Jungle
 Multiclass Convolutional Neural Network

The project works from the following hypothesis:

CAN transceiver physical signal patterns contain persistent non-random
information that can be extracted with statistical significant reliability

above single bit level.

This includes the assumption that the overlap between signals is not random as assumed
by Murvay and Groza [9], but can be inferred from information present in the signal.

If this hypothesis is correct, statistical methods should be able to outperform convolution
and mean squared error filtering. If any of the examined approaches achieves
significantly fewer conflicted cases than was found by Murvay and Groza [9], this would
support the hypothesis that additional information is embedded in the signal.

1.4. Project Objectives

Based on the above the project has the following defined objectives:

 Build a functioning CAN bus with programmable nodes and easily
interchangeable transceivers.

 Construct SoC device that can sample and store individual CAN signal
pulses.

 Process data on device using SVM and CNN with ARM/FPGA in combination.

 Outperform convolution and mean squared error filtering on hit rate.

 Achieve a minimum hit rate of 0.9 for all transceivers.
 Achieve mean hit rate of 0.99.

 Perform comparably to Nvidia GTX 980Ti GPU

 Bachelor Project
 Campus Vestfold

Page 6 of 34

2. Building a CAN Bus Research Platform
This section describes the development and test environment set up for the project. It was
used to collect data to compare performance of Machine Learning algorithms to the
findings of Murvay and Groza [9].

Because the nature of the project required high frequency sampling and multiple
interchangeable transceivers, it was necessary to build a completely separate
environment from the working lab. This included a small CAN bus with multiple
programmable nodes with easily replaceable components.

2.1. The CAN Bus

The ISO 11898-1:2003 [18] standard initially outlined the CAN physical level as a bit-level
multiple access medium, where access is determined by a succession of dominant and
recessive states. ISO 11898-2:2003 further developed the details as to voltage, current
and conductors. [19] Beyond this not much is specified about the mechanical aspects of
the CAN physical layer, which has resulted in large variation, not only between vendors,
but also between models from the same manufacturer, and even batches of the same
model, depending on component availability at the time of production.

The network design chosen here relies ISO 11898-2:2003 [19] to achieve noise immunity,
by terminating the bus using two 120 Ω transistors. The design was based on the
following schematic: [20]

Figure 4 CAN-Bus Topology (Electronic Two Wire Connection) - Wikimedia GFDL

It was implemented as follows:

 Bachelor Project
 Campus Vestfold

Page 7 of 34

Figure 5 CAN Bus (own photo)

 Green: CANH

 White: CANL

 Red: 3.3 V

 Black: Ground

Figure 6 CAN Bus - Connected (own photo)

Intentionally, only the transceiver pins are soldered. The system is deliberately set up to
allow fast and flexible reconfiguration.

Because the SN65HVD230 transceiver uses the somewhat less common 3.3 V source,
that is also the supply voltage on the network rail. This is not an area that is formally
standardized, and typical supply voltages on networks can be as much as 30V. However,
since this is a system designed for computer engineers, the lower voltage makes
experimentation easier, and makes the system simple to use with inexpensive
components such as the SN65HVD230.

 Bachelor Project
 Campus Vestfold

Page 8 of 34

2.2. Generating and Detecting CAN frames

Although the protocol level is not the focus of this project, certain aspects of the CAN
frame can be taken advantage of. The signal line can be either in a recessive or a
dominant state. During a recessive state there is high impedance with respect to both
rails, and voltages tend towards roughly half that of the supply voltage for both CANH and
CANL. For this particular installation the recessive state voltage is 1.83 V. During a
dominant state a low impedance state is induced, CANH is driven towards +5 V and
CANL falls towards 0 V.

Most importantly a dominant state can only ever be actively induced, whereas the
recessive state is the same as a quiet network.

This means that information is almost exclusively contained in the voltage difference
during a dominant state. The differences during a recessive state will be indistinguishable
from noise, especially with off-the-shelf equipment as has been deliberately used in this
project.

So for the purpose of data reduction, the recessive state will be ignored, as will any
voltage difference below + 1 V, including negative differences. That means only 0 bits will
be measured, focusing on the shape of the difference in between the voltages, as seen in
the image below: [21]

Figure 7 CAN-Bus-frame in base format without stuffb its (wikimedia, Creative Commons)

The motivation behind this choice is not just the limitation of the equipment at hand. By
viewing the voltage pattern as essentially a vector of positive numbers, it is possible to
treat it as a particularly dense image, which makes it easy to apply algorithms already
proven for machine vision, which is a much more mature subject in machine learning than
signal analysis. In particular, the data can be formatted according the MNIST format, a
flattened 28x28 grayscale image, represented as a single vector with 784 dimensions. [22]
[23] [24] [25]

The particulars of the CAN protocol are also useful for synchronization and bit timing
without the presence of a clock signal. Synchronization is necessary if one wants to have
equivalent samples. Fortunately, the starting bit will always be a logical 0, and hence a
dominant state. This project uses a strategy by which the starting bit is listened for as a
reference, and then a known frame is used to estimate bit time. This is sufficient for the
kind of goal at hand.

 Bachelor Project
 Campus Vestfold

Page 9 of 34

2.2.1. TI CAN Bus Physical Layer Transceivers

The TI SN65HVD230 3.3 V CAN transceiver was
chosen primarily for its low cost, which made it
possible to order in large quantities for
experimentation. Despite its low cost the component is
compatible with the ISO 11898-2 Standard, and no
quality issues arose during the project.

The transceiver module is incredibly simple, and
only implements the CAN physical level, which
makes it dependent on a separate controller,
which makes it an ideal disposable component in
an experimental environment.

Pins were soldered on so that transceivers could
easily be added or removed to the CAN Bus
board without any wiring.

2.2.2. Software Controlled Network
Nodes

This project was initially intended to be completed within the HSN Maritime Automation
Lab, but after some review it became apparent that industrial systems are not suited for
this kind of development. Part of the motivation for the development platform was to
achieve software controlled node behaviour, which is a lot more flexible than the industrial
lab, as well as fast.

The STM32 NUCLEO-F303RE board contains a ARM 32-bit Cortex-M4 CPU, and is
easily programmed in C/C++ with the ARM mbed platform. Since separate power and
ground rails are used in this setup, the board is only connected via CTX/CRX as show
below. Programming and power supply are both through as shown USB.

Figure 8 SN65HVD230 Schematic (Texas

Instruments)

Figure 9 SN65HVD230 Transceiver (own image)

 Bachelor Project
 Campus Vestfold

Page 10 of 34

Figure 10 NUCLEO-F303RE Connections (via developer.mbed.org)

RX is connected to the PA_11 pin, TX is connected to PA_11.

By default, the 5 nodes are set up to pass around the same message in an eternal loop,
toggling a led. When sampling, a separate function can send a large amount of frames on
a single transceiver, before passing the message on to the next in line for the same
function to be repeated using a different SN65HVD230. This makes it possible to achieve
continuous sampling, even using more than the 8 transceivers that can fit on the bus.

Below is a partial example of the code used for sampling, sending 500 000 identical
frames, in this case a coolant temperature request, before passing the message on to the
next node in line to take over.

 Bachelor Project
 Campus Vestfold

Page 11 of 34

Figure 11 Sending 500 000 CAN Frames

2.3. SoC Detection Device

The main device is constructed using a De1 Altera Cyclone V SoC from Terasic. While
based on Altera’s GHRD (Golden Hardware Reference Design) for SoC, it has been
substantially modified for this project, primarily by including additional processors and
FIFO shared memory. The full schematics is included in the appendix, and the design files
included. Below is a description of the most central components.

 Bachelor Project
 Campus Vestfold

Page 12 of 34

Figure 12 DE1 SoC Layout (provided by Terasic)

Figure 13 Supply Voltage/Ground provided fron the DE1 SoC

2.3.1. Analog to Digital Converter

The 8 channel 2 bit ADC is a central component, with 20 MHz / 500 KSPS sample rate.
This setup uses one channel per bus rail, that is, it samples CANH and CANL on separate

 Bachelor Project
 Campus Vestfold

Page 13 of 34

channels. In addition, it samples the same signal
simultaneously in three different locations on the bus, using
a total of six different 12-bit ADC channels to sample the
same signal.

The motivation behind this configuration is the possibility
that additional information might be hidden in the
correlations between the six channels, which could
outweigh the advantage held by the high end samplers
used by Murvay and Groza [9].

The ADC is memory mapped and has its own separate controller and clock domain, so if
set to auto update it can simply be accessed as memory using pointers in C.

Figure 15 ADC Header DE1 SoC (own photo)

2.3.2. NIOS II Soft Processor

To reserve resources for Linux
operations on the ARM CPU, an
additional 50 MHz soft processor has
been implemented in the logic fabric. It
has attached 64 MB RAM, as well as
dedicated arithmetic hardware and
specialized floating point custom
processor.

The main task of the NIOS II is
controlling the custom hardware, but it
can also be used for pre-processing
and software filtering when not
wanting to tax the Linux system. Altera
provides a high level Hardware
Abstraction Level library in c for NIOS

Figure 14 ADC Header (via
Terasic)

 Bachelor Project
 Campus Vestfold

Page 14 of 34

II that is not available from Linux, so hardware control is often accomplished easier and
faster from NIOS II.

The soft processor uses the minimal MicroC/OS-II Real Time Operating System, so it is
really ideal for keeping the linux installation running smoothly.

2.3.3. ARM Cortex-A9 Hard Processing System (HPS)

The board has a dual core ARM CPU running the lightweight Linux distribution Linaro.
The system did initially run on Ubuntu, due to the more sizeable software library, but it
became unstable when doing more computationally intensive tasks. System stability
improved vastly when changing to Linaro, which is mostly accessed through Eclipse
integrated SSH, FTP and gdbserver remote debugging.

The CPU has memory mapped access to the same FPGA connected hardware as does
the NIOS II processor, but primarily the role of Linux is networking and OpenCL.

Pre-processed data is passed from NIOS II and the FPGA to the ARM CPU via shared
memory, and is distributed by Linux via sockets to either to external recipients or as input
to software written in OpenCL used to reconfigure the FPGA.

2.3.4. CAN-Bus Controller

In its current version, the System relies heavily on the ADC for accessing CAN-frames.
This is relevant in the context of fingerprinting, but certain tasks would be easier if
including on-board CAN controllers. For someone with a background primarily in
computer engineering, identifying and timing bits from analogue signals can be a
challenge. Using CAN controllers for this seems sensible.

For this reason, two CAN bus controllers are currently implemented in the hardware,
connected to the HPS and bridged with the GPIO via the
FPGA. However, at the moment accessing these controllers
is only possible using memory mapped registers, which is
not as convenient as using C on the STM32. Developing a C
library for this interface is a future goal for further developing
the system.

2.3.5. FIFO Shared Memory

The NIOS II was not designed to be part of an ARM SoC
setup, and it is not part of Altera’s reference design. One
challenge is that the two processors have different type of
operating systems and different clock domains. However,
the largest challenge was the lack of any conventional
communication channel between the two systems. Standard
communication interfaces such as RS-232 UART are not
compatible between the two systems internally. Altera
provides a connection fabric and bridge for access to the
other system’s peripherals, but direct communication is
more complicated.

The solution for the particular challenge in this project was to
set up three large Shared Memory FIFO buffers (up to 8 MB)
for data processing. While only NIOS II has a HAL library for the buffer, it can be
accessed and controlled from Linux through memory mapping. However, for this reason
Linux use is mostly confined to reading processed data.

Figure 16 Two FIFO Shared
Memory Buffers

 Bachelor Project
 Campus Vestfold

Page 15 of 34

The FIFO also functions as a clock domain bridge when necessary.

Backpressure is optional. When turned on it ensures data is not unintentionally lost from
the buffer, but performance tends to be better if it is turned off. At least at 20 MHz, the
challenge is not to keep up with the sampler, but to wait long enough to avoid duplicate
data. A good balance for decent performance seems to be allowing possible data loss by
letting data flow freely at the sampler’s pace, and waiting an additional 2000
microseconds between each reading in Linux.

2.3.6. Altera Cyclone V FPGA

Approximately 30% of the 85K Programmable Logic Elements are taken up implementing
custom hardware, leaving the remainder for reconfiguration using OpenCL. Most of the
hardware and peripherals are physically connected only to the FPGA, so any access
granted the hard processing system need to be justified. A borderline case in this project
has been the frame buffer, which uses the FPGA to implement VGA display support, but
this was a valuable backup to SSH and serial connection early on in the project when the
system was still unstable, as well as for connecting to extra displays. In general, hardware
has aggressively been stripped as much as possible to free up as much as possible of the
logic fabric for OpenCL.

A likely scenario now that Linux is working properly is to remove the frame buffer, and
repurpose the female DE-15 connector now used for VGA as a CAN-bus interface for the
HPS.

 Bachelor Project
 Campus Vestfold

Page 16 of 34

Figure 17 DE1 SoC Layout (via Terasic)

Figure 18 The Complete Development Platform

 Bachelor Project
 Campus Vestfold

Page 17 of 34

2.4. PC Development Environment

All software programming was done c. NIOS II and ARM Linux software was build using
Eclipse with cross compilers and remote debugging. NIOSII code was written both as
single thread for the HAL OS and multithreaded for MicroC/RTOS.

 Bachelor Project
 Campus Vestfold

Page 18 of 34

3. Machine Learning Algorithms
Despite its recent surge in popularity, machine learning is still mostly the domain of GPUs
and data centres. However, academics as well as industry leaders such as Google,
Microsoft, IBM and Facebook are increasingly looking to incorporate specialized hardware
such as FPGAs into domains that have traditionally been dominated by software. [26] [27]
[28] [29]

With frameworks and languages such as OpenCL and OpenCL C becoming ever more
accessible and applicable across technologies, the line between hardware and software is
blurring. While machine learning in embedded systems and hardware is still in its infancy,
there already exists a large selection of well researched and documented methods
already developed that can easily be ported.

Zhang, et al. [30] used Rough Set Theory (RST) and Support Vector Machine (SVM) to
detect network intrusions. This project does not go into anomaly detection, but it does go
into SVM as a classification algorithm. Clustering is also promising field for security
applications.

Because of the immaturity of the field, there is still much that can be desired when it
comes to efficient development tools. For the sake efficiency, five common approaches to
multiclass classification were compared using the compiled CAN bus data set in Microsoft
Azure Machine Learning Studio. This is a cloud based IDE that makes it quick and easy to
set up multi-tier experiments for comparing different permutations of a model.

Two models where then implemented on the DE1 SoC using the Altera OpenCL SDK.

 Bachelor Project
 Campus Vestfold

Page 19 of 34

This section briefly describes the five approaches, and the next section explains the
experimental setup used to compare them.

Details of the models will be covered when describing the configuration of the experiment.

3.1. Two-Class Support Vector Machine

Support Vector Machine (SVM) is originally a binary classification model, essentially
drawing a line separating two clusters of objects. In that way it is related to common
methods in the intersection between linear algebra and statistics, such linear regression.
What makes it popular is that it can be extended beyond three dimensions, with
dimensions here representing features as opposed to dimensions in space. The idea is
that if a solution cannot be found in one dimension, transforming the problem to another
dimension could result in a solution. Using linear algebra, it is possible solve for infinite
dimensions, taking SVM close to unsupervised learning and clustering. The highly
mathematical nature of the approach means that it is one of the few methods where a
certain level of proof is possible, but it also makes the model less intuitive. Because it
based in generalized linear models, it is also highly suitable for use in programming.

The relevant parameters are lambda and the number of iterations. Lambda is a weight
variable used for L1 regularization.

However, despite some impressive results, it generally is only directly applicable in clearly
defined binary cases with labelled data.

3.1.1. One-vs-All Multiclass

One way of overcoming the binary restriction of SVM is to combine multiple binary
classifications in the same model. In this case, each class of object is compared with all
others as being “one of these” or “not one of these”. These types of model are naturally
not very scalable.

3.2. Multiclass Decision Forest

A Decision Forest is what is known as an ensemble method, based on a theoretical model
of cooperation and competition. The model generates a large number of solutions in the
form of decision trees, and then weeds out bad and filters out the good by voting as a
method of aggregation. The tree structure is efficient in use of memory, and the model is
flexible when it comes to structure.

3.3. Multiclass Logistic Regression

Multiclass or Multinomial Logistic Regression is similar to SVM in that it aims to find a best
fit through an n-dimensional feature space, but the mathematics is much less convoluted.
The setup solution procedure is exactly the same as with simple linear regression, only
with additional feature variables, resulting in a larger matrix.

3.4. Multiclass Decision Jungle

Decision Jungles are an extension on Decision Forests. Both generate and then
aggregate decision trees, but with Decision Jungles there is the additional option of
allowing branches to merge, resulting in a much reduced memory footprint. Decision
Jungles are highly flexible, non-parametric and non-linear, meaning they are also highly
noise tolerant.

 Bachelor Project
 Campus Vestfold

Page 20 of 34

3.5. Multiclass Convolutional Neural Network

Convolutional Neural Networks are biologically inspired, highly parallel multilevel
networks. Nodes in the network perform transformations on data transported through the
edges, or tensors. It gets its name from having one or more layers performing convolution
transformations on data, but also have additional visible or hidden layers for operations
such as reduction and pooling. Often the final layer is a form of logistic regression.

4. Experimental Design
Choosing a model for implementation would be difficult simply using the tools available for
embedded development. Altera SDK for OpenCL delivers excellent performance on-chip
after compilation, but the experience was seriously degraded by several bugs, especially
regarding version compatibility and licence setup. The integration with Embedded Design
Suite and DS-5 Eclipse was severely lacking and unstable. The one provided BSP was
severely lacking as a workable Linux distribution, and little documentation existed
concerning how to compile an OpenCL compatible BSP. It therefore soon became
apparent that a better option was to develop on an Nvidia GTX980Ti GPU before
recompiling using the Altera compiler through the command line interface. This approach
worked fairly well.

Some experimentation was done using MATLAB with FPGA-in-the-loop as well as
TensorBoard from Google. Eventually the choice fell on Microsoft Azure Machine
Learning Studio for the final comparison. MLS has the benefit of an intuitive drag-and-drop
interface for setting up experiment designs, as well as support for Python and R for more
low level control. It also has probably the fastest and simplest tools for converting between
data set formats. The design was based on the default template for comparing multi-class
classifiers, configured for the compiled data set. An additional Deep Neural Net was
added later in addition to the standard convolutional neural net.

4.1. Data Reduction and Representation

As mentioned previously, focus was placed completely on voltage differences between
channels in the dominant state. Also, samples were taken simultaneously at six different
locations, three for each rail on the bus. A single sample consisted of a vector 784 values
long, based on the MNIST format used for handwritten letter classification. Based on
previous research, it was assumed that the exact order was irrelevant as long as it was
consistent across the experiment. The adjoining CANH and CANL channels where
combined in The FIFO before parsing, leaving three values representing the voltage
difference between each of the dual signals. Leaving the first position for the label, that
gave the final format for the original comma separated CSV-file:

“$can#,value0,value1,value2…..*261”

i.e. the input vector consisted of 261 sets of 3 values, representing different perspectives
of the voltage difference between CANH and CANL at a given time. Value sets within a
vector was put in chronological order, whereas the order of input vectors were
randomized. 60K input vectors were reserved for training, and 10K was saved for testing
and scoring. White space resulting from recessive states was ignored.

 Bachelor Project
 Campus Vestfold

Page 21 of 34

4.2. Comparing Multi-class Classifiers

A model was constructed from the default template. Each node represents a process, and
data and activity flows downwards. Each column
represents a different classifier. The final layers
are R script pooling and data visualization.

4.2.1. Two-Class Support Vector
Machine

The first level in the model defines the settings
for the SVM. It was kept at single parameter
setting with a Lambda of 0.001. The module l
was set to normalize the data, and it was set to
accept infinite dimensional and hidden solutions.

The second level does exactly the same thing for
the One-vs-All SVM.

Data is them passed to the training module for
learning.

4.2.2. Multiclass Decision Forest

The Decision Forest is also kept at single parameter. The max depth of any decision tree
is kept at 32. Bagging is set as the resampling method. This means that resampling is with
a new random sample of the original dataset, as opposed to simple replication.

 Bachelor Project
 Campus Vestfold

Page 22 of 34

4.2.3. Multiclass Logistic Regression

4.2.4. Multiclass Decision Jungle

The Decision Jungle is set to exactly the same settings as the Decision Forest.

4.2.5. Multiclass

Convolutional Neural
Network

The simple CNN was set as a fully
connected net with 100 hidden
nodes, 100 iterations for learning, and
MIN-MAX as normalisation method.

A second, deeper network was set up
using R (source code provided), but
here the number of iterations where
kept at 20 due to processing requires.

This model was also run in a separate session, but on the same data set.

 Bachelor Project
 Campus Vestfold

Page 23 of 34

5. Results
Not surprisingly, the deep net outperformed the other models. A more surprising result
was the poor performance of SVM.

The Matrix below show results for the deeply connected network analogue to the to the
results Murvay and Groza [9] presented. Clearly the deep network out-performed Mean
Square Error and Convolution. However, this required several minutes of cloud based
GPU processing, so it can hardly be expected to be running on embedded units any time
soon.

 Bachelor Project
 Campus Vestfold

Page 24 of 34

6. Conclusions
The results support the
hypothesis that more
information is present in an
analogue signal than is
immediately available and
obvious. Unfortunately, the
only network able to perform
at the desired standard is one
that is nowhere close to be
running on an FPGA or ARM
system.

However, that predictions
even in the low 90s is achievable is very impressive.

It is fully possible that with additional experience with writing code specifically for the
FPGA, rather than simply recompiling code written for the GPU, additional improvement
can be seen in the current generation of hardware.

In hindsight, the most rewarding part of the project was not getting code to run on the DE1
SoC, but the experience of building a working CAN-bus research environment.

7. SoC Hardware Design
Hardware was designed primarily in Altera Qsys, and compiled for FPGA using Quartus
Prime.

 Bachelor Project
 Campus Vestfold

Page 25 of 34

 Bachelor Project
 Campus Vestfold

Page 26 of 34

7.1. HPS/FPGA Interface

The interface between the ARM CPU and the FPGA is kept largely as per the
Terasic/Altera reference design. The only modification has involving removing an SPI
interface to make room for the CAN-interface. The two CAN interfaces each has their own
controller, and each connection seen on the schematic has both an RX and a TX pin.

7.2. Replacing on-chip Memory for SDRAM

The reference design for NIOS II is based on on-chip memory. For this design that was
replaced with 64 MB of SDRAM. This required installing an additional controller and a

separate clock domain for the NIOS subsystem.
For this reason, it was necessary to implement
the FIFO shared memory with a dual clock
system. The SDRAM time had to be set to be
board specific.

 Bachelor Project
 Campus Vestfold

Page 27 of 34

 Bachelor Project
 Campus Vestfold

Page 28 of 34

8. DeepCL
While OpenCL is a vast improvement on using HDL, it is still far from going mainstream.
Few programmers ever get much experience with programming in a fully parallel
paradigm, so there is clearly a need for higher level tools to bridge the gap.

The neural network below is implemented in the DeepCL Python API.

DeepCL is a set of publically available wrappers for OpenCL with both a Python, LUA and
C++ API using the OpenCL 1.1 standard. If built from source it should in theory run using
any OpenCL driver. Several attempts at porting DeepCL to Windows 10 for use in this
project failed, but it was successfully built on Linux Mint Debian Edition and used to
compile the included source code to executable aoclx format. The network worked as
suggested, but performance was not measured.

Altera has showcased several OpenCL examples that take advantage of the flexible
memory arrangement in FPGAs, and their neural networks in particular take advantage of
this, allowing kernels to be much more independent of the host than is possible on the
GPU.

Unfortunately, Altera has not yet released the source code for their networks, and have
recently removed the whitepaper describing their method from their web site.

So as of yet, while it may be optimized for the GPU, DeepCL remains a workable
alternative.

The DeepCL Git repository can be found here:

https://github.com/hughperkins/DeepCL

https://github.com/hughperkins/DeepCL

 Bachelor Project
 Campus Vestfold

Page 29 of 34

9. Hardware Implementation of Algorithms

9.1. Support Vector Machines

The following example is originally published as a case study by AMD on their developer
network to demonstrate effective memory allocation on the GPU.

While that is not directly relevant for FPGA, it is an elegant piece of OpenCL C that was
compiled without difficulty on the DE1 Cyclone V SoC.

9.2. Convolutional Neural Networks

The following example DeepCL Python script was successfully used to compile and run
an aoclx executable on a Cyclone V DE1 SoC ARM/FPGA board:

 Bachelor Project
 Campus Vestfold

Page 30 of 34

 Bachelor Project
 Campus Vestfold

Page 31 of 34

 Bachelor Project
 Campus Vestfold

Page 32 of 34

10. Bibliography
[1] A. Karlsen Monstad and D. C. Paulsen, "Intrusion Detection for Ship’s Engine

Room," Bachelor of Engineering, Computer Science Bachelor Thesis, Faculty for
Technology and Maritime Subjects (TEKMAR), Buskerud and Vestfold University
College, 2013.

[2] M. Sundhaug, "Intrusion Detection for Ship’s Engine Room - Part 2," Bachelor of
Engineering, Computer Science Bachelor Thesis, Faculty for Technology and
Maritime Subjects (TEKMAR), Buskerud and Vestfold University College, 2015.

[3] D. Cimpean, J. Meire, V. Bouckaert, S. Vande Casteele, A. Pelle, and L.
Hellebooge, "Analysis of Cyber Security Aspects in the Maritime Sector," 2011.

[4] R. L. Krutz, Securing SCADA Systems: Wiley, 2006.
[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, et al.,

"Comprehensive experimental analyses of automotive attack surfaces," presented
at the Proceedings of the 20th USENIX conference on Security, San Francisco,
CA, 2011.

[6] T. Hoppe, S. Kiltz, and J. Dittmann, "Security threats to automotive CAN
networks—Practical examples and selected short-term countermeasures,"
Reliability Engineering & System Safety, vol. 96, pp. 11-25, 1// 2011.

[7] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xua, et al., "Security and
Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring
System Case Study," in Proceedings of USENIX Security Symposium, 2010.

[8] (May 10). History of CAN technology. Available: http://www.can-cia.org/can-
knowledge/can/can-history/

[9] P.-S. Murvay and B. Groza, "Source Identification Using Signal Characteristics in
Controller Area Networks," Signal Processing Letters, IEEE, vol. 21, pp. 395-399,
2014.

[10] A. Van Herrewege, D. Singelee, and I. Verbauwhede, "CANAuth - A Simple,
Backward Compatible Broadcast Authentication Protocol for CAN bus," ECRYPT
Workshop on Lightweight Cryptography 2011, 2011.

[11] C. Szilagyi and P. Koopman, "Low cost multicast authentication via validity voting
in time-triggered embedded control networks," presented at the Proceedings of the
5th Workshop on Embedded Systems Security, Scottsdale, Arizona, 2010.

[12] J. Hall, M. Barbeau, and E. Kranakis, "Enhancing intrusion detection in wireless
networks using radio frequency fingerprinting," in Communications, Internet, and
Information Technology, 2004, pp. 201-206.

[13] J. Hall, M. Barbeau, and E. Kranakis, "Radio frequency fingerprinting for intrusion
detection in wireless networks," IEEE Transactions on Defendable and Secure
Computing, 2005.

[14] N. Romero-Zurita, D. McLernon, M. Ghogho, and A. Swami, "PHY layer security
based on protected zone and artificial noise," Signal Processing Letters, IEEE, vol.
20, pp. 487-490, 2013.

[15] R. M. Gerdes, M. Mina, S. F. Russell, and T. E. Daniels, "Physical-layer
identification of wired Ethernet devices," Information Forensics and Security, IEEE
Transactions on, vol. 7, pp. 1339-1353, 2012.

[16] D. Chen and D. Singh, "Invited paper: Using OpenCL to evaluate the efficiency of
CPUS, GPUS and FPGAS for information filtering," in Field Programmable Logic
and Applications (FPL), 2012 22nd International Conference on, 2012, pp. 5-12.

[17] B. Krzanich. (2016, 22.04). Brian Krzanich: Our Strategy and The Future of Intel.
Available: https://newsroom.intel.com/editorials/brian-krzanich-our-strategy-and-
the-future-of-intel/

http://www.can-cia.org/can-knowledge/can/can-history/
http://www.can-cia.org/can-knowledge/can/can-history/
https://newsroom.intel.com/editorials/brian-krzanich-our-strategy-and-the-future-of-intel/
https://newsroom.intel.com/editorials/brian-krzanich-our-strategy-and-the-future-of-intel/

 Bachelor Project
 Campus Vestfold

Page 33 of 34

[18] "Road vehicles -- Controller area network (CAN) " in Part 1: Data link layer and
physical signalling vol. 11898, ed: ISO, 2003.

[19] "Road vehicles -- Controller area network (CAN) " in Part 2: High-speed medium
access unit vol. 11898, ed: ISO, 2003, p. 21.

[20] Stefan-Xp, "CAN-Bus Topology (Electronic Two Wire Connection)," C.-B. E.
Zweidrahtleitung.svg, Ed., ed. commons.wikimedia.org, 2008.

[21] Endres~commonswiki, "CAN-Bus-frame in base format without stuffbits," C.-B.-f. i.
b. f. w. stuffbits.svg, Ed., ed. commons.wikimedia.org, 214.

[22] E. Kussul and T. Baidyk, "Improved method of handwritten digit recognition tested
on MNIST database," Image and Vision Computing, vol. 22, pp. 971-981, 2004.

[23] L. Deng, "The MNIST database of handwritten digit images for machine learning
research," IEEE Signal Processing Magazine, vol. 29, pp. 141-142, 2012.

[24] Y. Mizukami, K. Tadamura, J. Warrell, P. Li, and S. Prince, "CUDA implementation
of deformable pattern recognition and its application to MNIST handwritten digit
database," in Pattern Recognition (ICPR), 2010 20th International Conference on,
2010, pp. 2001-2004.

[25] D. Keysers, "Comparison and combination of state-of-the-art techniques for
handwritten character recognition: topping the mnist benchmark," arXiv preprint
arXiv:0710.2231, 2007.

[26] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung,
"Accelerating deep convolutional neural networks using specialized hardware,"
Microsoft Research Whitepaper, vol. 2, 2015.

[27] D. Bianchi, G. C. Cardarilli, A. Del Re, A. Malatesta, and M. Re, "FPGA
implementation of a general purpose HMM processor based on token passing
algorithm," in Circuit Theory and Design, 2005. Proceedings of the 2005 European
Conference on, 2005, pp. I/285-I/288 vol. 1.

[28] C. Gonzalez-Concejero, V. Rodellar, A. Álvarez-Marquina, D. Icaya, E. Martínez,
and P. Gomez-Vilda, "A Soft-Core for Pattern Recognition," in Advanced
Information Networking and Applications Workshops, 2007, AINAW'07. 21st
International Conference on, 2007, pp. 830-834.

[29] V. Rodellar, C. Gonzalez-Concejero, P. Carretero, A. Alvarez-Marquina, and P.
Gomez-Vilda, "A reusable HMM soft-core for isolated word recognition," in Signals,
Circuits and Systems, 2005. ISSCS 2005. International Symposium on, 2005, pp.
303-306.

[30] X. Zhang, L. Jia, H. Shi, Z. Tang, and X. Wang, "The application of machine
learning methods to intrusion detection," in Engineering and Technology (S-CET),
2012 Spring Congress on, 2012, pp. 1-4.

 Bachelor Project
 Campus Vestfold

Page 34 of 34

11. Term list

A

accuracy ...4
ADC ...3, 13, 14, 15
AHMOS ... v

Alteravii , vii i , 3, 5, 12, 15, 16, 18, 20, 25, 27
Analog to Digital Converter vii , 13
Analog-to-Digital Converter3

Arbitration field ..3
ARM v, vii , 5, 6, 10, 15, 16, 25
artificial noise..2
automotive ... 1, 29

B

Bayesian filter .. 2, 3
beamforming...2

BSP ... 20

C

C library ... 16
C/C++ ... 10

CAN ... i i , iv, v, vii , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15,
16, 17, 18, 25, 29, 30

CAN ID ..4
CAN physical layer..7

CANH .. 8, 9, 13, 20
CANL ... 8, 9, 14, 20
CAN-shield ...1

clock domain ... 14, 16, 25
CNN .. 6, 23
comma separated ... 20
complexity .. 1, 2

confusion rate ...4
continuous sampling... 11
convolution.. 3, 4, 5, 6, 20
Convolutional Neural Network vii , vii i , 6, 20, 23

Convolutional Neural Networks vii i , 20, 27
CPU ... v, 10, 15, 25
CSV ... 20

custom hardware ..15, 16
custom processor .. 15

D

data reduction ..9

DE-15 connector .. 17
Decision Forest vii , vii i , 5, 19, 22
Decision Forests... 19

Decision Jungle vii , vii i , 6, 19, 22

Decision Jungles ... 19
dominant state...9, 20
dual clock system... 25

E

Eclipse ... 15, 20
Embedded Design Suite.. 20
embedded systems v, 2, 5, 18

end Agilent MSO6012A oscilloscope 3
Ethernet...2, 29

F

Facebook ... 18

FIFO .. 12, 16, 20, 25
filtering ...5, 6, 15, 29
Fingerprinting ...vii , 2, 3

FPGA...................... v, vii , vii i , 5, 6, 15, 16, 20, 25, 30
frame buffer .. 16, 17
FTP.. 15

G

GHRD.. 12
Golden Hardware Reference Design 12
Google... 18, 20
GPIO ... 16

H

HDL ... 5
HPS ... 15, 16, 17, 25

I

IBM ... 18
impedance .. 9
industrial control system (ICS) 1

L

lambda... 19
Lambda ... 19, 21
layer ... v, 2, 20, 29, 30

Linux ... 15, 16, 17, 20
Logic Elements are .. 16
logistic regression .. 20

Logistic Regressionvii , vii i , 6, 19, 22
low pass filter ... 3

M

MAC.. 2

machine learningv, 5, 9, 18, 30

 Bachelor Project
 Campus Vestfold

Page 35 of 2

Machine Learning......................i i , iv, vii , 5, 6, 18, 20
Machine Learning algorithms6
machine vision ..9

mbed..10, 11
mean squared error .. 3, 6
memory mapped .. 14, 15, 16

Message Authentication Codes2
Microsoft ... 18, 20, 30
MIN-MAX .. 23
MSE .. 3, 4, 5

multicast ... 2, 29
Multiclass........................ vii , vii i , 5, 6, 19, 20, 22, 23
Multi-class Classifiers.......................................vii i , 21

multilevel networks .. 20
Multinomial .. 19

N

Network Nodes .. 10

neural networks... v, 5, 30
NIOS II... vii , 15, 16, 25
noise ... 7, 9, 19, 29
noise immunity ...7

non-random information ..6
Nvidia GTX980Ti .. 20

O

One-vs-All Multiclassvii , 5, 19
OpenCLvii i , 5, 15, 16, 18, 20, 27, 29

P

PCA82C251 ..4

peripherals.. 16
Physical Layer...vii , 2, 10
Physical Layer Security and vii , 2
physical signal patterns .. 5, 6

pooling...20, 21
protocol...v, 1, 2, 9
Python ... 20

R

R 20, 21, 23, 29
RAM ... 15
recessive ...7, 9, 21

recessive state ..9

reduction... 20
remote control and monitoring 1
RX 11, 25

S

sampling ... 1, 3, 6, 11
SCADA ..v, 1, 29

Supervisory control and data acquisition..........v
schematics .. 12
SDK ...vii i , 18, 20, 27
SDRAM... 25

signal analysis... 9
signal line .. 9
SN65HVD230 ... 8, 10, 11

SoC................ vii , vii i , 3, 6, 12, 13, 14, 16, 17, 18, 25
Soft Processor ..vii , 15
source authentication....................................... v, 2, 5
SSH .. 15, 16

statistical machine learning algorithms................. 5
statistical methods .. 6
STM32 ... 10, 16
STM32 NUCLEO-F303RE ... 10

Support Vector Machine vii , vii i , 5, 18, 19, 21
Support Vector Machines vii i , 27
SVM ... 6, 18, 19, 21, 22, 24

T

terminating ... 7
transceiver .. 5, 6, 8, 10, 11
transceiver patterns .. 5

transceivers .. 1, 4, 6, 10, 11
transducers ... v, 2
Transducers .. vii , 3
transistors ... 7

TX 11, 25

U

USB ...3, 10

V

vector ...9, 20
vehicle networks.. v, 2
Vehicle Networks... vii , 1

 Bachelor Project
 Campus Vestfold

Page 36 of 2

12. Attachments

A compressed project folder is included containing both hardware and software design
files. The folder names containing software should be self-eplanatory.

