
Sensur av hovedoppgaver
Høgskolen i Sørøst-Norge
Fakultet for teknologi og maritime fag

Prosjektnummer: 2016-11
For studieåret: 2015/2016
Emnekode: SFHO3201

Project Argos – Real-time Virtual Reality
Prosjekt Argos – Virtuell Virkelighet i Sanntid

Utført i samarbeid med: Kongsberg Defence Systems
Ekstern veileder: Alexander Gosling

Sammendrag: Project Argos er et system som lar deg operere et kjøretøy ved hjelp
av kameraer, sensorer og VR-briller. Sjåføren får full oversikt over omgivelsene, noe
som gir økt situasjonsforståelse og sikkerhet.

Stikkord:

 Virtual Reality

 Real-time

 Software

Tilgjengelig: DELVIS, kildekode er ikke offentlig tilgjengelig.

Prosjekt deltagere og karakter:

Navn Karakter

Thomas Hansen

Ingvild Damtjernhaug

Trond Egil Hammer

Leiv Fredrik Berge

Morten J. Barbala

Mathias Havdal

Dato: 9. Juni 2016

________________ _______________ _______________
Radmila Juric Karoline Moholth Alexander Gosling
Intern Veileder Intern Sensor Ekstern Sensor

2016-11

Ingvild Damtjernhaug
Leiv Fredrik Berge
Mathias Havdal
Morten J. Barbala
Thomas Hansen
Trond Egil Hammer

23. May 2016

University College of Southeast Norway,
Faculty of Technology and Maritime Sciences

Real-time Virtual Reality

Project Argos

This is the documentation for the bachelor group 2016-11, Project Argos. We will in
the following documents detail what Project Argos is, how we have worked with
Project Argos and the technical aspects of Project Argos. On the next page you will
find an overview of all the printed documents. Following that page the table shows all
the documents produced in the project and if they are available in print, in the final
PDF, in the assessment DVD or on the USB memory stick.

The source code of TinyArgos, the software in Project Argos, is not public. The
source code and Doxygen documentation is only available on the assessment DVD.

The hyperlinks in the documents will only work from the file structure from the DVD or
the USB drive. They will not work with documents downloaded from the
documentation wiki. We recommend using the documentation wiki to navigate the
documents by opening the index.html in the root directory.

A man who carries a cat by the tail learns something
he can learn in no other way

Mark Twain.

Acknowledgements

We would like to extend our gratitude to the following people for their help and
guidance.

 Karoline Moholth as internal sensor

 Alexander Gosling as external sensor and supervisor

 Radmila Juric as internal supervisor

 Erik Torp as project owner

 Ellen Svarverud as technical guide for visual perception

 Fagskolen Tinius Olsen for providing an electric car for the demo

1 Project Plan

2 Risk Analysis

3 Requirements Document

4 Test Specification

5 Test Logs

6 Architecture Notebook

7 TinyArgos Technical Solutions

 8 Iteration Reports

 9 Evaluation

 10 Future Work

11 Technical Documentation: Network Solutions

12 Technical Documentation: GigE Vision SDK

13 Technical Documentation: Virtual Reality Goggles

14 Technical Documentation: Graphics API

15 Technical Documentation: Architectural Style

16 Technical Documentation: Lenses

17 Research Documentation: Motion Sickness

18 Argos User Guide

19 Glossary

20 Group Contract

Blue documents are project process documents.

 Green documents are technical documentation.

Documents Print PDF USB CD

Project Plan X X X X

Risk Analysis X X X X

Requirements Documents X X X X

Test Specification X X X X

Test Logs X X X X

Architecture Notebook X X X X

TinyArgos Technical Solutions X X X X

Iteration Reports X X X X

Evaluation X X X X

Future X X X X

Network Solutions X X X X

GigE Vision SDK X X X X

VR Goggles X X X X

Graphics Library X X X X

Architecture Style X X X X

Lenses X X X X

Motion Sickness X X X X

User Guides X X X X

Glossary X X X X

Contracts X X X X

Sensurark X X X X

Meeting Reports

X X X

Weekly Followup

X X X

Build Guides

X X X

Presentations

X X X

Argos Poster

X X X

Argos Brochure X X X X

MS Project file, with Gantt chart

X X

Doxygen Code Documentation

X

Argos/wiki/projectplan.html
Argos/wiki/risk.html
Argos/wiki/requirements.html
Argos/wiki/testspec.html
Argos/wiki/testlog.html
Argos/wiki/architecture.html
Argos/wiki/tinyargos.html
Argos/wiki/iteration.html
Argos/wiki/evaluation.html
Argos/wiki/future.html
Argos/wiki/technical.html
Argos/wiki/technical.html
Argos/wiki/technical.html
Argos/wiki/technical.html
Argos/wiki/technical.html
Argos/wiki/technical.html
Argos/wiki/technical.html
Argos/wiki/user.html
Argos/wiki/glossary.html
Argos/wiki/contract.html
file:///C:/ArgosServer/Argos/wiki/sensur.html
Argos/wiki/meeting.html
Argos/wiki/followup.html
Argos/wiki/guide.html
Argos/wiki/presentations.html
Argos/wiki/presentations.html
Argos/wiki/presentations.html
Argos/wiki/projectplan.html
Argos/index.html

Project Plan 2.0

Created by: Leiv Fredrik Berge
21.1.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 Project Plan

2

Table of Contents

1. Document Overview 4
1.1 Document History 4
1.2 Referenced Documents 5
1.3 List of Figures 6
1.4 List of Tables 6

2. Project Background 7
2.1 Project Description 7
2.2 Project Owner Description 8

3. Project Scope 9
3.1 TinyArgos 2.0 Project Goals 9

4. OpenUP: Project Process 10
4.1 OpenUP: Basic Elements 11
4.2 Reasoning for choosing OpenUP 11

5. OpenUP: Phases of the Project 12
5.1 Inception 13
5.2 Elaboration 14
5.3 Construction 14
5.4 Transition 14

6. OpenUP: Iterations 15

7. Milestones in Project Argos 15

8. Project Schedule 16
8.1 Time Schedule 16
8.2 Milestones and Objectives in Iterations 17
8.3 Work Breakdown Structure 19
8.4 Iteration Plans 22

8.4.1 Iteration I1 Project Start 23
8.4.2 Iteration I2 Requirements Spesification 23
8.4.3 Iteration I3 Requirements & Architecture 24
8.4.4 Iteration I4 Integrate Cameras 24
8.4.5 Iteration I5a Merge Images 25
8.4.6 Iteration I5b Record Video 25
8.4.7 Iteration I5c Video Playback 26
8.4.8 Iteration I6 Add Markers and Information 26
8.4.9 Iteration I7 Delivery 27

9. Human Resource Plan 27
9.1 Project Team 28
9.2 Roles of the Team Members 28

9.2.1 Project Manager 29
9.2.2 Analyst 30
9.2.3 Architect 31
9.2.4 Tester 32
9.2.5 Document manager 33
9.2.6 Lead Developer 34
9.2.7 Developer 35

9.3 Sensors and Supervisors 35

10. Project Praxis 36

11. Communication Plan 37

 Project Plan

3

12. Risk Management Plan 38

13. Budget 39

14. Project Life-cycle 40

Bibliography 41

 Project Plan

4

1. Document Overview

The purpose of the project plan is to show the organization and planning for the
bachelor project of 2016 in Project Argos. The document describes the project
background, the project purpose and the project owners, as well as giving an
overview of the project goals and scope. It also describes the process used by the
team, key milestones in the project and the project schedule, and the iterations of the
project. Finally, the roles of the team members, our praxis, communication plan and
risk management plan is detailed along with a budget for the project.

Describes

 the project background.

 why the project exists.

 what has been done in the project before.

 who is responsible for the project.

 the aim of the project.

 the goals of the project.

 the project scope.

 the project process.

 the project schedule with project phases.

 the time schedule with iterations and milestones.

 the organization of the project, with human resource plan and team member
roles.

 the communication plan.

 the project budget.

 briefly the risk management plan (see also Risk Analysis document).

1.1 Document History

Version Change Date Created by

0.1 First version 13.01.2016 Leiv Fredrik Berge

0.2 added project praxis and
measurements

20.01. 2016 Leiv Fredrik Berge

0.3 Translated to English 21.01.2016 Leiv Fredrik Berge

0.4 Added phases 28.01.2016 Leiv Fredrik Berge

0.5 Added references, background,
goals

02.02.2016 Leiv Fredrik Berge

0.6 Added references, made
corrections, adjustments

04.02.2016 Ingvild Damtjernhaug

1.0 Fixed references 04.02.2016 Mathias Havdal

1.1 Changed colour on table headers 16.02.2016 Trond Egil Hammer

1.2 Added iteration plan for I4 08.03.2016 Leiv Fredrik Berge

1.3 Changed format on name and date
in document history

10.04.2016 Trond Egil Hammer

1.4 Deleted iteration plan for I4
Added project praxis

20.04.2016 Ingvild Damtjernhaug

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Risk_list/doc-1113_risk_analysis_1_8.docx

 Project Plan

5

1.5 Change in estimated hours
Added success criteria

21.04.2016 Ingvild Damtjernhaug

1.6 New overview, added challenges,
evaluation

29.04.2016 Ingvild Damtjernhaug
Leiv Fredrik Berge

1.7 Added organization chart, added
group overview

04.05.2016 Leiv Fredrik Berge

1.8 Minor corrections 05.05.2016 Ingvild Damtjernhaug

1.9 Added supervisor and sensor roles 05.05.2016 Trond Egil Hammer

1.10 Reorganized the whole document,
added human resources, project
background, document overview
and more

06.05.2016 Ingvild Damtjernhaug

1.11 Updated document overview,
added project goals , team
members, iteration diagram and
process elements

09.05.2016 Ingvild Damtjernhaug

1.12 Added section 12 Budget 11.05.2016 Ingvild Damtjernhaug

1.13 Updated timeline, added
milestones

12.05.2016 Leiv Fredrik Berge

1.14 Updated document overview,
reorganized sections, deleted
figure, added role information

15.05.2016 Ingvild Damtjernhaug

1.15 Updated references, added time
schedule, added project life cycle

17.05.2016 Leiv Fredrik Berge

1.16 Fixed headings and layouts.
Rewriting, corrections and
clarifications

18.05.2016 Morten J. Barbala
Ingvild Damtjernhaug

2.0 Final review 20.05.2016 Thomas Hansen
Trond Egil Hammer
Ingvild Damtjernhaug

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

Argos Project Argos_project_1_0.mpp 1.0

Risk analysis doc-1113_risk_analysis_2_0.docx 2.0

Iteration Reports doc-112_Iteration_report_2_0.docx 2.0

../doc-1113_glossary_2_0.docx
file://///KDP40043734/ArgosServer/Argos/Argos_project_1_0.mpp
../Risk_list/doc-1113_risk_analysis_2_0.docx
../Iteration%20reports/doc-112_Iteration_report_2_0.docx

 Project Plan

6

1.3 List of Figures

Figure 1: High level system architecture of Project Argos with software TinyArgos 8

Figure 2: OpenUP layers 10

Figure 3: Project phases 12

Figure 4: The OpenUP life-cycle 12

Figure 5: Activity diagram inception phase 13

Figure 6: Activity diagram elaboration phase 14

Figure 7: Activity diagram construction phase 14

Figure 8: Activity diagram transition phase 14

Figure 9: Project milestones 15

Figure 10: Project timeline 16

Figure 11: Project organization chart 27

Figure 12: Generic role figure 28

Figure 13: Project manager 29

Figure 14: Analyst 30

Figure 15: Architect 31

Figure 16: Tester 32

Figure 17: Document Manager 33

Figure 18: Document manager 33

Figure 19: Lead developer 34

Figure 20: Developer 35

1.4 List of Tables

Figure 1: High level system architecture of Project Argos with software TinyArgos 8
Figure 2: OpenUP layers 10
Figure 3: Project phases 12
Figure 4: The OpenUP life-cycle 12
Figure 5: Activity diagram inception phase 13
Figure 6: Activity diagram elaboration phase 14
Figure 7: Activity diagram construction phase 14
Figure 8: Activity diagram transition phase 14
Figure 9: Project milestones 15
Figure 10: Project timeline 16
Figure 11: Project organization chart 27
Figure 12: Generic role figure 28
Figure 13: Project manager 29
Figure 14: Analyst 30
Figure 15: Architect 31
Figure 16: Tester 32
Figure 17: Document Manager 33
Figure 18: Document manager 33
Figure 19: Lead developer 34
Figure 20: Developer 35

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602598
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602599
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602600
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602601
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602602
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602603
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602604
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602605
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602606
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602607
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602608
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602609
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602611
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602612
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602613
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602614
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602615
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602616
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602617
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602629
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602630
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602631
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602632
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602633
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602634
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602635
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602636
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602637
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602638
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602639
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602640
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602642
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602643
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602644
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602645
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602646
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602647
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx%23_Toc451602648

 Project Plan

7

2. Project Background

Project Argos is a cross-disciplinary student project from Kongsberg Defence
Systems (KDS). The project was initiated the summer of 2015 by summer interns at
KDS. Through the summer projects KDS gets the opportunity to test technologies
and develop systems that can be interesting for the future. We are the second group
to work with Project Argos with our bachelor thesis in 2016, and succeeding project
groups are expected to further develop and improve the system. Project Argos will
serve as a technical demonstration and proof of concept for potential future products.
The project can eventually go into the KDS’ portfolio of command and control
products that aims to increase the safety and situational awareness on the battlefield.

The armoured vehicles of today are only equipped with a small window or opening. In
other words, the operator of the vehicle does not have great visibility. It is often
required to open a latch and expose a crew member to a potentially hostile
environment to acquire sufficient situational awareness. It could also be problematic
in non-hostile environment, where the poor visibility from the armoured vehicle can
cause or increase the severity of accidents. The reason for small windows in
armoured vehicles is to reduce the risk of weaker armour and reduce cost of
expensive armoured windows. The objective of Project Argos is to increase the
situational awareness of the vehicle operator and to improve the safety of the crew
through the use of virtual reality (VR). The driver of the vehicle should be able to use
and drive the vehicle normally, without endangering the crew, the vehicle or the
surroundings. The objective is also to record and store information to utilize in
personnel training and recon.

To drive a vehicle with VR has not been possible due to hardware and software
limitations. Graphics processing units (GPU) have not had the capability of
processing the sheer number of pixels in the required time for a useable experience
until the latest generation of GPUs. Camera technology has also had a rapid
improvement in small, light sensitive and high quality sensors. Strides in CPU and
GPU performance have reignited the VR development and multiple companies have
plans to release VR headsets to the public in 2016. With faster GPUs and high
quality cameras, there is now a possibility for real-time virtual reality.

At the end of the summer project in 2015 the previous team had produced a
functional software prototype using USB web cameras. It showed live video and
static heads-up display (HUD) objects. However, the live video was displayed with
200-250ms latency, which is more than double of the requirement, and there were no
playback or recording functionalities. The basis of the virtual world, along with some
configuration capabilities, was in place when our bachelor team took over.

2.1 Project Description

The project will develop a solution that enables the user to “see through amour” with
real-time virtual reality. From the inside of a vehicle the user can see the
surroundings through cameras and sensors mounted outside the vehicle.

 Project Plan

8

By using a camera system with multiple high resolution cameras, Project Argos will
have a continuous panoramic view of the surroundings outside the vehicle. The
cameras will provide the storage and VR system with picture data through the key
part of Project Argos, the software called TinyArgos. The software is the heart of the
system, where everything is connected and information is distributed. The bachelor
team of 2016 will develop and improve the existing software. See section 3. Project
Scope for more information.

Instead of seeing through the windows, the user will use VR goggles to operate the
vehicle. A projection of the environment is recreated in real-time in a virtual world.
Low delay from camera to screen in VR goggles will make it possible to drive using
only the video solution. This removes the drivers need for computer monitors.
Considering the limited space inside the vehicle, it will be beneficial to use goggles
instead of screens. This also enables separate views for the driver and the crew.

The aim is to give the driver better situational awareness, overview and
understanding of the situation. Project Argos could improve the safety for an operator
of an armoured vehicle and be integrated with other information systems to provide
the crew with additional information. Project Argos consists of the cameras and
sensor subsystems, the network, computer hardware, the VR headset and the
TinyArgos software.

2.2 Project Owner Description

The project assignment is given by Kongsberg Defence Systems (KDS). KDS is a
leading Norwegian space and defence contractor. The product portfolio includes
command and control, weapon guidance and surveillance, communication solutions

Figure 1: High level system architecture of Project Argos with software TinyArgos

 Project Plan

9

and missiles. KDS also makes advanced composites and engineering productions for
the aircraft and helicopter market. [1]

3. Project Scope

For this bachelor project we will continue to develop TinyArgos, the software in
Project Argos. This will result in TinyArgos 2.0. The main focus is to implement the
new GigE Vision cameras with the software. The live video from the camera rig will
be merged into a continuous image and displayed in the Oculus Rift headset with low
latency. We will also create functionalities to record the video, store it on disk and
make it possible to play back the recordings with the Project Argos software. Lastly,
the Project Argos software will support markers and information displayed on the
HUD.

The software we inherited was a proof of concept displaying still images from low-
end web cameras. Our scope is to expand the system to integrate new high-end
fixed focus surveillance cameras with live video, and deliver a functioning real-time
VR experience. The project will continue as a summer project for KDS, so an
important focus of the project is to have a clean and clear documentation and code
base.

We will not integrate the system on a vehicle or create the physical mounting points
for the physical system components. We will not integrate Project Argos with other
sensors or systems. Project Argos will not be ready for production at the end of this
bachelor project, but rather a demonstration of the technology and the possibilities of
real-time virtual reality for further development.

3.1 TinyArgos 2.0 Project Goals

The main aspects of development and main goals of our scope:

Project Argos, TinyArgos 2.0:

 Capture live video from four GigE Vision cameras

 Merge video streams to a single continuous image

 Store video stream to disk

 Playback of stored video

 Add markers and extra information on HUD

At delivery of the bachelor thesis we are expected to have a functioning technology
demonstration of Project Argos. The tech demo will serve as a proof of concept and a
technology showcase for KDS. It must be easy for a user to start and stop a
recording of the live video, and to play the recordings back with the same experience
as live video. The TinyArgos software must provide the user with a smooth and
pleasant live VR experience. The experience should be so pleasant as to prove the
viability of real world applications of real-time virtual reality. The specific engineering
goals are described in the requirements document.

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Documents/doc-1213_requirements_1_2.docx

 Project Plan

10

4. OpenUP: Project Process

This project follows OpenUP as project process. OpenUP is based on the principles
of Unified Process of iterative and incremental approaches, but is designed
specifically for small co-located software development teams. OpenUP is stripped
down to the essentials, which allows us to extend the process with the activities we
need and be effective with the system development. The focus of OpenUP is to
create value for the stakeholder, not to get stuck with unproductive deliverables and
formalities. [2]

OpenUP relies on an iterative approach within a project life cycle and has four
principles, which are similar to the principles in the Agile Manifesto. [3]

 Collaborate to align interests and share understanding

 Balance competing priorities to maximize stakeholder value

 Focus on the architecture early to minimize risks and organize development

 Evolve to continuously obtain feedback and improve
[2]

[4]

OpenUP has three layers of focus. The personal focus is the micro-increments that
each person does every day by performing tasks and producing work items. The
tasks are usually a day or shorter. The micro-increments drive the iterations forward,
and at the end of the iteration new functionality is integrated in the system. This is
seen on the team level. The last focus area is the stakeholders. The iterations drive
the project forward and delivering on the stakeholder requirements.

OpenUP is meant to be minimal, complete and extendable [5]. That means it
contains all necessary processes for a group to perform an entire project, but also
allows the group to tailor and adapt the process to each specific project. It is minimal
in the way that it is not overloaded with unproductive and formal tasks and

Figure 2: OpenUP layers

 Project Plan

11

documents, and contains a minimum of roles, tasks, artefacts and guidance. This is
to be lightweight, agile and flexible as a project process. In addition to the unified
process influence, it also incorporates aspects from agile project models. OpenUP
tries to be less pedantic than unified process and weighs documentation less.
OpenUP also incorporates agile principles and techniques. OpenUP can be seen as
a middle ground between Rational Unified Process [6] and agile models like Scrum
[7] and XP [8].

[4] [9] [10]

4.1 OpenUP: Basic Elements

The basic elements that are the building blocks for the entire project model is:

 Work product: The item being produced
Work product covers everything produced by the project, including documents,
code, decisions or physical products. If the work product results in something
concrete it is called an artefact. If the outcome is not something concrete, it is
called a result. Multiple artefacts put together are called deliverance.

 Task: How to perform the work
A task is performed by a role. The task comprises of a series of steps that
includes creating or altering work products. The tasks are the main building
blocks that the project members perform to produce results in the project.

 Role: Who will perform the tasks and who is responsible
The OpenUP process requires there to be a stakeholder, an analyst, an
architect, a developer, a tester and a project manager.
See section 9.2 for more information.

 Process: Defines the work flow and breakdown of the work
Processes collect and structure the task, work products and roles. Processes
are built up by activities that enable us to plan the progress in the project by
creating work breakdown structures (WBS). The processes are the starting
point to produce the Gantt diagram.

 Guidance: Templates, lists, examples and concepts
[2]

4.2 Reasoning for choosing OpenUP

We did not have any first-hand experience with following a defined project process,
so we had to do research and rely on advice from supervisors and the college. We
found early on that we needed an iterative and flexible model to support our very
software heavy project. We considered Rational Unified Process (RUP), Scrum and
OpenUP. With our research our conclusion was that OpenUP seemed to be a good
compromise between unified process and Scrum. We wanted a process that natively
allows for deadlines, as the deadlines the college sets are rigid. We could have
modified Scrum to fit our need, or we could have used RUP modified with agile

 Project Plan

12

methods. The key deciding factor for us was that we wanted a well-documented
process that would enable us to quickly get to working. The Eclipse Foundation
curates the wiki for OpenUP, a site with lots of information, guidance and tools to
help us get up and running.

5. OpenUP: Phases of the Project

OpenUP projects are divided into four phases, from inception to transition. The
phases focus on different parts of the development process, and can contain multiple
iterations inside the phase. This division is intended to promote collaboration and
align interests and understanding. Also it’s intended to get a stable architecture in
place early in the project. The work from earlier phases is reviewable in later phases
as understanding and knowledge grows. The focus on requirements early on is to
achieve a stable architecture as early as possible. The architecture should be able to
incorporate expansions of the system. However, if needed it is also possible to alter
the architecture in later stages. Dividing the project into phases makes it clear what
the objective at any time in the project is.

[4]

Phase Objective

1 Inception Understand what to build

 Identify key system functionality

 Determine a possible solution

 Understand cost, schedule and risk in the
project

2 Elaboration Get a more detailed understanding of the
requirements

 Design, implement, validate and baseline an
architecture

Figure 3: Project phases

Figure 4: The OpenUP life-cycle

 Project Plan

13

 Mitigate risks

 Produce an accurate schedule

3 Construction Iteratively develop a complete product

 Minimize development costs

4 Transition Test to validate that user experience are
met

 Achieve stakeholder concurrence that
deployment is complete

 Improve future project performance
Table 1: Overview of the objectives in the phases in OpenUP

[2]

5.1 Inception

The focus in the inception phase is to
assemble the project group, make
some key decisions on the choice of
project model, distribution of roles,
align interests and understanding and
prepare the environment.
[4]

Figure 5: Activity diagram inception phase

 Project Plan

14

5.2 Elaboration

In the elaboration phase tasks can
be performed in parallel. The main
objectives are to discover the
functional and system requirements,
develop the architecture for the
project and create a project plan,
which includes risk mitigation and
work schedule.
[4]

5.3 Construction

In the construction phase the
development of the project is
iteratively performed inside the
bounds of the architecture. Ideally
the architecture is stable and robust
enough to allow all requirements to
be implemented within the structure.
Functionalities will continuously be
tested, validated and integrated into
the code base. This ensures that the
code base is complete and stable.
Code and system can be tested and
shown to the intended users in this
phase.
[4]

5.4 Transition

In the final transition phase the
main objective is to polish the
finished product; fine tune
functionalities, performance and
overall quality from testing to the
release. This is also the phase
where documentation is finalized
and users are given the
appropriate instructions and
training to operate the system.
[4]

Figure 6: Activity diagram elaboration phase

Figure 7: Activity diagram construction phase

Figure 8: Activity diagram transition phase

 Project Plan

15

6. OpenUP: Iterations

An iteration is a set period of time to accomplish a number of tasks to improve the
product. At the end of each iteration, the code base should be stable and executable
with the new functionalities to ensure that there is always added value to the project.
The artefacts created in earlier iterations are also updated. This means older
documents are updated as project knowledge and skills increase. Instead of
developing artefacts one after another in a pipeline fashion, they are evolving
throughout the project life cycle, although at different rates. [4]

The iterative approach means we implement functionality into the code base often,
instead of a large single implementation at the end of the project. This approach can
help us discover problems and issues earlier in the process, minimizing the cost to
repair bugs, faults and errors. The iterative approach can also help divide the major
development tasks into smaller more manageable chunks of work. [11]

This approach is different from a more traditional waterfall-based model, where each
task follows the previous and is performed until it is finished. In pure software
development the waterfall approach could be problematic as the implementation
stage is pushed back towards the end of the project. You run the risk of not having a
functioning code base until towards the very end, just individual software modules. It
could be expensive, hard and time consuming to discover a problem at a late stage
in development. The iterative approach tries to combat this issue. [12]

7. Milestones in Project Argos

The key milestones in the project are the presentations for the university college, the
system acceptance test with the stakeholder, delivery of the final documentation and
the deliverance presentation for KDS.

 First presentation 09.02.2016

o Project plan
o Requirements specification
o Test specification

 Second presentation 16.03.2016
o Project progress
o System architecture
o Software architecture

 System Acceptance Test with stakeholder 11.05.2016
o Live demo in the lab with project owner

Figure 9: Project milestones

 Project Plan

16

 Final Document Delivery 23.05.2016
o All documentation
o All code documentation

 Final Presentation 27.06.206
o Project progress
o Final product demo
o Technical demonstration

 Stakeholder Presentation and deliverance 01.06.2016
o Project handover
o Technical demonstration

8. Project Schedule

The project started 11.01.2016 with final documentation delivery 23.05.2016. The
final presentation is 27.05.2016 and final delivery to the stakeholder is 01.06.2016.
We expect to spend 500 to 600 hours per group member, totalling around 3500
hours of work with all aspects of the project, from planning to execution and
presenting. This is based on projections and expectations from the college. The bulk
of the hours will be spent developing the solution and expanding the functionality and
code base. We have used the software Microsoft Project to create the detailed
project schedule. See for the detailed Gantt diagram.

 8.1 Time Schedule

11.01.2016 10.06.2016
01.02.2016 01.03.2016 01.04.2016 01.05.2016 01.06.2016

11.01.2016 - 09.02.2016

Inception

09.02.2016 - 23.02.2016

Elaboration

23.02.2016 - 20.05.2016

Construction

20.05.2016 - 10.06.2016

Transition

11.01.2016 -
22.01.2016

I1: Project
Start

22.01.2016 -
09.02.2016

I2: Requirements
spesification

09.02.2016 -
23.02.2016

I3: Requirements
& Architecture

23.02.2016 - 17.03.2016

I4: Integrate Cameras

05.05.2016 -
20.05.2016

I6: Add markers
and Information

20.05.2016 - 10.06.2016

I7: Deliverance

17.03.2016 – 06.05.2016
I5a: Merge Images

17.03.2016 – 15.04.2016
I5b: Recording

15.04.2016 – 06.05.2016
I5c: Playback

09.02.2016

First Presentation

16.03.2016

Second Presentation
23.05.2016

Document Delivery
27.05.2016

Final Presentation

01.06.2016

Stakeholder Presentation

11.05.2016

System Acceptance Test

Based on OpenUP we have four phases in the project with seven iterations. In the
first phase with two iterations the focus is to understand the complexities of the tasks
at hand and to organize the work in the best way possible. It will also be focused on
gathering of requirements and to create tests to verify and validate all the
requirements. This phase will end with the first presentation as the milestone.

The elaboration phase contains one iteration and will focus on the architecture and
refinement of the requirements based on feedback from the stakeholders. The

Figure 10: Project timeline

file://///KDP40043734/argosserver/Argos/Project%20documents/Diagrams/Argos_project_1_0.pdf

 Project Plan

17

architecture at the end of the elaboration phase should be stable enough to handle
most, if not all the challenges in the following construction phase, and the
architecture notebook is the key artefact from this phase.

The construction phase includes four iterations, with three iterations working in
parallel. This is the largest phase of the project. It has two major milestones: The
second presentation and the external systems acceptance test. The focus in the
construction phase is extending the code base with new and improved functionalities.
The architecture will also be updated along the way to be current with the code base.
Tests will be performed along the way, verifying functionalities before they are
merged in to the default software branch. This will ensure that our default branch of
the code base always works and new functionalities are constantly integrated. The
key artefacts are the iteration reports and burndown reports to keep track of the
progress.

The final transition phase contains the delivery of the project. The major milestones
are documentation delivery, the final presentation and the deliverance with the
stakeholder presentation. In this phase the development work shall be finished, and
the focus is to perform the final polish to the documentation and deliverables.

8.2 Milestones and Objectives in Iterations

We have planned for seven iterations, with three running in parallel. Each iteration
has clearly defined tasks, milestones and success criteria. At the end of the iterations
we will review the work done and assess any tasks needing more work. The
iterations will last roughly two weeks, but we have done some accommodations in
iteration length to make sure the team is utilized to the best of our abilities. Some
hours will be lost to the Easter holiday, and the tasks in I5a Merge Images does not
make sense to break into smaller pieces to fit it into a two-week iteration. The
iterations I5a, I5b and I5c will run in parallel to utilize the entire team. We are able to
achieve this parallelism since the recording and playback functionality does not
depend on the functionality for merge images, and the other way around. We split the
work into different iterations to clarify the objectives of the major development goals
the project had. This is to avoid convoluting an iteration with objectives from different
major development tasks.

The iterations contain the objectives and milestones of the project. All our work is
geared towards developing the system within the timeframe and reaching the
milestones. The objectives in every iteration are directly linked to the task that is
performed in each iteration. Some tasks can also be performed multiple times in a
single iteration.

 Project Plan

18

Iteration Objective Start date and milestones

1.1 - I1 Inception, project start
Plan project
Mitigate risks
Develop vision
Create environment

11.1.2016 – 19.1.2016

1.2 - I2 Inception, requirements
Discover requirements
Develop use case
Develop test specification
Envision architecture

20.1.2016 – 9.2.2016
Presentation 1: 9.2.2016

2.1 - I3 Elaboration, requirements and
architecture
Refine architecture
Refine system-wide requirements
Refine use case
Mitigate risk

9.2.2016 – 21.2.2016

3.3 - I4 Construction, integrate cameras
Develop, test and integrate
functionality
Revise requirements
Mitigate risks

22.2.2016 – 17.3.2016
Presentation 2: 16.3.2016

3.4 - I5a Construction, merge images
Develop, test and integrate
functionality
Revise requirements
Mitigate risks

18.3.2016 – 4.5.2016

3.5 - I5b Construction, record video feed
Develop, test and integrate
functionality
Revise requirements
Mitigate risks

18.3.2016 – 14.4.2016

3.6 - I5c Construction, video playback
Develop, test and integrate
functionality
Revise requirements
Mitigate risks

15.4.2016 – 4.5.2016

3.7 - I6 Construction, add markers and
overlays
Develop, test and integrate
functionality
Revise requirements
Mitigate risks

5.5.2016 – 20.5.2016

4 - I7 Transition
Deliver the documentation
Deliver the project to project owner

20.5.2016 – 10.6.2016
Documentation: 23.5.2016
Presentation 3: 27.5.2016

 Project Plan

19

8.3 Work Breakdown Structure

To make sure we reach the objectives of the project we have broken the large
development job into small tasks. The tasks are the micro increments that together
build the project. There are five top-level tasks in the work breakdown structure
(WBS). These correspond with the phases of the project and ongoing tasks. The top-
level and mid-level tasks are comprised of low-level tasks. It is the low level tasks
that are the work items that the group members will perform. The last column in the
WBS table is the WBS number. This is the unique identifying number for that task.
Documents produced by a task carry the number of that task. The following table
contains the top level and the second level tasks, showing the phases and iterations.

Name Start Finish WBS

Inception Mon 11.01.16 Tue 09.02.16 1

Project start - I1 Mon 11.01.16 Fri 19.01.16 1.1

Requirement
specification - I2

Wed 20.01.16 Tue 09.02.16 1.2

Risk review meeting -
inception

Tue 19.01.16 Tue 02.02.16 1.3

Elaboration phase Tue 09.02.16 Tue 23.02.16 2

Requirements &
architecture - I3

Tue 09.02.16 Tue 21.02.16 2.1

Risk review meeting -
elaboration

Tue 16.02.16 Tue 16.02.16 2.3

Construction phase Mon 22.02.16 Fri 20.05.16 3

Plan and manage
iteration

Tue 23.02.16 Wed 24.02.16 3.1

Identify and refine
requirements

Tue 23.02.16 Tue 23.02.16 3.2

Integrate cameras -
I4

Mon 22.02.16 Thu 17.03.16 3.3

Presentation Wed 09.03.16 Thu 17.03.16 3.9

Merge image - I5a Thu 17.03.16 Fri 04.05.16 3.4

Record video stream
- I5b

Thu 17.03.16 Fri 14.04.16 3.5

Video playback - I5c Fri 15.04.16 Wed 04.05.16 3.6

Add markers and
information - I6

Thu 05.05.16 Fri 20.05.16 3.7

Risk review meeting -
construction

Tue 15.03.16 Tue 26.04.16 3.8

Transition phase Fri 20.05.16 Thu 02.06.16 4

Evaluate project Wed 25.05.16 Thu 26.05.16 4.3

Documentation
deadline

Wed 25.05.16 Wed 25.05.16 4.1

Perform systems test Fri 20.05.16 Mon 23.05.16 4.4

Review systems test Fri 20.05.16 Fri 20.05.16 4.5

Presentation Wed 01.06.16 Thu 02.06.16 4.2

Ongoing tasks Mon 11.01.16 Wed 01.06.16 5

 Project Plan

20

Supervisor meeting Mon 11.01.16 Mon 11.01.16 5.1

Stakeholder meeting Mon 11.01.16 Mon 11.01.16 5.2

General research Mon 11.01.16 Mon 11.01.16 5.3

Administrative work Mon 11.01.16 Thu 14.01.16 5.4

Web page Mon 11.01.16 Fri 15.01.16 5.5

Table 2: Top level WBS

The following table shows the entire WBS. Indentations are used to clarify where
each task belongs in the hierarchy.

Name WBS

Inception 1

Project start - I1 1.1

Initiate project 1.1.1

Initial project meeting 1.1.1.1

Develop document standard 1.1.1.2

Plan project 1.1.1.3

Develop technical vision 1.1.1.4

Plan and manage iteration 1.1.2

Plan iteration 1.1.2.1

Prepare environment 1.1.2.2

Tailor the process 1.1.2.2.1

Set up tools 1.1.2.2.2

Verify tool configuration and installation 1.1.2.2.3

Deploy process 1.1.2.2.4

Manage iteration 1.1.2.3

Assess results 1.1.2.4

Requirement specification - I2 1.2

Identify and refine requirements 1.2.1

Identify and outline requirements 1.2.1.1

Detail use-case scenarios 1.2.1.2

Detail system-wide requirements 1.2.1.3

Create test cases 1.2.1.4

Agree on technical approach 1.2.2

Envision the architecture 1.2.2.1

Presentation 1.2.4

Create presentation 1.2.4.1

Presentation 1 rehearsal 1.2.4.2

Presentation 1 1.2.4.3

Risk review meeting - inception 1.3

Risk review meeting - inception 1 1.3.3

Risk review meeting - inception 2 1.3.4

Elaboration phase 2

Requirements & architecture - I3 2.1

Plan and manage iteration 2.1.1

Identify and refine requirements 2.1.2

 Project Plan

21

Technical research: VR-Goggles 2.1.2.1

Technical research: Lenses 2.1.2.2

Technical research: Network 2.1.2.3

Develop architecture 2.1.3

Refine architecture 2.1.3.1

Develop solution increment 2.1.3.2

Design solution 2.1.3.2.1

Implement solution 2.1.3.2.3

Integrate and create build 2.1.3.2.5

Risk review meeting - elaboration 2.3

Risk review meeting - elaboration 1 2.3.3

Construction phase 3

Plan and manage iteration 3.1

Identify and refine requirements 3.2

Integrate cameras - I4 3.3

Plan and manage iteration 3.3.1

Identify and refine requirements 3.3.2

Develop solution increment 3.3.3

Design solution 3.3.3.1

Implement solution 3.3.3.3

Integrate and create build 3.3.3.5

Merge image - I5a 3.4

Plan and manage iteration 3.4.1

Identify and refine requirements 3.4.2

Develop solution increment 3.4.3

Design solution 3.4.3.1

Implement solution 3.4.3.3

Integrate and create build 3.4.3.5

Record video stream - I5b 3.5

Plan and manage iteration 3.5.1

Identify and refine requirements 3.5.2

Develop solution increment 3.5.3

Design solution 3.5.3.1

Implement solution 3.5.3.3

Integrate and create build 3.5.3.5

Video playback - I5c 3.6

Plan and manage iteration 3.6.1

Identify and refine requirements 3.6.2

Develop solution increment 3.6.3

Design solution 3.6.3.1

Implement solution 3.6.3.3

Integrate and create build 3.6.3.5

Add markers and information - I6 3.7

Plan and manage iteration 3.7.1

Identify and refine requirements 3.7.2

Develop solution increment 3.7.3

Design solution 3.7.3.1

 Project Plan

22

Implement solution 3.7.3.3

Integrate and create build 3.7.3.5

Risk review meeting - construction 3.8

Risk review meeting - construction 1 3.8.1

Risk review meeting - construction 2 3.8.2

Risk review meeting - construction 3 3.8.3

Presentation 3.9

Create presentation 2 3.9.7

Presentation 2 rehearsal 3.9.8

Presentation 2 3.9.9

Transition phase 4

Documentation deadline 4.1

Presentation 4.2

Create final presentation 4.2.1

Final presentation rehearsal 4.2.2

Final presentation 4.2.3

Evaluate project 4.3

Perform systems test 4.4

Review systems test 4.5

Ongoing tasks 5

Supervisor meeting 5.1

Stakeholder meeting 5.2

General research 5.3

Administrative work 5.4

Web page 5.5
Table 3: All low level task WBS

8.4 Iteration Plans

To make it easier to handle the amount of work that the project needs to get done,
the iteration is a great tool to focus on the tasks at hand. The iterations allow us to
incrementally improve the project with new functionality or artefacts and updates to
older work items. The task has a priority of 0-5, where 0 is the highest priority and 5
the lowest. These tables contain the specific technical development tasks in each
iteration. There is also implementation and testing work that is covered under the
development tasks. The planning of the iteration and other administrative work are
not included in the following tables, they are meant to give a clear picture of the
development tasks in the iterations. More details about the iterations can be found in
the iteration report document.

../Iteration%20reports/doc-112_Iteration_report_2_0.docx

 Project Plan

23

8.4.1 Iteration I1 Project Start

The priority in the first iteration is to get the project started and develop a common
ground to start the development with. Everybody needs to be familiarized with the
project vision and goals, and we need to create a suitable office space to set up our
tools.

Task Priority Responsible Estimated
hours

WBS

Develop document
standard

1 Ingvild Damtjernhaug 12 1.1.1.2

Initial project plan 0 Leiv Fredrik Berge 100 1.1.1.3

Develop technical
vision

0 Trond Egil Hammer 48 1.1.1.4

Tailor the process 1 Leiv Fredrik Berge 30 1.1.2.2.1

Set up tools 2 Mathias Havdal 75 1.1.2.2.2

Verify tools and
configurations

2 Morten J. Barbala 30 1.1.2.2.3

Deploy process 1 Leiv Fredrik Berge 20 1.1.2.2.4
Table 4: Iteration I1 WBS plan

8.4.2 Iteration I2 Requirements Spesification

The second iteration starts the work with gathering and structuring the requirements
and use cases. This ends with the first presentation where the requirements
specification and test specification is presented.

Task Priority Responsible Estimated
hours

WBS

Identify and outline
requirements

0 Trond Egil Hammer 75 1.2.1.1

Detail use case
scenarios

0 Thomas Hansen 75 1.2.1.2

Detail system-wide
requirements

0 Thomas Hansen 100 1.2.1.3

Create test cases 1 Morten J. Barbala 40 1.2.1.4

Set up tools 2 Mathias Havdal 40 1.1.2.2.2

Verify tools and
configurations

2 Morten J. Barbala 30 1.1.2.2.3

Risk Review
meeting

1 Leiv Fredrik Berge 12 1.3

Create first
presentation

0 Ingvild Damtjernhaug 100 1.2.4.1

First presentation 0 Leiv Fredrik Berge 12 1.2.4.3
Table 5: Iteration I2 WBS plan

 Project Plan

24

8.4.3 Iteration I3 Requirements & Architecture

In the third iteration we focus on refining the requirements and developing a stable
architecture to start the development process. We will get the inherited code to
compile in our build environment and to technical research.

Task Priority Responsible Estimated
hours

WBS

Refine architecture 0 Thomas Hansen 200 2.1.3.1

Develop solution
process diagram

1 Mathias Havdal 40 2.1.3.2

Risk review
meeting

1 Leiv Fredrik Berge 12 2.3

Refine risk
document

0 Trond Egil Hammer 40 2.3.3

Update SDKs 1 Mathias Havdal 20 2.1.3.2.3

Migrate VS 2013 to
2015

1 Mathias Havdal 20 2.1.3.2.3

Compile code base 1 Mathias Havdal 10 2.1.3.2.3

Research network
solutions

1 Morten J. Barbala 40 2.1.2.3

Research lenses 0 Trond Egil Hammer 70 2.1.2.2

Technical
document VR
goggles

1 Ingvild Damtjernhaug 40 2.1.2.1

Table 6: Iteration I3 WBS plan

8.4.4 Iteration I4 Integrate Cameras

The forth iteration is the first in the construction phase. We will focus on developing
the functionality we need to implement the new type of cameras with the GigE Vision
SDK. This includes the second presentation as well, this presentation has a more
technical focus, detailing the architecture.

Task Priority Responsible Estimated
hours

WBS

Refine architecture 0 Thomas Hansen 100 3.3.2

Choose GigE SDK 0 Mathias Havdal 20 3.3.3.1

Implement GigE
SDK

0 Mathias Havdal 50 3.3.3.3

Order lenses 0 Trond Egil Hammer 30 3.3.1

Implement XML
config parsing

1 Leiv Fredrik Berge 50 3.3.3.3

Create functions to
receive picture
data

0 Mathias Havdal 130 3.3.3.3

 Project Plan

25

Create second
presentation

1 Ingvild Damtjernhaug 100 3.9.7

Second
presentation

0 Leiv Fredrik Berge 12 3.9.9

Table 7: Iteration I4 WBS plan

8.4.5 Iteration I5a Merge Images

The fifth iteration is in parallel with I5b first, and later with I5c. This is a longer
iteration because there is only a few large tasks, that does not make sense to divide
into smaller chuncks. This is very important development tasks, where the video
streams will be displayed in the Oculus and stitched.

Task Priority Responsible Estimated
hours

WBS

Refine architecture 0 Leiv Fredrik Berge 50 3.4.2

Transfer video data
to OpenGL render
medium

0 Mathias Havdal 100 3.4.3.3

Create and
position OpenGL
geometry to render
video on

0 Thomas Hansen 100 3.4.3.3

Solutions for
merge areas

1 Leiv Fredrik Berge 50 3.4.3.1

Review config
system

0 Ingvild Damtjernhaug 100 3.4.3.3

Table 8: Iteration I5a WBS plan

8.4.6 Iteration I5b Record Video

I5b is the first of the two part development of the playback features. This first part
creates the recording function. This will be quite hard to verify with test before the I5c
is complete with the playback functions.

Task Priority Responsible Estimated
hours

WBS

Add interface to
control recording

0 Trond Egil Hammer 40 3.5.3.3

Add HUD
notification for
recording status

0 Morten J. Barbala 75 3.5.3.3

Implement system
for recording to file

0 Trond Egil Hammer 150 3.5.3.3

Table 9: Iteration I5b WBS plan

 Project Plan

26

8.4.7 Iteration I5c Video Playback

The second part of the playback functionality is the player. This will get the data from
a recording, and reuse as much as possible from live video to create the playback.

Task Priority Responsible Estimated
hours

WBS

Add functionality fir
creating buffer
from raw data on
disk

0 Morten J. Barbala 40 3.6.3.3

Add functionality
for displaying
buffers in renderer
with correct timing
and framerate

0 Mathias Havdal 80 3.6.3.3

Add functionality
for controlling
playback

1 Morten J. Barbala 60 3.6.3.3

Add functionality
for parsing config
file specific to the
recording that is
being played

1 Leiv Fredrik Berge 60 3.6.3.3

Table 10: Iteration I5c WBS plan

8.4.8 Iteration I6 Add Markers and Information

In the final construction iteration we will perform all final system tests and finalize
code documentation. We will also update the HUD object system.

Task Priority Responsible Estimated
hours

WBS

Clean up HUD
objects

0 Thomas Hansen 60 3.7.3.3

Generate test HUD
objects

1 Ingvild Damtjernhaug 20 3.7.3.3

Perform system
tests

0 Morten J. Barbala 60 3.7.3.5

Create systems
guide

1 Mathias Havdal 30 3.7.3.1

Finalize code
documentation

0 Leiv Fredrik Berge 75 3.7.2

Table 11: Iteration I6 WBS plan

 Project Plan

27

8.4.9 Iteration I7 Delivery

The final iteration is all about delivery, with the final presentation, documentation
deadline and the delivery of the project to the project owner.

Task Priority Responsible Estimated
hours

WBS

Finalize
documentation

0 Ingvild Damtjernhaug 50 4.1

Finalize final
presentation

0 Leiv Fredrik Berge 50 4.2.1

Perform final
presentation

0 Leiv Fredrik Berge 12 4.2.3

Deliver the project 0 Leiv Fredrik Berge 30 4.2
Table 12: Iteration I5a WBS plan

9. Human Resource Plan

This section identifies the individuals and organizations with leading roles in Project
Argos. Their roles and responsibilities are described.

Figure 11: Project organization chart

 Project Plan

28

9.1 Project Team

The bachelor team consists of six computer engineering students at University
College of Southeast Norway (HSN). We are two students from virtual systems and
four from embedded systems. One of the group members had a summer internship
at KDS during the summer of 2015 in the same department as Project Argos, and
this is how we got involved with the project. Project Argos is the final project of our
bachelor degree. We selected our own team so we knew each other well before the
project started, and this made the job of dividing roles easier. We selected the roles
the first week of the project where we considered strengths, weaknesses and other
factors that could impact the person’s ability to perform their tasks.

9.2 Roles of the Team Members

OpenUP relies on a minimum number of roles to cover all necessary
tasks in the project model. The project manager, tester, architect,
analyst and developer are all compulsory roles in OpenUP. The roles
define what the team members are responsible for, both tasks and
work products. We have extended the model with two extra roles, the
document manager and the lead developer. This is to make sure we
meet all the requirements from the college in regards to
documentations.

Every team member has a role with well-defined areas of
responsibility. Every team member is also considered to be
developers, which means that all of us will be responsible for parts of the software.
We have a flat organization structure with emphasis on joint decisions. By utilizing
OpenUP we want to reduce risk and maximize stakeholder satisfaction. The work will
be primarily performed from a single location where all group members share office,
ensuring frequent and efficient communication.

Roles:

 Project manager: Leiv Fredrik Berge

 Analyst: Trond Egil Hammer

 Architect: Thomas Hansen

 Tester: Morten J. Barbala

 Document manager: Ingvild Damtjernhaug

 Lead developer: Mathias Havdal

Figure 12:
Generic role
figure

 Project Plan

29

9.2.1 Project Manager

Leiv Fredrik Berge
Software Engineer
452 41 510
lf@lfberge.com

The project manager will lead the planning of the project, coordinate the interaction
between the project team and the stakeholders and keep the project moving in the
right direction. He will also keep the team members motivated and focused on
meeting the project goals and requirements.

Leiv Fredrik was a summer intern at KDS summer 2015 and was our link to the
project owner and KDS. He is a natural leader and it felt right to give him the role as
project manager. He has the ability to motivate and drive a project forward, is hard
working and has a wide spectre of skills and knowledge.

 Is responsible for
o Driving the project forward and ensuring its success
o Acquiring acceptance from the stakeholder with regards to the product
o Evaluating risk
o Controlling and reducing risks with mitigation strategies
o Ensuring that the project team delivers desired results for the project within

the timeframe

Figure 13: Project manager

 Project Plan

30

9.2.2 Analyst

Trond Egil Hammer
Software Engineer
482 93 433
trondehammer@gmail.com

The analyst is responsible for representing the customer and stakeholders needs.
The analyst must understand the problem that the system is supposed to solve by
gathering input from stakeholders, and he will capture and prioritize the requirements
gathered from stakeholders.

The most important tasks of the analyst come early in the project, and this was a
deciding factor in making Trond Egil the analyst. Trond Egil will get twins in April and
that will naturally make him less available towards the later stages of the project.

 Is responsible for
o Representing the stakeholders in internal settings
o Ensuring that the stakeholders’ needs are represented by requirements

in the system
o Ensuring that the architect of the system solves the problem the

stakeholders need solved

Figure 14: Analyst

 Project Plan

31

9.2.3 Architect

Thomas Hansen
Software Engineer
406 28 686
mr.hansen@live.no

The architect is responsible for defining the major software architecture. This
includes taking technical decisions that can limit the design and the implementation
of the system. The architect will work with the project manager to reduce risk and
create process models for the project, and he must also work closely with the analyst
to ensure that the stakeholder requirements are covered in the technical architecture
of the system.

Thomas is a strong developer with some experience with OpenGL. He understands
the technical aspects of the project and can help the rest of the team to get on the
same page with the software architecture.

 Is responsible for
o Coordinating the technical design of the system
o Identifying and documenting important aspects of the system with regards

to the architecture
o Documenting the reasoning for technical decisions with regards to

stakeholder requirements and reducing technical risk
o Ensuring the project group follows the technical architecture

Figure 15: Architect

 Project Plan

32

9.2.4 Tester

Morten J. Barbala
Software Engineer
918 30 834
netrom94@gmail.com

The tester is responsible for the core test activities. This includes identifying, defining,
implementing and perform necessary tests as well as documenting and analysing the
results.

Morten is detail oriented and a good developer. He has the ability to plan, execute
and analyse the tests.

 Is responsible for
o Identifying the necessary tests to perform
o Identifying the appropriate test steps
o Implementing individual tests
o Documenting and verifying the performed tests
o Analysing results and advising developers to improve the system
o Ensuring that the team members are aware of test results

 Figure 16: Tester

 Project Plan

33

9.2.5 Document manager

Ingvild Damtjernhaug
Software Engineer
920 17 473
ingvild@damtjernhaug.no

The document manager will ensure that the project has a single, unified profile in
documentation and presentation. She is responsible for ensuring that the
documentation of the rest of the project team is following the set standards for the
project. She is also responsible for creating and leading the work with presentations
of the project.

Ingvild is a great organizer and has experience as a presenter. She has the ability to
keep everyone focused and motivated on the key tasks at hand.

 Is responsible for
o Creating document standards
o Ensuring the quality of the team members’ documentation
o Leading the work with presentations of the project
o Developing and designing the presentations

Figure 18: Document manager
Figure 17: Document Manager

 Project Plan

34

9.2.6 Lead Developer

Mathias Havdal
Software Engineer
452 74 007
matte3560@gmail.com

The lead developer will lead the work with development and, together with the project
manager, ensure that the development team works in an efficient and productive
manner.

Mathias is a great developer, with strong experience with C++. He has the abilities to
help the rest of the team to produce high quality code in a timely manner.

 Is responsible for
o Creating and reviewing the development iteration plan with the project

manager
o Creating a development iteration burndown report before each risk review

meeting

Lead developer

Plan development iteration Review development
iteration

Performs

Development iteration plan Development iteration
burndown

Responsible for

Figure 19: Lead developer

 Project Plan

35

9.2.7 Developer

Every group member is a developer in the project. This is a mandatory role in
OpenUP. The developers are responsible for developing all of the components of the
software in the system. This includes designing the software to match the
architecture and could mean creating prototyping for user experience, implementing,
building, testing modules and integrating components in the code base.

 Is responsible for
o Designing and developing parts of the system in line with the architecture
o Building, implementing, testing and integrating components in the code

base

9.3 Sensors and Supervisors

In addition to the roles as stakeholders, some of the individuals and organizations
involved in project Argos serve as sensors and supervisors.

External supervisor: Alexander Gosling
Mail: alexander.gosling@kongsberg.com

External supervisor will be the team contact person during the assignment and have
a technical overview of the assignment. He will provide information and guidance to
the group during the project. He will also have weekly meetings with the group to be
updated on the work progress. External supervisor will be present on the
presentations.

Figure 20: Developer

 Project Plan

36

Internal supervisor: Radmila Juric
Mail: radmila.juric@hbv.no

Internal supervisor will act as the groups mentor. She will contribute to get the project
moving in the right direction. She will be updated every week with work progress
through follow-up documents.

External sensor: Alexander Gosling
Mail: alexander.gosling@kongsberg.com

External sensor will be present on the presentations. He will also be present at the
meetings discussing the grades, both before and after each presentation. He will
evaluate the group work based on the requirements and tasks given in the
assignment.

Internal sensor: Karoline Moholth
Mail: Karoline.Moholth@hbv.no

Internal sensor will evaluate the group work throughout the project. Before the three
presentations she will be studying the delivered documentation. She will also be
present on meetings before and after the presentation as well as the presentations.

10. Project Praxis

We start every day with a stand up meeting. As the name indicates every team
member stands upright in a circle facing each other. In turn, everyone tells what he or
she did yesterday, what he/she accomplished, if there were any challenges and what
the plans are for today. The other group members are not allowed to comment or ask
questions during this session, but when everybody has had their turn we discuss any
problems or questions. The daily stand up meetings give as a common
understanding; everybody is up to date on the progress and it helps us keep track on
the iterations. They also help everyone see where we are heading and where we are,
in general; a nice way to give every group member attention and a moment to speak.
The stand-up meetings are especially helpful if someone has been absent.

After the stand-up meeting we meet in front of the calendar, our project plan and our
Kanban board. We have printed the calendar in a large format, which makes it visual
to everyone, and it is easy to see timeframes, deadlines, iterations etc. We use small
post-its/sticky notes so it is easy to change the calendar if plans are changing.

The project plan in the form of a Gantt diagram is also printed in a large format,
which makes it easier to access and navigate. The Gantt diagram is digitally
available for everyone, but as we always work together from the same place we
experience that by making it the first thing you see every morning, the project plan
becomes more elucidated and alive.

The Kanban board is a work and workflow visualization tool that enables us to
optimize the flow of work. We have chosen to have a physical Kanban board hanging
on the wall next to the Gantt diagram and our calendar. Kanban is actual the

 Project Plan

37

Japanese word for “visual sign” or “card” [13]. Both small and large types of work are
put on the board, and divided into four categories using coloured post-its: Code,
documentation, testing and other. Furthermore, the board has six lanes: To do, in
review, development, test, integrate and done. If a task comes up, someone will
immediately put the task on the board to make sure tasks not are forgotten. By
looking at the Kanban board together every morning after the stand-up meeting, no
one need to wonder what to do that day. It helps us optimize our workflow and
improves our effectiveness. Since tasks of all sizes are put on the board, it is
convenient to turn to the board when you have some spare minutes, e.g. are waiting
for something else or are done with a task and have just enough time to fix a little
task or problem. The Kanban board greatly limits downtime and helps us
communicate more easily what work needs to be done and when. The whole group
appreciates the tactile, low-tech feel of the physical board.

We have also a section on the wall for the project goals, our personal goals and our
questions to external supervisors and stakeholder. The different roles are also
visualized in the form of diagrams on the wall. Together with the Kanban board, the
calendar and the Gantt diagram, it makes the process more visual and gives an at-a-
glance visibility of the current status of the work in progress and project overall.

We use Google Forms and Google Docs to register work hours. We have
categorized the timesheet in over 50 different categories, covering all the different
tasks according to the work-breakdown-structure. The team members are free to
work whenever they want to, but everybody should be in our office between 9am and
3pm. We use Google Sheets to keep exact records of every hour spent. This gives a
good overview in both spreadsheets and automatically generated diagrams.
However, the work hour should preferably registered the same day the work took
place, since the document manager registers the hours in a burndown report the next
morning. The burndown reports gives an even more accurate insight in how the
workhours are spent and makes it easier to locate discrepancy from the project plan.

Throughout the project we have five scheduled risk review meetings to monitor
project progress and reduce risks. The risks will change during the process, both in
probability and severity. In the meetings, the whole team sits down together and
looks at the risk analyses. We discuss the risks, consider if different factors have
increased or decreased the risk and finally adjust the risk analysis according to the
result of or discussion.

The project will follow an iterative development process with continuous integration.
We developed a stable architecture early in the process, which will iteratively be
extended and adapted with new functionalities. This will ensure that we always have
a functioning code base, as integration is a step in each iteration. Each iteration cycle
is approximately two weeks while tasks are usually less than one day. Completed
tasks are marked as 100%, incomplete tasks as 50%, and not started as 0%.

11. Communication Plan

The internal communication is primarily in person in our co-located office space at
Krona. We have a calendar and the project plan on the wall, so messages and tasks

 Project Plan

38

are written on the wall for everyone to see. However, if offsite communication is
needed we have created a room in HipChat. This is a collaboration and
communication tool from Atlassian, which can be tightly integrated with other tools
from Atlassian, like the issue tracking application JIRA, collaboration tool Confluence
and Mercurial client SourceTree. We were not allowed to connect our developer
machines to the internet, so we were not able to use JIRA, Confluence or
SourceTree, but HipChat still were useful to have an online communication tool. If
there are particularly urgent messages we could use phone. All our code must stay in
the offline development environment, meaning all development work must be
performed in-house. The code is stored on our local server as a Mercurial repository.
We use TortoiseHG as the server and the client so everyone can access the code.
While developing, the default branch in Mercurial should always be tested and stable,
so when new functionalities are added, we must create new branches and merge into
default when the code is stable. Mercurial also gives us version control for the code,
so if anything were to go wrong, we can always roll back. The main server for the
documentation is also in the development environment. However particular
documents can be checked out and worked on offsite, and then checked back into
the server. We have not used any tools for this, but rather manual version control and
a high degree of communication.

The communication with the internal supervisor, Radmila Juric, is primarily email
based. While Radmila is out of the country we used a variety of tools to keep up the
communication. The online video chat meetings are performed with Appear.in. Every
Friday we send a weekly follow-up document to make sure our supervisor is up to
date with the progress and challenges we have faced that week. The follow-up
document contains the hours we have spent, the tasks that has been completed, the
tasks that shall be complete next week, the problems we have had and the plan for
next week.

The communication with external supervisor is primarily email based. However, the
team will have a weekly status meeting with the stakeholders from KDS, represented
by Alexander Gosling. In the weekly meeting we will describe how the project is
progressing, milestones achieved and the work planned for next period.

An important part of the bachelor project is to show and inform the school,
represented by Karoline Moholth. The communication with the school will primarily
occur around the three scheduled presentations. This is where the team is expected
to inform the school sensors about the process and project in general. For the final
presentation we will create an event on Facebook so other students see our final
presentation.

12. Risk Management Plan

We will perform five scheduled risk review meetings, reviewing the risk and updating
the risk document. This will take into account changing conditions and the fact that
we increase our knowledge of the system. Also some aspects of the project have
increased severity the later in the project the faults were to occur. In these meetings
we also look at the mitigation strategies to ensure that we reduce risks. As our
project is mostly focused around software the most important mitigation strategies

 Project Plan

39

are frequently and rigorously to perform backup of the documentation and the code
base. To ensure that the loss would have minimal impact we perform double backup,
with one of the hard drives off site. Risk management is an important part of our
project management, and this is closely described in Risk Analysis. This is also
closely tied to the project plan, iteration reports and burndown.

13. Budget

The budget is based on the actual costs and expenses in Project Argos. The cost
associated with manpower and rental costs are not included in the budget.

Project Argos Bachelor 2016

 What Cost Number MVA Total

Presentation 327,00 1 0 % 327,00

Office supplies 306,00 1 0 % 306,00

Poster 200,00 5 0 % 1000,00

Final print 500,00 1 0 % 500,00

Kowa LM6JC lenses 1 043,00 3 25 % 3 911,25

Ebus SDK license 857,14 1 0 % 857,14

Camera rig 126,70 1 0 % 126,7

 SUM 7027,25

 Project Argos summer 2015

 What Cost Number MVA Total

Computer 22 726,00 1 25 % 28 407,50

Oculus 3 564,00 1 0 3 564,00

AV MAKO G-223C 19 294,52 4 25 % 96 472,60
Fujinon Fish Eye Lens 2.7mm
185 grader 7 003,27 1 25 % 8 754,09

HDI-Pro External Frame Grabber 11 086,27 1 25 % 13 857,84
24-port 19" Gigabit PoE
Switch/Web Smart 7 040,80 1 25 % 8 801,00

Intel® PRO/1000 PT Quad Port 3 449,60 1 25 % 4 312,00

Webcams 299,00 2 0 % 598,00

T-shirts 165,00 5 0 % 825,00

Poster 200,00 1 0 % 200,00

 SUM 165 792,03

 TOTAL SUM 172 819,28

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/Risk_list/doc-1113_risk_analysis_1_8.docx

 Project Plan

40

14. Project Life-cycle

Project Argos begun the summer of 2015 with the concept development and a
functioning prototype of the system. The bachelor project of 2016 has further
developed the functionality of the software, TinyArgos, in Project Argos. Moving
forward Project Argos will have more summer students working on the project for the
summer of 2016. The project will now start to be more multidisciplinary to work
towards a functioning system that can actually be mounted on a vehicle. One
member of the bachelor team will join the summer development team, ensuring
continuity and speedier handover.

 Project Plan

41

Bibliography

[1] Kongsberg Defence Systems, “Kongsberg Defence Systems,” Kongsberg Defence
Systems, [Online]. Available: http://www.kongsberg.com/no/kds. [Accessed 15 February
2016].

[2] R. Balduino, “Eclipse.org,” [Online]. Available: http://eclipse.org/epf/general/OpenUP.pdf.
[Accessed 10 February 2016].

[3] M. Fowler and J. Highsmith, “The Agile Manifesto, AgileAlliance.org,” August 2001.
[Online]. Available:
http://dimsboiv.uqac.ca/8INF851/web/part1/introcution/The_Agile_Manifesto.pdf.
[Accessed 12 February 2016].

[4] Eclipse Foundation, “OpenUP Wiki,” [Online]. Available:
http://epf.eclipse.org/wikis/openup. [Accessed 11 January 2016].

[5] Eclipse Foundation, “OpenUP Vision,” Eclipse, [Online]. Available:
http://eclipse.org/epf/openup_component/openup_vision.php. [Accessed 12 February
2016].

[6] P. Kruchten, The Rational Unified Process An Introcution, Addison-Wesley Professional,
2004.

[7] K. Schwaber, Agile Project Management with Scrum, Microsoft Press, 2004.

[8] K. Beck, “Embracing Change with Extreme Programming,” Computer, no. October, pp.
70-77, 1999.

[9] B. Gustafsson, “OpenUP - The Best of Two Worlds,” Methods & Tools, no. Spring, 2008.

[10] P. Kroll and B. MacIsaac, Agility and Discipline Made Easy - Practices From OpenUP
and RUP, Addison-Wesley Professional, 2006.

[11] P. Kroll, “Transitioning from waterfall to iterative development,” IBM Rational, 2004.

[12] E. M. Chocano, “A Comparative Study of Iterative Prototyping vs. Waterfall Process
Applied To Small and Medium Sized Software Projects,” Massachusettes Institute of
Technology, 2004.

[13] "Leankit," 2015. [Online]. Available: leankit.com/learn/kanban/kanban-board/. [Accessed
Mars 2016].

Risk Analysis 2.0

Created by Leiv Fredrik Berge
04.02.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 Risk Analysis

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 4
1.3 List of Figures 4
1.4 List of Tables 4

2. Risk Analysis 5
2.1 Hardware Faults 5
2.2 System Faults 6
2.3 Human Errors 7
2.4 Risk Matrix 8
2.5 Mitigation Strategies 9

3. Risk Review 9

Bibliography 11

 Risk Analysis

3

1. Document Overview

The purpose of the risk analysis is to show and mitigate the risks involved in the
project. The risk analysis is updated after the scheduled risk review meetings. This
document is used to categorize and create an overview of important risk factors.

Describes

 potential risks in the project.

 how likely they are to occur.

 how severe it is if they occur.

 mitigation strategies.

 how we lower chances of risk occurring and deal with a risk if it does occur.

 changes to risks after risk review meetings.

1.1 Document History

Version Change Date Created by

0.1 First version 18.01.2016 Leiv Fredrik Berge

0.2 Added R3.5 19.01.2016 Leiv Fredrik Berge

0.3 Added correct standard 19.01.2016 Leiv Fredrik Berge

0.4 Translated to English 21.01.2016 Leiv Fredrik Berge

0.5 Added referenced documents 02.02.2016 Leiv Fredrik Berge

1.0 Changed ID-numbers, corrections 04.02.2016 Ingvild Damtjernhaug

1.1 Changed color on table header 16.02.2016 Trond Egil Hammer

1.2 Risk review 18.02.2016 Ingvild Damtjernhaug,
Thomas Hansen,
Trond Egil Hammer,
Morten J. Barbala,
Mathias Havdal, Leiv
Fredrik Berge

1.3 Implemented DoD risk matrix
standard. Minor corrections and
clarifications

19.02.2016 Morten J. Barbala

1.4 Added lens risk 02.03.2016 Morten J. Barbala

1.5 Changed format on name and date
in document history

14.04.2016 Trond Egil Hammer

1.6 Risk review, updated risk values 15.04.2016 Leiv Fredrik Berge
Ingvild Damtjernhaug

1.7 Changed document overview 29.04.201 Ingvild Damtjernhaug

1.8 Minor changes, added references 11.05.2016 Trond Egil Hammer

1.9 Added spaces after headings, fixed
risk calculations, corrected
document overview

16.05.2016 Morten J. Barbala

1.10 Fixed header and footer. Fixed risk
tables and added captions.
Corrections and clarifications.

19.05.2016 Morten J. Barbala

 Risk Analysis

4

2.0 Final review 20.05.2016 Ingvild Damtjernhaug,
Morten J. Barbala,
Thomas Hansen

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

1.3 List of Figures

Figure 1: Risk overview diagram 5

1.4 List of Tables

Table 1: Hardware faults risks 6

Table 2: System faults risks 7

Table 3: Human errors risks 8

Table 4: Risk matrix 8

Table 5: List of mitigations 9

Table 6: List of changes and comments of risk review meetings 10

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx
file:///Z:/Argos/Project%20documents/Documents/Risk_list/doc-1113_risk_analysis_2_0.docx%23_Toc451600359

 Risk Analysis

5

2. Risk Analysis

An important aspect with OpenUP is to handle and reduce risk in all iterations. The
risk analysis is based on a risk matrix that sorts risks by probability and severity [1].
The figure 1 details an overview of all the risks we have identified in Project Argos. It
is divided into three different top level categories of risks; hardware, system and
human faults.

The analysis is divided into main categories with corresponding risks listed below.
Each risk is identified by an ID starting with “R”. The main categories start with a top
level risk, which is generated from the average of the contained risk in that category.
The effective risk is our consideration of the actual risk after mitigation strategies has
been implemented. The risk scale is described in section 2.1. The numbers are
based on our best estimations and research.

2.1 Hardware Faults

This section contains the faults and issues that can occur with our hardware
components. This would be problems like a power supply in a developer PC that
randomly fails or a hard drive crash.

Figure 1: Risk overview diagram

 Risk Analysis

6

ID Risk Description Probability Severity Risk level
Effective
risk

R1 Hardware faults

Technical or other
hardware related failures

1,27 4,53 5,73 3,6

R1.1

Loss of data Loss of data due to
mechanical or technical
faults. Faulty hard drives,
USB-stick or other
hardware malfunctions.

1 5 5 2

Date: 14.1.2016 Mitigation measures: Daily backup to memory stick.
Weekly backup to offsite storage.

R1.2

Faulty
equipment

Dead on arrival or other
faulty hardware 1,8 3,6 7,2 5,8

Date: 14.1.2016 Mitigation measures: Immediately contact supplier,
get new hardware or refund.

R1.2.1

Malfunctioning
Oculus

Hard to get replacement
3 4 12 6

Date: 14.1.2016 Mitigation measures: R1.2

R1.2.2

Malfunctioning
network gear

Expensive equipment
1 4 4 4

Date: 14.1.2016 Mitigation measures: R1.2

R1.2.3

Malfunctioning
developer PC

R1.2
1 2 2 2

Date: 14.1.2016 Mitigation measures: R1.2

R1.2.4

Malfunctioning
Argos PC

R1.2
1 3 3 2

Date: 14.1.2016 Mitigation measures: R1.2

R1.2.5

Malfunctioning
camera rig

R1.2
3 5 15 15

Date: 14.1.2016 Mitigation measures: R1.2
Update 14.04.2016: One of the four cameras failed.
This increases the severity if one more camera fails.

R1.3

Theft Equipment gets stolen 1 5 5 3

Date: 14.1.2016 Mitigation measures: Lockable office space. Lock
equipment in cabinets. Cooperation with the groups
we share office with.

Table 1: Hardware faults risks

2.2 System Faults

This section contains the faults and issues that can occur with our system. This
differs from the hardware faults in that this is not malfunctioning components, but
rather issues due to lack of functionality or faults related to poor driver and hardware
support in for example the VR headset. In other words, components that does
function correctly, but do not satisfy our demands anyway.

 Risk Analysis

7

ID Risk Description Probability Severity Risk level
Effective
risk

R2 System faults

Limitations or lack of
features in equipment. 1,67 2,33 5,67 4,67

R2.1

Emerging
technology

Cutting edge technology
means documentation and
hardware support may be
limited.

2 4 8 6

Date: 14.1.2016 Mitigation measures: Communication with technical
expertise in IDS. Communication with Oculus and
camera supplier. Pugh-matrices on Oculus and
Mako G223-C

R2.2

Hardware
limitations

Limitations in features or
capabilities of cameras,
computer components or
other hardware.

3 3 9 8

Date: 14.1.2016 Mitigation measures: Research into technical
solutions. Communications with producers and
suppliers.

R2.3

Lens delivery Supplier is unable to
deliver lenses in time

0 0 0 0

Date: 02.03.2016

No risk or mitigation, lenses arrived in a timely
manner.

Table 2: System faults risks

2.3 Human Errors

This section contains the faults and issues that can occur with our system, project or
hardware due to human causes. This could be a group member being absent for a
longer period of time, or loss of data due to negligence.

ID Risk Description Probability Severity Risk level
Effective
risk

R3 Human errors

Faults or problems arriving
due to human causes. 1,9 3,5 6 2,9

R3.1

Absence Longer general absence
for a team member. A
team member has to give
information if absent more
than three days.

3,5 2,5 8 3,5

Date: 14.1.2016 Mitigation measures: Social activities to create a
friendly environment. Open communication
channels.

R3.1.1

Absence due to
illness

R3.1. A team member has
to give information if
absent more than three
days.

2 3 6 5

Date: 14.1.2016 Mitigation measures: R3.1

R3.1.2

Absence due to
child birth

R3.1. Trond Egil and his
wife expect twins in
April/May

5 2 10 2

Date: 14.1.2016 Mitigation measures: Allow Trond Egil to get more
tasks early in the project.

R3.2

Not meeting
requirements

The project group doesn’t
satisfy stakeholder
requirements.

2 4 8 3

Date: 14.1.2016 Mitigation measures: Use OpenUP as project
model. Weekly meetings with stakeholders early in
the process. Acquire acceptance for vision
document and requirements document as early as
possible. Open communication.

 Risk Analysis

8

R3.3

Issues with
internal
supervisor

The internal supervisor is
absence, sick or for any
other reason doesn’t follow
up with the project group.

1 4 4 3

Date: 14.1.2016 Mitigation measures: Open communication with
supervisor. Communication with the college,
represented by Olaf Graven.

R3.4

Issues with
external
supervisor

The external supervisor is
absence, sick or for any
other reason doesn’t follow
up with the project group

1 4 4 3

Date: 14.1.2016 Mitigation measures: Open communication with
supervisor. Communication with the college,
represented by Olaf Graven. Open communication
with IDS.

R3.5

Loss of data One or more group
members overwrite, delete
or in other ways destroy
files.

2 3 6 2

Date: 14.1.2016 Mitigation measures: R1.1

Table 3: Human errors risks

2.4 Risk Matrix

We use the standard from the US Department of Defence for risk management. [1]
This matrix measures the impact on the project with regards to likelihood and
probability. On the x axis the probability is mapped from unlikely to near certain, and
on the y axis the consequence of the error to occur is mapped from minimal to
severe. This means that the upper left corner of the matrix is the preferred area, and
the bottom right area is critical. The risk that is in the area of 12 and above should be
mitigated and closely watched.

 Likelihood

Consequence

Not Likely
Low

Likelihood
Likely

Highly
Likely

Near
Certainty

~10% ~30% ~50% ~70% ~90%

1 2 3 4 5

Minimal 1 1 2 3 4 5
No, negligible impact

Minor
2 2 4 6 8 10 The project is barely

affected

Moderate
3 3 6 9 12 15 The project experiences

problems without stopping

Significant

4 4 8 12 16 20
The project is highly
affected and measures
should be considered

Severe

5 5 10 15 20 25
The project stops and
measures must be
evaluated.

Table 4: Risk matrix

 Risk Analysis

9

2.5 Mitigation Strategies

This section contains a list of all the mitigation strategies mentioned in the risk lists.
The table below shows the risks and the corresponding mitigation strategies.

Table 5: List of mitigations

3. Risk Review

During the risk review meetings some alteration to the risk analysis may occur. This
reflects changes in the risks for various reasons. For example, the risk of something
not being delivered can fall away as the item is delivered, meaning there is no longer
a risk that we will not receive the item in time.

ID Risk Changes Comments Date

R1.2
Faulty
equipment

Changed mitigation measures;
immediately contact supplier, get new
hardware or refund.

If supplier can’t provide new
hardware, try to find other
suppliers.

18.02.16

R1.2.1
Malfunctioning
Oculus

Added description; hard to get
replacement, sold-out from Oculus
and changed the severity from 2 to 3.

May purchase a second-
hand from finn.no/ebay.com
or wait for CV1 edition.

18.02.16

R1.2.2
Malfunction
network gear

Added expensive equipment to
description and changed the severity
from 2 to 3.

 18.02.16

R1.3
Theft Changed the effective risk from 3 to

3,2
Effective risk is a little
higher, lack of locked
cabinets

18.02.16

Risk Mitigation ID Mitigation strategy

R1.1 M1.1.1 Daily backup to memory stick

R1.1 M1.1.1 Weekly backup to offsite storage

R1.2.x M1.2.1 Lockable office space

R1.2.x M1.2.2 Lockable cabinets for smaller items

R1.2.x M1.2.3 Training in operation of equipment

R1.3 M1.3.1 Cooperation with the groups sharing office space

R2.1 M2.1.1 Cooperation with technical personnel at IDS

R2.1 M2.1.2 Communication with Oculus and GigE supplier

R2.2 M2.2.1 Research into technical solutions

R2.2 M2.2.2 Communication with producers and suppliers

R2.3 M2.3.1 Research into lenses and suppliers

R2.3 M2.3.2
Make it clear to suppliers we can only order lenses if the delivery is less
than 3 weeks

R3.1.x M3.1.1 Social activities for a positive environment

R3.1.x M3.1.2 Open internal lines of communication

R3.1.x M3.1.3 Facilitate that Trond Egil can work more in the early stages of the project

R3.2 M3.2.1 Use and follow up the OpenUP project model

R3.2 M3.2.2 Weekly stakeholder meeting in the early stages of the project

R3.2 M3.2.3
Acquire acceptance from stakeholder for vision and requirement
documents

R3.3 M3.3.1 Open communication with supervisors

R3.3 M3.3.2 Communication with college, represented by Olaf Graven

 Risk Analysis

10

R2.1
Emerging
technology

Changed sentences in description,
create Pugh-matrices Oculus and
Mako G-223C and lenses.

 18.02.16

R3.1
Absence Changed the severity from 2,33 to

2(typo). A team member has to give
information after 3 days of absence.

 18.02.16

R3.1.2
Absence due
to child birth

Changed description; Trond Egil and
his wife expects twins in April/May,
and a change in effective risk

Effective risk is changed
from 5 to 2, known factor
since September 2015.

18.02.16

R2.1
Emerging
technology

Changed description; Key functionality
has successfully been implemented

Reduce probability as less
new functionality needs to
be added to the project

15.04.16

R2.3
Lens delivery Lenses have been delivered in a

timely manner.
 15.04.16

R1.2.1
Malfunctioning
Oculus

Changed description; Increased
severity if it fails, as it’s less time to
replace the Oculus.

It might be possible to
borrow Oculus from HSN if
ours were to fail

15.04.16

R1.2.2
Malfunctioning
network gear

Changed description; Increased
severity

 15.04.16

R1.2.5

Malfunctioning
camera rig

Changed description; One of the
cameras failed. This increases the
severity if another camera were to fail.

We have increased both
severity and likelihood, as
we might have
underestimated the failure
rate of the cameras. This is
a critical area, and we have
established communication
with LMC, the supplier of the
cameras.

15.04.16

Table 6: List of changes and comments of risk review meetings

 Risk Analysis

11

Bibliography

[1] "United States Department of Defense, Risk Management Guide for DoD Acquisitions,
August 2006.," [Online]. Available: www.jodypaul.com/SWE/DoDRiskMgmt2006.pdf.
[Accessed 19 February 2016].

Requirements Document 2.0

Created by: Trond Egil Hammer
22.01.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Requirements Document

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 4
1.3 List of Figures 4
1.4 List of Tables 4

2. Use Cases 5
2.1 User Stories and Scenarios 5
2.2 Use Case Diagram 6
2.3 Descriptions 6

3. System Requirements 8
3.1 Functional Requirements 8
3.2 Non – Functional Requirements 10
3.3 Constraints 12
3.4 Environmental Requirements 12
3.5 Traceability to Tests 13

Requirements Document

3

1. Document Overview

The purpose of the requirement document is to give the reader a clear understanding
of the system requirements. After reading this you should know the system
requirements and our analysis of the system behaviour.

Describes

 the behaviour of the system

 the functional requirements of the system through use-cases.

 the system’s functional, non-functional and environmental requirements and
constraints.

 the traceability between requirements and test cases.

1.1 Document History

Ver. Changes Date Created by

0.1 First version 22.01.2016 Ingvild
Damtjernhaug,
Trond Egil Hammer

0.2 New requirements 01.02.2016 All Bachelor team
members

0.3 New requirements and document
layout

02.02.2016 Thomas Hansen,
Trond Egil Hammer

0.4 Changed colours 03.02.2016 Thomas Hansen

0.5 Change priority on some
requirements

04.02.2016 Mathias Havdal,
Morten J. Barbala

1.0 Added test ID and references.
Removed A.NF.3 and renumbered
requirements

04.02.2016 All Bachelor team
members

1.1 Replaced A.F.1 with A.F.6, A.F.7,
A.F.8.Changed User
stories/scenarios to 2.1, Use case
diagrams to 2.2 and descriptions to
2.3.Changed state to accepted
Changed color on table header

16.02.2016 Morten J. Barbala
Trond Egil Hammer

1.2 Updated use case diagram 08.03.2016 Leiv Fredrik Berge

1.3 Changed format on name and date in
document history

10.03.2016 Trond Egil Hammer

1.4 Fix front page and layout. Rewriting,
corrections and clarifications.

03.05.2016 Morten J. Barbala

1.5 Added requirements overview
diagram

04.05.2016 Leiv Fredrik Berge

1.6 Added new latency test T.17 09.05.2016 Morten J. Barbala

1.7 Changed document overview and
added requirement to test traceability
table

11.05.2016 Trond Egil Hammer

Requirements Document

4

1.2 Referenced Documents

Title Document Version

Test Specification doc-1214_test_specification_2_0.docx 2.0

Glossary doc-1113_glossary_2_0 2.0

1.3 List of Figures

Figure 1: Use case diagram 6
Figure 2: Overview of all requirements 8

1.4 List of Tables

Table 1: Use Case description for UC.1 6
Table 2: Use Case description for UC.2 6
Table 3: Use Case description for UC.3 7
Table 4: Use Case description for UC.4 7
Table 5: Use Case description for UC.5 7
Table 6: Use Case description for UC.6 7
Table 7: Requirements priority levels 8
Table 8: Functional requirements 9
Table 9: Non-functional requirements A 11
Table 10: Non-functional requirements B 11
Table 11: Non-functional requirements C 11
Table 12: Constraints 12
Table 13: Environmental requirements 13
Table 14: Requirement to test traceability 13

1.8 Pre final review 18.05.2016 Thomas Hansen

1.9 Wrote description for all types of
requirements.

20.05.2016 Morten J. Barbala

2.0 Final review 21.05.2016 Thomas Hansen,
Trond Egil Hammer,
Morten J. Barbala

file://///KDP40043734/argosserver/Argos/Test%20documents/Documents/doc-1214_test_specification_2_0.docx
file://///KDP40043734/argosserver/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx
file:///Z:/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx%23_Toc451617063

Requirements Document

5

2. Use Cases

Use cases are produced during the early stages of the project. They help us to
visualize the functional requirements of the system in addition to giving a basis for
sequence diagrams and eventually class diagrams. Use case diagrams and the
associated documents help to analyse the behaviour of the system. The use cases in
this document are distinguished by unique ID numbers for identification and
traceability, starting with the letters UC and then a number.

2.1 User Stories and Scenarios

User story (driving):
Optimal:
The user needs to drive his tank through a dangerous area. The user gets into the
driver seat of the tank and turns on the Argos system. When the user is ready to
drive the user puts on the VR googles. In the goggles the user sees live video from
the outside cameras. When the user turns his head, the view in the VR googles turns
as well, showing a continuous view of the surroundings. In the VR view the user sees
a compass and a map that can be used to navigate. The user drives safely through
the dangerous area this way. When the user reaches a safe area, stops the tank,
takes off his VR googles and turns off the system.

Fail 1:
The user is driving his armoured vehicle through a dangerous zone. Suddenly, one of
the cameras stops working.

Fail 2:
While driving through a dangerous zone, a hostile appears nearby.

Fail 3:
Other failures in the video system.

User Story (Record):
Optimal:
The user is about to drive through an area of interest. Having video footage of this
area could be useful for later training or other investigation. Knowing this, the user
starts a recording. The user will be given an indication that a recording is ongoing.
This will help the user remember to stop the recording when leaving the area of
interest, so that storage space is not wasted.

Fail 1:
Storage space is completely full. The user is given a notification.

User Story (Playback):
Optimal:
The user needs to drive through an area that is dangerous. This area is difficult to
navigate, and it is vital that the user does not make any wrong turns or need to stop
to figure out where to go. There are several key landmarks along the way that the

Requirements Document

6

user can use to navigate successfully through this area. The route has previously
been navigated successfully and recorded. The user will go through the recorded
video using the VR goggles, having the ability to look around and take note of any
significant obstacles and landmarks. To speed up the learning process, video can
skip forwards and backwards as well as pausing. This way the user can view the
critical parts of the video with ease.

2.2 Use Case Diagram

User

View live video
UC. 1

Camera system

Send live video
UC.5

View pre-recorded video
UC.4

Record live video
UC.3

Use HUD
UC.2

Stop recording
UC.6

<<extend>>

Figure 1: Use case diagram

2.3 Descriptions

View live video:
ID: UC.1
Actor: User
Goal: See surroundings outside of the vehicle

Actor System

Turns head around to view the
surroundings outside

Moves the virtual world to match the
head movement

Table 1: Use Case description for UC.1

Use HUD:
ID: UC.2
Actor: User
Goal: Get information from other systems

Actor System

Looks at the heads up display inside the
virtual world

Show relevant information in the virtual
world

Table 2: Use Case description for UC.2

Requirements Document

7

Record live video:
ID: UC.3
Actor: User
Goal: Record video for later viewing

Actor System

 The user starts the recording Record live video until the user stops the
recording

Table 3: Use Case description for UC.3

View pre-recorded video:
ID: UC.4
Actor: User
Goal: View pre-recorded video

Actor System

Starts the pre-recorded video Shows the pre-recorded video in the
virtual world. The user can pause and
skip forwards and backwards in
playback.

Table 4: Use Case description for UC.4

Send live video:
ID: UC.5
Actor: Camera system
Goal: Send live video to software system

Actor System

Sends live video from all cameras Receive the video data
Table 5: Use Case description for UC.5

Send live video:
ID: UC.6
Actor: User
Goal: Stop the recording

Actor System

Sends command to stop recording Stops the recording, finish writing video
recording to disk.

Table 6: Use Case description for UC.6

Requirements Document

8

3. System Requirements

This section will cover the different types of system requirements: Functional, non-
functional, constraints and environmental. It also contains a table over traceability
between requirements and tests. The requirements have a priority according to their
importance for the project, and the ID numbers are explained like this:
Priority.Type.Number.

Priority Explanation

A These requirements must be achieved

B These requirements should be achieved

C These requirements should be achieved, but have a lower priority
Table 7: Requirements priority levels

3.1 Functional Requirements

Functional requirements are system requirements which show functionalities the
system absolutely must have. All functional requirements have priority A and must be
fulfilled for the project to be considered a success. They originate from the project
description we received from Kongsberg Defence Systems (KDS), and the early
meetings with stakeholders. The use cases are visualizations of the functional
requirements.

Figure 2: Overview of all requirements

Requirements Document

9

ID Title Description Date State Test
ID

Use
Case

ID

Origin

A.F.1

Show image

The system
must show a

seamless
image in real

time

14.01.2016 Removed T.1 UC.1 KDS

Comment Replaced by A.F.6, A.F.7, A.F.8

A.F.2

Display HUD

Display must
show

information on
a HUD

14.01.2016

Accepted T.2 UC.2 KDS

Comment

A.F.3

Playback

The system
must be able
to playback

recorded video

14.01.2016 Accepted T.4 UC.4 KDS

Comment

A.F.4

Record

The system
must be able
to record at

least 2
minutes of

video

14.01.2016

Accepted T.3
UC.3
UC.6

KDS

Comment

A.F.5

Send live
video

The cameras
must be able
to send live

video to
system

14.01.2016

Accepted
T.1
T.3

UC.5 KDS

Comment

A.F.6

Get video from
cameras

The system
must be able

to capture and
handle video
from all four

cameras

16.02.2016

Accepted T.1 UC.5 KDS

Comment

A.F.7

Merge video
from cameras

The system
must be able
merge video

from all
cameras to

one
continuous

image

16.02.2016

Accepted T.1 UC.5 KDS

Comment

A.F.8

Display video

The system
must be able
to display the
continuous

image in VR
goggles

16.02.2016

Accepted T.1 UC.5 KDS

Comment
Table 8: Functional requirements

Requirements Document

10

3.2 Non – Functional Requirements

Non-functional requirements are system requirements which show various non-
functional aspects of the system. Rather than describing functionalities, they describe
properties which need to be in place to enable the system to provide the required
functionalities. They also describe properties which should be achieved to improve
the overall quality of the system.

ID Title Description Date State Test
ID

Origin

A.NF.1

Language

Information
and messages
must appear

in English

02.02.2016

Accepted T.13 Bachelor team

Comment

A.NF.2

VR Goggles

The VR
goggles must

weigh less
than 400
grams

02.02.2016

Accepted T.10 Bachelor team

Comment

A.NF.3

VR Goggles

The VR
goggles must
have refresh
rate higher
than 75 Hz

02.02.2016

Accepted T.10 Bachelor team

Comment

A.NF.4

VR Goggles

The VR
goggles must
have at least

960x1080
resolution per

eye

02.02.2016

Accepted T.10 Bachelor team

Comment

A.NF.5

VR Goggles

The VR
googles must
have at least
100 degrees
field of view

02.02.2016

Accepted T.10 Bachelor team

Comment

A.NF.6

Camera FOV

Cameras must
have a

combined field
of view at
least 180
degrees

02.02.2016

Accepted T.1 Bachelor team

Comment

A.NF.7

Latency

Glass to glass
latency must
be less than

75 ms

02.02.2016

Accepted
T.1
T.9

T.17
Bachelor team

Comment

A.NF.8
Network
Speed

Network must
have a

minimum
throughput of

02.02.2016

Accepted T.12 Bachelor team

Requirements Document

11

512 MB/s

Comment

A.NF.9

Camera FPS

Cameras must
be able to
capture at

least 50 FPS

02.02.2016

Accepted T.11 Bachelor team

Comment
Table 9: Non-functional requirements, priority A

Table 10: Non-functional requirements, priority B

ID Title Description Date State Test
ID

Origin

C.NF.1

Learning

It should be
possible to
learn key

functionality in
10 minutes

02.02.2016

Accepted T.7 Bachelor team

Comment

C.NF.2

Learning

It should be
possible to
master all

functionality in
less than 1

day

02.02.2016

Accepted T.8 Bachelor team

Comment
Table 11: Non-functional requirements, priority C

ID Title Description Date State
Test
ID

Origin

B.NF.1

Latency

Glass to glass
latency should
be less than

20 ms

02.02.2016

Accepted
T.9

T.17
Bachelor team

Comment

B.NF.2

Camera FPS

Cameras
should be able
to capture at
least 75 FPS

02.02.2016

Accepted T.11 Bachelor team

Comment

B.NF.3

System start-
up

System start-
up should take
maximum 20

seconds

02.02.2016

Accepted T.5 Bachelor team

Comment

B.NF.4

Up and
running

Showing live
video in VR

goggles
should take at
most 5 clicks

02.02.2016

Accepted T.6 Bachelor team

Comment

Requirements Document

12

3.3 Constraints

Constraints are requirements for the development team, not the system, and
originate directly from stakeholders similarly to the functional requirements. This
could include any standards or aspects of projects which need to be followed to
satisfy the project owner. The constraints for Project Argos set the development
environment: IDE, programming language, version control etc.

ID Title Description Date State Test
ID

Origin

A.L.1 Secure data The system
must not be
available to
the public

02.02.2016

Accepted T.15

KDS

Comment

A.L.2 Programming
Language

Programming
language must

be C++

02.02.2016

Accepted T.15
KDS

Comment

A.L.3 Development
Platform

OS must be
Microsoft

Windows 7

02.02.2016

Accepted T.15
KDS

Comment

A.L.4 IDE IDE must be
Microsoft

Visual Studio

02.02.2016

Accepted T.15
KDS

Comment

A.L.5 Software
Version
Control
system

Version
Control

system must
be Mercurial

(Hg)

02.02.2016

Accepted T.15

KDS

Comment
Table 12: Constraints

3.4 Environmental Requirements

Environmental requirements are system requirements which reach beyond the
confines of the system. We only have one environmental requirement as Project
Argos is still in an early phase, being developed in lab for proof of concept and
research. We have to make sure the code is modular, i.e. extendable and modifiable.
In future development, literal environmental requirements as well as interfaces to
outside systems come into play.

ID Title Description Date State Test
ID

Origin

C.E.1

Code
modules

Code should
have modules
to support new

Oculus
hardware

02.02.2016

Accepted T.16 Bachelor team

Comment Code is updated to 0.8.0.0, the latest SDK that officially support Oculus
Rift DK2.

Requirements Document

13

Table 13: Environmental requirements

3.5 Traceability to Tests

Requirement Test

A.F.1 T.1

A.F.2 T.2

A.F.3 T.4

A.F.4 T.3
T.16

A.F.5 T.1
T.3

A.F.6 T.1

A.F.7 T.1

A.F.8 T.1

A.NF.1 T.13

A.NF.2 T.10

A.NF.3 T.10

A.NF.4 T.10

A.NF.5 T.10

A.NF.6 T.1

A.NF.7 T.1
T.9

T.17

A.NF.8 T.12

A.NF.9 T.11

B.NF.1 T.9
T.17

B.NF.2 T.11

B.NF.3 T.5

B.NF.4 T.6

C.NF.1 T.7

C.NF.2 T.8

A.L.1 T.14

A.L.2 T.14

A.L.3 T.14

A.L.4 T.14

A.L.5 T.14

C.E.1 T.15
Table 14: Requirement to test traceability

Test Specification 2.0

Created by: Morten J. Barbala
22.01.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

2
Test Specification

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 4
1.3 List of Figures 4
1.4 List of Tables 5

2. Test Procedure 6
2.1 Test Logs 7

2.1.1 Test Case and Module Test Logs 7
2.1.2 Reference Test Logs 7
2.1.2 Acceptance Test Logs 7

3. Test Overview 8
3.1 Test Cases 8

3.1.1 Test Cases for Functional Requirements 9
3.1.2 Test Cases for Non-Functional Requirements 10

3.2 Module Tests 15
3.3 Reference Tests 18
3.4 Acceptance Tests 18

4. Test Plan 20
4.1 Traceability to Requirements 20
4.2 Independent Tests 21
4.3 Dependent Tests 21
4.4 Test Phases 22

5. Test Results 23

3
Test Specification

1. Document Overview

The purpose of this document is to describe the approach for verifying the system
requirements from stakeholders and the early requirements analysis. We define a
standard test procedure and detail four different types of tests. Furthermore, this
document contains our test plan, which shows traceability between test cases and
requirements, states dependencies and sets the order in which to run all tests. The
plan describes three test phases for verification and validation of the system.

Describes

 the test procedure, how to perform tests.

 test logs, how to document testing.

 all types of tests, differences and purposes of each type.

 test cases: Test steps, acceptance criteria, which requirements are tested etc.

 module tests: Test steps, acceptance criteria, which module is tested etc.

 reference tests: Test steps and which test cases the results are relevant for.

 the final acceptance test: Test steps and acceptance criteria.

 the test plan: Traceability to requirements, test dependencies and test phases

for verification and validation of the system.

1.1 Document History

Version Changes Date Created by

0.1 Create the document 22.01.2016 Morten J. Barbala

0.2 Fill in points according to
requirements

01.02.2016 Morten J. Barbala,
Mathias Havdal

0.3 Establish and implement test spec.
template, add more test cases

02.02.2016 Morten J. Barbala,
Mathias Havdal

0.4 Add test procedure flow chart and
test report template

03.02.2016 Morten J. Barbala,
Mathias Havdal

0.5 Add priority to existing test cases,
and add test cases to cover
remaining requirements. Added
references to other documents.

04.02.2016 Morten J. Barbala,
Mathias Havdal

1.0 Removed T.14 and renumbered
tests
Small corrections before first
submission

04.02.2016 Morten J. Barbala,
Mathias Havdal

1.1 Replaced A.F.1 with A.F.6, A.F.7,
A.F.8
Changed colour on table header

16.02.2016 Morten J. Barbala,
Trond Egil Hammer

1.2 Added disk writing test T.16 and
fixed test numbering

25.03.2016 Morten J. Barbala

1.3 Describe types of tests, added
module tests

14.04.2016 Morten J. Barbala

1.4 Corrections in tests T.10 and T.3 18.04.2016 Morten J. Barbala

4
Test Specification

1.5 Add delay test for vimba viewer,
RT.1

22.04.2016 Morten J. Barbala

1.6 Added new test for glass-to-glass
latency: T.17

25.04.2016 Morten J. Barbala

1.7 Fix front page. Rename test reports
to test logs. Correct module test
MT.1

02.05.2016 Morten J. Barbala

1.8 Rework module tests and write tests
for remaining software modules

03.05.2016 Morten J. Barbala

1.9 Added acceptance tests 05.05.2016 Morten J. Barbala

1.10 Rewrote introduction and objectives
into document overview. Added
bullet points to document overview.
Added test dependencies and test
plan.

11.05.2016 Morten J. Barbala

1.11 Added introduction for all sections.
Added section for test overview and
updated test overview diagram.
Restructured document.

12.05.2016 Morten J. Barbala

1.12 Wrote remaining module tests:
MT.3, MT.4, MT.5

13.05.2016 Morten J. Barbala,
Mathias Havdal

1.13 Updated test overview. Corrections
and clarifications.

15.05.2016 Morten J. Barbala

1.14 Added long skips to MT.2, finalized
module tests.

18.05.2016 Thomas Hansen,
Mathias Havdal,
Morten J. Barbala

1.15 Added section for test results 20.05.2016 Morten J. Barbala

2.0 Final review 21.05.2016 Trond Egil Hammer,
Morten J. Barbala,
Thomas Hansen

1.2 Referenced Documents

1.3 List of Figures

Figure 1: Activity diagram of test procedures 6
Figure 2: Test overview diagram 8

Title Document Version

Requirements
document

doc-1213_requirements_2_0.docx 2.0

file:///Z:/Argos/Test%20documents/Documents/doc-1214_test_specification_2_0.docx%23_Toc451623768
file://///KDP40043734/argosserver/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx

5
Test Specification

1.4 List of Tables

Table 1: Test case and module test logs 7

Table 2: Reference test logs 7

Table 3: Acceptance test logs 7

Table 4: Functional test T.1 9

Table 5: Functional test T.2 9

Table 6: Functional test T.3 10

Table 7: Functional test T.4 10

Table 8: Non-functional test T.5 10

Table 9: Non-functional test T.6 11

Table 10: Non-functional test T.7 11

Table 11: Non-functional test T.8 11

Table 12: Non-functional test T.9 12

Table 13: Non-functional test T.10 12

Table 14: Non-functional test T.11 12

Table 15: Non-functional test T.12 13

Table 16: Non-functional test T.13 13

Table 17: Non-functional test T.14 13

Table 18: Non-functional test T.15 14

Table 19: Non-functional test T.16 14

Table 20: Non-functional test T.17 15

Table 21: Module test MT.1 15

Table 22: Module test MT.2 16

Table 23: Module test MT.3 17

Table 24: Module test MT.4 17

Table 25: Module test MT.5 18

Table 26: Reference tests RT.1 18

Table 27: Acceptance test 19

Table 28: Test to requirement traceability 21

Table 29: Independent tests 21

Table 30: Dependent tests 21

Table 31: Test phase 1 22

Table 32: Test phase 2 22

Table 33: Test phase 3 23

Table 34: Test results for phase 1 23

Table 35: Test results for phase 2 24

Table 36: Test results for phase 3 24

6
Test Specification

2. Test Procedure

The test procedure is a set of steps required to perform tests. The purpose of
defining a test procedure is to ensure the team that the proper documentation is
generated, and that any changes, faults or errors are the results of system changes
rather than imprecise testing. This section provides an activity diagram, which
describes the test procedure, as well as templates for test logs.

Figure 1: Activity diagram of test procedures

7
Test Specification

2.1 Test Logs

The test logs serve as references and documentation. They show which
requirements that have been verified and which requirements that still need some
work, as well as comments and recommendations from the tester. Various project
documents also reference tests to show specific numbers, e.g. disk writing speed.
The test logs contain information using the following templates, in addition to any
attachments and data related to the test.

2.1.1 Test Case and Module Test Logs

Test ID Date [dd.mm.yy]

Test Number Result [Pass/Fail]

Tester

Specific Results

Comment
Table 1: Test case and module test logs

2.1.2 Reference Test Logs

Test ID Date [dd.mm.yy]

Test Number

Tester

Specific Results

Comment
Table 2: Reference test logs

2.1.2 Acceptance Test Logs

Acceptance test [internal] or
[with stakeholder]

Date [dd.mm.yy]

Result [Pass/Fail]

Tester All team members, [name of stakeholder]

Specific Results

Comment
Table 3: Acceptance test logs

8
Test Specification

3. Test Overview

We have four main types of tests: System wide test cases, software specific module
test, reference tests for documentation and comparison, and a final acceptance test.
Each developer will also perform a number of developer tests for classes, functions,
code snippets etc. while developing the main software modules, but these will not be
documented because they all amount to: Change this code, compile and check if
project builds or errors persist. Instead, the module tests provide the documentation
for completed software modules while the test cases verify the functionalities. The
final acceptance test, which is run twice, validates the results of the project with
stakeholders.

Figure 2: Test overview diagram

3.1 Test Cases

The test cases are system tests, which are run to document fulfilment of
requirements. The test cases show which requirements are verified through a
successful test and are split into two groups: functional and non-functional. However,
a single test can cover multiple requirements, both functional and non-functional, and
a single requirement can be covered by multiple tests. The test case group is
therefore set according to if the test case covers functional requirements or not.
Similarly, the priority is set after the highest requirement priority level.

9
Test Specification

3.1.1 Test Cases for Functional Requirements

Test ID T.1 Priority High

Requirements Tested A.F.1, A.F.5, A.F.6, A.F.7, A.F.8, A.NF.6, A.NF.7

Test Description Video in VR goggles

Resources VR goggles, camera system

Test steps 1. Turn on system

2. Put on VR goggles

3. Turn head and view the virtual world

Acceptance criteria Virtual world is continuous for the intended field of

view

 Changes in real world are perceived as instant in

virtual world

 No perceivable seams, faults or errors in video that

break user immersion

Table 4: Functional test T.1

Test ID T.2 Priority High

Requirements Tested A.F.2

Test Description HUD in VR goggles

Resources VR goggles, camera system

Test steps 1. Turn on system

2. Put on VR goggles

3. View information on HUD

Acceptance criteria HUD is available at all times

 User can view and process information

Table 5: Functional test T.2

Test ID T.3 Priority High

Requirements Tested A.F.4, A.F.5

Test Description Video recording

Resources VR goggles, camera system, stopwatch

Test steps 1. Turn on system

2. Start recording

3. Put on VR goggles

4. Take off VR goggles

5. Stop recording after 20 seconds

6. Open recording directory

10
Test Specification

Acceptance criteria User can see an indicator showing that the system is

recording video

 After recording user can see files in storage

 Files are in raw format and are not 0KB

Table 6: Functional test T.3

Test ID T.4 Priority High

Requirements Tested A.F.3

Test Description Video playback

Resources VR goggles

Test steps 1. Turn on system

2. Start playback of pre-recorded video

3. Put on VR goggles

4. Look around

5. Pause video

6. Un-pause video

7. Skip backwards in video

8. Skip forwards in video

9. Stop playback of pre-recorded video

Acceptance criteria Video is continuous across intended field of view

 User can manipulate playback as intended

(pause/play, skip forward/backward)

Table 7: Functional test T.4

3.1.2 Test Cases for Non-Functional Requirements

Test ID T.5 Priority Medium

Requirements Tested B.NF.3

Test Description Start-up time

Resources Stopwatch

Test steps 1. Restart computer to clear file system cache

2. Wait 5 minutes for start-up programs to launch

3. Launch software and start stopwatch

4. When main menu loads, stop stopwatch

5. Repeat steps 1-4 three times and record the results

Acceptance criteria Average software launch time must be less than 20

seconds

Table 8: Non-functional test T.5

11
Test Specification

Test ID T.6 Priority Medium

Requirements Tested B.NF.4

Test Description Number of clicks to start live video in VR goggles

Resources None

Test steps 1. Click shortcut to launch software

2. Navigate through menus to start live video in VR

goggles, while counting the number of clicks

Acceptance criteria The number of clicks to start live video in VR goggles

must be less than or equal to 5

Table 9: Non-functional test T.6

Test ID T.7 Priority Low

Requirements Tested C.NF.1

Test Description Learning key functionality

Resources Untrained user

Test steps 1. The user is given a 10 minute introduction to the

system

Acceptance criteria The user must be able to start recording and/or get

live video in VR goggles without assistance

Table 10: Non-functional test T.7

Test ID T.8 Priority Low

Requirements Tested C.NF.2

Test Description Learning all functionality

Resources Untrained user

Test steps 1. The user is given training

2. User is given instruction manual

Acceptance criteria The user must have mastered all functionality after

one day of training and studying the manual

Table 11: Non-functional test T.8

Test ID T.9 Priority High

Requirements Tested A.NF.7, B.NF.1

Test Description Measure glass-to-glass delay

Resources High speed (framerate) video camera, computer monitor,
video player with frame by frame skip

Test steps 1. Point VR camera at screen showing solid colour

2. Start video feed in VR goggles and move view to

12
Test Specification

show solid colour recorded by camera

3. Using a high speed video camera, record both screen

showing solid colour and output on computer monitor

4. Change colour displayed

5. Analyse video from high speed camera frame-by-

frame. Count the number of frames from when the

colour on the first display changes, until the colour

changes in the on computer monitor

6. Calculate the delay using the number of frames and

the framerate of the high frequency camera

Acceptance criteria Calculated delay must be less than 75 milliseconds

 Calculated delay should be less than 50 milliseconds

 Calculated delay ideally less than 20 milliseconds

Table 12: Non-functional test T.9

Test ID T.10 Priority High

Requirements Tested A.NF.2, A.NF.3, A.NF.4, A.NF.5

Test Description Verify VR goggle specifications

Resources VR goggle spec sheet

Test steps 1. Read relevant information on spec sheet

Acceptance criteria Weight must not exceed 500 grams

 Resolution per eye must be at least 960x1080

 Refresh rate must be at least 75 Hz

 Viewing optics must have at least 100 degrees field of

view

Table 13: Non-functional test T.10

Test ID T.11 Priority High

Requirements Tested A.NF.9, B.NF.2

Test Description Verify camera specifications

Resources Camera spec sheet

Test steps 1. Read relevant information on spec sheet

Acceptance criteria Must have a framerate of at least 50 Hz

 Should have a framerate of 75 Hz

Table 14: Non-functional test T.11

13
Test Specification

Test ID T.12 Priority High

Requirements Tested A.NF.8

Test Description Verify network specifications

Resources Spec sheet for switch, spec sheet for NIC on VR computer

Test steps 1. Read relevant information on spec sheets

Acceptance criteria Must have a throughput of at least 512 MB/s

Table 15: Non-functional test T.12

Test ID T.13 Priority High

Requirements Tested A.NF.1

Test Description Check interface language

Resources None

Test steps 1. Start system

2. Navigate through menus

3. Check language of all text

Acceptance criteria All text must be written in English

Table 16: Non-functional test T.13

Test ID T.14 Priority High

Requirements Tested A.L.1, A.L.2, A.L.3, A.L.4, A.L.5

Test Description Check dev computers

Resources None

Test steps 1. Turn on computer

2. Check operating system version

3. Check internet connection

4. Check IDE

5. Check project configuration in IDE

6. Check version control system

Acceptance criteria Computer must be running Microsoft Windows 7

Enterprise SP1

 It must not be connected to the internet

 The IDE must be Microsoft Visual Studio 15

 Project must be developed in C++

 The version control system must be Mercurial (Hg)

Table 17: Non-functional test T.14

14
Test Specification

Test ID T.15 Priority Low

Requirements Tested C.E.1

Test Description Check software architecture

Resources None

Test steps 1. View architecture diagrams

Acceptance criteria The architecture should be modular to allow for

implementation of new Oculus SDK versions and

hardware

Table 18: Non-functional test T.15

Test ID T.16 Priority Medium

Requirements Tested A.F.4

Test Description Disk writing speed

Resources None

Test steps 1. Turn on computer

2. Open HD Tune

3. Select disk to be tested

4. Run Benchmark with 64 KB block size

5. Run Benchmark with 512 KB block size

6. Run Benchmark with 4 MB block size

7. Run Benchmark with 8 MB block size

8. Calculate average writing speed

Acceptance criteria The average writing speed is greater than 512MB/s

Table 19: Non-functional test T.16

Test ID T.17 Priority High

Requirements Tested A.NF.7, B.NF.1

Test Description Measure glass-to-glass delay in VR goggles

Resources High speed (framerate) video camera, computer monitor,
video player with frame by frame skip

Test steps 1. Point VR camera at screen showing solid colour

2. Start video feed in VR goggles and move view to

show solid colour recorded by camera

3. Using a high frequency video camera, record both

screen showing solid colour and output in VR goggles

4. Change colour displayed

5. Analyse video from high frequency camera frame-by-

frame. Count the number of frames from when the

colour on the first display changes, until the colour

changes in the VR goggles.

15
Test Specification

6. Calculate the delay using the number of frames and

the framerate of the high frequency camera

Acceptance criteria Calculated delay must be less than 75 milliseconds

 Calculated delay should be less than 50 milliseconds

 Calculated delay ideally less than 20 milliseconds

Table 20: Non-functional test T.17

3.2 Module Tests

Module tests are software tests, which are run to verify the modules in the chosen
software architecture. Rather than documenting the fulfilment of system
requirements, the module tests check if the separate modules in the software
produce the expected results, e.g. outputs to connected interfaces and files on disk.
Module tests are performed after the system tests and acceptance tests and they
verify the software design, not system functionalities.

Test ID MT.1 Priority High

Module tested Recorder

Test Description TinyArgos recording system

Resources None

Test steps 1. Turn on computer

2. Run TinyArgos.exe

3. Wait until TinyArgos is running with video in VR-

goggles

4. Press ‘R’ on keyboard to start recording

5. Record 2 minutes of video

6. Press ‘R’ on keyboard to stop recording

7. Repeat steps 4-6 two more times

Acceptance criteria User can start recording

 Icon is visible in top-right corner to indicate recording

 User can stop recording

 System creates directories for each recording session

using the current timestamp in the format

“yyyymmdd.hhmmss”

 For each recording session there are subdirectories

for all cameras.

 Camera directories contain the recorded files

numbered from 0 to the last frame captured.

Table 21: Module test MT.1

16
Test Specification

Test ID MT.2 Priority High

Module tested Player

Test Description TinyArgos playback system

Resources None

Test steps 1. Turn on computer

2. Run TinyArgos.exe

3. Wait until TinyArgos is running with video in VR-

goggles

4. Press ‘P’ on keyboard open file explorer

5. Navigate to recording directory

6. Select config file for recording to start playback

7. Press ‘right ctrl’ to pause playback

8. Press ‘right ctrl’ to resume playback

9. Press ‘left’ to skip backwards

10. Press ‘right’ to skip forwards

11. Press ‘Page Down’ to make long skip forward

12. Press ‘Delete’ to make long skip backward

13. Press ‘1’ to go back to live video

Acceptance criteria File explorer allows user to select specific recording

 Virtual world shows video from all recorded cameras

 Video is continuous across intended field of view and

synchronized

 User can pause/resume playback

 User can skip forwards/backwards

 User can stop playback

Table 22: Module test MT.2

Test ID MT.3 Priority High

Module tested Controller

Test Description Test of TinyArgos controller

Resources None

Test steps 1. Turn on computer

2. Run TinyArgos.exe

3. Wait until TinyArgos is running with video in VR-

goggles

4. Use keys ‘1, 2, 3, 4, 5’ to change main config file

5. Use keys ‘6, 7, 8, 9, 0’ to change HUD config file

6. Use VR goggles to look around while changing config

files

17
Test Specification

Acceptance criteria System loads default config file and shows live video

in virtual world

 User can load config files to show different camera

layouts

 User can load config files to show different HUD

layouts

 VR-goggles operate the same way in all views

Table 23: Module test MT.3

Test ID MT.4 Priority High

Module tested Picture handler

Test Description Picture handling system

Resources None

Test steps 1. Turn on computer

2. Run TinyArgos.exe

3. Wait until TinyArgos is running with video in VR-

goggles

4. Look around using VR goggles

5. Start playback

6. Stop playback

Acceptance criteria Framerate is perceived as constant

 Video has no perceivable corruptions or artefacts

 Live video and playback is perceived as identical

Table 24: Module test MT.4

Test ID MT.5 Priority High

Module tested Virtual world

Test Description OpenGL and Oculus Rift

Resources None

Test steps 1. Turn on computer

2. Run TinyArgos.exe

3. Wait until TinyArgos is running with video in VR-

goggles

4. Look around using VR goggles

5. Use keys ‘0-9’ to load different configs

6. Press ‘space’ to recalibrate motion tracking

7. Start playback

8. Stop playback

18
Test Specification

Acceptance criteria Motion tracking remains responsive at all times

 No stuttering when changing config files

 Motion tracking is correctly recalibrated when

pressing ‘space’ in live view and in playback.

Table 25: Module test MT.5

3.3 Reference Tests

Reference tests do not verify fulfilment of requirements, nor software modules. They
serve as documentation and test data for comparison with test cases. We only have
one reference tests: RT.1. This test is about measuring the delay inherent in the
Allied vision cameras to compare with T.9. The purpose is to document hardware
limitation and check if our software introduces extra latency.

Test ID RT.1

Relevant Test Case T.9

Test Description Glass-to-glass delay in Vimba Viewer

Resources High frequency video camera, two screens

Test steps 1. Point VR camera at screen showing solid colour

2. Start video feed in Vimba Viewer and move view to

show solid colour recorded by camera

3. Using a high frequency video camera, record both

screen showing solid colour, and screen showing

output in Vimba Viewer

4. Change colour displayed

5. Analyse video from high frequency camera frame-by-

frame. Count the number of frames from when the

colour on the first display changes, until the colour in

Vimba Viewer changes.

6. Calculate the delay using the number of frames and

the framerate (Hz) of the high frequency camera

Table 26: Reference tests RT.1

3.4 Acceptance Tests

In the final iteration of the project, one of the key activities is acceptance testing. An
acceptance test is performed after all functionalities have been implemented and
tested independently, or after the development has ended because of deadlines and
lack of time. The purpose is to show the results of the development and document
the final state of the system that the team has produced. The acceptance test is first
run internally with the team so all results and any faults, bugs or shortcomings are
known before a final test with the stakeholders.

19
Test Specification

Acceptance test

Test Description Validation of all system functionalities

Test steps 1. Turn on computer

2. Run TinyArgos.exe

3. Put on VR goggles

4. Using VR goggles, look around in the virtual world

5. Move view to the left edge of the live video and move

head to the right edge to see full field of view

6. Temporarily remove VR goggles if needed to help find

keys on keyboard

7. Use keys “0-9” to show different virtual worlds

8. Press “R” to start recording

9. Create movement and recognizable events in front of

cameras

10. Press “R” to stop recording

11. Remove VR goggles

12. Press “P” to open file explorer for playback

13. Select directory with newly recorded video and select

config.xml file to start playback

14. Put on VR goggles

15. Using VR Goggles, look around in the virtual world and

note the recognizable events in the playback

16. Use controls “right ctrl”, “left” and “right” to play/pause,

skip backwards and skip forwards respectively

17. Use keys “1-5” to load standard config file and stop

playback

18. Exit TinyArgos

Acceptance criteria Virtual world has multiple possible layouts of live video

and HUD

 The live video from multiple cameras is continuous,

synchronized and seamless

 Moving head while wearing VR goggles changes view

in virtual world smoothly

 The system can record video while giving the user and

indicator of ongoing recording

 The system can play recorded video with working

playback controls

 The user can only distinguish between live video and

playback because of playback controls

 The user can stop playback

 System exits without errors

Table 27: Acceptance test

20
Test Specification

4. Test Plan

As the project evolves the need for different types of tests emerges. The number of
tests will also grow throughout the development of the system, and it is important to
have a test plan. The tests not only ensure the team that requirements are fulfilled
and the software verified, but also provide the proper documentation for the system.
Furthermore, some tests depend on results or test data from other test and have to
be performed in specific order. The first two phases of our test plan verify the system
requirements and functionalities, and validate the system with the stakeholders, while
the third and final phase verifies the software. The final phase also contains two low
priority tests about teaching an outsider the system, to see if any keyboard controls
or interfaces should be changed before final delivery.

4.1 Traceability to Requirements

Test Requirement

T.1 A.F.1
A.F.5
A.F.6
A.F.7
A.F.8

A.NF.6
A.NF.7

T.2 A.F.2

T.3 A.F.4
A.F.5

T.4 A.F.3

T.5 B.NF.3

T.6 B.NF.4

T.7 C.NF.1

T.8 C.NF.2

T.9 A.NF.7
B.NF.1

T.10 A.NF.2
A.NF.3
A.NF.4
A.NF.5

T.11 A.NF.9
B.NF.2

T.12 A.NF.8

T.13 A.NF.1

T.14 A.L.1
A.L.2
A.L.3
A.L.4
A.L.5

T.15 C.E.1

21
Test Specification

T.16 A.F.4

T.17 A.NF.7
B.NF.1

Table 28: Test to requirement traceability

4.2 Independent Tests

The following tests have no dependencies and can be run in any order.

Test ID

T.1

T.2

T.5

T.6

T.9

T.10

T.11

T.12

T.13

T.14

T.15

T.16

T.17

MT.1

MT.2

MT.3

MT.4

MT.5

RT.1
Table 29: Independent tests

4.3 Dependent Tests

The following tests have dependencies

Test ID Dependencies

T.3 T.2

T.4 T.3

T.7 T.2, T.3, T.4

T.8 T.2, T.3, T.4

Internal acceptance test All tests for functional
requirements: T.1, T.2, T.3, T.4

Stakeholder acceptance test All tests from phase 1,
Internal acceptance test

Table 30: Dependent tests

22
Test Specification

4.4 Test Phases

Table 31: Test phase 1

Phase 2/3 Start date 09.05.2016

Description Acceptance testing and validation of the
system. Order is important.

Tests 1. Any remaining tests for functional

requirements

2. Internal acceptance test

3. All remaining tests from phase 1

4. Stakeholder acceptance test

End date 13.05.2016
Table 32: Test phase 2

Phase 1/3 Start date 25.02.2016

Description Various tests to help with development
and document completed subsystems.
Order is not important except for
dependent tests. Any tests not
completed in phase 1 are performed in
the order specified in phases 2 and 3.

Tests Test cases:

 T.1

 T.2

 T.3

 T.4

 T.5

 T.6

 T.9

 T.10

 T.11

 T.12

 T.13

 T.14

 T.16

 T.17

Reference tests:

 RT.1

End date 06.05.2016

23
Test Specification

Phase 3/3 Start date 16.05.2016

Description Verification of software architecture and
software modules, tests about teaching
functionalities to an outsider. Order is
not important

Tests T.7

 T.8

 T.15

 MT.1

 MT.2

 MT.3

 MT.4

 MT.5

End date 20.05.2016
Table 33: Test phase 3

5. Test Results

Phase 1, 25.02-06.05: Testing successful.

Test Result Date (earliest) Comment

T.1 - - Performed in phase 2

T.2 PASS 06.05.2016

T.3 PASS 19.04.2016

T.4 PASS 02.05.2016

T.5 - - Performed in phase 2

T.6 - - Performed in phase 2

T.9 - - Deprecated by test T.17

T.10 PASS 18.04.2016

T.11 PASS 18.04.2016

T.12 PASS 19.04.2016

T.13 PASS 06.05.2016

T.14 PASS 19.04.2016

T.16 PASS 25.02.2016

T.17 PASS 22.04.2016

RT.1 - - Results not relevant for test phase
Table 34: Test results for phase 1

24
Test Specification

Phase 2, 09.05-13.05: Testing successful.

Test Result Date
(earliest)

Comment

T.1 PASS 10.05.2016 Delayed from phase 1

Internal
acceptance
test

PASS 10.05.2016

No bugs or missing functionalities.
Oculus hardware limitation
discovered, see test log for
details.

T.5 PASS 11.05.2016 Delayed from phase 1

T.6 PASS 11.05.2016 Delayed from phase 1

Stakeholder
acceptance
test

PASS 11.05.2016 No changes from internal
acceptance test. Stakeholder
impressed by results.

Table 35: Test results for phase 2

Phase 3, 16.05-20.05: Testing successful.

Test Result Date
(earliest)

Comment

T.7 PASS 18.05.16

T.8 - -

We did not have the resources to
perform this test. Test has low
priority and is not critical for the
system

MT.15 PASS 11.05.16

MT.1 PASS 18.05.16

MT.2 PASS 18.05.16

MT.3 PASS 18.05.16

MT.4 PASS 18.05.16

MT.5 PASS 18.05.16
Table 36: Test results for phase 3

Test Logs 1.0

Created by: Morten J. Barbala
22.05.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Table of Contents
Test Cases 3

T.1 3

T.2 3

T.3 4

T.4 4

T.5 5

T.6 5

T.7 6

T.9 6

T.10 7

T.11 7

T.12 7

T.13 8

T.14 8

T.15 8

T.16 9

T.17 9

Module Tests 11
MT.1 11

MT.2 11

MT.3 11

MT.4 12

MT.5 12

Reference Tests 13
RT.1 13

Acceptance Tests 14
Internal 14

Stakeholder 14

Bibliography 15

Test Cases

This document contains a collection of all the test logs. The logs refers to a particular
test that has been performed with date, result and comments.

T.1

Test ID T.1 Date 10.05.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Continuous video
Changes are perceived as instant
Slight seam visible

Comment Seams have minimal impact on user immersion.
Pleora eBUS watermark visible on all camera feeds.

Test ID T.1 Date 10.05.2016

Test Number 2 Result PASS

Tester Morten J. Barbala

Specific Results Continuous video
Changes are perceived as instant
Slight seam visible

Comment Seams have minimal impact on user immersion.
Pleora eBUS watermark is no longer visible after adding license.

T.2

Test ID T.2 Date 06.05.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Spinner HUD-element
Recording icon
Loading icon

Comment Loading icon is off center, consider changing position

T.3
Test ID T.3 Date 19.04.2016

Test Number 1 Result PASS

Tester Morten J. Barbala, Thomas Hansen

Specific Results Red recording icon in top right corner
Files in recording directory with current date and time:
20160419.120146
Files numbered and in raw format
No files with size 0KB

Comment Tested with three Mako G-223C cameras
Same number of raw files in subdirectories for each camera

Test ID T.3 Date 02.05.2016

Test Number 2 Result PASS

Tester Morten J. Barbala, Mathias Havdal

Specific Results Red recording icon in top right corner
Files in recording directory with current date and time in correct
format
Files numbered and in raw format
Same number of raw files in subdirectories for each camera
No files with size 0KB

Comment Tested with three Mako G-223C cameras

T.4

Test ID T.4 Date 28.04.2016

Test Number 1 Result FAIL

Tester Morten J. Barbala

Specific Results Can pause/unpause and skip forwards/backwards.
Video is continuous, but with visible seams.
Can start new playback, but not stop playback

Comment Missing textures to indicate playback is loading
Delay when unpausing playback
Delay when skipping forwards/backwards

Test ID T.4 Date 02.05.2016

Test Number 2 Result PASS

Tester Morten J. Barbala, Mathias Havdal

Specific Results Can pause/unpause and skip forwards/backwards
Video is continuous, but with visible seams
Can start new playback and stop playback

Comment Missing textures to indicate playback is loading
Delay when unpausing playback and skipping forwards/backwards

Test ID T.4 Date 11.05.2016

Test Number 3 Result PASS

Tester Morten J. Barbala, Mathias Havdal

Specific Results Can pause/unpause and skip forwards/backwards
Video is continuous, but with small visible seams
Can start new playback and stop playback

Comment Icon to indicate playback loading is now visible on HUD.
Seams do not break user immersion and the user forgets about
them after longer use.
Slight delay when unpausing playback and skipping
forwards/backwards.

T.5

Test ID T.5 Date 11.05.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Startup times:
4.48, 4.36, 4,41

Average: 4,42

Comment Fast startup time because of SSD in main Argos PC

T.6

Test ID T.6 Date 11.05.2016

Test Number 1 Result PASS

Tester Morten J. Barbala, Mathias Havdal

Specific Results 1-3 clicks

Comment Number of clicks depends on if the user will use the default configs
or not.

T.7

Test ID T.7 Date 18.05.2016

Test Number 1 Result PASS

Tester Thomas Hansen, Morten J. Barbala

Specific Results The test user was given written instructions and oral instructions
before using the system. The user started the system with ease
and started and stopped a recording.

Comment The test user had a bit problem resetting the view when first putting
on the headset, but managed to figure it out after a short while.

T.9

Test ID T.9 Date 22.04.2016

Test Number 1 Result FAIL

Tester Morten J. Barbala

Specific Results 33 frames delay
33/240 0.1375 seconds delay

Comment Test performed on three cameras
Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz
Filmed preview on screen, not inside the VR-googles, and this
might give extra delay

Test ID T.9 Date 22.04.2016

Test Number 2 Result FAIL

Tester Morten J. Barbala

Specific Results 30 frames delay
30/240 0.125 seconds delay

Comment Test performed on one cameras
Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz
Filmed preview on screen, not inside the VR-googles, and this
might give extra delay

T.10

Test ID T.10 Date 18.04.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Weight: 440 grams (without cable)
Resolution per eye: 960x1080
Refresh rate: 75 Hz
Field of view: 100 degrees

Comment VR-goggles are Oculus Rift DK2 [1]
Specifications were found on article comparing DK1 to DK2
Consider contacting Oculus for official specifications and/or
technical manual.

T.11

Test ID T.11 Date 18.04.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Selected framerates from Allied Vision technical manual:
1088x2048: 49.5 FPS
900x2048: 59.7 FPS
700x2048: 76.6 FPS

Comment Cameras are Mako G-223C [2]
FPS varies with ROI (region of interest) height
Reducing width does not affect the FPS
We can adjust resolution to get desired framerate

T.12

Test ID T.12 Date 19.04.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Four ports
1 Gigabit per second per port

Comment NIC is Intel Pro/1000 PT Quad Port LP [3]
1 Gigabit per second is only with ideal load balancing

T.13

Test ID T.13 Date 06.05.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results File explorer, HUD and interface in English

Comment Interface language depends on operative system default language

T.14

T.15

Test ID T.15 Date 18.05.2016

Test Number 1 Result PASS

Tester Thomas Hansen

Specific Results The architecture is modular

Comment The architecture is separated into 4 different components. Each
component is its own module.

Test ID T.14 Date 19.04.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results All computers running Microsoft Windows 7 Enterprise SP1
All computers only connected to local network
All developers using C++ in Microsoft Visual Studio 15
Version control is Mercurial (HG) on local server

Comments Test delayed as team members struggled with VS15 installation

T.16

T.17

Test ID T.17 Date 22.04.2016

Test Number 1 Result FAIL

Tester Morten J. Barbala, Leiv Fredrik Berge

Specific Results Observations (number of frames delay):
18, 20

Comment Test performed on one camera
Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz
Filmed inside oculus rift goggles, no downscaling

Test ID T.17 Date 22.04.2016

Test Number 2 Result PASS

Tester Morten J. Barbala, Leiv Fredrik Berge

Specific Results Observations (number of frames delay):
20, 18, 18
21, 15, 16, 16, 21
17, 16, 20, 17

Average delay: 17.92 frames, 74.7ms

Comment Test performed on one camera in VR goggles
High-speed Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz

Test ID T.16 Date 25.02.2016

Test Number 1 Result PASS

Tester Morten J. Barbala

Specific Results Benchmark with 64 KB block size: 508.0 MB/s
Benchmark with 512 KB block size: 973.1 MB/s
Benchmark with 4 MB block size: 1208.8 MB/s
Benchmark with 8 MB block size: 1248.5 MB/s
Average writing speed: 984.6 MB/S

Comments Performed test on array with three disks in RAID 0

Test ID T.17 Date 22.04.2016

Test Number 3 Result PASS

Tester Morten J. Barbala, Leiv Fredrik Berge

Specific Results Observations (number of frames delay):
15, 13, 18, 15
18, 22, 19

Average delay: 17.14 frames, 71.4ms

Comment Test performed on three cameras in VR goggles
High-speed Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz

Test ID T.17 Date 09.05.2016

Test Number 4 Result PASS

Tester Morten J. Barbala, Trond Egil Hammer, Mathias Havdal

Specific Results Observations (number of frames delay):
16, 17, 17
16, 15, 17

Average delay: 16,33 frames, 68,1ms

Comment Test performed on one camera in VR goggles using new PBO
system
High-speed Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz

Test ID T.17 Date 09.05.2016

Test Number 5 Result PASS

Tester Morten J. Barbala, Trond Egil Hammer, Mathias Havdal

Specific Results Observations (number of frames delay):
16, 17, 17
19, 18, 17

Average delay: 17,33 frames, 72,2ms

Comment Test performed on three cameras in VR goggles using new PBO
system
High-speed Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz

Module Tests

MT.1

Test ID MT.1 Date 18.05.2016

Test Number 1 Result PASS

Tester Thomas Hansen

Specific Results Recording started when ‘R’ was pressed, rec icon was visible and
recording stopped when ‘R’ was pressed. Directories were created
containing all cameras and raw image files from the cameras.

Comment The test was preformed 3 times with the same result.

MT.2

Test ID MT.2 Date 18.05.2016

Test Number 1 Result PASS

Tester Thomas Hansen

Specific Results File explorer opens when ‘P’ is pressed.
File explorer opens in last recording directory
Right control pause and un-pause playback
Right and left skip 10 seconds forward and backwards
Page down and delete skip 1 min forward and backwards
‘1’ takes you back to live video

Comment If the user doesn’t know how files are stored it might be hard to find
the right recording.
If there is no recording file to find, the file explorer opens the
computers “documents” folder.

MT.3

Test ID MT.3 Date 18.05.2016

Test Number 1 Result PASS

Tester Thomas Hansen

Specific Results The program starts with default config file for both surface and
HUD
All surface config file work with all HUD config files by pressing 1-5
and 6-0 for every surface config file.

Comment

MT.4

Test ID MT.4 Date 18.05.2016

Test Number 1 Result PASS

Tester Thomas Hansen

Specific Results Framerate is smooth when looking around in the virtual world.
There are no corruptions or artifacts in the video in the surfaces.
Playback is identical to live view.

Comment

MT.5

Test ID MT.5 Date 18.05.2016

Test Number 1 Result FAIL

Tester Thomas Hansen

Specific Results Motion tracking is responsive at all times except when changing
HUD config.
The video runs smoothly from the time when a new surface
appears in the virtual world.
The recalibration works fine in both live view and playback

Comment The video feed stops when changing config file.
The video and motion tracking stopped when changing HUD
config, this was less than 0.5 sec and the test was run from the
server.

Test ID MT.5 Date 18.05.2016

Test Number 2 Result PASS

Tester Thomas Hansen

Specific Results Motion tracking was responsive at all times.
The video runs smoothly from the time when a new surface
appears in the virtual world.
The recalibration works fine in both live view and playback

Comment The lag from the failed test completely gone when test was run
from Argos pc.

Reference Tests

RT.1

Test ID RT.1 Date 22.04.2016

Test Number 1

Tester Morten J. Barbala

Specific Results 30 frames delay
33/240 0.125 seconds delay

Comment Test performed on one camera
Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz

Test ID RT.1 Date 25.04.2016

Test Number 2

Tester Morten J. Barbala, Leiv Fredrik Berge

Specific Results Delay: 21 and 25 frames
0.0958 seconds delay

Comment Test performed on one camera downscaled to achieve 100fps
Camera used: GoPro Hero 4
Video settings: 720p at 240 Hz

Acceptance Tests

Internal

Acceptance test, internal
Date 10.05.2016

Result PASS

Tester All team members

Specific Results Multiple distinct layouts of live video and HUD were
functional.

 Live video from multiple cameras produced continuous and
synchronized view. Some small seams were visible, but did
not break immersion or lower system performance.

 Virtual world reacted properly and smoothly when moving
the VR goggles.

 Video was successfully recorded during longer test drive
and recording icon was visible at all times in HUD.

 Video playback and playback controls functioned as
intended.

 Playback perfectly recreated the recorded video as if it was
live.

 Playback could be stopped, or virtual world views changed,
without causing crashes or errors.

 System exited without errors.

Comment Test performed by placing the Argos system in a car and using a
power generator. Multiple videos and pictures were taken for use in
final presentation and documentation.

We discovered a hardware limitation with the Oculus Rift DK2: The
sensor is not designed to be in motion. When turning the car,
especially sharper turns, the view in the VR goggles will drift out of
calibration and start skipping.

Stakeholder

Acceptance test with
stakeholder

Date 11.05.2016

Result PASS

Tester All team members, stakeholder: Alexander Gosling

Specific Results No changes in results from internal acceptance test

 Stakeholder was impressed with the final product

Comment Test performed in lab at Krona

Bibliography

[1] "Oculus Rift Specs - DK1 vs DK2 Comparison," 01. January 2016. [Online]. Available:

http://riftinfo.com/oculus-rift-specs-dk1-vs-dk2-comparison. [Accessed 18. April 2016].

[2] "Mako G Documentation - Allied Vision," Allied Vision, 24 November 2015. [Online].

Available:

https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/Mako/techm

an/Mako_TechMan_en.pdf. [Accessed 02 May 2016].

[3] "Intel® PRO/1000 PT Quad Port Server Adapter Product Brief," Intel, 2008. [Online].

Available: http://www.intel.com/content/dam/doc/product-brief/pro-1000-pt-quad-port-lp-

server-adapter-brief.pdf. [Accessed 02 May 2016].

Architecture Notebook 2.0

Created by: Thomas Hansen
03.02.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Architectural Notebook

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 5
1.3 List of Figures 6
1.4 List of Tables 6

2. System Context 7

3. Software Architecture and System Architecture Overview 8

4. System Architecture and Software Architecture Decisions 8
4.1 Software Structure 9
4.2 Identification of Third-Party Software 9
4.3 Choice of Technology 10

5. Architecturally Significant Requirements 11

6. Physical View 11
6.1 System Models 12
6.2 Key Physical Subsystems 12

6.2.1 Camera System 13
6.2.2 Network subsystem 14
6.2.3 VR System 15

7. Logical View 17
7.1 Architectural Framework 17

8. Process View 18
8.1 View live video sequence diagram (UC.1) 19
8.2 Choose and use HUD sequence diagram (UC.2) 20
8.3 Record and stop video sequence diagram (UC.3 / UC.6) 21
8.4 View pre-recorded video sequence diagram (UC.4) 22

Bibliography 23

Architectural Notebook

3

1. Document Overview

The purpose of the architectural notebook is to give the reader a clear understanding
of the system and software architecture of Project Argos. After reading this you
should know the design of the system and software architecture. The key physical
components are described. Furthermore, this document describes interfaces and
interactions between hardware and software components.

Describes

 the system architecture.

 show the selection of technologies, components and physical structure of
Project Argos.

 the software architecture.

 functionality of key software components.

 show in detail how key parts of the software works and interacts with hardware
and other software components.

 show the physical, logical and process view of Project Argos.

1.1 Document History

Version Changes Date Author

0.2 Added coding style standards 12.02.2016 Morten J. Barbala
Thomas Hansen

0.3 Made miscellaneous changes 16.02.2016 Thomas Hansen

0.4 Table header colour, added more
requirements, Documentation /
comments

17.02.2016 Trond Egil Hammer
Thomas Hansen

0.5 Review document, fix minor errors 19.02.2016 Mathias Havdal

0.6 Changed software component
diagram and removed some
components.

26.02.2016 Thomas Hansen

0.7 Added Switch and NIC to system
abstractions and miscellaneous
changes

01.03.2016 Thomas Hansen

0.8 Made comments, changed goals 08.03.2016 Ingvild Damtjernhaug
Leiv Fredrik Berge

0.9 Added references, reviewed the
comments

09.03.2016 Thomas Hansen

0.10 Removed implementation part of
architectural mechanisms and
removed controller “mechanism”.
Added sequence diagrams.
Restructured layout. Removed one
goal

10.03.2016 Thomas Hansen,
Leiv Fredrik Berge

1.0 Release check for presentation 2. 11.03.2016 Thomas Hansen

1.1 Added physical sub system,
physical view rewritten

05.04.2016 Leiv Fredrik Berge

1.2 New N2 diagram, updated logical 06.04.2016 Leiv Fredrik Berge

Architectural Notebook

4

view, minor changes to physical
view, added flow chart to software

1.3 Added recorder handler 07.04.2016 Leiv Fredrik Berge

1.4 Changed format on name and date
in document history

10.04.2016 Trond Egil Hammer

1.5 Changed architectural mechanisms,
added and removed decisions and
referred them to technical
documents.

10.04.2016 Thomas Hansen

1.6 Added recording solution
description

12.04.2016 Morten J. Barbala
Trond Egil Hammer

1.7 Added configuration system
description, updated controller
diagram

12.04.2016 Leiv Fredrik Berge

1.8 Added System context, architecture
overview, architectural decisions.
Removed architectural goals,
assumptions and constraints
chapter

12.04.2016 Leiv Fredrik Berge

1.9 Corrections and clarifications
regarding the recorder

13.04.2016 Morten J. Barbala
Trond Egil Hammer

1.10 Added architecture decision section 13.04.2016 Leiv Fredrik Berge

1.11 Added to architecture overview,
architectural decisions, rearranged
document

20.04.2016 Leiv Fredrik Berge

1.12 Updated sequence diagrams,
added playback

21.04.2016 Leiv Fredrik Berge

1.13 Added third-party software
component diagram, changed
document overview, removed
introduction. Made changes in
system context

26.04.2016 Ingvild Damtjernhaug
Leiv Fredrik Berge

1.14 Remove empty headlines, correct
headlines. Rewriting, clarifications
and corrections. Added references
for computer parts and SATA speed

26.04.2016 Morten J. Barbala

1.15 Removed architectural mechanisms
as they are described in chapter 8

04.05.2016 Thomas Hansen

1.16 Add comments on a few issues
(typos in diagrams, incorrect
technical explanations) and add
rough outline for “Picture loader”
section

10.05.2016 Mathias Havdal

1.17 Added 8.3 and small changes 11.05.2016 Thomas Hansen

1.18 Made changes in 4.1, added a 3rd
header level, changes in 7.1, fixed a
lot of comments

12.05.2016 Thomas Hansen

1.19 Fixed layout, headings, table of
contents and paragraph spacing

13.05.2016 Morten J. Barbala

1.20 Add rough draft of flow chart for 16.05.2016 Mathias Havdal

Architectural Notebook

5

picture loader in section 8.2

1.21 Improve picture loader flowchart in
section 8.2 and add figure number.
Start fleshing out text in sections 8.2
and 8.2.1.

17.05.2016 Mathias Havdal

1.22 Slight changes in section 8.2.1,
write section 8.2.2

18.05.2016 Mathias Havdal

1.23 Deleted “Playback” section in
chapter 8, as it has been replaced
by section 8.2.2. Start reviewing
document, highlighting and
correcting issues.

18.05.2016 Mathias Havdal

1.24 Highlight more issues. 19.05.2016 Mathias Havdal

1.25 Fix lots of issues. Rewriting and
removing text.

19.05.2016 Mathias Havdal

1.26 Removed redundant information in
chapter 4. Improved section 6.2.

19.05.2016 Mathias Havdal
Leiv Fredrik Berge

1.27 Removed redundant section 6.3
and moved N2 diagram to section
6.2.

19.05.2016 Mathias Havdal
Leiv Fredrik Berge

1.28 Fixed 4.3, added references. Split
the document with TinyArgos
Technical Solutions. Fixes in
Process view.

20.05.2016 Leiv Fredrik Berge

2.0 Final review 21.05.2016 Morten J. Barbala
Thomas Hansen
Leiv Fredrik Berge
Ingvild Damtjernhaug

1.2 Referenced Documents

Title Document Version

Requirements Document doc-1213_requirements_2_0.docx 2.0

Glossary doc-1113_glossary_2_0.docx 2.0

Technical Document:
Lenses

doc-21321_lenses_2_0 2.0

Technical Document:
Network Solutions

doc-21321_network_solutions_2_0.docx 2.0

Technical Document: VR
Goggles

doc-21321_VR_goggles_3_0.docx 3.0

Technical Document:
Architecture style

doc-21321_Architecture_pattern_1_0.docx 1.0

Technical Document:
Motion Sickness

doc-21321_motion_sickness_1_0.docx 1.0

Technical Document:
Graphics Library

doc-
21321_Graphics_library_technical_document_
1_0.docx

1.0

Technical Document: doc-21321_GigE_Vision_SDK_1_0.docx 1.0

file:///C:/ArgosServer/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx
file:///C:/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_lenses_2_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_network_solutions_2_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_motion_sickness_1_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_Graphics_library_technical_document_1_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_Graphics_library_technical_document_1_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_Graphics_library_technical_document_1_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_GigE_Vision_SDK_1_0.docx

Architectural Notebook

6

GigE Vision SDK

TinyArgos Technical
Solutions

doc-
333_tinyargos_technical_solutions_1_0.docx

1.0

T.16 Test log doc-44_T_16_1.docx N/A

1.3 List of Figures

Figure 1: High level system architecture 7

Figure 2: TinyArgos software composition with third-party software 9

Figure 3: System component diagram 12

Figure 4: N2 diagram for the system 13

Figure 5: Front view diagram 14

Figure 6: Field of view of front facing cameras 14

Figure 7: Field of view of rear facing camera 14

Figure 8: Total field of view of camera system 14

Figure 9: Network diagram 15

Figure 10: Software architecture overview of the pipeline from glass to glass 17

Figure 11: Our software architecture, pipe-filter and components based architecture
and MVC pattern 17

Figure 12: Use case diagram 18

Figure 13: Sequence diagram for UC_1 "View live video" 19

Figure 14: Sequence diagram for UC_2 "Use HUD" 20

Figure 15: Sequence diagram for UC_3 "Record live video" and UC_6 “Stop
recording” 21

Figure 16: Sequence diagram for UC_4 "View pre-recorded video" 22

1.4 List of Tables

Table 1: Key requirements 11

file:///C:/ArgosServer/Argos/Code%20documents/Documents/doc-333_tinyargos_technical_solutions_1_0.docx
file:///C:/ArgosServer/Argos/Code%20documents/Documents/doc-333_tinyargos_technical_solutions_1_0.docx
file:///C:/ArgosServer/Argos/Test%20documents/Documents/Test%20logs/Test%20cases/T_16_1/doc-44_T_16_1.docx
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686211
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686212
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686213
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686214
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686215
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686216
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686217
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686218
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686219
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686220
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686221
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686221
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686222
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686223
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686224
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686225
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686225
file:///C:/ArgosServer/Argos/Architecture%20documents/Documents/doc-1222_architecture_notebook_2_0.docx%23_Toc451686226

Architectural Notebook

7

2. System Context

Project Argos is a system which enables a user to drive a vehicle with a virtual reality
(VR) headset. A live video feed from the outside is shown inside the VR goggles.
This lets the driver observe surroundings through VR goggles instead of looking
through the wind shields. The system consists of several parts. It has a camera rig to
record the video, a network to transfer the data, a computer as a platform for the
TinyArgos software and a VR headset. The main focus for the bachelor project of
2016 is to develop key functionalities in the software. The TinyArgos software and
the hardware should then be integrated to create a working tech demo.

We consider all the components mentioned above as parts of the Argos system. We
are building a tech demo, which will provide the project owner with a platform to test
the viability of the concept. Power supply, vehicle camera mount, size of the
complete system etc. are future challenges not considered to be part of the bachelor
project.

As for the scope of this bachelor project, we do not interact with outside software.
However, this is expected to be a key functionality at some later point in the
development process and the architecture must therefore allow for interfaces towards
other applications and systems. This includes, but is not limited to: global positioning
system (GPS), map software, surveillance software or other Kongsberg systems. It is
also important for us that the system building blocks are “off the shelf” parts. We want
Project Argos to be modular. Individual components should be exchangeable with
better hardware as it becomes available.

Figure 1: High level system architecture

Architectural Notebook

8

3. Software Architecture and System Architecture
Overview

The architecture is divided into two main parts: The hardware components and the
software. The hardware consists of the camera rig with multiple cameras and lenses,
connected to a network for an interface towards the software, and other key
hardware components like the VR-headset and the computer running the software.
The software architecture describes the building blocks through: (i) the nature of the
architectural components i.e. the nature of their computation, (ii) the way they interact
with other components when composing a system and(iii) constraints on the way this
composition is done. [1]
Most of the decisions in the architecture are made with the end goal of reducing
latency and increasing speed and performance. The latency from the point an image
is captured by the camera, till it is displayed to the user in the headset (glass to glass
latency) is critical for the experience to be pleasant. This means we want to reduce
everything that slows the process down, both in hardware and software. As of now
the software and storage system is contained in a single computer, but in the future
this could be split across multiple devices to ease the computational load on the
virtual reality computer. The other latency we are concerned about is in the VR
headset itself, meaning the time from the user moved his or her head until the motion
is reproduced to match in the virtual world.

The software has the same objective as the rest of the architecture; reduce latency.
This means we want to utilize parallelism and all the available computational power
of the computer, both central processing unit (CPU) and graphical processing unit
(GPU). We also need a high level of modularity to easily support new camera
technology and virtual reality hardware. VR headsets are still an immature
technology and we expect great leaps in comfort, performance and features over the
coming years. Our software must therefore be versatile enough to be upgradable as
Project Argos will continue to be developed by other teams after the bachelor project.
In short, the code must be easy to understand and improve. We accomplish this by
using common and current libraries and tools, and splitting the code into smaller
modules.

4. System Architecture and Software Architecture
Decisions

This section will cover the key decisions that we have made with impact on the
system and software architecture. This provides our reasoning for choosing the
technology and standards we did, and in some cases what the alternatives are and
why they were not chosen. Some of the key components are covered in more detail
in the technical documents. The focus for most of our decisions is to lower the glass
to glass latency of the system and to increase usability and comfort.

Architectural Notebook

9

4.1 Software Structure

The structure of the software is very important to ensure high data throughput. We
want to create as few obstacles for the video data as possible from point of capture
till it is displayed. We have selected aspects from two main software architecture
design styles: Pipe filter as the main data process structure, and component based
architecture (CBA) style to separate the different functions of the software into easily
maintainable modules. We also implemented Modell-View-Controller (MVC) pattern
to separate the data from control functions and user interface in this structure

 Pipe filter style
o See the technical document on software architecture style.

 Component based architecture style
o CBA is a way to describe software as a set of components. These

components communicate through loosely coupled interfaces. [2]

 MVC pattern
o Model-View-Controller pattern is a common software pattern to

separate data from the control functions and the interaction with the
user. The user only interacts with the view and the view only with the
controller and the data only with the controller. This allows for a very
clean and sensible allocation of functionality that protects the data. [3]

4.2 Identification of Third-Party Software

Figure 2: TinyArgos software composition with third-party software

VR goggles

Argos PC

Camera System

file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_Architecture_pattern_0_5.docx

Architectural Notebook

10

We need a number of software development kits (SDK) and libraries to improve
performance, ease of use and development. Some of these are given from the
technology choice, but there are still some choices to be made.

 Oculus SDK 0.8.0.0
o There is no common standard for VR headsets yet, so we are forced to

use the SDK provided by Oculus. 0.8 was the latest SDK available
when the bachelor project started. Version 1.3 has now been released,
but it does not have official support for the Oculus Rift DK2 headset we
are using. To add to this, 0.8.0.0 is a beta version, while 1.3 is a
release version. This means that there could be several breaking
changes, which in turn increases the effort required to migrate to the
newer version. [4]

 Pleora eBUS SDK 4.1.5
o The choice of cameras dictates the transfer standard, and limits the

potential SDK choices. Our cameras follow the GigE Vision standard,
so we have selected the eBUS SDK made by Pleora. See the GigE
Vision technical document for more details.

 TinyXML2
o Our configuration files are written in XML. XML is a simple way of

storing data, and has the advantage of being human readable and
editable in any basic text editor. Instead of writing our own XML parser
for the TinyArgos software, we have decided to use TinyXML2.
TinyXML2 is lightweight and stable, and saves us significant effort in
implementing a configuration system [5].

 OpenGL
o To create a virtual world to display in the VR headset we needed a

graphics API for rendering. OpenGL works with the Oculus SDK. For
more details, see the technical document on graphics library.

4.3 Choice of Technology

The technology has a huge impact on the physical architecture and the software. We
want the system to be as modular as possible so individual parts of the system can
be replaced with relatively little effort. This means in particular that we want to
choose technology that complies with established standards. As VR still is in its
infancy, standards in regards to this aren’t stable yet, but in the other aspects of the
system good standards are available.

We inherited the project at a point in time were much of the choice of technology had
already been taken. The major impacting components like the cameras, VR goggles,
development platform and programming language had been decided. In our technical
documentation we have reviewed some of the choices, and made our
recommendations for upgrades down the line. We have made changes in upgrading
the Visual Studio integrated development environment (IDE) from 2013 to 2015. We
did consider upgrading to the latest Oculus Rift CV1, but availability and time
constraints stopped us from pursuing this further.

file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_GigE_Vision_SDK_1_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_GigE_Vision_SDK_1_0.docx
file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_Graphics_library_technical_document_0_2.docx

Architectural Notebook

11

5. Architecturally Significant Requirements

These are the key requirements that have a direct influence on the architecture. The
most important requirements are A.NF.8 and B.NF.3, which refers to the glass to
glass latency. For the entire list of requirement see the requirements document.

Requirement number Description

B.NF.1 Glass to glass latency should be less than 20 ms

B.NF.3 The system should be up and running in less than 20
seconds

B.NF.4 It should take less than 5 clicks to get a video feed in the VR
goggles

A.F.5 The cameras must be able to send live video to system

A.F.6 The system must be able to capture and handle video from
all four cameras

A.F.7 The system must be able merge video from all cameras to
one continuous image

A.F.8 The system must be able to display the continuous image in
VR goggles

A.NF.8 Glass to glass latency must be less than 75 ms

C.NF.1 It should be possible to learn key functionality in 10 minutes
Table 1: Key requirements

6. Physical View

The physical view is meant to give the reader a clear understanding of what physical
parts the system is composed of and the environment it will operate in. The system is
composed of a camera system to capture live video around the vehicle, a powerful,
high-end consumer grade computer and an Oculus Rift VR headset to display the
images. The components are connected in a 1 Gbit Ethernet local area network, with
power over ethernet for the cameras. The cameras are machine vision and
surveillance cameras with C-mount for the lenses. The rest of the physical
components are consumer grade hardware, to keep cost down and provide us with
the performance needed for the system. This will also allow us to replace
components easily when new and faster hardware becomes available. As consumer
electronics keep improving, we believe it will be sufficient to meet our environmental
requirements, also moving forward towards a production system.

The main purpose of the physical system architecture is to enable us to capture live
video and display it in real time in VR goggles inside the car. The user should be able
to drive only with the help of cameras and VR. Latency is the biggest enemy for this
to be achieved, so the system architecture must provide the most efficient route from
video capture to display in VR. It can be a challenge to see where the physical view
ends and the logical view begins. This is because our system exists in a cyber-
physical space. As an example the Oculus Rift is a physical component, but at the
same time it acts as both an input device and an output device, and incorporates
quite a bit of logic through the Oculus SDK and API. In addition, the cameras are

file:///C:/ArgosServer/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx

Architectural Notebook

12

physical components with a major software part that is mix of physical and logical
elements.

6.1 System Models

The system component diagram shows an overview of the major physical
components and the interfaces that tie them together. We have made efforts to use
hardware that supports common standards wherever possible. This way we can
upgrade and replace components with minimal changes elsewhere in the system,
reducing the effort required to take advantage of newer and better hardware.

The cameras and the graphics card are components that have a key impact on the
systems performance, and are areas where technology is constantly improving. In
the future, this could lead to increased requirements for network and storage, but
hardware with significantly higher performance than our current setup already exists
in these fields. [6]

6.2 Key Physical Subsystems

The N2 diagram shows the interaction between the subsystems in Project Argos. The
dark blue shows the hardware subsystems, the green is the TinyArgos software and
the orange is the cyber physical VR goggle system. The key physical subsystems are
the cameras, network switch, Argos PC and VR goggles. They all share the same
goals of achieving the lowest possible latency and providing the user with a pleasant
VR experience. The following sections describe and justify the hardware we selected
for each of the key physical subsystems.

Figure 3: System component diagram

Architectural Notebook

13

6.2.1 Camera System

 4x Allied Vision Mako G223-C GigE Vision cameras with power over ethernet
(PoE) support

 1x Fujinon FE185C086HA-1 fish eye lens

 3x Kowa LM6JC wide angle lenses

The cameras in our system are high-end cameras used in surveillance and machine
vision. They provide a relatively high resolution for this type of camera at 2048 x
1088, and a high frame rate of 49.5 FPS.

For Project Argos it is a great advantage that the cameras can draw power from the
ethernet cable, rather than requiring a battery pack or standalone power. This means
we only need one power source and each camera only needs a single cable. The
transfer rate of up to 128 Mb/s theoretically maxes out the 1 Gbit connection to the
switch, and is needed to transfer the sheer amount of uncompressed data.

The greatest advantage of the Mako G223-C is that it does not buffer images before
sending them. Most consumer grade cameras, like for example GoPro, buffer at least
a couple of frames to ensure smooth playback. [7] We value low latency over
smoothness, so any extra buffering in the camera is undesirable.

Figure 4: N2 diagram for the system

Architectural Notebook

14

We will use three front facing cameras with wide angle lenses. The video feeds from
these cameras will form a continuous image, covering up to 245 degrees of the
horizontal field of view. We will also have a rear facing camera with a super wide
angle fish eye lens. This camera will act as a rear view mirror, and will not be joined
with the three front facing cameras. We mean this creates a more efficient and
comfortable user experience. This also avoids a potential issue with the Oculus,
where the tracker only tracks the front of the Oculus. So if the user turns his head to
see behind, it will not be able to track the HMD.

With this solution our horizontal field of view covers up to 360 degrees. We believe
this is the best compromise between field of view and computational time to stitch the
video feeds together. More details can be found in the technical document for lenses.

6.2.2 Network subsystem

 24 port PoE Gigabit Network Switch

 Intel Pro/1000 PT Quad Port LP

 Argos PC with DHCP server

Figure 5: Front view diagram

Figure 6: Field of view of front
facing cameras

Figure 7: Field of view of rear
facing camera

Figure 8: Total field of view of
camera system

file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_lenses_2_0.docx

Architectural Notebook

15

The backbone of the network is a switch with 24x1 Gbit ports and PoE support. The
Argos PC is equipped with a 4x1 Gbit network interface card (NIC). We have
configured the NIC to behave as a single logical port, with automatic load balancing
across the four physical ports. For more details see the network solutions technical
document.

We have configured the Argos PC as a dynamic host configuration protocol (DHCP)
server, assigning IP addresses to the cameras. This allows us to assign each camera
a static IP address based on its media access control (MAC) address. Having static
IP addresses makes it easier to be sure that the physical placement of the camera
matches the placement of the video stream in the virtual world.

6.2.3 VR System

 Argos PC
o Intel i7 5930K
o 32 GB RAM
o GeForce GTX Titan X
o 240 GB SSD for OS
o 720 GB SSD Array in RAID 0 for storage

 Oculus Rift DK2

Powering the VR system is a high end consumer PC. It uses the Intel i7-5930K
processor, which is one of the most powerful consumer grade processors according
Futuremark’s CPU benchmark [8]. Processing multiple high quality video streams in
parallel and presenting them in a virtual world can be demanding. For that reason, it
is important to have a processor that has a high clock speed and IPC (instructions
per cycle) as well as a sufficient number of cores.

If we can achieve a sufficient degree of parallelism, we might see better performance
with a server grade processor. Server grade processors like Intel’s Xeon series
typically have more cores than consumer grade processors, at the cost of having a
lower maximum clock speed. The cost of a Xeon processor is also typically higher,
and often requires a special motherboard and RAM. In the future, a deeper analysis

Figure 9: Network diagram

file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_network_solutions_2_0.docx

Architectural Notebook

16

of the performance scaling of the TinyArgos software could be done to determine if
this upgrade is appropriate.

The GPU is important for all high performance 3D rendering. This is especially true
for VR applications, because the virtual world has to be rendered twice every frame.
This is because humans have two eyes, and each eye must see the virtual world
from two different perspectives. For the best possible experience, the framerate also
needs to be very high. See the motion sickness document for more details.

The Argos PC is equipped with the Nvidia GeForce Titan X, one of the most powerful
graphics cards available as per April 2016 [9]. It features a massive 3072 Cuda
cores, 192 texture units, a core clock of 1000 MHz and 12GB of GDDR5 memory
[10]. It would be possible to add another Titan X and utilize SLI, Nvidia’s multi GPU
technology, but getting good performance scaling typically requires some
optimization and increases complexity. [11]

Another key part of the Argos PC is the storage array. Each camera can send up to
128 MB/s. With the four cameras we are using, the computer will receive up 512 MB
of data each second. Because processing and displaying the video streams is
already so demanding, we will not be able to compress the video before storing it.
This makes it obvious that we will need a lot of storage space to be able to record
any significant amount of video.

To be able to write all the received footage to disk, we will need a storage medium
with write speeds of at least 512 MB/s. The third generation SATA 6 Gb/s interface
has a maximum write speed of 600 MB/s [12], but the actual write speed is usually
limited by the physical storage medium and not the interface itself. To ensure
sufficient write speed, we have used three 240 GB SSDs in a striped volume (RAID
0). In a striped volume, files are split into multiple parts, and the parts are distributed
evenly between the drives. This gives a linear increase in storage space and can
theoretically also give a linear increase in read/write performance. Our testing has
shown write speeds of 800-1200 MB/s, depending on the block size of the files being
written to the drive; see the test log for T.16.

The downside with RAID 0 is that if one drive becomes corrupted, the whole volume
is also corrupted. In a production system, it might be worth using one of the three
drives as a parity drive (RAID 10). This will give some of the performance benefit of
RAID 0, with the added redundancy of RAID 1. However, we will only be using this
computer for a tech demo, so the data we store is not that important.

For long term storage, it might be a good idea to copy the stored data to mechanical
disks. A mechanical disk is slower, but often gives more capacity for the same cost
as an SSD. [13] Note that if the recorded video streams are to be played, they will
have to be copied back to a faster storage medium. Otherwise real-time playback will
not be possible because of disk read speed starvation.

The VR system of choice is the Oculus Rift DK2. This was the only VR headset on
the market when we started our bachelor project. See the VR goggles technical
document for more information.

file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_motion_sickness_1_0.docx
file:///C:/ArgosServer/Argos/Test%20documents/Documents/Test%20logs/Test%20cases/T_16_1/doc-44_T_16_1.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx
file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx

Architectural Notebook

17

7. Logical View

The logical view refers to the static software components that make up the TinyArgos
application. The diagram above shows the allocation of functionality and the interface
between the software modules. This describes the relationships and the static nature
of the software architecture. To see the dynamic aspects of our software solution see
the TinyArgos technical solutions documents. TinyArgos is the main application for
gathering video data from the GigE vision cameras, creating the virtual world and
displaying the virtual world in the Oculus Rift. As mentioned in the physical view, the
line between hardware and software is a bit more blurred than what it used to be,
with systems having both software and hardware component.

The logical architecture must be as streamlined as possible to make sure we have
the data throughput we need of the system. We also need the software to respond to
the user’s actions and inputs.

7.1 Architectural Framework

Because the main feature of this system is to stream video to the VR goggles some
implementation of the “Pipe-Filter style” is the architectural style we believe to be the
best choice. The style describes a way of constructing a route by creating a chain of

Figure 10: Software architecture overview of the pipeline from glass to glass

Figure 11: Our software architecture, pipe-filter and components based architecture and MVC pattern

file:///C:/ArgosServer/Argos/Code%20documents/Documents/doc-333_tinyargos_technical_solutions_1_0.docx

Architectural Notebook

18

filters where the output of one filter is fed into the input of another filter in the pipeline.
It is important to maintain as much continuous dataflow as possible so that the pipe
filter style does not turn into a batch processing style. We need a bit more control that
what the pipe and filter style offers, so we have created our own component based
style. See the architectural style document for more details.

The pipeline starts at a picture handler module that receives the picture data from the
cameras and packs this data into pixel buffer objects (PBO) that it sends to the virtual
world and if recording is activated it copies the raw picture data to the recorder
module. The recorder handler includes the environment for the recording to occur.
We set up the recording environment with four frame buffer recorders, one for each
of the cameras in the system. This way we can store raw, uncompressed data from
all of the cameras, without stealing much of the resources from the rest of the
system. This does not change the data, so when we play back the video streams we
can reuse much of the code from live video.

The virtual world module incorporates the live video stream into the Oculus to create
the virtual reality experience for the user. This includes displaying the right video
stream at the right place in the virtual world. The virtual world also has heads up
display (HUD) features. This allows us to display text and other data on top of the
video from the cameras, and fill the areas outside of the view of video with useful
information like a compass and a map. This can also be extended to gather data
from external system, and add markers to the HUD. To create the virtual world we
use OpenGL and the Oculus SDK. It’s also a key functionality of the virtual world to
gather motion input from the Oculus, so we can move the image inside the virtual
world to match the movement of the users head. This is an integral part of creating
the immersion in the virtual world and essential for the experience to be realistic.

8. Process View

Figure 12: Use case diagram

file:///C:/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx

Architectural Notebook

19

The process view shows the dynamic view of the software architecture. It shows the
interfaces and interaction between the software components in the sequence
diagrams that corresponds to each use case.
We have used the process view and sequence diagrams help us find the objects and
classes in the software. It is also important to show the interfaces and connections
inside the software, and who interacts with whom of the software architectural blocks.
The sequence diagrams expand on the use case diagrams with much more detail in
how the program solves each use case. The code implementation can in some cases
be slightly different than the diagrams, since the diagrams were created before the
code as a help and guide for development. Read more on the implementation of the
diagrams in to code in the TinyArgos Technical Solutions document.

8.1 View live video sequence diagram (UC.1)

User UI
Controller-
ArgosApp

Select recording config

ConfigReader

get config path

load config file

inizialize OpenGL

alt

no user input

user press 1-5

select default config

gigeVisionCamera

open camera streams

loop

while(playing)
get picture data

VR worldFrame packer

send frame buffer

send frame packed into PBO

Render

gigeVisionHandler

loop

for each(camera) create camera player

When the user starts the program it will by default to the config.xml file in resources.
If the user wants a different set up, it’s possible to invoke that with a press of one of
the buttons from 1 through 5 on the keyboard. The default or the chosen config file is
parsed by the config reader, and the controller sets up the environment accordingly.
Then the controller connects to the cameras as described in the config by creating a
handler for the cameras. The handler creates a single camera object for each of the
streams. The cameras gets data from the cameras, packs it into buffers and is sent
to the virtual world to be displayed.

Figure 13: Sequence diagram for UC_1 "View live video"

file:///C:/ArgosServer/Argos/Code%20documents/Documents/doc-333_tinyargos_technical_solutions_1_0.docx

Architectural Notebook

20

8.2 Choose and use HUD sequence diagram (UC.2)

User UI

Choose HUD config

Controller-
ArgosApp

handleInput(config)

ConfigReader

load config file

inizialize OpenGL

surfaceAttributes

display HUD

The HUD is split from the normal config file, so any HUD can be used with any
surface configuration. This means we reduce the number of configuration files, while
maintaining flexibility for the user. The HUD configs are chosen by the user through
the keyboard and captured by user interface. The controller sends the path of the
config file to the config reader that parses the HUD config file and returns the surface
attributes. Then the controller reinitializes OpenGL to set up the new surfaces in the
virtual world, and is displayed to the user in the Oculus Rift.

Figure 14: Sequence diagram for UC_2 "Use HUD"

Architectural Notebook

21

8.3 Record and stop video sequence diagram (UC.3 /
UC.6)

User UI

Press 'R'

Controller -
ArgosApp

inputHandler(R)

RecordingHandler Virtual worldRecorder StorageConfigReader

alt

!isRecording

isRecording

start recording

copy current config
save recording xml

display recording symbol

Create directory

create players
create camera xml

save camera xml
create new thread

store buffer to file

loop

for each(camera)

stop recording

stop recording

join thread

clear buffer

loop

for each(camera)

remove recording symbol

The recording function is invoked by the user hitting R. Then the controller will check
if a recording is active or not, and either start or stop the recording. If a recording is
active the recording handler will let each recorder know to stop, where by each
recorder will clear the buffers and join the thread back to the parent. Also the
recording symbol in the HUD will be removed. Otherwise, if the user wants to start a
recording, the “rec” symbol will be displayed. A new directory in the recording folder
will be created with a unique name. The current configuration will be copied, slightly
altered to reflect it isn’t live and stored in the new recording folder. Then the
recording handler will create a recorder for each camera, with an XML file with the
camera settings and a thread to store the buffers to disk.

Figure 15: Sequence diagram for UC_3 "Record live video" and UC_6 “Stop recording”

Architectural Notebook

22

8.4 View pre-recorded video sequence diagram (UC.4)

User UI

Press 'P'

Controller-
ArgosApp

handleInput('P')

Promt GetOpenFile()

Data -
Storage array

get store buffers

Select recording config.xml

ConfigReader

get config.xml path

load config file

load config.xml in all subfolders

inizialize OpenGL

return buffers

PlaybackHandler Player

loop

while(playback)

load playbak handler

create player
loop

for each(camera)

To choose a pre-recorded video to play in the TinyArgos software, we have a simple
but effective keyboard interface. If the user hits the “p” button the UI triggers the
controller to invoke the “getOpenFileName” function. This will show an open file
dialog, and let the user choose the config.xml file in the correct recording folder. The
controller will send the file path to be parsed, it will also search the folder for any sub
folders, and all the config.xml files in the sub folder is parsed as well to set up the
environment with the settings the cameras had at the time of capture. The OpenGL
scene will also be set up with the same configuration that was stored when the video
was recorded. Then the controller invokes the playback handler, this set up one
player stream for each of the cameras that recorded, and it’s the players that gathers
the buffers from the storage, and makes it available in the virtual world for the user.

Figure 16: Sequence diagram for UC_4 "View pre-recorded video"

Architectural Notebook

23

Bibliography

[1] R. Juric, J. Kuljis and R. Paul, “Software architecutre style for interaoperable
databases,” in International Conference on Information Technology Interfaces,
Cavtat, Croatia, 2004.

[2] M. C. Oussalah, Software Architecture 1, Wiley, 2014.

[3] Google, “MVC Architecture,” Google Chrome, [Online]. Available:
https://developer.chrome.com/apps/app_frameworks. [Accessed 20 May 2016].

[4] Oculus, “Documentation,” Oculus, [Online]. Available:
https://developer.oculus.com/documentation/intro-vr/latest. [Accessed 20 May
2016].

[5] “TinyXML2,” 17 February 2016. [Online]. Available:
https://github.com/leethomason/tinyxml2. [Accessed 27 April 2016].

[6] Cisco, “10 Gigabit Ethernet Technologies,” Cisco, [Online]. Available:
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/10-
gigabit-ethernet-technologies/index.html. [Accessed 17 March 2016].

[7] GoPro, “Hero4 HDMI Output Informaiton,” GoPro, [Online]. Available:
http://gopro.com/support/articles/hero4-hdmi-output-information. [Accessed
20 May 2016].

[8] “Best Processors April - 2016,” 08 April 2016. [Online]. Available:
http://www.futuremark.com/hardware/cpu. [Accessed 27 April 2016].

[9] “Best Graphics Cards April - 2016,” 08 April 2016. [Online]. Available:
http://www.futuremark.com/hardware/gpu. [Accessed 27 April 2016].

[10] “GeForce GTX TITAN X | Specifications | GeForce,” [Online]. Available:
http://www.geforce.com/hardware/desktop-gpus/geforce-titan-
x/specifications. [Accessed 27 April 2016].

[11] U. Pirzada, “WCCF Tech,” September 2015. [Online]. Available:
http://wccftech.com/multi-gpu-nvidia-sli-and-crossfire-performance-value-
comparison/. [Accessed 20 May 2016].

[12] “Brochures | SATA-IO,” May 2009. [Online]. Available: https://sata-
io.org/sites/default/files/images/SATA-IO-English-Brochure-May-2009.pdf.
[Accessed 27 April 2016].

[13] BackBlaze, “Hard Disk Drive Versus Solid State Drive: What's the Diff?,”
Backblaze, 8 March 2016. [Online]. Available:
https://www.backblaze.com/blog/hdd-versus-ssd-whats-the-diff/. [Accessed 20
May 2016].

[14] “Tutorialspoint,” 2015. [Online]. Available:
http://www.tutorialspoint/software_architecture_design/
software_architecture_design_tutorial.pdf. [Accessed 09 March 2016].

[15] “WikiBooks,” 2016. [Online]. Available:
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Langua
ges/C%2B%2B/Code/Style_Conventions#References. [Accessed 09 March
2016].

[16] Microsoft Corp., “Microsoft Application Architecture Guide,” October 2009.
[Online]. Available: http://msdn.microsoft.com/en-us/libary/ee658117.aspx.

Architectural Notebook

24

[Accessed 21 April 2016].

[17] Carnegie Mellon University, “Software Engineering Institue - Software
Architecture,” 2016. [Online]. Available: http://sei.cmu.edu/architecture/tools/.
[Accessed 21 April 2016].

[18] G. Fairbanks, Just Enough Software Architecture, Marshall & Brainerd, 2010.

[19] P. Clemments, F. Backmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R.
Nord and J. Stafford, Documenting Software Architectures: Views and Beyond,
Addison-Wesley Professional, 2012.

[20] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, Addison-
Wesley Professional, 2012.

[21] M. Engelsberger and T. Greiner, “Software Architecture for Cyber-Physical
Control Systems with Flexible Application of the Software-as-a-Service and On-
Premises Model,” IEEE, Pforzheim, 2015.

[22] P. Clements, R. Kazman and M. Klein, Evaluating Software Architectures: Methods
and Case Studies, Addison-Wesley Professional, 2001.

TinyArgos Technical Solutions 1.0

Created by: Mathias Havdal
20.05.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 TinyArgos Technical Solutions

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 4
1.3 List of Figures 4

2. Software Components 5
2.1 Controller 5
2.2 Picture Handler 6

2.2.1 Live Video 7
2.2.2 Recorded Video 7

2.3 Virtual World 8
2.4 Recorder 10

3. Video Stitching 11
3.1 Inspiration 11
3.2 Technique 11
3.3 Pros and Cons 12

4. Coding Style 13
4.1 Classes 13
4.2 Header Files 13
4.3 Functions 13
4.4 Naming 14
4.5 Documentation / Comments 14

Bibliography 15

 TinyArgos Technical Solutions

3

1. Document Overview

The purpose of the TinyArgos technical solution document is to give the reader an
understanding of the key technical aspects of the TinyArgos software. After reading
this document you should have a general idea about the inner workings of the
software and the justifications for some of the technical solutions that have been
used.

Describes

 key software components.

 technical details of software components.

 video stitching technique.

 coding style.

1.1 Document History

Version Change Date Created by

0.1 Create document and move
“Process View” and “Coding Style”
sections from architecture notebook

20.05.2016 Mathias Havdal

0.2 Move sequence diagrams back to
architecture notebook. Rename
“Process View” section to “Software
Components” and rewrite section
intro. Rewrite section about
controller component, change
picture loader to picture handler.

20.05.2016 Mathias Havdal

0.3 Start rewriting “Virtual World”
section in “Software Components”
chapter

21.05.2016 Mathias Havdal

0.4 Finish rewriting “Virtual World”
section. Start work on “Video
Stitching” chapter.

21.05.2016 Mathias Havdal

0.5 Write subsections in “Video
Stitching” chapter.

22.05.2016 Mathias Havdal

0.6 Fix section numbers, remove
obsolete diagrams. Rewrite
“Recorder” section. Write document
overview. Add GigE Vision and lens
technical documents to referenced
documents. Fix bibliography.

22.05.2016 Mathias Havdal

0.7 Fix layout and typos. 22.05.2016 Morten J. Barbala

1.0 Final review 22.05.2016 Morten J. Barbala,
Thomas Hansen
Ingvild Damtjernhaug

 TinyArgos Technical Solutions

4

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

GigE Vision SDK doc-21321_GigE_Vision_SDK_1_0.docx 1.0

Lenses doc-21321_lenses_2_0.docx 2.0

1.3 List of Figures

Figure 1: TinyArgos component diagram 5
Figure 2: Picture Handler flowchart 6
Figure 3: Recorder flowchart 10

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx
file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_GigE_Vision_SDK_1_0.docx
file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_lenses_2_0.docx

 TinyArgos Technical Solutions

5

2. Software Components

Camera

Storage

Picture handler Virtual world

Controller

Recorder

VR Goggles

Figure 1: TinyArgos component diagram

This section gives an overview of the main components that make up the TinyArgos
software. Full technical documentation, i.e. source code, is not public information and
only available on DVDs supplied for assessment.

2.1 Controller

The controller in the TinyArgos software is the ArgosApp class. ArgosApp inherits
from the RiftApp and RiftManager classes, which contain functionality specific to the
Oculus Rift DK2 headset. The controller in our software has the task of managing the
picture handler, recorder and virtual world based on inputs from the user.

One of the most common tasks the controller has to perform is switching config files.
The config system is divided into two parts: One for video and one for the heads-up
display (HUD). This gives our software the ability to display many different
combinations of video and HUD while keeping the number of config files to a
minimum.

When the user sends input telling the software to load a new config file, the controller
will use either the ConfigReader or ConfigReaderHUD class to parse the file. Using
the data from the config file, the controller will create new surfaces to be placed in the
virtual world. Before the new surfaces are added, surfaces from the previous config
are removed.

If the new config was for video, there are a few more steps that need to be carried
out. We have two possible video sources: Recorded video from disk and live video
from cameras. The controller will configure the picture handler according to user
input. For live video, both the picture handler and recorder must be configured. For
playback, however, the picture handler is configured and the HUD config associated
with the recorded video is loaded.

 TinyArgos Technical Solutions

6

When live video is running, the controller is responsible for starting and stopping the
recorder. If a previously recorded video is being played, the controller manipulates
the picture handler, pausing and skipping in the video. All of these actions are carried
out according to user inputs.

2.2 Picture Handler

Picture Handler

VideoElement

Copy image data to PBO

GigeVisionCamera/
Player

Retrieve video frame

Send frame to
VideoElement

Check if new PBO data

Render
Update texture using PBO

data

New dataNo new data

VideoElement

Copy image data to PBO

GigeVisionCamera/
Player

Retrieve video frame

Send frame to
VideoElement

Check if new PBO data

Render
Update texture using PBO

data

New dataNo new data

Virtual world

Render elements

GigeVisionHandler/
PlaybackHandler

Manage video stream
objects

Figure 2: Picture Handler flowchart

The picture handler consists of multiple classes working together to retrieve video
from a desired source and feed it into the virtual world. Because we have multiple
types of video sources, we need to have a different set of classes for each one.

 TinyArgos Technical Solutions

7

There are three classes that are used for each video type. The first is a video stream
class, which has the task of retrieving the data for a single video stream of a specific
type (live from a GigE Vision camera, or recording from disk). The second class is a
video handler. It has the task of managing the video stream objects. This means
creating them and telling them when to start and stop retrieving data.

The VideoElement class is the third class, and it acts as a common interface
between the video stream classes (GigeVisionCamera/Player class) and the virtual
world. It accepts raw video data, transferring it to a pixel buffer object (PBO). This
PBO is later used as a data source in the virtual world, applying the video data to a
surface the user can see in the VR goggles.

PBOs are critical to the performance of our software. They allow for asynchronous
transfer of video data to OpenGL. Using multiple PBOs per video feed, we can
render the previous video frame while transferring a new one simultaneously. This
greatly reduces the time it takes to render a frame, increasing the framerate and
thereby the smoothness and responsiveness of the user experience.

2.2.1 Live Video

For live video playback we use cameras that follow the GigE Vision standard (see
GigE Vision SDK technical document). GigeVisionHandler is the name of the video
handler class we use for live video. This class manages objects of the
GigeVisionCamera class, which is the video stream class we use for live video.
These two classes act as a wrapper for our implementation of the eBUS SDK,
allowing us to abstract away any API specifics. This means that we could easily
implement a different GigE Vision SDK down the line if necessary.

In the GigeVisionHandler class, cameras are detected using the eBUS API. For each
camera that we want to connect to, a GigeVisionCamera object is created. All
configuration specific to a single camera and video stream are carried out in the
GigeVisionCamera class, again using the eBUS API.

For live video streaming, a thread is created in the GigeVisionCamera class. This
thread interacts with the eBUS API, retrieving video frames from the camera in real-
time. These video frames are then converted to a usable format and sent to an
assigned VideoElement object, to be displayed to the user. Since a thread is created
in each GigeVisionCamera object, multiple video streams can be processed in
parallel. This gives our software good performance scaling on multicore processors
when increasing the number of cameras in use.

2.2.2 Recorded Video

Recorded video is played from raw video data stored on disk. This data is accessed
through the fstream C++ library, and copied into buffers used by the eBUS SDK to
hold video frames. This is done because the raw data needs to be converted by the
eBUS SDK to a format that can be rendered in the virtual world.

file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_GigE_Vision_SDK_1_0.docx

 TinyArgos Technical Solutions

8

The video handler class used for playing recorded video is called PlaybackHandler.
This class is responsible for finding all the video streams in the directory where the
recording is stored. It also reads the metadata associated with each video stream.
Based on this information, it will create the appropriate number of objects of the
Player class.

The Player class is the video stream class used for playing recorded video. In this
class, raw video data for a single video stream is retrieved and sent to the virtual
world. To achieve smooth playback at the correct speed, two threads are used. The
first thread has the job of preloading video frames and placing them in a render
queue. This thread will aim to keep a certain number of frames in the render queue at
all times, ensuring protection against fluctuations in disk read speed while keeping
memory usage under control.

In the second thread, video frames in the render queue are sent to the virtual world at
an appropriate rate. This is essential for the recorded video to appear in the same
way it did when it was played live from a camera, as opposed to being slowed down
or sped up. The frame timing is calculated from the metadata that is stored with the
recorded video stream. To maintain this timing, the chrono C++ library has been
used. This way we can ensure that playback performance is consistent, and that
multiple video streams will stay synchronized.

Our software also supports pausing and skipping through recorded footage. This has
also been implemented using metadata. Using the framerate, we can calculate the
time elapsed at a certain video frame and how many frames to skip ahead to achieve
a desired skip in time. Pausing works in a similar way. When the user presses the
pause button, the calculated elapsed time is stored. When the user presses the play
button, the time point is calculated back into a specific frame number for each video
stream. This allows us to keep video streams with different framerates in sync, even
when pausing and skipping.

2.3 Virtual World

The virtual world component has the task of rendering the image that appears on the
display in the VR goggles. This image is composed from a set of surfaces placed in a
virtual world. When rendering the image, the position and orientation of the VR
goggles is taken into account. This means that when the users head moves, the
surfaces in the rendered image move accordingly, giving the user the illusion of
sitting in a real cinema.

Rendering an image that will be displayed in VR goggles comes with a few additional
challenges that you do not have when rendering to a computer monitor. The most
obvious one is that humans have two eyes. This means that the image you render
actually has to consist of two parts: One for the left eye and one for the right. To
convince the user’s mind, these two sub-images also need to have a slightly different
perspective. This is done to imitate the distance between the user’s eyes. Effectively,
this means that you need to render the virtual world twice for each image.

 TinyArgos Technical Solutions

9

The other challenge you face when rendering to VR goggles, is that there are lenses
between the display and the user’s eyes. The lenses distort the image that is
displayed on the screen. This means that the image that is sent to the display in the
VR goggles needs to be rendered in such a way that it cancels out the distortion
caused by the lenses.

Figure 3: Screenshot of image displayed in VR goggles

There are several classes that have a role in the virtual world component. The
RiftApp class handles the two aforementioned challenges specific to our VR goggles,
rendering the appropriate image for both eyes while compensating for lens distortion.
The actual rendering of each perspective happens in the GLScene class.

The GLScene class does most of the work configuring the OpenGL rendering
environment, compiling the shader programs that are executed by the graphics
processing unit (GPU). It also manages the surfaces in the virtual world, adding and
removing them as the controller requests. When the GLScene receives a render
request, it loops through all the surfaces calling a draw method. Surfaces are divided
into two categories, local and world. Local surfaces will follow the user’s head, while
world surfaces will always stay in their fixed position in the virtual world.

There are many different classes that make up the surface system. The existing
implementation when we started the project used a monolithic one-size-fits-all class
named Surface. Due to the sheer number of unique virtual world objects that use this
class in different ways, it has some serious maintainability issues. If you make
changes to fix one virtual world object, you risk breaking 20 other virtual world
objects in the process.

Because of this we decided to start from scratch and build our own system. An
abstract class named Renderable has been created as a basis for all virtual world
objects. Specific implementations inherit from this class, allowing us to keep unique

 TinyArgos Technical Solutions

10

virtual world objects separate on a class level. This greatly improves maintainability
and reduces the chance of unintentional breakage when implementing new features.
It has also allowed us to make more specific optimizations for certain types of virtual
world objects. A good example of this is the VideoElement class, which has a heavily
optimized mechanism for loading and presenting video frames.

We have not removed the legacy Surface class due to the number of virtual world
objects that still depend on it, but it should be phased out in the future. We have
observed memory leaks originating from this class during testing, eventually causing
TinyArgos to crash if too many objects of this type are added and removed.

2.4 Recorder

Storage array

RecordingHandler

Recorder Recorder Recorder Recorder

Store camera meta
data

Store camera meta
data

Store camera meta
data

Store camera meta
data

Store frame buffer
to file

Store frame buffer
to file

Store frame buffer
to file

Store frame buffer
to file

Create root
directory

Create and assign
subdirectories

Figure 4: Recorder flowchart

The recorder component has one simple objective – store video from the cameras
without interrupting the user experience. It is designed in a similar way to the picture
handler. An object of the RecordingHandler class manages objects of the Recorder
class.

The RecordingHandler class is responsible for creating the directory structure the
recorded video streams are saved in. It creates a Recorder object for each video
stream, and sets the appropriate subdirectory to store the video in. The handler tells
the recorders when to start and stop. This ensures that when video is recorded from

 TinyArgos Technical Solutions

11

multiple cameras, the individual recordings are of equal length and synchronized with
each other.

To avoid interrupting the user experience, the Recorder class will create a copy of
each video frame it has to store. This way, the actual writing to disk can happen in a
separate thread, to avoid stalling the picture handler. To keep things as simple as
possible, each video frame is stored in its own file. The files are given names that
represent the sequence they were stored in. To keep the computational overhead to
a minimum, no compression is done to the video frames before they are written to
disk.

We want to make it possible to recreate the live experience when the recording is
played back. To achieve this, the active config files for video and HUD are copied to
the directory that is created by the recording handler. The individual recorders also
create a metadata file, containing information about the resolution and framerate of
each video stream. This makes it possible to present the video the same way it
appeared when it was shown live.

3. Video Stitching

One of the key features of the TinyArgos software is the ability to stitch multiple video
feeds into one continuous image. This section explains the technique we have used
to achieve this and some of the pros and cons of this solution.

3.1 Inspiration

Latency is a critical aspect of our software, and this greatly limits our options for
stitching video feeds together. We wish to avoid having to analyze the image data
frame by frame, as this will take up valuable computation time.

The technique we have used was inspired by a typical enthusiast simulator setup (ex.
flight simulators or driving simulators). To achieve increased immersion and
awareness, it is common to use three monitors. Because of the limited viewing
angles of cheaper computer monitors, the left and right side monitor are often angled
towards the user. The problem with doing this is that the perspective of the image on
these monitors becomes wrong.

To compensate for this issue, many modern simulators have the ability to adjust the
perspective of the side monitors. This makes the image continuous across all three
screens, despite the different angles.

3.2 Technique

The issue described in the previous section is about adapting the image to the
physical placement of the screens. Our technique is basically the exact opposite of
this. We receive images from the cameras that have a specific perspective, and we

 TinyArgos Technical Solutions

12

have to place our “screens” in such a way that the combined image appears to be
continuous.

There is an immediate problem with this approach however. The images rendered by
a simulator have no distortion. Only the perspective differs. This is critical to making
the images line up at the edges of the screens, so we first have to find a way to
correct the distortion that is caused by the camera lenses.

The various types of distortion are discussed in the technical document for lenses.
Our lenses have significant barrel distortion. This means that we need to stretch the
image at the corners to compensate. To do this, we are changing the geometry of the
“screens” we project the camera images on. Instead of making the “screen” flat, we
give it a hemispherical shape curving toward the user. This gives the user the illusion
of the corners being stretched out, which is the effect we are looking for. By fine
tuning the parameters we use to get the hemispherical shape, we can completely
remove the distortion caused by the lens. This means that a straight line in the real
world will look straight on our “screen” as well. With the distortion issue out of the
way, it is simply an issue of fine tuning the position of the “screens” to give the
illusion of a continuous image from the cameras.

3.3 Pros and Cons

The most obvious strength of this solution is that it is computationally very cheap.
Giving the “screens” a hemispherical shape increases the vertex count (the
complexity of the geometry) slightly, but this has practically no performance impact
on a high performance graphics card like the Titan X we are using.

This solution is also fairly simple to implement, since we don’t have to make an
algorithm to analyze the contents of the images to stitch them together. The distortion
is the biggest challenge, and beyond that it’s just a simple matter of adjusting
parameters to fine tune the positioning of the “screens”.

A big drawback with this solution is that it is completely “dumb”. It depends on the
camera rig being stable (the physical placement of the cameras is completely
unchanging), and for optimal results it requires fine tuning by the user. If the camera
rig were to go out of alignment there is no way to compensate on the fly, because the
software has no knowledge of contents of the images and how they align.

Another issue is that this solution struggles with objects that are close to the
cameras. This is a result of the cameras not having the exact same point of origin –
they will always be placed above or next to one another in some fashion. At distance
the issue is minimal, but at close range the difference in placement becomes
apparent.

file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_lenses_2_0.docx

 TinyArgos Technical Solutions

13

4. Coding Style

It is common knowledge in the software community that the use of a coding standard
makes it easy to validate and understand code written by others, and will increase
the maintainability of the code. Therefore we have made a set of coding rules that
everyone should follow. [1]

4.1 Classes

Struct is only for objects carrying data where all data fields are used directly and not
through method calls. If more functionality is required (e.g. methods), classes should
be used.

- Avoid calling virtual methods in constructors

- Avoid implicit conversions

- Support copy and/or move only if it is required and useful for the class.

Declaration order:
- Privateprotectedpublic

 Typedefs and enums

 Constants

 Constructor

 Destructor

 Methods

 Data members

4.2 Header Files

All header files must be self-contained, i.e. have header guards and include all other
headers required. The header guards prevent multiple inclusions and use the
following format:

PROJECT_PATH_FILE_H_

The name is based on the project source tree.

4.3 Functions

Parameter order is: First inputs (pass by value) and then outputs (pass by reference).
New parameters are added at the end of their respective section.
In/out parameters can be placed in a separate section or together with related
parameters.

If possible, create small and focused functions.

 TinyArgos Technical Solutions

14

4.4 Naming

The name should be as descriptive as possible and immediately identify the entity.
Understanding is more important than minimizing the horizontal space required and
you should avoid using abbreviations unfamiliar to people outside the team.

Type names (classes and structs):

- Start with capital letter

- Every new word start with capital letter (UpperCamelCase)

- No underscores

- Example: ExampleClass

Variable and Function names:
- Start with lowercase letter

- Every new word start with capital letter (lowerCamelCase)

- No underscores

- Variable example: myLocalVariable
- Function example: myLocalFunction()

4.5 Documentation / Comments

Classes:
Explain what the purpose of the class is. This must be done in the header file.

Example:

/*

This class captures the picture data from the cameras.

Any inheritance

*/

Functions:
What the function does
Parameters
Return

Example:

/*

This function calculates 1+1

Param a, integer containing the first number.

Param b, float containing the second number.

Return sum, float containing the sum of the two numbers.

*/

 TinyArgos Technical Solutions

15

Bibliography

[1] "WikiBooks," 2016. [Online]. Available:
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B
%2B/Code/Style_Conventions#References. [Accessed 09 March 2016].

Iteration Reports 2.0

Created by: Leiv Fredrik Berge
15.03.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Iteration Reports

2

Table of contents

1. Document Overview 4
1.1 Document History 4
1.2 References 4
1.3 List of Tables 6

2. Iteration I1: Project Start 7
2.1 I1 Key Milestones 7
2.2 I1 High-Level Objectives 7
2.3 I1 Work Item Assignments 7
2.4 I1 Evaluation Criteria 7
2.5 I1 Iteration Review 8

3. Iteration I2: Requirement Specification 8
3.1 I2 Key Milestones 8
3.2 I2 High-Level Objectives 8
3.3 I2 Work Item Assignments 8
3.4 I2 Evaluation Criteria 9
3.5 I2 Iteration Review 9

4. Iteration I3: Requirement & Architecture 9
4.1 I3 Key Milestones 9
4.2 I3 High-Level Objectives 10
4.3 I3 Work Item Assignments 10
4.4 I3 Evaluation Criteria 11
4.5 I3 Iteration Review 11

5. Iteration I4: Integrate Cameras 11
5.1 I4 Key Milestones 11
5.2 I4 High-Level Objectives 12
5.3 I4 Work Item Assignments 12
5.4 I4 Evaluation Criteria 12
5.5 I4 Iteration Review 13

6. Iteration I5A: Merge Images 13
6.1 I5A Key Milestones 13
6.2 I5A High-Level Objectives 13
6.3 I5A Work Item Assignments 14
6.4 I5A Evaluation Criteria 14
6.5 I5A Iteration Adjustments 14
6.6 I5A Iteration Review 14

7. Iteration I5B: Record Video Stream 15
7.1 I5B Key Milestones 15
7.2 I5B High-Level Objectives 15
7.3 I5B Work Item Assignments 16
7.4 I5B Evaluation Criteria 16
7.5 I5B Iteration Adjustments 16
7.6 I5B Iteration Review 16

8. Iteration I5C: Video Playback 17
8.1 I5C Key Milestones 17
8.2 I5C High-Level Objectives 17
8.3 I5C Work Item Assignments 18
8.4 I5C Evaluation Criteria 18
8.5 I5C Iteration Adjustments 18

Iteration Reports

3

8.6 I5C Iteration Review 18

9. Iteration I6: Add Markers and Information 19
9.1 I6 Key Milestones 19
9.2 I6 High-Level Objectives 19
9.3 I6 Work Item Assignments 20
9.4 I6 Evaluation Criteria 20
9.5 I6 Iteration Review 20

10. Iteration I7: Delivery 21
10.1 I7 Key Milestones 21
10.2 I7 High-Level Objectives 21
10.3 I7 Work Item Assignments 21
10.4 I7 Evaluation Criteria 22

Iteration Reports

4

1. Document Overview

The purpose of the iteration reports is to keep track of the project progress and keep
the development team informed. The iteration report contains milestones, objectives,
work items, evaluation criteria and a review of each iteration. It contains estimated
hours needed to complete each task. This should be read with the iteration burndown
report. Work items are prioritized from 0 to 5, where 0 is highest priority and 5 lowest.

Describes

 the key milestones.

 objectives.

 work items with responsible person.

 evaluation criterias.

 details of the review in each iteration.

1.1 Document History

Version Changes Date Created by

0.1 Formalized document 14.03.2016 Leiv Fredrik Berge

1.0 Reviewed and updated 15.03.2016 Ingvild Damtjernhaug

1.1 Add iteration 5 05.04.2016 Mathias Havdal

1.2 Iteration 4 review 07.04.2016 Ingvild Damtjernhaug

1.3 Changed format on name and date
in document history

10.04.2016 Trond Egil Hammer

1.4 Updated i5a, i5b and i5c 14.04.2016 Leiv Fredrik Berge,
Mathias Havdal

1.5 Added I6, updated i5b with review 15.04.2016 Leiv Fredrik Berge

1.6 Adjustment to i5c 21.04.2016 Ingvild Damtjernhaug

1.7 New document overview 29.04.2016 Leiv Fredrik Berge

1.8 I6 updated 12.05.2016 Leiv Fredrik Berge

1.9 Fixed layout. Corrections and
clarifications.

16.05.2016 Morten J. Barbala

1.10 Pre final review 18.05.2016 Thomas Hansen

1.11 Formatting, proofreading, added
headings, added I7

19.05.2016 Ingvild Damtjernhaug
Leiv Fredrik Berge

2.0 Final review 20.05.2016 Trond Egil Hammer,
Thomas Hansen
Ingvild Damtjernhaug

1.2 References

Title Document Version

Project Plan Argos_project_1_0.mpp 1.0

Burndown report doc-112_Iteration_burndown_report_1_0.xlsx 1.0

file:///C:/Users/Administrator/Desktop/Argos_project_1_0.mpp
doc-112_Iteration_burndown_report_1_0.xlsx

Iteration Reports

5

Iteration Reports

6

1.3 List of Tables

Table 1: Key milestones iteration I1 7
Table 2: Work item assignments iteration I1 7
Table 3: Key milestones iteration I2 8
Table 4: Work item assignments iteration I2 9
Table 5: Key milestones iteration I3 10
Table 6: Work item assignments iteration I3 10
Table 7: Key milestones iteration I4 11
Table 8: Work item assignments iteration I4 12
Table 9: Key milestones iteration I5A 13
Table 10: Work item assignments iteration I5A 14
Table 11: Iteration adjustments iteration I5A 14
Table 12: Key milestones iteration IB5 15
Table 13: Work item assignments iteration I5B 16
Table 14: Iteration adjustments iteration I5B 16
Table 15: Key milestones iteration I5C 17
Table 16: Work item assignments I5C 18
Table 17: Iteration adjustments iterations I5C 18
Table 18: Key milestones iteration I6 19
Table 19 Work item assignments iteration I6 20
Table 20: Key milestones iteration I7 21
Table 21 Work item assignments iteration I7 21

Iteration Reports

7

2. Iteration I1: Project Start

Iteration I1, project start, belongs to the inception phase.

2.1 I1 Key Milestones

Title Date

Iteration start 11.01.2016

Technical vision 14.01.2016

Iteration stop 20.01.2016
Table 1: Key milestones iteration I1

2.2 I1 High-Level Objectives

 Develop an initial project plan

 Develop a common technical vision

 Set up key development tools and environment

2.3 I1 Work Item Assignments

Task Priority Responsible Estimated
hours

Develop
document
standard

1 Ingvild
Damtjernhaug

12

Initial project
plan

0 Leiv Fredrik
Berge

100

Develop
technical
vision

0 Trond Egil
Hammer

48

Tailor the
process

1 Leiv Fredrik
Berge

30

Set up tools 2 Mathias
Havdal

75

Verify tools
and
configurations

2 Morten J.
Barbala

30

Deploy
process

1 Leiv Fredrik
Berge

20

Table 2: Work item assignments iteration I1

2.4 I1 Evaluation Criteria

 Stakeholder acceptance of technical vision

 Tools and configuration test passed

Iteration Reports

8

2.5 I1 Iteration Review

The technical vision document was approved by the stakeholder. The tools and
configuration did not meet the requirements to the development process. We have
Visual Studio 2012, but we need Visual Studio 2013 or 2015 for it to support the
Oculus SDK and the OpenGL environment. The office space is adjusted to fit the
project, and we have created the network and sever setup. This must be revisited in
a later iteration, before development commences.

3. Iteration I2: Requirement Specification

Iteration I2, requirement specification, belongs to the inception phase.

3.1 I2 Key Milestones

I2 Requirement specifications

Title Date

Iteration start 20.01.2016

Use cases 27.01.2016

System-wide requirements 27.01.2016

Presentation 1 09.02.2016

Iteration stop 09.02.2016
Table 3: Key milestones iteration I2

3.2 I2 High-Level Objectives

 Identify and outline requirements

 Detail use-case scenarios

 Detail system-wide requirements

 Create test cases

 Create first presentation

3.3 I2 Work Item Assignments

Task Priority Responsible Estimated
hours

Identify and
outline
requirements

0 Trond Egil
Hammer

75

Detail use-case
scenarios

0 Thomas
Hansen

75

Details system-
wide
requirements

0 Thomas
Hansen

100

Iteration Reports

9

Create test
cases

1 Morten J.
Barbala

40

Set up tools 2 Mathias
Havdal

40

Verify tools and
configurations

2 Morten J.
Barbala

30

Risk review
meeting

1 Leiv Fredrik
Berge

12

Create first
presentation

0 Ingvild
Damtjernhaug

100

First
presentation

0 Leiv Fredrik
Berge

12

Table 4: Work item assignments iteration I2

3.4 I2 Evaluation Criteria

 Stakeholder acceptance of use cases

 Stakeholder acceptance of system wide requirements

 Successful response for the first presentation

3.5 I2 Iteration Review

We did not finish the setup of tools and environment from the first iteration. We
adjusted, and configured the tools to our satisfaction in this iteration. We are now
running Visual Studio 2015, with current SDKs. This iteration’s main focus was the
requirements modelling. We did get approval from our stakeholders on both use
cases and system wide requirements, and received good feedback on the
presentation, resulting in a successful iteration. We see that we use slightly more
time on the presentation than expected, and a little less time on the requirements
modelling than we planned for. We will keep an eye on this for the upcoming
iteration, on whether or not we need to re-evaluate the plan, however the work tasks
is performed to our satisfaction which is the most important aspect.

4. Iteration I3: Requirement & Architecture

Iteration I3, requirement and architecture, belongs to the elaboration phase.

4.1 I3 Key Milestones

I3 Requirement & architecture

Title Date

Iteration start 09.02.2016

Refine architecture 01.03.2016

Develop solution increment 01.03.2016

Iteration Reports

10

Technical research on network solutions 22.02.2016

Technical research on lenses 22.02.2016

Iteration stop 22.02.2016
Table 5: Key milestones iteration I3

4.2 I3 High-Level Objectives

 Create a stable system architecture

 Create a stable software architecture

 Develop the solution process

 Decide on lenses for our camera rig

 Compile and run existing code

4.3 I3 Work Item Assignments

Task Priority Responsible Estimated
hours

Refine
architecture

0 Thomas
Hansen

200

Develop
solution
process
diagrams

1 Mathias
Havdal

40

Risk review
meeting

1 Leiv Fredrik
Berge

12

Refine risk
document

0 Trond Egil
Hammer

40

Update SDK 1 Mathias
Havdal

20

Migrate VS13-
>VS15

1 Mathias
Havdal

20

Run code
base

1 Mathias
Havdal

10

Research
network
solutions

1 Morten J.
Barbala

40

Research
lenses

0 Trond Egil
Hammer

70

Technical
document VR
goggles

1 Ingvild
Damtjernhaug

40

Table 6: Work item assignments iteration I3

Iteration Reports

11

4.4 I3 Evaluation Criteria

 Project group acceptance and consensus of architecture

 Successful compelling and running code

 Decide on lenses to use for the camera rig

4.5 I3 Iteration Review

The last iteration left us in a very comfortable spot with the requirements modelling.
Only minor adjustments to the requirements were needed for our acceptance in this
iteration. Also we did see the need for a couple additional tests to sufficiently prove
the performance of our system hardware.
The code now compiles and work as it should. This did involve quite a bit of work we
didn’t anticipate. We knew we needed to migrate from VS13 to VS15. A little
surprisingly to us, there was quite a bit of breaking changes, especially to the time.h.
Oculus has also released two SDK versions after the 0.6.0.0 that TinyArgos used.
We needed to perform the migration in two steps to make sure we updated all the
functionality. All the other libraries also needed to be updated. We reached
consensus on the pipe-filter architecture, with some adjustments. As we start work
with integrating the cameras in the next iteration, we will keep working on refining the
architecture. We had to dig a lot deeper into lenses than we expected. Apparently we
are dealing with an issue that is very particular, so finding useful information has
taken more time than we thought initially. We’ve really had to dig deep into different
technical aspects of lenses. We have gotten some help by the optometrists at the
college, in creating and understanding lens designs. We have found lenses we are
comfortable ordering as soon as we get acceptance from the stakeholder in our
solution

5. Iteration I4: Integrate Cameras

Iteration I4, integrate cameras, belongs to the construction phase.

5.1 I4 Key Milestones

I4 Integrate cameras

Title Date

Iteration start 22.02.2016

Refine architecture 18.03.2016

Order lenses 05.03.2016

Implement GiGE SDK 07.03.2016

Receive picture data 18.03.2016

Second presentation 15.03.2016

Iteration stop 17.03.2016
Table 7: Key milestones iteration I4

Iteration Reports

12

5.2 I4 High-Level Objectives

 Refine architecture

 Implement GigE SDK

 Migrate code to 64 bit

 Order lenses

 Run code base with picture data from our cameras

5.3 I4 Work Item Assignments

Task Priority Responsible Estimated
hours

Refine
architecture

0 Thomas
Hansen

100

Choose GigE
SDK

0 Mathias
Havdal

20

Implement
GigE SDK

0 Mathias
Havdal

50

Order lenses 0 Trond Egil
Hammer

30

Implement
config XML
parsing

1 Leiv Fredrik
Berge

50

Create
functions to
receive picture
data

0 Mathias
Havdal

130

Create second
presentation

1 Ingvild
Damtjernhaug

100

Second
presentation

0 Leiv Fredrik
Berge

12

Table 8: Work item assignments iteration I4

5.4 I4 Evaluation Criteria

 Receive picture data from the camera rig

 Successful ordering of lenses

 Good feedback on the second presentation

Iteration Reports

13

5.5 I4 Iteration Review

In iteration 4 we managed to receive picture data from all the cameras, and
successfully upgraded the code and libraries.
We ordered the lenses, and were afraid it would take a while before we actually got
them. But it turned out well, the lenses were delivered quite fast, and they are now
ready for testing.
We held the second presentation 15.03. The feedback on the technical parts of the
presentation was good. A misunderstanding led us to believe that the focus for the
second presentation were on the technical aspects. We should have had more focus
on the process. We got some negative feedback on our documentation, as there
were documents missing from the delivered CD. We are not allowed to connect our
workstations to Internet, and because of that, we save documents at different places.
Only the documents from our local server were added to the CD. We need to make
sure this does not happen again.
There was also some inconsistency in our delivered documents. This will be fixed,
and get high priority before the third and final presentation.

6. Iteration I5A: Merge Images

Iteration I5A, merge images, belongs to the construction phase.

6.1 I5A Key Milestones

Title Date

Iteration start 04.04.2016

Get live video feed in Oculus headset 15.04.2016

Merge two images 22.04.2016

Merge all images 06.05.2016

Iteration stop 06.05.2016
Table 9: Key milestones iteration I5A

6.2 I5A High-Level Objectives

 Refine architecture

 Display live video feed in Oculus

 Merge video feeds into a continuous image

 Implement appropriate configuration files

Iteration Reports

14

6.3 I5A Work Item Assignments

Task Priority Responsible Estimated
hours

Refine architecture 0 Leiv Fredrik
Berge

50

Transfer video data
to OpenGL render
medium

0 Mathias
Havdal

100

Create and position
OpenGL geometry to
render video on

0 Thomas
Hansen

100

Solution for merge
areas

1 Leiv Fredrik
Berge

50

Review config
system

0 Ingvild
Damtjernhaug

100

Table 10: Work item assignments iteration I5A

6.4 I5A Evaluation Criteria

 Successfully display live video in Oculus

 Merge video feeds seamlessly

 Should be able to configure the system using only config files

6.5 I5A Iteration Adjustments

Date Reason Responsible Adjusted
hours

08.04.2016 Smoother implementation of GigE Vision
than anticipated.

Leiv Fredrik
Berge

-75

Table 11: Iteration adjustments iteration I5A

6.6 I5A Iteration Review

We have done a lot of work with the software architecture. Refining and updating all
aspects of the software architecture to incorporate the changes and upgrades in the
code base. We’ve created sequence diagrams for the key functions and flowcharts
for each module.
We encountered a major issue with the video stream buffers we had to deal with. As
soon as we deleted a buffer, the entire program crashed. And if we can’t delete
buffers, it will keep filling up in memory and eventually crash. We did a lot of
investigation, and found out that the EBUS SDK seems to have a bug in the 64 bit
version of the SDK. So we had to migrate the code back to 32 bit, as the 32 bit EBUS

Iteration Reports

15

SDK worked perfectly. 32 bit is completely fine for this project, but it should be
upgraded to 64 bit when Pleora releases an update to EBUS.
We have also rewritten the entire configuration system. We wanted the software to
be more scalable and configurable, so we moved as much as possible out to the
XML files instead of hardcoding it. The config files allows us to very easily move the
system onto different hardware, share configuration setups or recreate the exact
setup from a recording to a playback scenario. Along the way we’ve done major
clean-up of allocation of functionality, fixed memory leaks and other minor bugs.
We added support for PBO. This is a more clever way of packing the frame buffers,
and should yield a performance increase and better stability.
We’ve also rearranged the surfaces on which the videos are rendered on in a new
way. Now we have full freedom to place the surfaces in all three directions in the
configuration file. And we have distortion correction functionality. With this we place
the images on a curved surface to correct for the distortion the lenses add to the
video.
We’ve created a prototype for the camera rig. We needed to have a rig, in order to
test the distortion correction and the stitching functionality. This is quite crude, but we
have designed a more permanent rig, that will either be 3D printed or manufactured
in wood.

7. Iteration I5B: Record Video Stream

Iteration I5B, record video stream, belongs to construction phase.

7.1 I5B Key Milestones

Title Date

Iteration start 04.04.2016

Add controls for recording 08.04.2016

Record video streams to file 15.04.2016

Iteration stop 15.04.2016
Table 12: Key milestones iteration IB5

7.2 I5B High-Level Objectives

 Should be able to start and stop recording

 Recording status should be visible to user

 Should be able to record video to file from all cameras in parallel

Iteration Reports

16

7.3 I5B Work Item Assignments

Task Priority Responsible Estimated
hours

Add interface to
control recording

0 Trond Egil
Hammer

40

Add HUD notification
for recording status

0 Morten J.
Barbala

75

Implement system for
recording video to file

0 Trond Egil
Hammer

150

Table 13: Work item assignments iteration I5B

7.4 I5B Evaluation Criteria

 User is able to control recording start/stop

 Confirm that video file is playable

 Recording status should be visible in the Oculus headset

7.5 I5B Iteration Adjustments

Date Reason Responsible Adjusted
hours

08.04.2016 The architecture allowed for a very clean
integration of recording that required
less rewrite of code base than
anticipated.

Leiv Fredrik
Berge

-50

13.04.2016 Less performance optimization required
than anticipated.

Leiv Fredrik
Berge

-50

Table 14: Iteration adjustments iteration I5B

7.6 I5B Iteration Review

As we went to work on this iteration we didn’t know what to expect. This is a totally
new functionality, and as far as our research is concerned, not a very common action
to perform with our setup. However we did have a general idea; we wanted to write
the buffers to disk with as little overhead as possible. We considered the to use
functionality from the Ebus SDK to use a mpg container, and drop the video files into
that, however we instead went with a more basic approach of writing the buffers raw
to file. The main reasons is that this requires very little overhead, the file sizes are
large but manageable and it makes playback implementation very smooth, as we
basically can just read the buffers as if they came from the camera system. As work
progressed in this iteration we realized that our idea would actually work, probably
even better than we anticipated, so we were able to slash some hours of the
expected workload. The performance, which faster than expected, also meant we did

Iteration Reports

17

not have to spend as much time optimizing the speed of recording as initially
planned. This is in great part thanks to the planning and the problems we solved in
advance, like setting up our super-fast SSD array. Trond Egil and Morten has been
lead in this iteration with design help from Mathias and Leiv Fredrik. Working in
parallel with I5a has worked out great for us, as it has engaged the entire team in
useful coding task throughout the entirety of this iteration. The repository manager,
Mercurial (Hg), has been key for this to be achieved. Hg allows us to develop multiple
branches at the same time, and then integrate into the code base when new
functionality is stable. The evaluation criteria are considered to be met in all
accounts. No tasks from this iteration is expected to slide into I5c, however the
playback and recording as quite interconnected, so there is slight chance that the
playback module will reveal aspects from the recorder that needs to be added.

8. Iteration I5C: Video Playback

Iteration I5C, video playback, belongs to construction phase.

8.1 I5C Key Milestones

Title Date

Iteration start 18.04.2016

Read and create buffer from raw files
created by recorder

20.04.2016

Display buffer in renderer 22.04.2016

Time rendering appropriately (correct
framerate, etc.)

26.04.2016

Implement pausing, skipping
forward/backward

28.04.2016

Implement configuration system with
metadata for video feeds

04.05.2016

Iteration stop 04.05.2016
Table 15: Key milestones iteration I5C

8.2 I5C High-Level Objectives

 Should be able to play video created by the recorder

 Playback framerate should be equal to recording framerate

 Should be possible to pause, skip forwards and backwards in video by fixed
amounts of time

 Playback system should be able to configure surfaces as they were recorded

 Playback system should be able to determine the correct framerate for video
playback

Iteration Reports

18

8.3 I5C Work Item Assignments

Task Priority Responsible Estimated
hours

Add functionality for creating a buffer from raw
data on disk

0 Morten J.
Barbala

40

Add functionality for displaying buffers in
renderer with correct timing and framerate

0 Mathias
Havdal

80

Add functionality for controlling playback 1 Morten J.
Barbala

60

Add functionality for parsing config files
specific to the recording that is being played

1 Leiv Fredrik
Berge

60

Table 16: Work item assignments I5C

8.4 I5C Evaluation Criteria

 Video playback has a correct framerate (video is not sped up or slowed down)

 Video playback is consistent (no stuttering or small variations in framerate)

 User is able to pause video and skip forwards/backwards

8.5 I5C Iteration Adjustments

Date Reason Responsible Adjusted
hours

21.04.2016 Successful demo of recording
functionality at 21.04. Seems likely that
the integration against earlier work is
smoother than expected, due to the
architecture and planning.

Leiv Fredrik
Berge

-40

02.05.2016 The work as progressed nicely and
faster than planned.

Leiv Fredrik
Berge

-50

Table 17: Iteration adjustments iterations I5C

8.6 I5C Iteration Review

This iteration was very closely linked to I5b. Basically it was very hard for us to really
test the recording functions before the playback was implemented, and vice versa.
So when we started the iteration we were not sure how much trouble we were going

Iteration Reports

19

to run into. And there were some issues, but in general our architecture, idea and
implementation worked out great. We did however have to rewrite some of the
recorder and playback when we implemented the PBOs in I5a.
We also were able to avoid a lot of problems in advance. Our initial calculations of
required disk writing and reading speed turned out to be pretty much spot on. And
our solution with the three SSD RAID0 array worked perfectly.
We expected timing and quantization to be a potential issue, but after some
performance adjustments and optimizations, the timing is very good. We also found a
clever way of quickly and exactly store metadata about the video stream and
configuration, and reloading it in the player.
We did discover that some of the old code that is quite unpleasant, giving us a slight
memory leak when swapping configuration files. The issue is buried pretty deep in a
part of the program that needs to be refined. Fixing the issue will require significant
effort, so the better solution is probably to rewrite the entire module. This will
streamline the code and yield a more stable solution.

9. Iteration I6: Add Markers and Information

Iteration I6, add markers and information, belongs to construction phase.

9.1 I6 Key Milestones

Title Date

Iteration start 05.05.2016

Clean up HUD generation 12.05.2016

Generate test HUDs 14.05.2016

Implement system tests 15.05.2016

Create systems guide 15.05.2016

Finalize documentation 16.05.2016

Iteration stop 20.05.2016
Table 18: Key milestones iteration I6

9.2 I6 High-Level Objectives

 Allow for text and image objects to be placed over the video stream

 Allow for an interface to gather information from other systems to generate
HUD objects

 Perform system tests

 Finalize documentation

Iteration Reports

20

9.3 I6 Work Item Assignments

Task Priority Responsible Estimated
hours

Clean up HUD objects 0 Thomas
Hansen

60

Generate test HUD objects 1 Ingvild
Damtjernhaug

20

Perform system tests 0 Morten J.
Barbala

60

Create systems guide 1 Mathias
Havdal

30

Finalize code documentation 0 Leiv Fredrik
Berge

75

Table 19 Work item assignments iteration I6

9.4 I6 Evaluation Criteria
 HUD objects is visible in the Oculus

 System passes systems tests successfully

 Documentation receives positive feedback at the final presentation

 System receives positive feedback at final presentation

 System is accepted by the stakeholder

 Documentation is accepted by the stakeholder

9.5 I6 Iteration Review

We have integrated new functionalities into the code base along the way, so there
was no huge integration work that was left for the final development iteration. The
major development task that was left was to improve the HUD system that was left
from the previous group. We did find there was quite a few problems with that
integration, but decided to leave much in place and rather incrementally phase out
the old system. The new HUD system doesn’t leak memory as the old one did, fixes
some issues with static objects and is much less complex to work with. We also
integrated some of the features we started on in I5a to split the configuration system
of the HUD objects and the video objects. The system outperformed our expectations
greatly in our internal systems acceptance test. The latency is unnoticeably low and
the seams aren’t annoying while driving. There are, however, some issues with the
Oculus: The tracker expects to be stationary, so while turning, the tracker and the
gyroscope in the Oculus gets a little out of whack. This results in the video feed
snapping into place every so often to realign the Oculus with the tracker. The
problem was not severe enough to hinder the usage of the system, but should be
improved before the system is deployed in a real world situation. All in all we are very

Iteration Reports

21

pleased with the progress of this iteration and the entire project. We also received
great feedback from the project owner and stakeholder in our systems acceptance
test.

10. Iteration I7: Delivery

Iteration I7, delivery, belongs to transition phase.

10.1 I7 Key Milestones

Title Date

Iteration start 21.05.2016

Documentation deadline 23.05.2016

Final presentation 27.05.2016

Project delivery 01.06.2016

Final demonstration 10.06.2016
Table 20: Key milestones iteration I7

10.2 I7 High-Level Objectives

 Finalize all documentation

 Finalize all code

 Perform the final presentation

 Deliver the project to the project owner

10.3 I7 Work Item Assignments

Task Priority Responsible Estimated
hours

Finalize documentation 0 Ingvild
Damtjernhaug

50

Finalize final presentation 0 Leiv Fredrik
Berge

50

Perform final presentation 0 Leiv Fredrik
Berge

10

Deliver the project 0 Leiv Fredrik
Berge

30

Table 21 Work item assignments iteration I7

Iteration Reports

22

10.4 I7 Evaluation Criteria
 Receive positive feedback and acceptance from project owner on project

delivery

 Receive positive feedback on the final presentation

Evaluation 1.0

Created by: Leiv Fredrik Berge
04.05.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 Evaluation

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 3
1.3 List of Figures 4

2. Planning of the Project 5
2.1 Project Plan 5
2.2 Iteration Plan 5
2.3 Task Level plan 5
2.4 Project Process 6
2.5 Meetings 6

3. Time Usage 7
3.1 Time by Construction Iterations 7
3.2 Time by Group Members 9

4. Project Challenges 13

5. Technical Assessment 14

6. Individual Reports 14
6.1 Mathias Havdal 14
6.2 Morten J. Barbala 15
6.3 Thomas Hansen 15
6.4 Trond Egil Hammer 16
6.5 Ingvild Damtjernhaug 16
6.6 Leiv Fredrik Berge 17

7. Acknowledgements 17

 Evaluation

3

1. Document Overview

The purpose of the evaluation document is to evaluate the project plan, iterations and
project model. It also shows the challenges we have faced during the development
process. The document details the hours we have spent individually and as a group
in the development iterations. Finally, it includes each team member’s evaluation of
the project.

Describes:

 our experience with the project.

 our experience project plan.

 our experience with iteration plan.

 our experience with the project model.

 the challenges we have faced.

 hours spent.

 each group members evaluation of the project.

1.1 Document History

Version Change Date Created by

0.1 First version 04.05.2016 Leiv Fredrik Berge

0.2 Added time usage 06.05.2016 Leiv Fredrik Berge

0.3 Added individual hours spent 09.05.2016 Leiv Fredrik Berge

0.4 Added technical difficulty and
acknowledgements

11.05.2016 Leiv Fredrik Berge

0.5 Fixed heading and table of
contents. Corrections and
clarifications

16.05.2016 Morten J. Barbala

0.6 Added planning of the project 16.05.2016 Leiv Fredrik Berge

0.7 Added reflections 20.05.2016 Ingvild Damtjernhaug

0.8 Added reflections 21.05.2016 Mathias Havdal

1.0 Final review 21.05.2016 Thomas Hansen
Trond Egil Hammer

1.2 Referenced Documents

Title Document Version

Project plan doc-1112_project_plan_2_0.docx 2.0

Glossary doc-1113_glossary_2_0.docx 2.0

file:///C:/ArgosServer/Argos/Project%20documents/Documents/Project_plan/doc-1112_project_plan_2_0.docx
file:///C:/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx

 Evaluation

4

1.3 List of Figures

Figure 1: Estimated hours in phases 7

Figure 2: Hours spent in iteration I4 divided by top level tasks 8

Figure 3: Hours spent in iteration I5a divided by top level tasks 8

Figure 4: Hours spent in iteration I5b divided by top level tasks 8

Figure 5: Hours spent in iteration I5c divided by top level tasks 8

Figure 6: Hours spent in iteration I6 divided by top level tasks 8

Figure 7: Actual hours spent by each group member 9

Figure 8: Ingvild’s hours 10

Figure 9: Leiv Fredrik’s hours 10

Figure 10: Thomas' hours 11

Figure 11: Morten’s hours 11

Figure 12: Trond Egil’s hours 12

Figure 13: Mathias’ hours 12

file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173399
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173400
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173401
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173402
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173403
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173404
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173405
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173406
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173407
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173408
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173409
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173410
file:///Z:/Argos/Project%20documents/Documents/Evaluation/doc-43_evaluation_0_5.docx%23_Toc451173411

 Evaluation

5

2. Planning of the Project

We formed the group in the fall of 2015 and started looking for a suitable project. We
were familiar with Project Argos, so we knew it fitted well with our group constellation.
The initial planning started in the end of 2015, with the proper initiation in January of
2016. The first week of 2016 was spent researching project processes and dividing
areas of responsibility. We chose a very flat hierarchy and informal structure, as we
all knew each other well and have worked well together in earlier projects.

2.1 Project Plan

We created an initial plan in Microsoft Project with a Gantt diagram, activities and
tasks. We set up the tools and guidelines for the project, with how to deal with
meetings, communication, work registration and usage of key tools and programs.
This has been our basis to make sure the project progressed and keep us on track.
We printed out the entire Gantt diagram and hung it up in our office space along with
a calendar to mark off important milestones and events. The plan has been revised in
each risk review meeting to make sure we are on track and do minor adjustments to
ensure we reach our targets. From the Project file we exported the task list, work
breakdown structure (WBS). We used the WBS as the basis for the registration of
our hours, enabling us to create statistics over how we spend the hours. We used a
Google Form to register hours of work, which went into a Google Sheet.

2.2 Iteration Plan

The top level project plan has been divided into seven iterations. The iteration helped
us to break down the project into smaller, more manageable chunks of work. This
made it a lot easier to estimate the hours needed to complete the work and to keep
track of the progress. We also used an Excel sheet that detailed the work done in
each iteration according to registered hours from the Google Sheet. This was the
basis for the iteration burndown report. The burndown made it very clear to everyone
how the work progressed. We also made major improvements to work done early in
the process by revisiting it in later iterations. The iterations also made it possible for
us to make sure everybody had well-defined tasks and responsibilities.

2.3 Task Level plan

On the day to day, task level, we used a Kanban board to organize the tasks at hand.
We broke down the objectives from the iteration into small items. This made it so that
everyone had a clear understanding of the task at hand and coming up shortly. We
discussed these tasks at our stand up meetings and updated the iteration burndown
and project plan as task went into development, testing, integration and done lanes
at the Kanban board. The clear and visual board was a great tool for us to stay
focused on the key tasks and keep everyone in the loop.

 Evaluation

6

2.4 Project Process

The project followed a project process called OpenUP. This is a process derived from
unified process with some agile principles attached. We found it to be very useful in
organizing the project, especially to get us started with project. However, the types of
artefacts that the model specifies did not comply 100% with our needs and the
stakeholders’ expectations. We found this to be true when we tried to follow the
guidelines too rigorously. We therefore ended up with modifying some of the
artefacts, for example grouping some documents together into one. Overall we are
very satisfied with the decision to use OpenUP. The Eclipse Foundations OpenUP
wiki has been a great resource for us to make sure we are driving the project forward
in a manner that complies with the OpenUP process. We have definitely seen the
benefits of an iterative project process, and also to have different phases with
different focus areas. OpenUP has also been free enough for us to make the
adjustments we needed to make it fit our needs and comply with the requirements
from the project owner and the college. The division into different roles has been a
great tool to ensure that everybody have clear responsibilities and task, utilizing the
project team as efficiently as possible.

2.5 Meetings

Internally we have used stand up meetings as our primary meeting form. In this quite
informal way we have been able to communicate and work very well together as we
all share the office space. This has negated the need for many formal meetings, as
most issues have been solved informally. The only formal internal meetings we had
were five scheduled risk review meetings at the end of iterations. In these meetings
we have looked at the project progress with the iteration burndown reports and
review the risk analysis document.

We have also had meetings with Alexander Gosling from KDS roughly every two
weeks, depending on the need. These meetings have been used to clarify aspects of
the project and to agree on major decisions. The meetings have usually lasted 30
minutes and have been very important for us to know we are moving in the right
direction. Internal supervisor meetings have been held regularly every two weeks as
well, with more frequency right before milestones and deadlines. These meetings
have focus primarily on documentation and presentations, and have been very useful
for us when producing documentation.

 Evaluation

7

603

434

1469

238

395

Inception

Elaboration

Construction

Transition

Ongoing tasks

Figure 1: Estimated hours in phases

3. Time Usage

The early estimates of the project
planned for 600 hours of work for each
member, totaling 3600 hours. As the
project progressed, we have detailed
the plan and broken it down to smaller
tasks. This has increased the precision
of the plan, and lowered the time
usage to about 3200 hours, about 500
hours per team member. The 3600
hours was based on estimates and
expectations from the college, however
as we did not have a pre-project the
hours estimated is a bit high. Because
we had success with our project plan
and the development, we were able to
reach all the milestones and project
goals within the slightly reduced timeframe.

We have spent the bulk of the time in the construction phase, where all the
development has taken place. Our parallel iteration strategy, with merge image
development working in parallel with recording and playback, made it easier to utilize
the entire team efficiently. It enabled us work mostly in pairs on the development
tasks, dividing the task into subtasks and increasing the development velocity. We
did overestimate the time needed for most of the development tasks, and
underestimated the time needed for the documentation work in the construction
phase. These two factors did, however, cancel each other out, resulting in that the
plan has been quite accurate both in hours and dates. We have not had any major
task slide from an iteration into the next one.

3.1 Time by Construction Iterations

In the early iteration of the construction phase the emphasis is on design. The fact
that we spent a lot of time on design early on meant we had to spend less time on it
later. This approach also made integration of the new functionalities in each iteration
much smoother than we expected due to the thorough design work. The testing
portion of the work increases as the iteration progresses, so we spent more time
testing the system when more of the functionalities were implemented. This is how
we planned and expected the focus to shift along the development process, and we
are very happy to see that we were able to execute the plan successfully.

 Evaluation

8

86,5

268,5

15
I5a

Design

Develop

Test

Figure 3: Hours spent in iteration I5a divided by top level tasks

213

108

11,5
I4

Design

Develop

Test

Figure 2: Hours spent in iteration I4 divided by top level tasks

41

108

17
I5b

Design

Develop

Test

Figure 4: Hours spent in iteration I5b divided by top level tasks

8

107

17,5

I5c

Design

Develop

Test

Figure 5: Hours spent in iteration I5c divided by top level tasks

5

158

58

I6

Design

Develop

Test

Figure 6: Hours spent in iteration I6 divided by top level tasks

 Evaluation

9

3.2 Time by Group Members

We have worked closely together in our shared office space. This has allowed us to
spend less time with formal meetings as we have had constant communication when
issues arise. Trond Egil got twins in the middle of the project, so he has some fewer
hours than the rest of the project members. Our plan took this into account and Trond
Egil had his most important task as analyst early in the project and as far as possible
had tasks which allowed him to work from home. In the diagrams below you can see
how each team member’s hours breaks down into the major elements of the project.

Each team member’s hours are broken down for each major group of tasks. As
expected there are some differences that mostly boils down to the different roles
each member has had. Meeting and administrative contains stakholder and
supervisor meetings, risk review meetings , work with the web page, general
research and administrative tasks that did not fit anywhere else. Presentations
contains all the work creating, rehearsing and performing the presentations. Project
plan includes the work directly related to the development of the project plan and
iteration plan and management. The development part contains all the development,
design and testing of the software and system. The hours are current for final
delivery of documentation and some more hours in presentation is expected to occur
before the project ends.

486,5

489,5

472

478,5

417,5

515,5

50

50

50

50

50

50

0 100 200 300 400 500 600

Ingvild Damtjernhaug

Morten J. Barbala

Thomas Hansen

Mathias Havdal

Trond Egil Hammer

Leiv Fredrik Berge

Hours spent Estimated remaining

Figure 7: Actual hours spent by each group member

 Evaluation

10

Meeting and
administrativ

34 %

Presentations
17 %

Project
Plan
14 %

Design
14 %

Develop
15 %

Test
6 %

Development
35 %

Ingvild

Figure 8: Ingvild’s hours

Meeting and
administrativ

19 %

Presentations
14 %

Project Plan
19 %

Design
19 %

Develop
25 %

Test
4 %

Development
48 %

Leiv Fredrik

Figure 9: Leiv Fredrik’s hours

 Evaluation

11

Meeting and
administrativ

11 %

Presentations
9 %

Project
Plan
16 %

Design
31 %

Develop
31 %

Test
2 %

Development
64 %

Thomas

Figure 10: Thomas' hours

Meeting and
administrativ

23 %

Presentations
12 %

Project Plan
19 %

Design
8 %

Develop
26 %

Test
12 %

Development
46 %

Morten

Figure 11: Morten’s hours

 Evaluation

12

Meeting and
administrativ

26 %

Presentations
19 % Project Plan

19 %

Design
8 %

Develop
22 %

Test
6 %

Development
36 %

Trond Egil

Figure 12: Trond Egil’s hours

Meeting and
administrativ

19 %

Presentations
6 %

Project Plan
10 %

Design
11 %

Develop
52 %

Test
2 %

Development
65 %

Mathias

Figure 13: Mathias’ hours

 Evaluation

13

4. Project Challenges

We inherited a code base that was quite decently documented with comments in the
code. However, it was deficient in regards to modelling and outside documentation.
This meant it was hard for us to see what the earlier group had thought. In addition to
the code, we also inherited a lot of hardware without specifications of what the
components was intended to do. All this resulted in us having to redo a lot of the
work that probably already had been done, but not documented. One example is the
cameras we use in Project Argos. We had the cameras, but only one lens and no
documentation on the lenses. This turned out to be a very complex topic. The way
we use the cameras is very different from the normal use case of camera systems
like ours. There are a huge number of factors that influences how a lens and camera
will perform, and even though University College of Southeast Norway (HSN) has a
great deal of expertise with optics, we still had a very complex job of dealing with the
camera system and lenses.

The camera system produces an enormous amount of data. Each camera has a data
rate of 128 MB/s, totaling more than 1 GB of data every two seconds from the
camera rig. This puts a huge load on the infrastructure of the computer and the
network. With the selection of components from the previous group we were limited
in our ways of solving the issue. A number of adjustments to the camera setup and a
network configuration with custom network drivers were required, but we eventually
optimized the network performance to roughly 90%. However, not only is the network
impacted by the data stream, but normal hard drives are nowhere near fast enough
to handle 512 MB/s write speeds. Even normal SSDs will have trouble with that kind
of a load. We continuously write to disk, but it’s not a single file, so that degrades the
performance compared to the advertised speed of SSDs. We solved this by creating
a three SSD array in RAID0 to increase the performance significantly.

In the middle of April, one of our cameras failed. We immediately contacted the
vendor in Norway, and sent the camera in. The camera had to be sent to the
manufacturer in Germany for repair, and this meant we had to reevaluate our solution
for the final presentation and prepare for a presentation with only three cameras.
Luckily, we did not have to alter too much of the code base, since we had already
created a solution that could be customized with many different numbers of cameras
and configurations. On Thursday 19.05.2016 we got back the broken camera from
repair. So we will prepare the final presentation with all four cameras.

The eBUS SDK from Pleora we use to import the video frame buffers from the
cameras crashed every time we deleted the reference to an old buffer. This
consequently failed in 64-bit mode, but we did get it to work by creating a new 32-bit
project and importing the old files. It was critical that we were able to fix this as the
software would leak memory excessively and crash. The problem seems to be a bug
in the SDK itself.

The Oculus Rift DK2 is a development kit without a stable and well documented
development guide. The old code base used Oculus SDK 0.6.0.0 while the current
SDK is 0.8.0.0, and the migration guides were not complete. We had to migrate 0.6
to 0.7 and then to 0.8. Along with this we also upgraded from Visual Studio 2013 to

 Evaluation

14

2015 for support with the latest libraries. This should make the migration to Oculus
Rift CV1 and SDK 1.3 much smoother for future groups.

5. Technical Assessment

We did not know what to expect when we started the development process. This was
pretty much unchartered territory for KDS and the team. None of us had much
experience with cameras, OpenGL or VR before working with Project Argos. We
knew that there were going to be challenges along the way, especially with the
camera integration, and VR and Oculus are still very immature. There are not that
much documentation and guides to work with, so we had to spend time on learning
the tools and OpenGL. The system is at the edge of what is possible to do with
current hardware in regards to CPU usage, network throughput and disk read/write
speeds.

The entire development process has been very challenging. The software we have
created is quite advanced and complex, but our plans and ideas have pretty much all
worked. Even when faced with unexpected bugs and performance issues our design
and software architecture has proved stable and robust enough to handle the issues.
During testing, the system has outperformed our and our stakeholder’s expectations
in terms of latency, efficiency, stability and functionality. We were even able to
perform system acceptance test outside the lab in a vehicle, far exceeding our
expectations when the project started.

6. Individual Reports

6.1 Mathias Havdal

I had the role of being the lead developer on this project. As one of the more
experienced programmers in the group, this was very fitting. One of my
responsibilities was planning development iterations. This proved to be a real
challenge, because I had to figure out all the steps necessary to satisfy the iteration
goals. Not only that, but I had to put the steps in the correct order and allocate an
appropriate amount of time for each one. Fortunately my planning skills improved
throughout the project, and none of my plans were overly optimistic. This meant that
we were positively surprised to be ahead of schedule, and not the other way around.

As lead developer I also spent a lot of time writing code. This project had a lot of
exciting technical challenges, and together with the rest of the team I was able to
come up with technical solutions that worked very well. Since the codebase was my
main responsibility, I had a hand in every software component that was developed.

One of the new challenges for me was learning to lead a team of developers. We all
had different levels of programming experience, and I had to find fitting tasks to
delegate to each group member. I also did a lot of work coordinating tasks being
worked on in parallel. One of the most difficult things in a software project is to
achieve increased productivity by adding more developers, without compromising on
the stability and functionality of the software.

 Evaluation

15

6.2 Morten J. Barbala

My role in the project was tester. It was my responsibility to design, implement and
perform tests to make sure we verified and documented fulfillment of requirements
for the system. I also had to observe tests and analyze results to discover problems
and rooms for improvement. Working on project of this size, I quickly realized the
importance of testing, and it was very satisfying to see the number of successful test
logs grow as the system improved and became complete.

The main technical aspect I was responsible for in Project Argos was the playback
module. I have gotten to solve difficult software challenges and experience
programming in a project setting, producing code both alone and in pairs or groups. I
had to learn about the Windows API for handling files and directories, both writing to
and reading from disk. I needed to find effective ways of handling binary data of the
large size that the cameras produced.

The bachelor project has been my absolute favorite time at HSN. We have gotten to
use our programming and modeling knowledge to create an excellent system, but
more importantly, we have created a very tight-knit team. Working close with people
for hours every day could be very hard, especially since this is the most important
project of our education so far, but I never felt tired or burned out. I could not have
found better teammates.

6.3 Thomas Hansen

Project Argos was a scary project at the beginning, there was so much to do and so
little time. The uncertainty was high, but the excitement was even higher. And my
competent team gave me the confidence I needed.

As a last year computer science student I have been given the tools to manage any
software challenge, and during this project there were a few challenges. Some of the
challenges I had have been, understanding the code from the previous group and
getting up in the morning. I had to learn a lot about computer graphics and software
architecture while working on the project. I mostly worked on the architecture and a
replacement for the graphical engine in the software and the coherent documents for
these. As the designated architect of the project I have also been responsible for the
abstract parts of the system and making technical decisions that can limit the design
and implementation of the system.

The execution and implementation of this project have given me an insight in
professional teamwork that I can take with me to my professional career. And of
course I have learned the pleasures and terrors of working with others over a long
time.

 Evaluation

16

6.4 Trond Egil Hammer

To work on this project has been very fun and educational. I have learned how to
work in a team and with a project over time. The team has worked very well together
throughout this project. My role in this project has been as an analyst. As an analyst,
I have been responsible for the customer and stakeholders needs as well as develop
technical vision, system wide-requirements and use cases. Identify and outline the
requirements has been one of my most important tasks. To ensure that the
customer’s needs are represented by the requirements. To perform these tasks I
have used a good amount of knowledge from my time at HSN. I have also needed to
learn about lenses and lens technology and been responsible for updating the
webpage and developing the recording module. Most of the tasks that I were
responsible for were finished early in the project, because my wife and I were
expecting twins in April/May. The team knew this before we started this project, so I
were lucky to get most of my tasks early in the process.
It has been a very fun experience to take part in this project. The assignment has
been exciting and challenging. I am very proud of what the team has achieved. At the
beginning of the project I didn’t expect that we were able to drive a car with our
software.

6.5 Ingvild Damtjernhaug

I was excited and a little frightened before we started this bachelor project; did the
team have enough competence to reach the project goals? What would I be able to
contribute with in this project? I thought the project sounded very interesting, with
virtual reality and cutting edge technology, but I also knew this was going to be
difficult. It was not sure we would be able to reach the goals.

I soon released it would be several topics to familiarize myself with, like VR and
OpenGL.
My role as document manager have given me the opportunity to use my organizing
skills, and my ability to keep the team on track and focused. I have been responsible
for the configuration reader that reads the different XML config files. There have been
times during the project where I felt overwhelmed, because of the high level of
difficulty. But through a lot of work and support from good team members, I managed
to solve the problems and gain both knowledge and self-esteem.
It has been nice to experience how the things I have learned during my time at HSN,
merge together and become a whole. The subjects have all together given me a solid
foundation, and the bachelor project has given me a change to use the knowledge I
have gained.

The team-work could not have been better, and together as a team, we have
managed to solve one problem at a time, overcoming challenge after challenge. I
have mixed feelings about the fact that the project now comes to an end. I am
relieved that we have reached our goals, and a little sad because I no longer will
work together with my friends and fellow team members. But I’m most of all proud of
what we have accomplished, proud of the team’s effort and good work, and proud of
myself for finishing three years at HSN in a good way. I now have better self-esteem
and feel more prepared to enter work in «the real world».

 Evaluation

17

6.6 Leiv Fredrik Berge

I’m proud over our system and project. We exceeded everyone’s expectations and
I’m very happy in the way we worked with Project Argos. As project manager I felt a
lot of responsibility, both the entire team has impressed me with their skills and work
ethics. This has made my job of driving the project forward much more pleasant. I
think the most important thing I’ve done in Project Argos were to keep the big picture
in mind and keeping track of the overall progress, to make sure we reached all our
milestones.

It’s been very exciting to work with new and emerging technology. I consider myself
very lucky to have gotten the opportunity to work with such an interesting project. It
has also been very challenging. I did not have any prior experience with OpenGL and
VR. It’s been a steep learning curve, but it’s been nice to set the programming and
modeling knowledge I’ve gained over the last couple of years out in a real world
project.

7. Acknowledgements

We would like to extend our gratitude to the following people for their help and
guidance.

 Karoline Moholth as internal sensor

 Alexander Gosling as external sensor and supervisor

 Radmila Juric as internal supervisor

 Erik Torp as project owner

 Ellen Svarverud as technical guide for visual perception

 Fagskolen Tinius Olsen for providing an electric car for the demo

Future Work 1.0

Created by: Leiv Fredrik Berge
05.05.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 Future Work

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 3

2. New Functionality 4
2.1 Camera Rig 4
2.2 Interaction with other Systems 4
2.3 Extra Cameras 4
2.4 Virtual Reality Goggles 4
2.5 Configuration Creator 5
2.6 Passenger View 5

3. Improvements to Existing Functionality 5
3.1 Improve the old Surface Objects 5
3.2 Vulkan Graphics API 5

4. Unfinished Functionality 6
4.1 New Graphics Engine 6

 Future Work

3

1. Document Overview

The purpose of the future work document is to show our proposal for future work
needed in the system. It also documents the work that has been started, but not
finished in the bachelor project.

Describes

 potential new functions in the system.

 potential improvements in the existing functionality.

 unfinished functionality.

1.1 Document History

Version Change Date Created by

0.1 First version 05.05.2016 Leiv Fredrik Berge

0.2 Added text to 2.1,2.2,2.3 06.05.2016 Trond Egil Hammer

0.3 Added text to 4.1 09.05.2016 Thomas Hansen

0.4 Started on text 2.4 VR goggles 13.05.2016 Trond Egil Hammer

0.5 Added config creator, VR goggles 19.05.2016 Leiv Fredrik Berge

0.6 Corrections and clarifications,
updated section 2-4, document
history

20.05.2016 Ingvild Damtjernhaug

1.0 Final review 20.05.2016 Leiv Fredrik Berge
Trond Egil Hammer
Ingvild Damtjernhaug

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.xlsx 2.0

file:///C:/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx

 Future Work

4

2. New Functionality

Project Argos is still in an early phase of development. It is expected that multiple
project teams will add more functionality to the system. At the end of the bachelor
project of 2016 all of the basic functionality for real-time virtual reality is present and
working in the TinyArgos software.

2.1 Camera Rig

So far in the development process software has been the main area of focus. The
camera rig we have created give the developers a stable platform to mount the
cameras while in the lab. It is not meant to withstand the punishment it would receive
mounted on a vehicle.

2.2 Interaction with other Systems

As of now the TinyArgos software do not interact with any outside systems. For
future development there could be created interfaces that exchange data between
multiple Project Argos equipped vehicles. Even other systems from Kongsberg can
be integrated to provide data to the operator of a Project Argos system. For example
an unmanned aerial vehicle (UAV), like LocalHawk, can provide information that can
be displayed in the heads up display (HUD) in the Oculus Rift. Together with
integration of sensors and other systems, it can give a better overview and situational
awareness for the crew. Project Argos could merge data from the vehicle, internal
and external sources. Information from these sub systems could be presented in real
time on the screen. This could include moveable target indicators, terrain analysis
and estimation of threats, reported with distance and other notifications.

2.3 Extra Cameras

By adding more cameras to the application it can ease the driving of the vehicle and
give a better overview for the driver. When driving into small passages or reversing
the vehicle, additional cameras can be helpful to get a better view of the
surroundings. For example a camera that can show the edges of the vehicle or a
camera inside the vehicle.

2.4 Virtual Reality Goggles

During our field test of Project Argos we discovered a drawback in the Oculus Rift.
The positional tracker that tracks the movement of the Oculus Rift Dk2 is designed to
be stationary, so it can correct the drift of the accelerometer and gyroscope in the
headset. In our case, the tracker is placed inside a moving vehicle. When the tracker
is placed on a moving ground, it fails to track the correct head movements. A
discrepancy between the tracker and the headset then occurs. This results in the
Oculus realigning itself in distinct jumps while the car is turning, instead of a smooth

 Future Work

5

rotational movement. To correct for this the tracker must probably also have an
accelerometer and gyroscope to correct for the motion of the car, so it can act
stationary in relation to the headset. Newer versions of the Oculus Rift or other head-
mounted displays can potentially solve this problem.

2.5 Configuration Creator

The setup of the Oculus view is handled in the configuration files. These files contain
all the information needed for distortion correction and placement of the video
streams. However the creation of the XML files is not very intuitive, and could be
made a lot easier with an application that would let you preview the settings, and
then write the configuration file for you.

2.6 Passenger View

As of now the software displays the operator view in the Oculus, and a copy of that
view on a monitor. The view in the monitor shows two barrel shaped images. This is
not a pleasant way for a passenger to see the outside. So to improve the passenger
experience multiple VR-headsets can be implemented or a monitor with a
continuous, user controllable image.

3. Improvements to Existing Functionality

The third party software should be upgraded as they are updated with new releases.
Also new hardware should continuously be evaluated to increase the TinyArgos
performance. We have found some parts of the code inherited from the first group
that needs some work. This is not critical errors, but rather parts of the code that
should be improved to increase the reliability, stability and performance of the
system. The following sections address those parts.

3.1 Improve the old Surface Objects

From TinyArgos 1.0 there was a system for creating HUD objects. The way they are
created is quite convoluted and leaks memory when they are loaded into the scene.
This means that when TinyArgos 2.0 enables multiple HUD configurations to be
loaded during one session of use, the application will leak memory and eventually
crash. In TinyArgos 2.0 there is a new way of creating HUD objects, but there is still
support for older objects. For further development all the old classes should be
replaced, and support for the older system should be broken.

3.2 Vulkan Graphics API

During the project the Khronos group released their new graphics application
programming interface (API) Vulkan. Vulkan is the next generation of APIs created

 Future Work

6

for today’s graphics cards. Vulkan supports multicore central processing units (CPU)
and therefore can generate the work done by the graphics processing unit (GPU) in
parallel using many CPU cores. This can possibly reduce the time it takes to send
the texture data to the graphics card for rendering. This makes Vulkan a good
candidate for consideration to be implemented into the graphics engine. This also
requires some changes outside the virtual world component in the renderable class
in the function that render the object.

4. Unfinished Functionality

This section specifies the work that has been started, but not considered stable or
finished enough to be included in the default branch in the code base.

4.1 New Graphics Engine

The project is highly dependent on the highest possible throughput and a potential
bottleneck that we could do something about was the graphics engine. We started to
work on a new graphics engine with a goal that it would be more effective, more
understandable and easier to continue to work on and refine at a later stage.

The vision was to create a simplified game engine that could accept geometrical
shapes (surfaces) and textures for the graphics engine to render. The geometrical
data would be created outside the engine and the textures would be fed by the
cameras to the shapes that have to show video. The engine should also handle input
from the user and VR googles.

The shapes needed for the scene can be loaded into a vector and added or removed
to and from a rendering queue as needed. This gives us greater dynamic control over
the scene as shapes can be added and removed when needed without reloading the
whole scene. The code is written as understandable as possible so it should be easy
to pick up and continue to work on it.

There is some work before the engine can be implemented into the working solution.

 The engine need some kind of VR system API implemented for use with a VR
headset.

 The engine needs an input system that can handle the movement of the VR
system and other inputs from the user. At the moment the input handling is
done in the main class and it is just for the debug movement.

 The fragmentation and vertex shaders need to be changed a bit to handle the
textures.

Technical Documentation
Network Solutions 2.0

Created by: Mathias Havdal
16.02.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 Network Solution

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 4
1.3 List of Tables 4

2. Challenges 5

3. Possible Solutions 5
3.1 Existing Hardware/Software 5
3.2 Proposal 1: Change OS 6
3.3 Proposal 2: Change Switch and NIC 7

4. Pugh Matrix Comparison 7
4.1 Comparison Criteria 7
4.2 Pugh Matrix Proposals 8

5. Conclusion 9

Bibliography 10

 Network Solution

3

1. Document Overview

The purpose of the network solution document is to give the reader a clear
understanding of the challenges associated with the Local Area Network (LAN) that
will be used in the Argos system. After reading this you should know the reasoning
for the choice of network setup. A number of possible solutions are detailed and
compared with one another in a Pugh matrix diagram.

Describes

 the challenges that the LAN is presenting to our system.

 possible network solutions

 the hardware and software already provided by Kongsberg Defence Systems

 the selection of network solutions.

 the comparison criteria used in the Pugh matrix

 a Pugh matrix that compares the solutions presented

 a conclusion with reasoning

1.1 Document History

Version Changes Date Created by

0.1 Create document, add first draft of
problem and possible solutions

12.02.2016 Mathias Havdal

0.2 Remove parts about DHCP 16.02.2016 Mathias Havdal

0.3 Corrections, rewriting 16.02.2016 Morten J. Barbala

0.4 Added content into correct
template

16.02.2016 Trond Egil Hammer

0.5 Revised document layout. Added
introduction, overview, pugh matrix

17.02.2016 Mathias Havdal

1.0 Added conclusion, descriptions
and references

08.03.2016 Leiv Fredrik Berge

1.1 Changed format on name and date
in document history

10.04.2016 Trond Egil Hammer

1.2 Fix layout, minor corrections 26.04.2016 Morten J. Barbala

1.3 Change reference style to IEEE
2006

28.04.2016 Morten J. Barbala

1.4 Minor changes 09.05.2016 Thomas Hansen

1.5 Minor changes 09.05.2016 Trond Egil Hammer

1.6 Deleted introduction, formatted
front page, rewritten document
overview

11.05.2016 Ingvild Damtjernhaug

1.7 Fix some issues and add a few
comments. Made lots of
improvements to writing (fix poor
English).

12.05.2016 Mathias Havdal

1.8 Improve writing and technical
correctness in some places

13.05.2016 Mathias Havdal

1.9 Add description of comparison 16.05.2016 Mathias Havdal

 Network Solution

4

criteria importance and rating
scale. Rewrite conclusion with
improved English.

1.10 Fixed front page, headings and
layout. Corrections and
clarifications.

19.05.2016 Morten J. Barbala

2.0 Final review 20.05.2016 Trond Egil Hammer,
Morten J. Barbala

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

1.3 List of Tables

Table 1: Comparison criteria for Pugh matrix 8

Table 2: Pugh matrix comparison 8

../../Project%20documents/Documents/doc-1113_glossary_2_0.docx

 Network Solution

5

2. Challenges

Our system will use four cameras, each of which have the potential to saturate a
1Gbit/s link. The computer that runs the TinyArgos 2.0 software will need to receive
data from all cameras simultaneously, without delay or loss. This means that the
computer must have a theoretical receive rate of at least 4Gbit/s. There are
numerous different combinations of software and hardware that can be used to solve
this challenge. This document will cover the most relevant options.

3. Possible Solutions

Through research and analysing the current hardware and software on the system,
we have found three solutions that we believe to be suited for transferring the live
video from the Ethernet cameras to the Argos PC. The first two rely on the hardware
that was provided for us at the start of the project, and the third explores the
possibility of upgrading the network switch and network interface card for faster
speeds and a more stable connection.

3.1 Existing Hardware/Software

Project Argos uses the hardware and software that was provided by Kongsberg
Defence Systems (KDS) for the project. The latest drivers from Intel supports
network interface card (NIC) teaming, however it does require a bit of configuration to
enable the Intel driver to override the standard driver from Microsoft. NIC teaming is
the term used for grouping several physical connections into one logical port. Under
ideal circumstances this will lead to a significant increase in throughput.

With this solution each camera will saturate 80-90% of the available bandwidth on
each physical link. If one of the physical ports starts slowing down or fails, the
remaining ports will not have enough free capacity to offload the failing port.
This means that the user experience will be interrupted by video stuttering and
corruption.

Computer
OS: Windows 7 Enterprise Service Pack 1

NIC: Intel Pro/1000 PT Quad Port LP (4x1Gbit)

Switch

Make/Model: Unknown

Ports: 24x1Gbit

Capabilities: Link aggregation, Power over Ethernet (PoE)

Pros No additional cost

 Theoretical receive rate is 4Gbit/s

Cons Windows 7 does not have native support for NIC teaming/link

aggregation

 Network Solution

6

o Driver must have support

 Link aggregation between different NIC models

likely not possible

 Peak receive rate for a single connection is 1Gbit/s

o 4Gbit/s only with ideal load balancing

o Likely limited to four cameras even if system theoretically

can support more

3.2 Proposal 1: Change OS

The second solution relies on swapping the operating system from Windows 7 to
Windows Server 2008 or 2012. The server OS supports more control of the network
cards and ports, which should make the network configuration smoother and perhaps
more stable than Windows 7. This solution has the same limitation as the previous
one, where if one port fails, there will not be enough bandwidth available to keep all
four video streams running smoothly.

Computer
OS: Windows Server 2008/2012

NIC: Intel Pro/1000 PT Quad Port LP (4x1Gbit)

Switch

Make/Model: Unknown

Ports: 24x1Gbit

Capabilities: Link aggregation, Power over Ethernet (PoE)

Pros Windows Server natively supports NIC teaming/link aggregation

o Can connect to cameras over single virtual interface, with

automatic load-balancing over the 4 NIC ports

o System level aggregation rather than driver level

 Easier to integrate more cameras

 Theoretical receive rate is 4Gbit/s (with existing

hardware/software)

Cons Windows Server is unsuited for our software

o Not intended to be used for 3D rendering and VR, or

desktop applications in general

o Will require significant configuration

o No longer needed when network hardware is upgraded,

possible waste of time and effort in a wider scope

 Peak receive rate for a single connection is 1Gbit/s

o 4Gbit/s only with ideal load balancing

 Additional cost: Windows Server license

 Network Solution

7

3.3 Proposal 2: Change Switch and NIC

The third solution is to upgrade the network hardware. Instead of using multiple 1
Gbit ports to connect the computer to the switch, we can use a single or dual port 10
Gbit NIC. This solution guarantees that we will achieve at least 4 Gbit throughput,
and requires minimal software configuration. The obvious downside with this solution
is the cost. 10 Gbit ports are only available on high-end networking hardware, and
both the switch and the NIC will need to be replaced. Colfax, a leading global
provider of computing systems [1], has a mid-range dual port 10 Gbit NIC priced at
395 USD [2], and the switch is likely to be even more expensive. Not only does the
switch need to have one (preferably two) 10 Gbit ports, but it also needs to have at
least 8 ports (preferably 16) with Power over Ethernet (PoE) capability and 1 Gbit
speed for the cameras.

Computer
OS: Windows 7

NIC: 10Gbit

Switch

Make/Model: (To be determined)

Ports: 1x10Gbit, (8-16)x1Gbit

Capabilities: Power over Ethernet (PoE)

Pros Guaranteed receive rate of at least 4Gbit/s

o Connect to cameras over single interface

 Minimal software configuration required

o Can keep current OS

o No need to configure NIC teaming/link aggregation

Cons Likely high cost

4. Pugh Matrix Comparison

The three possible solutions will be compared in a Pugh matrix. The rating and
importance of each criterion is given on a scale of 1-3. The score is calculated by
multiplying the rating with the importance of the criteria. Higher is better.

4.1 Comparison Criteria

Criteria Importance Rating

Ease of
configuration

2 – This criterion represents the time
and effort needed to get ideal
performance from this
hardware/software configuration. It has
been given a medium importance
rating, because time spent configuring
hardware and software takes away

1 = Significant OS/network
configuration

2 = Some OS/network
configuration

3 = Minimal configuration
(driver install at most)

 Network Solution

8

from time that could have been
invested elsewhere.

Scalability 2 – Scalability represents how many
software/hardware changes would be
needed to support more than the four
cameras we intend to use. This
bachelor project is part of a long term
student project at Kongsberg Defence
Systems (KDS) and for that reason this
criteria has been given a medium
importance rating.

1 = Significant
software/hardware
changes required to
use more than four
cameras

2 = Some
software/hardware
changes required to
use more than four
cameras

3 = No software/hardware
changes required to
use more than four
cameras

Cost 3 – High-end network hardware can be
very costly. For that reason, this
criterion has been given the highest
importance rating.

1 = Significant additional
cost (likely more than
1000 USD)

2 = Limited additional cost
(likely less than 1000
USD)

3 = No additional cost
Table 1: Comparison criteria for Pugh matrix

4.2 Pugh Matrix Proposals

Options

Existing
hardware

Proposal 1 Proposal 2

Criteria Importance Rating Score Rating Score Rating Score

Ease of
configuration

2 2 4 1 2 3 6

Scalability 2 1 2 2 4 3 6

Cost 3 3 9 2 6 1 3

Total 15 12 15
Table 2: Pugh matrix comparison

 Network Solution

9

5. Conclusion

As we see from the Pugh matrix, the existing hardware/software and proposal 2
(upgrade network hardware) are the highest scoring solutions. If we look closely at
the scores we can see that the network hardware upgrade is better on all criteria
other than cost, but we intend to use the existing hardware for this project. In theory,
we should not have any issues with bandwidth starvation, and only in the worst case
scenario we might have to compromise slightly on the bandwidth settings for each of
the cameras. This makes it hard to justify the increased cost for the hardware
detailed in proposal 2. Proposal 2 is first and foremost about increasing headroom
and scalability, which is not strictly necessary in the scope of this bachelor project. If
the number of cameras is increased in the continuation after the bachelor project,
proposal 2 should be reconsidered.

 Network Solution

10

Bibliography

[1] "Colfax Direct," Colfax, [Online]. Available:
http://www.colfaxdirect.com/store/pc/home.asp. [Accessed 08 05 2016].

[2] "Colfax Direct SFN7002F Dual-Port," Colfax, [Online]. Available:
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2131&idcategory=6
. [Accessed 16 05 2016].

[3] Intel, "Intel PRO/1000 PT Quad Port Low Profile Server Adapter," Intel, 2016.
[Online]. Available: http://www.intel.com/content/www/us/en/ethernet-
products/gigabit-server-adapters/pro-1000-pt-qp.html. [Accessed 08 03 2016].

[4] Microsoft Corp, "Network adapter teaming and server clustering," Microsoft, 02
March 2010. [Online]. Available: http://support.microsoft.com/en-us/kb/254101.
[Accessed 08 March 2016].

Technical Documentation
GigE Vision SDK 1.0

Created by: Morten J. Barbala
29.04.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 GigE Vision SDK

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 3
1.3 List of Tables 3

2. GigE Vision 4

3. GigE Vision SDK 4
3.1 eBUS SDK 4
3.2 Active GigE 4
3.3 Vimba 4

4. Pugh Matrix Comparison 5
4.1 Comparison Criteria 5
4.2 GigE Vision SDK Pugh Matrix 6

5. Conclusion 6

Bibliography 7

 GigE Vision SDK

3

1. Document Overview

The technical document for GigE Vision software development kit (SDK) gives the
reader an overview of the GigE Vision standard and SDKs we could use to interface
with our GigE Vision compliant cameras. The SDKs will be compared using a Pugh
matrix, evaluating their strengths and weaknesses relative to our needs. After
reading this document, the reader should know which SDK has been selected and
why.

Describes

 overview of the GigE Vision standard.

 different SDK candidates.

 the comparison criteria used in the Pugh matrix.

 how the SDKs compare based on our needs.

 a conclusion with reasoning.

1.1 Document History

Version Changes Date Created by

0.1 Create document, write about
GigE Vision, eBUS, Active GigE
and VIMBA

29.04.2016 Morten J. Barbala

0.2 Start adding Pugh matrix
comparison criteria

11.05.2016 Mathias Havdal

0.3 Add Pugh matrix with
importance and rating
descriptions. Add conclusion.

12.05.2016 Mathias Havdal

0.4 Fixed layout. Minor corrections 13.05.2016 Morten J. Barbala

1.0 Final review 20.05.2016 Trond Egil Hammer,
Thomas Hansen,
Morten J. Barbala

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

1.3 List of Tables

Table 1: Comparison criteria for Pugh matrix 5
Table 2: Pugh Matrix comparison 6

../../Project%20documents/Documents/doc-1113_glossary_2_0.docx

 GigE Vision SDK

4

2. GigE Vision

GigE Vision is an interface standard for high-performance video transfer and device
control over Ethernet networks. It was ratified in May 2006 and the latest revision, 2.0
in November 2011 [1], included control for non-streaming devices, support for
transfer speeds with 10 gigabit Ethernet, and link aggregation. GigE Vision 2.0 also
makes it possible to transmit compressed images like JPEG and H.264, and has
improved accuracy in synchronization of systems with multiple cameras.

The GigE Vision standard uses GenICam [2] to describe the features available on the
cameras in the form of XML description files. GenICam is a programming interface
used for all types of cameras, and serves as a base for “plug and play” handling of
devices and cameras with any interface technology (GigE, USB3, Camera Link etc.).
Both GigE Vision and GenICam are protected standards and have committees,
which only allow vendors to brand compliant products.

3. GigE Vision SDK

An SDK exposes the underlying application program interface (API) to easier utilize
the functionalities of the GigE Vision standard. There are a number of manufactures
that create their own SDKs. This means that multiple SDKs for the same GigE Vision
system can have different functionalities and quality. The choice of SDK will impact
our systems performance and features.

3.1 eBUS SDK

The eBUS SDK is developed by Pleora Technologies for use in high-performance
digital video systems [3]. It enables developers to create GigE Vision standard-
compliant video applications for both Windows and Linux through a modular
architecture.

3.2 Active GigE

Active GigE is a GigE vision driver as well as hardware-independent SDK. Any GigE
Vision compliant device works out-of-the box with a wide selection of integrated
development environments (IDE) natively supported. Using an ActiveGigE object, the
application can instantly support multiple GigE Vision cameras, even live video
directly in Microsoft Word or PowerPoint. [4]

3.3 Vimba

Vimba is a vendor-specific SDK designed for Allied Vision cameras. It is, however,
platform-independent, i.e. works on any operating system, and has APIs for C, C++
and .NET. It is based on GenICam and comes with license for all Allied Vision
cameras free of charge.

 GigE Vision SDK

5

4. Pugh Matrix Comparison

The possible solutions will be compared in a Pugh Matrix. The rating and importance
of each criterion is given on a scale of 1-3. The score is calculated by multiplying the
rating with the importance of the criteria. Higher is better.

4.1 Comparison Criteria

Criteria Importance Rating

Documentation 3 – Good
documentation is
essential when working
with an unfamiliar SDK

1 = No quickstart guide/limited API
function documentation

2 = Quickstart guide or full API
function documentation

3 = Quickstart guide AND full API
function documentation

Camera
Support

3 – Having support for
a wide range of
cameras is important to
ensure the longevity of
the software

1 = Only cameras from this vendor
2 = Limited selection from other

vendors
3 = Full GigE Vision support

Cost 1 – The cost of the
SDK is not a significant
obstacle for our project
owner

1 = More than 1000 NOK and/or
recurring fee

2 = Affordable one time purchase
(less than 1000 NOK)

3 = Free

OS Support 2 – Our target platform
is Windows 7, but
having support for
other platforms gives
more options in the
future

1 = Windows 7 support
2 = Support for newer Windows

versions
3 = Full Windows and Linux support

Demo
Performance

2 – If the SDK has a
demo, it can give us an
idea about the
performance we can
expect when
implementing it in our
own software.

1 = No demo available/demo
performs poorly

2 = Demo performs well after
configuration adjustments

3 = Demo performs well out of the
box

Table 1: Comparison criteria for Pugh matrix

 GigE Vision SDK

6

4.2 GigE Vision SDK Pugh Matrix

Options

eBUS Vimba Active GigE

Criteria Importance Rating Score Rating Score Rating Score

Documentation 3 3 9 3 9 3 9

Camera Support 3 3 9 1 3 3 9

Cost 1 2 2 3 3 1 1

OS Support 2 3 6 3 6 2 4

Demo
Performance

2 2 4 3 6 1 2

Total 30 27 25

Table 2: Pugh Matrix comparison

5. Conclusion

The results from the Pugh matrix show that the eBUS SDK is the best option. All
three SDKs have good documentation, but the eBUS SDK wins on having full GigE
Vision support and good OS support (several versions of Windows and multiple Linux
distros). We will be developing for Windows 7, but using an SDK with support for a
broad range of operating systems will provide more options in the future.

The eBUS SDK also has a demo that performed well after adjusting the maximum
transmission unit (MTU) on the network interface we were using to connect to the
cameras. This gives us a clear indication that eBUS can provide the performance we
need if we were to implement it in our own software. Vimba performed well with no
configuration changes. This is perhaps a result of Allied Vision making optimizations
specific to our cameras (made by Allied Vision). Active GigE did not run.

As for cost, the eBUS SDK uses a per-machine licensing system. A permanent
license for the computer that will run our software would cost 850 SEK. The Active
GigE SDK is significantly more expensive, with a single developer license costing
nearly 500 USD [5]. Vimba on the other hand, requires no license purchase. This is
because we are using Allied Vision cameras. Obviously at 850 SEK for the eBUS
license, cost is not enough to swing our decision in favour of Vimba.

In conclusion, we believe the eBUS SDK to be the best option, so that is what we
intend to use.

 GigE Vision SDK

7

Bibliography

[1] “GigE Vision Main Page,” Vision Technology, [Online]. Available:
http://visiononline.org/vision-standards-details.cfm. [Accessed 29 April 2016].

[2] “GenICam - EMVA,” [Online]. Available: http://www.emva.org/standards-
technology/genicam/. [Accessed 29 April 2016].

[3] “eBUS SDK,” [Online]. Available: http://www.pleora.com/our-products/ebus-sdk.
[Accessed 29 April 2016].

[4] “GigE Vision camera SDK,” [Online]. Available: http://www.ab-soft.com/activegige.php.
[Accessed 29 April 2016].

[5] “A&B software,” [Online]. Available: http://www.ab-soft.com/activegigestore.php.
[Accessed 12 05 2016].

Technical Documentation
Virtual Reality Goggles 3.0

Created by: Ingvild Damtjernhaug
16.02.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Virtual Reality Goggles

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 4
1.3 List of Figures 4
1.4 List of Tables 4

2. Background 5

3. Alternatives 5
3.1 Oculus Rift DK2 5
3.2 Oculus Rift CV1 6
3.3 Sony PlayStation VR 6
3.4 HTC Vive 7

4. Pugh Matrix Comparison 7
4.1 Comparison Criteria 7
4.2 VR Goggles Pugh Matrix 8

5. Conclusion 8

Bibliography 9

Virtual Reality Goggles

3

1. Document Overview

The technical document for the virtual reality goggles (VR goggles) contains the
technical documentations on different types of VR goggles, and justification for the
choice of Oculus Rift Development Kit 2 (DK2). This document serves also as help
for further project groups, and shows how we were thinking according to the
information and solutions available. This document will cover the most relevant
options for Project Argos.

Describes

 briefly the background, why this document is needed.

 possible alternatives.

 the reasoning for the choice of Oculus Rift DK2.

 the comparison criteria used in the Pugh matrix.

 a Pugh Matrix that compares the alternatives presented.

 a conclusion with reasoning.

1.1 Document History

Version Changes Date Created by

0.1 First version 16.02.2016 Ingvild Damtjernhaug

0.2 Added Pugh Matrix 20.02.2016 Ingvild Damtjernhaug

0.3 Minor fixes 03.03.2016 Leiv Fredrik Berge and
Ingvild Damtjernhaug

1.0 Printed 08.03.2016 Ingvild Damtjernhaug

1.1 Added description and
references

08.03.2016 Leiv Fredrik Berge

2.0 Added conclusion 11.03.2016 Ingvild Damtjernhaug

2.1 Changed format on name and
date in document history

10.04.2016 Trond Egil Hammer

2.2 Fixed layout, corrections and
clarifications

26.04.2016 Morten J. Barbala

2.3 Updated references and
document overview, deleted
introduction, added pictures,
formatted front page

05.05.2016 Ingvild Damtjernhaug

2.4 Added Pugh matrix comparison
criteria

16.05.2016 Leiv Fredrik Berge

2.5 Updated doc.overview,
proofreading with corrections

19.05.2016 Ingvild Damtjerhaug

3.0 Final review 20.05.2016 Thomas Hansen
Morten J. Barbala
Ingvild Damtjernhaug

Virtual Reality Goggles

4

1.2 Referenced Documents

Title Document Version

Requirements Document doc-1213_requirements_2_0 2.0

Glossary doc-1113_glossary_2_0 2.0

1.3 List of Figures

Figure 1: Oculus Rift DK2 5
Figure 2: Oculus Rift CV1 6
Figure 3: Sony Playstation VR 6
Figure 4: HTC Vive 7

1.4 List of Tables

Table 1: Comparison criteria for Pugh matrix 7
Table 2: Pugh matrix comparison 8

file://///KDP40043734/ArgosServer/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx
file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx
file://///KDP40043734/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx%23_Toc451523690
file://///KDP40043734/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx%23_Toc451523691
file://///KDP40043734/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx%23_Toc451523692
file://///KDP40043734/ArgosServer/Argos/Technical%20documents/Documents/doc-21321_VR_goggles_3_0.docx%23_Toc451523693

Virtual Reality Goggles

5

2. Background

The VR goggles are a key component in Project Argos (see the Requirements
document). By “VR goggles” we mean a virtual reality head-mounted display, where
your head movements are tracked in a three-dimensional world. We inherited certain
design decisions from an early stage of Project Argos. When the project started up
during the summer of 2015, the Oculus Rift DK 2 was the only actual option. Oculus
Rift DK2 was selected as every other solution either seemed to be either incomplete
or unproven. The team working on Project Argos summer 2015 assumed better
goggles might be on the market in 2016.

3. Alternatives

At the time being, several companies are said to be releasing their VR goggles early
in 2016. There are already several virtual reality goggles on the market, but many of
them are not relevant for our project as we need high-end goggles. Release dates
are also an issue. Mid-2016 seems to be the time where many companies release
their first consumer version of VR goggles. The following are the goggles we
consider to be most relevant.

3.1 Oculus Rift DK2

Oculus Rift is developed by Palmer Luckey,
founded via Kickstarter and later bought by
Facebook. Oculus Rift DK2 was released in
July 2014. DK2 is the successor of the DK1,
both of which are development kits for very
early adopters, content creators and
developers. DK2 is not finalized hardware,
but should give developers a platform to
create their applications for the first
consumer version (CV1) when that is
released.

Display: OLED panel
Resolution: 1920 X 1080 HD (960 x 1080 display for each eye)
Refresh rate: 75 Hz
Field of view: 100 degrees
Price: not relevant
Consumer Release: July 2014.

Additional information: Does not support 360 degrees tracking. DK2 is not a
consumer version, but meant for developers to create VR programs in. [1]

Figure 1: Oculus Rift DK2

file:///E:/Requirements%20documents/Documents/doc-1213_requirements_1_5.docx

Virtual Reality Goggles

6

3.2 Oculus Rift CV1

The Oculus Rift CV1 is the consumer
version that ships in March 2016. This
is the finalized hardware with the
lessons learned from DK1 and DK2.

Display: OLED panel
Resolution: 2160 x 1200
Refresh rate: 90 Hz.
Field of view: 110 degrees
Tracking area: not relevant
Price: 499-599$
Consumer Release: March 28th 2016.

Additional information: Separate lenses, that are adjustable by a dial on the bottom of
the device, so they will fit any user (accommodates a wide range of inter pupillary
distances). It gives 360 degrees tracking by LEDs in the rear of the goggles, meaning
full 360 degrees perspective for the users. The CV1 has more accurate and improved
head tracking than DK2. [2]

3.3 Sony PlayStation VR

Sony’s VR goggles are based on the
project Morpheus. These VR goggles are
meant to work on the PlayStation
platform, with quite severe hardware
limitations over the Rift and the Vive that
is PC-based.

Display: OLED panel
Resolution: 1920 x 1080
Refresh rate: 90 Hz (interpolated)
Field of view: Approximately 110 degrees
Tracking area: not relevant
Price: TBA
Consumer Release: 2016
Additional information: Works only with PlayStation. [3] [4]

Figure 2: Oculus Rift CV1

Figure 3: Sony Playstation VR

Virtual Reality Goggles

7

3.4 HTC Vive

Vive is HTC’s VR goggles.
These are developed with
Valve, which might indicate that
it will support Linux-based
operating systems, but this is
not confirmed at the time being.

Display: OLED
Resolution: 2160 x 1200
Refresh rate: 90 Hz
Field of view: 110 degrees
Tracking area: 15 x 15 feet
Price: 799$
Consumer Release: April 2016
Additional information: Tracks motion in space, but this is not relevant sitting inside a
car. [2] [5]

4. Pugh Matrix Comparison

The possible solutions will be compared in a Pugh matrix. The rating and importance
of each criterion is given on a scale of 1-3. The score is calculated by multiplying the
rating with the importance of the criteria. Higher is better.

4.1 Comparison Criteria

Criteria Importance Rating

Resolution 2 – A high resolution is
essential to create an
immersive virtual world

1 = < 1080p
2 = 1080p
3 = > 1080p

Framerate 2 – The framerate must
be high to reduce
chances of motion
sickness and a fluid
experience

1 = < 70 FPS
2 = 70 – 80 FPS
3 = > 80 FPS

Availability 3 – Available for
purchase

1 = Available summer of 2016
2 = Available spring of 2016
3 = In possession

SDK
availability

3 – Available SDK for
download

1 = Available summer of 2016
2 = Available spring of 2016
3 = In possession

Cost 1 – The cost is not
significant

1 = > $700
2 = $500 - $700
3 = < $500

Table 1: Comparison criteria for Pugh matrix

Figure 4: HTC Vive

Virtual Reality Goggles

8

4.2 VR Goggles Pugh Matrix

Options

Oculus Rift DK2 Oculus Rift CV1 HTC Vive Pre Sony PS VR

Criteria Weight Rating Score Rating Score Rating Score Rating Score

Resolution 2 2 4 3 6 3 6 2 4

Framerate 2 1 2 3 6 3 6 1 2

Availability 3 3 9 2 6 2 6 1 3

SDK
availability

3 3 9 2 6 1 3 1 3

Cost 1 3 3 2 2 1 1 - -

Total 27 26 22 12

Table 2: Pugh matrix comparison

The comparison is primarily based on information available at the time of writing. This
is still in an early development stage, and the Vive, Sony VR and Rift CV1 are yet to
be launched at the time of making the decision. The values in the Pugh matrix, and
consequently the result, will change as the first consumer version of the goggles hit
the market.

5. Conclusion

The reason why Oculus Rift DK2 is the winner comes down to availability. Based on
the results from the Pugh matrix comparison in section 3, we have decided to stick to
DK2. We believe it will satisfy our needs for this part of the project as both the
software and the hardware are available and stable. CV1 and HTC Vive look
promising and this decision should be revisited by the next Argos team after the
launch of CV1 and Vive. The code should in theory support CV1 with an upgrade to
the latest SDK. Oculus provides migration guides from SDK version to SDK version,
so the upgrade should be manageable.

Virtual Reality Goggles

9

Bibliography

[1] Rift Info, "Oculus Rift Specs - DK1 vs DK2," Rift Info, 06 01 2016. [Online]. Available:
http://riftinfo.com/oculus-rift/specs-dk1-vs-dk2-comparison. [Accessed 08 03 2016].

[2] Digital Trends, "Spec Comparison," Digital Trends, 29 02 2016. [Online]. Available:
http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive. [Accessed 08 03 2016].

[3] Digital Trends, "Oculus Rift vs Playstation VR Spec comparison," Digital Trends, 06 01
2016. [Online]. Available: http://www.digitaltrends.com/computing/oculus-rift-vs-
playstation-vr. [Accessed 08 03 2016].

[4] "PlaystationVR," [Online]. Available: http://www.playstation.com. [Accessed 23 March
2016].

[5] "HTC Vive Pre," [Online]. Available: http://htcvive.com. [Accessed 24 March 2016].

Technical Documentation
Graphics API 1.0

Author: Thomas Hansen
31.04.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Graphics API

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 3
1.3 List of Figures 3

2. Context 4

3. Graphics API 4

4. Different Types of Graphics API 4
4.1 OpenGL 4
4.2 Direct3D 6
4.3 Vulkan 7

5. Conclusion 9

Bibliography 10

Graphics API

3

1. Document Overview

The purpose of the technical documentation on graphics application programming
interface (API) is to show an overview of different graphics APIs. Project Argos needs
to use a graphics API in its virtual world module to render images to the virtual reality
goggles and to the screen.

Describes

 the context.

 what graphics APIs are.

 three alternatives for graphics APIs.

 a conclusion based on the information provided.

1.1 Document History

Version Changes Date Author

0.1 Document started 31.04.2016 Thomas Hansen

0.2 Revised 05.05.2016 Thomas Hansen

0.3 Updated document overview 18.05.2016 Trond Egil Hammer

0.4 Changed 4.1 to new standard,
removed 1.3 references

18.05.2016 Thomas Hansen

0.5 Updated document overview,
revised section 2, added section 4,
added comments, formatted,

18.05.2016 Ingvild Damtjernhaug

0.6 Added conclusion, rewritten
OpenGL, Direct3D and Vulkan

18.05.2016 Leiv Fredrik Berge

0.7 Fixed references and more content 20.05.2016 Thomas Hansen

1.0 Final review 20.05.2016 Trond Egil Hammer,
Morten J. Barbala,
Thomas Hansen
Ingvild Damtjernhaug

1.2 Referenced Documents

Title Document Version

Motion Sickness doc-21321_motion_sickness_1_0.docx 1.0

Glossary doc-1113_glossary_2_0.docx 2.0

1.3 List of Figures

Figure 1: The OpenGL pipeline 6
Figure 2: The direct3D 12 pipeline 7
Figure 3: The Vulkan pipeline 8

doc-21321_motion_sickness_1_0.docx
../../Project%20documents/Documents/doc-1113_glossary_2_0.docx

Graphics API

4

2. Context

TinyArgos, the software in Project Argos, creates a virtual world that is displayed in
the Oculus Rift. This needs to be done as efficiently as possible to reduce the HMD
latency and the glass-to-glass latency, see Motion Sickness for more details. The
graphics card (GPU) is the most efficient way to do the same operation on large
amounts of similar data, which is what TinyArgos does with rendering and
transformation of the video. In order to control the use of the GPU in computation we
need an API to expose the functions to our application.

3. Graphics API

The virtual world module in the TinyArgos architecture relies on a graphics API to
expose the functions we need to render the live video and surfaces. The graphics
API functions as a layer between our application and the operating system, making it
more efficient to utilize the hardware, in our case the GPU. There are different
graphics APIs available with different strengths and weaknesses. However, not all fit
our need for the type of application we are developing

The graphics API exposes hardware functionality. The developers can use a high
level language to write code that takes advantage of the GPUs features. The API
translates the high level input from the application to low level code for the GPU
driver, which turns the code into machine instructions the GPU can execute. This
means that the graphics driver and graphics API must be optimized for each other to
get maximum performance of the system. [1]

4. Different Types of Graphics API

On the marked there are multiple graphics APIs that could work with TinyArgos. It
needs to support virtual reality, the Oculus SDK, be very efficient and preferably be
multiplatform. The main contenders in the graphics API marked are Direct3D by
Microsoft, OpenGL by Silicon Graphics and Vulkan by Khronos group. All of these
could potentially work with TinyArgos.

4.1 OpenGL

OpenGL (Open Graphics Library) is a 2D and 3D graphics API that was released in
1992 by Silicon Graphics and is now curated by Khronos Group. Khronos is an
independent non-profit consortium of leading media centric companies founded in
January 2000. [2] OpenGL is an open standard, so it is free for anyone to use and
implement. The latest release of OpenGL is 4.5 from August 2014. [3] The library can
be used with any operating system and with any programming language. The API is
extremely versatile, and will run on most systems. This makes it easier to change
operating system or programming language for TinyArgos if needed. OpenGL was
released in 1992 and therefore was the first graphics API available for developers. [3]

doc-21321_motion_sickness_1_0.docx

Graphics API

5

[4] Since 1992 OpenGL has become the industry’s most widely used API. [5] The first
version of TinyArgos was built with OpenGL as its graphical API.

The OpenGL rendering pipeline is the sequence of steps that OpenGL takes when
rendering objects. [6] It is this pipeline that together with the graphics driver
determines how effective the API is.

The OpenGL pipeline:

 Vertex specification [7]
o The application sets up an ordered lists of vertices that are sent into the

pipeline when a render command is issued [7]

 Vertex shader
o The vertex shader performs basic processing of each individual vertex.

[7] Like the transformation of the vertex in the OpenGL world. [6]

 Tessellation
o Determines the amount of tessellation to apply on a primitive. [8]

 Geometry shader
o Creates the primitives from points.

 Transform feedback
o Allows for holding data for later use [7]

 Clipping
o This cuts the primitives that lies on the border of the viewing area into

several primitives. And removes the primitives outside the view area. [7]

 Face culling
o Culling is the process of excluding the primitive faces that do not face

the window from rendering. [7]

 Rasterization
o This is the process of turning the primitives into fragments containing a

screen position and [7]

 Fragment shader
o Here the fragments are given colour and are sent to the next stage. [7]

 Per-Sample Operations
o Each fragment from the fragment shader is then put through a series of

tests before being written to a frame buffer. [7]

Graphics API

6

Vertex shader Tesselation Geometry shaderVertex specification

Transform feedback Clipping Face culling Rasterization

Fragment shader
Per-Sample
operations

Figure 1: The OpenGL pipeline

4.2 Direct3D

Direct3D is the graphical API in the DirectX collection by Microsoft. Driect3D first
appeared in 1996 in DirectX 2.0. [4] The latest version Direct3D 12 (DX12) was
released July of 2015 together with Windows 10. [9] The DirectX suite only supports
the operating system Microsoft Windows, making a port of TinyArgos to a another
platform at some point much harder. It does support a number of programming
languages, but it is not as versatile as OpenGL. Direct3D 12 reduces the load on the
CPU, improves the multithreading scaling and allows for a lower level of hardware
abstraction than DX11 did. [10] Direct3D is an advanced graphics API it requires a
fine level of tuning and significant graphics expertise. Because it is designed to make
full use of multi-threading, a considerable amount of programing skills on memory
level are also required. [10] Direct3D 12 represents a significant departure from the
Direct3D 11 programming model. It lets you get closer to hardware than ever before,
but the trade-off is that you are responsible for more tasks yourself. [11]

The Direct3D rendering pipeline looks somewhat like the OpenGL pipeline but is a bit
different. And again, the pipeline works together with the graphics driver to determine
how efficient it is. [12]

The Direct3D pipeline:

 Input assembler
o Supplies vertex data to the pipeline [12]

 Vertex shader
o The vertex shader performs basic processing of each individual vertex.

Like the transformation of the vertex in the OpenGL world [12]

 Hull shader
o A programmable stage that generate patches [12]

 Tessellation
o Uses GPU to calculate a more detailed surface from patches [12]

Graphics API

7

 Domain shader
o A programmable shader stage that calculates the vertex position that

corresponds to each domain sample. [12]

 Geometry shader
o Creates primitives from points. [12]

 Rasterizer
o The rasterizer clips primitives prepare primitives for the pixel shader,

and determines how to invoke the pixel shader. [12]

 Pixel shader
o Generates per-pixel data such as colour [12]

 Output merger
o Combines the output data with the contents of the render target. [12]

 Pipeline state object

Vertex shader Hull shader TesselatorInput assembler

Domain shader
Geometry

shader
Rasterizer Pixel shader

Output merger

Figure 2: The direct3D 12 pipeline

Direct3D 12 introduces the pipeline state object (PSO). This object stores the
pipeline state in a PSO instead of across a large number of high-level objects.

4.3 Vulkan

Vulkan is created by Khronos Group, the same group that curates OpenGL. Initially
Vulkan were marketed as the next generation of OpenGL. [13] The 1.0 version was
released in February of 2016 [14], with 1.0.13 as the latest release as of 18.05.2016.
The advantage Vulkan has over OpenGL is the ability to generate GPU work in
parallel using several central processing units (CPU) cores. Along with other
improvements, like reduced driver overhead, Vulkan has less CPU usage than
OpenGL. This can make Vulkan very useful for games, simulations and CPU bound
applications. [15]

If the GPU workload dominates the rendering time in the application, [16] Vulkan
might not offer any speed up to the software. On the other hand, if the application is
sensitive to missed frames or micro stuttering, Vulkan’s design allows you to control
explicitly when expensive operations happens during rendering. [16] If the

Graphics API

8

applications work load is spread across multiple threads, Vulkan can improve the
situation. [16]

The Vulkan pipeline:

 Input assembler
o Assembles vertices to form geometric primitives [17]

 Vertex shader
o Computes position and other attributes for each vertex [17]

 Tessellation shader
o Calculates a more detailed surface [17]

 Geometry shader
o Generates primitives [17]

 Primitive assembler
o The primitives are clipped to a clip volume (primitives outside the view

are excluded) [17]

 Rasterization
o Produces a series of framebuffer addresses and values using a two-

dimensional description of a point, line or triangle. [17]

 Fragment shader
o Performs operations on individual fragments before they alter the

framebuffer. [17]

Input Assembler

Vertex Shader

Tesselation Shader

Geometry Shader

Primitive Assembler

Rasterization

Fragment Shader

Compute Assembler

Compute Shader

RENDER PIPELINE COMPUTE PIPELINE

Figure 3: The Vulkan pipeline

The compute pipeline is a separate pipeline from the graphics pipeline, which
operates on one-, two- or three dimensional workgroups which can read and write to
a buffer and image. [17]

Graphics API

9

5. Conclusion

It is hard to quantify the differences in the different graphical APIs, much will depend
on other factors in the system than just the API. E.g. Nvidia has yet to upgrade their
drivers to fully utilize the potential performance increase in DX12, and often perform
better with DX11, while AMD cards can have significantly better performance. [18]

With the load that TinyArgos puts on the system, it is hard to say what kind of
performance can be expected with the various API and hardware combinations. The
PC that will run the TinyArgos software has an Nvidia Titan X graphics card, making
DX12 the least favoured option, with poor DX12 driver support and no other
operating system support in the API.

Both DX12 and Vulkan are quite immature as driver and operating system support is
not all there yet. However this is likely to change at some point, making both DX12
and Vulkan more appealing options. Especially the superior support for multithread
scaling and lower driver overhead can potentially increase the performance and
stability of TinyArgos.

Given OpenGL’s excellent track record as a multiplatform and good performing
graphics API, we find it to be the better choice for TinyArgos at this point in time. It
might be worth revisiting this decision as more benchmarks and information about
Vulkan becomes available, as it might do a slightly better job at lowering the glass-to-
glass latency.

Graphics API

10

Bibliography

[1] L.-Y. Wei, “http://graphics.stanford.edu,” [Online]. Available:
http://graphics.stanford.edu/~liyiwei/courses/GPU/paper/paper.pdf. [Accessed 05 May
2016].

[2] “Khronos,” Khronos, 01 2000. [Online]. Available: http://www.khronos.org/about.
[Accessed 19 05 2016].

[3] “OpenGL,” 05 04 2016. [Online]. Available:
http://www.opengl.org/wiki/History_of_OpenGL. [Accessed 19 05 2016].

[4] W. F. Engel, Direct 3D Game Programming 2nd Edition, Boston: Premier Press, 2003.

[5] Khronos, “OpenGL,” Khronos, [Online]. Available: http://www.opengl.org/about.
[Accessed 19 05 2016].

[6] G. Sellers, R. S. Wright jr. and N. Haemel, OpenGL SuperBible Sixth Edition,
Crawfordsville: RR Donnelley, 2013.

[7] “OpenGL,” OpenGL, [Online]. Available:
http://www.opengl.org/wiki/Rendering_Pipeline_Overview. [Accessed 19 05 2016].

[8] “OpenGL,” [Online]. Available: http://www.opengl.org/wiki/Tesselation. [Accessed 19 05
2016].

[9] B. Langley, “Microsoft developer,” Microsoft, 29 07 2015. [Online]. Available:
http://blogs.msdn.microsoft.com/directx/2015/07/29/windows-10-and-directx-12-
released/. [Accessed 19 05 2016].

[10] “microsoft.com,” Microsoft, 2015. [Online]. Available: http://msdn.microsoft,com/en-
us/library/windows/desktop/dn899288(v=vs.85).aspx. [Accessed 19 05 2016].

[11] “Microsoft.com,” Microsoft, [Online]. Available: http://msdn.microsoft,com/en-
us/library/windows/desktop/dn899288(v=vs.85).aspx. [Accessed 19 05 2016].

[12] “microsoft.com,” Microsoft, [Online]. Available: http://msdn.microsoft.com/en-
us/library/windows/hardware/ff569022(v=vs.85).aspx. [Accessed 19 05 2016].

[13] “amd.com,” AMD, 2016. [Online]. Available: support.amd.com/en-us/kb-
articles/Pages/AMD_Radeon_Software_Crimson_Edition_16.3.aspx. [Accessed 19 05
2016].

[14] Khronos, “Khronos.org,” 2016. [Online]. Available:
http://www.khronos.org/registry/vulkan/specs/1.0/pdf/vkspec.pdf. [Accessed 19 05 2016].

[15] “Khronos,” Khronos, [Online]. Available: https://www.khronos.org/news/press/khronos-
releases-vulkan-1-0-specification. [Accessed 05 May 2016].

[16] “nvidia.com,” nvidia, [Online]. Available: http://developer.nvidia.com/transitioning-opengl-
vulkan. [Accessed 19 05 2016].

[17] “Khronos.org,” Khronos, [Online]. Available:
http://www.khronos.org/registry/vulkan/1.0/xhtml/vkspec.html. [Accessed 20 05 2016].

[18] M. Walton, “Arstechnica,” 19 February 2016. [Online]. Available:
http://arstechnica.com/gaming/2016/02/vulkan-benchmarks-a-boost-for-amd-and-nvidia-
but-theres-work-to-be-done/. [Accessed 18 May 2016].

Technical Documentation
Architecture Style 1.0

Created by: Thomas Hansen
08.04.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Architecture Style

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referenced Documents 3
1.3 List of Figures 4
1.4 List of Tables 4

2. Architectural Challenge 5

3. Possible Solutions 5
3.1 Data Flow Architecture 5

3.1.1 Batch Sequential Architecture 6
3.1.2 Pipe and Filter Architecture 6
3.1.3 Process Control Architecture 7

3.2 Component Based Architecture 7
3.3 Our own Architecture 8

4. Pugh Matrix Comparison 8
4.1 Comparison Criteria 8
4.2 Pugh Matrix 9

5. Conclusion 9

Bibliography 10

Architecture Style

3

1. Document Overview

The technical documentation on architecture style presents the architectural
challenge in the project and briefly explains several architectural styles as possible
solutions. It also lists some pros and cons so that the reader can better understand
the justification for our choice: A mixture of Pipe-filter style and component based
architecture.

Describes

 why we need to have the right software style.

 the different styles that are suitable for our software system.

 the comparison criteria used in the Pugh matrix.

 a Pugh matrix that compares the alternatives presented.

 a conclusion with reasoning.

1.1 Document History

Version Changes Date Author

0.1 Document started 08.04.2016 Thomas Hansen

0.2 Changed format on name and date
in document history

10.04.2016 Trond Egil Hammer

0.3 Continue working on document 11.04.2016 Thomas Hansen

0.4 Corrections and clarifications 25.04.2016 Morten J. Barbala

0.5 Rewriting, references 28.04.2016 Morten J. Barbala

0.6 Several small changes 11.05.2016 Thomas Hansen

0.7 Added CBA and our own style to
comparison.

15.05.2016 Thomas Hansen

0.8 Changed 4.1 to new standard and
final cosmetic changes

18.05.2016 Thomas Hansen

0.9 Fixed front page and headings.
Added glossary to referenced
documents. Rewriting, corrections
and clarifications.

19.05.2016 Morten J. Barbala

1.0 Final review 20.05.2015 Trond Egil Hammer,
Morten J. Barbala,
Thomas Hansen
Ingvild Damtjernhaug

1.2 Referenced Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

Requirements document doc-1213_requirements_2_0.docx 2.0

file://///KDP40043734/ArgosServer/Argos/Project%20documents/Documents/doc-1113_glossary_2_0.docx
file://///KDP40043734/ArgosServer/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx

Architecture Style

4

1.3 List of Figures

Figure 1: Batch sequential architecture. 6
Figure 2: Pipe-filter architectural style 6
Figure 3: Process control architecture 7
Figure 4: Component based architecture 7
Figure 5: Our own architecture 8

1.4 List of Tables

Table 1: Pugh matrix dataflow architecture 9

file:///Z:/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx%23_Toc451528023
file:///Z:/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx%23_Toc451528024
file:///Z:/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx%23_Toc451528025
file:///Z:/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx%23_Toc451528026
file:///Z:/Argos/Technical%20documents/Documents/doc-21321_Architecture_style_1_0.docx%23_Toc451528027

Architecture Style

5

2. Architectural Challenge

The software architecture describes the building blocks through: (i) The nature of the
architectural components, i.e. the nature of their computation, (ii) the way they
interact with other components when composing a system and (iii) constraints on the
way this composition is done. [1] Architecture is the structural map or blueprint of the
software. [2] An architectural style describes a set of components, which perform a
required function and the interfaces between these components. [2]

The main function of the Argos software system is getting data from one place to
another (from cameras to VR goggles). The software must have a maximum of 75ms
of glass (camera) to glass (Oculus) latency. This means that the architecture needs
to focus on how data traverses through the system. The software also needs to be
configurable and have an architectural style that allows user interactions with the
software. There are several architectural styles that are all about data flow, and we
will take a brief look at some of them. The selected styles described in this document
are not the only relevant architecture styles, but the selected styles have a larger
focus on flow of data, which is what needed in Project Argos.

3. Possible Solutions

Described in the next sections are the possible solutions for Project Argos. We
focused on the highest priority: throughput. See requirement document for more
information. We have also looked at other solutions like component based
architecture to satisfy the need for interactivity.

3.1 Data Flow Architecture

In data flow architecture the software is seen as series of transformation on data from
a series of inputs and outputs. The data and operations are independent of each
other. The data enters the system and flows through the different modules until it
reaches a final destination, for instance a screen or data storage. The connections
between the modules can be implemented as input/output stream, buffers or as
pipes. The data in the system can flow in a cycle, with a linear path or in a tree
structure. This type of architecture is suitable for applications where the data need to
go through well-defined data transformations or computations. [2]

file://///KDP40043734/ArgosServer/Argos/Requirements%20documents/Documents/doc-1213_requirements_2_0.docx

Architecture Style

6

3.1.1 Batch Sequential Architecture

Process A Process B Process C

Figure 1 shows a classical data processing model. In the batch sequential pattern,
the data is carried in batches from module to module. The data cannot proceed
before the module has finished all the computations on the data in the batch. This is
a very simple style and is easy to understand, but it does not provide interactive
interfaces and has a high latency and low throughput. Typical applications that uses
this pattern is banking and utility billing softwares. [3]

3.1.2 Pipe and Filter Architecture

Process A Process B Process C

The pipe filter pattern looks a lot like batch sequential pattern, but is quite different.
From figure 2 you can see that the data is sent between the modules as a stream
and has a first in first out (FIFO) system. [2] This allows data to continuously flow
through the modules without having to wait for data to finish computing. [2] The
whole system is decomposed into data source, filters, pipes, and data sinks. The
filters do the computation, i.e. transform the data from an input into what is needed
as input in the next filter [2], and can be either passive or active. The active filters
work with passive pipes and push and pull the data itself. Passive filters work in the
opposite way and have active pipes push and pull the data. The filters must provide a
control mechanism for the interface. [2]

The pipe and filter pattern is specialized for applications that needs a high
throughput. [2] It provides reusability if two adjacent modules “agree” on the data
being transmitted, which simplifies maintenance and modification (filters can be

Figure 1: Batch sequential architecture.

Figure 2: Pipe-filter architectural style

Architecture Style

7

added or replaced), and has low coupling between filters. [3] Furthermore, pipe filter
pattern supports both sequential and parallel execution. [2] The pattern is easy to
understand as pipes do not have states: They simply carry binary data or a stream of
characters between filters. [2]

The pipe filter style looks a lot like the batch sequential pattern, and if you are not
careful while programming, it is easy to end up with a semi batch sequential pattern.
If you have one place in your code where you have to wait for another part to finish,
then you are processing in batches. [3] Therefore the pattern is not suitable for
dynamic interactions. [2]

3.1.3 Process Control Architecture

Toggle

Input

Controller MeasureChanges

Feedback

Output

I think that a better name for this architecture pattern would be feedback control
system. The idea is that you have a controlled variable that is measured and a set of
process variables that are manipulated. The measurement of the control variable is
used to change one or more of the process variables so that the controlled variable is
as close as it can get to a set point. Typical systems that use this architecture are car
cruise control or air conditioning systems. [3]

3.2 Component Based Architecture

Component A

Component D

Component CComponent B

Component based architecture describes the software system as a set of
components that communicate with the help of interfaces. [3] The goal is to compose
a system of easily interchangeable pieces that are loosely coupled by interfaces. [2]

Figure 3: Process control architecture

Figure 4: Component based architecture

Architecture Style

8

Having an architecture like this also makes the software more maintainable as each
component can be changed or upgraded by itself without affecting the rest of the
software.

3.3 Our own Architecture

Data flow

Controller

Recorder

Virtual worldPicture handler

A solution is to make our own architecture with the best from both worlds. This way
we could keep the throughput from the pipe filter and the flexibility from component
based architecture. The pipe filter style has similar construction as component based
architecture, but in just one direction. We can use this and create an upgraded pipe
filter pattern, with the dataflow in one direction and other modules that are outside of
the main pipe and can work as valves that control the dataflow.

4. Pugh Matrix Comparison

The four architectural styles will be compared in a Pugh matrix diagram. The rating
and importance of the criteria is given on a scale from 1-3. The score is calculated by
multiplying the rating with the importance of the criteria. Higher is better.

4.1 Comparison Criteria

Criteria Importance Rating

Throughput 3 – Throughput represents how fast it
takes for the data to travel from glass to
glass.

1 = The data stops and
waits for other
processes to finish
before it continues.

2 = The data have some
bottlenecks in the
software.

3 = The do not have
unnecessary
bottlenecks.

Figure 5: Our own architecture

Architecture Style

9

Modifiable 2 – It is easy to modify or replace the
modules or mechanisms inside the
modules, without having to make big
changes in other modules.

1 = Not modifiable without
making changes to the
whole system

2 = Some changes have to
be made in other parts
of the software when
changing some code.

3 = Changes in the
software can be
confined inside the
components

Simple 3 – The time to learn or understand the
style should take as little time as
possible

1 = Very complicated,
takes very long to
understand.

2 = Some time needed to
learn and understand
the style.

3 = The style is easily
understandable and
takes no time to
comprehend.

Table 1: Pugh matrix criteria

4.2 Pugh Matrix

Batch
sequential

Pipe-filter
Process
control

CBA Our own

Criteria
Import
ance

Rating Score Rating Score Rating Score Rating Score Rating Score

Throughput 3 1 3 3 9 1 3 2 6 3 9

Modifiable 2 3 6 2 4 2 4 3 6 3 6

Simple 1 3 3 3 3 2 2 3 3 2 2

Total 12 16 9 15 17
Table 2: Pugh matrix dataflow architecture

5. Conclusion

As we can see from the Pugh matrix the best choice is if we make our own style out
of pipe filter and component based style. This style has high scores on all criteria,
only losing a point because of complexity. Pipe filter and component based style
actually get the second and third place, respectively, and only lack modifiability and
throughput. Batch sequential and process control style lack throughput and process
control and are the least suitable for the software system. Our choice is therefore to
make our own architectural style because this will give us the throughput and the
possibility to interact with the data going through the system. Using a component
based style will also make it easier to make changes to the software later.

Architecture Style

10

Bibliography

[1] R. Juric, J. Kuljis and R. Paul, “Software architecutre style for interaoperable databases,”
in International Conference on Information Technology Interfaces, Cavtat, Croatia, 2004.

[2] “Tutorialspoint,” 2015. [Online]. Available:
http://www.tutorialspoint/software_architecture_design/
software_architecture_design_tutorial.pdf. [Accessed 09 March 2016].

[3] A. Bijlsma, B. Heerendr, E. Roubtsovair and S. Stuurman, “Software Architecture,”
[Online]. Available: ftacademy.org/sites/ftacademy.org/files/materials/fta-m11-doft_arch-
pre.pdf. [Accessed 08 04 2016].

Technical Documentation
Lenses 2.0

Created by: Leiv Fredrik Berge
16.02.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

 Lenses

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 Referred Documents 4
1.3 List of Figures 4
1.4 List of Tables 4

2. Camera System 5

3. Lens Technology 5
3.1 Focal Length 5
3.2 Aperture 6
3.3 Vignetting 6
3.4 Distortion 7

4. Lens System Solutions 8
4.1 Proposal 1: Three front-facing, one rear 8
4.2 Proposal 2: Four fisheye lenses 9
4.3 Proposal 3: Produce our own lenses 9

4.3.1 Testing Proposal 3 10

5. Pugh Matrix Comparison of Proposals 10
5.1 Comparison Criteria 10
5.2 Pugh Matrix Proposals 11

6. Conclusion 12

Bibliography 13

 Lenses

3

1. Document Overview

The purpose of the technical documentation on lenses is to give the reader a clear
understanding of the system solutions and lens technology we have considered in
Project Argos. After reading this you should know the reasoning for our choice of
lenses and solution.

Describes

 the camera system.

 the cameras used in Project Argos.

 lens technology.

 different setups and solutions.

 the comparison criteria used in the Pugh matrix.

 a conclusion with reasoning.

1.1 Document History

Version Changes Date Created by

0.1 Created document 16.02.2016 Leiv Fredrik Berge

0.2 Spellcheck and added references 18.02.2016 Trond Egil Hammer

0.3 Added Pugh Matrix and Kowa
lenses

19.02.2016 Leiv Fredrik Berge

0.4 Added proposal 3 24.02.2016 Leiv Fredrik Berge

0.5 Added specs on Kowa lens in the
text

02.03.2016 Trond Egil Hammer

0.6 Added lens technology and
bibliography

08.03.2016 Trond Egil Hammer

1.0 Added conclusion 08.03.2016 Leiv Fredrik Berge

1.1 Changed format on name and date
in document history

10.04.2016 Trond Egil Hammer

1.2 Fix layout, corrections and
clarifications

25.04.2016 Morten J. Barbala

1.3 Rewriting, corrections and
clarifications. Additions to
introduction, document overview,
camera systems and lens system
solutions

28.04.2016 Morten J. Barbala

1.4 Added figures to lens technology 04.04.2016 Trond Egil Hammer

1.5 Rewriting 06.05.2016 Trond Egil Hammer

1.6 Deleted introduction, formatted front
page, rewritten document overview,
corrections and clarifications

11.05.2016 Ingvild Damtjernhaug

1.7 Fixed layout, headings, table of
contents and paragraph spacing

13.05.2016 Morten J. Barbala

1.8 Added Pugh matrix criteria table 16.05.2016 Leiv Fredrik Berge

1.9 Wrote intro to lens technology.
Rewriting, corrections and

19.05.2016 Morten J. Barbala

 Lenses

4

clarifications

2.0 Final review 20.05.2016 Morten J. Barbala
Thomas Hansen
Ingvild Damtjernhaug

1.2 Referred Documents

Title Document Version

Glossary doc-1113_glossary_2_0.docx 2.0

1.3 List of Figures

Figure 1: Focal length 6

Figure 2: Aperture 6

Figure 3: Optical vignetting 7

Figure 4: Distortion 7

1.4 List of Tables

Table 1: Overview of lenses we have considered 8

Table 2: Overview of fisheye lens 9

Table 3: Pugh matrix criteria 11

Table 4: Pugh matrix on lens setup 11

../../Project%20documents/Documents/doc-1113_glossary_2_0.docx

 Lenses

5

2. Camera System

The cameras available to us in Project Argos are Mako G223C PoE surveillance
cameras. The Argos system has strict requirements in regards to response time,
which is a key aspect regarding lens decision. We want to run our cameras with the
minimum frame rate, 49.5 FPS, and this reduces the exposure time compared to a
normal camera setup. [1] In turn, this requires a lens that lets as much light as
possible through to the camera sensor. [1] However, this needs to be balanced with
the range of focus because reducing the blender and letting more light into the
sensor will reduce the depth of view. [1] It is important to remember that the camera
system will be mounted on a vehicle so manual adjustment of the lenses will not be
possible when the system is in use. Fixed focus lenses are therefore preferable to
reduce the complexity and risk of system failure. The camera uses the standard C-
mount lens system and a 2/3” image sensor size. This is also important as a lens will
have a different view on differently sized sensors. [1]

The angle of view is also an important issue. Our solutions and the view in the VR-
goggles are heavily impacted by the viewing angle of the lens. A wide-angle fisheye
lens will provide a large field of view, but will distort the picture and create a vignette
frame of black around the image. A narrow angle will have less distortion and no
vignetting, but will require more cameras to cover the needed field of view to use the
system. [1] Adding additional cameras will also provide a heavier load on the network
and the rest of the system. [1] The narrow angle solution will ultimately require more
stitching to have a continuous image in VR while the wide angle solution will require
more distortion handling. In the future, tests should be run on different types of
camera- and lens setups to see which solution is optimal in terms of resource use,
video quality and frame rate.

3. Lens Technology

Lens technology is a complex subject. Constraints and requirements for real-time
and virtual reality systems can increase this complexity even further. Terminologies
and technical aspects are unfamiliar to us as computer engineering students, and
this makes researching lens technology challenging and time consuming. Luckily, we
have been able to talk with optometry experts at the university college to help with
the research. This section will cover the factors that we believe to be the most
relevant for this project.

3.1 Focal Length

Focal length is a calculation of an optical distance from where the light originates to
the digital sensor when an object is in focus. [2] The focal length tells us how much of
the scene is captured, the angle of view and the magnification. [2] With a long focal
length the angle of view is smaller and the magnification will be higher, and vice
versa. [2]

 Lenses

6

Figure 1: Focal length [3]

3.2 Aperture

In optics, an aperture is a hole in the lens where the light travels. It is designed
similar to the human eyes. [3] The pupil in the human eye is a good analogy for
aperture in photography. In a room with limited light the pupil in human eye is large
and more light enters the retina. When the pupil is large the aperture will also be high
and let more light through the lens. In a room with many light sources, however, the
pupil will be very small and this equals small aperture letting through less light. [3]
The aperture controls the depth of field: A large aperture will show both foreground
and background in focus while a small aperture shows the foreground in focus and
the background blurry. [3]

Figure 2: Aperture [2]

3.3 Vignetting

Vignetting means darkening of image corners when compared to the center of the
picture. Vignetting is common in optics and photography. [4] Some lenses or external
tools like filters and lens hoods can cause vignetting. Vignetting can also be applied
with different post-processing software like Photoshop. [4] There are different types
of vignetting: Optical, pixel and mechanical. [4] This section will cover optical
vignetting since this is what we think will be most relevant and appear with the
selected lenses.

Optical vignetting occurs naturally in all lenses. It depends on the design and
construction of the lens and can be very strong on some lenses and barely
perceivable on others. [4] On most modern lenses it will still be visible, especially on
fixed lenses with large apertures. [4] There are two causes for optical vignetting:
Light blocking and light travel distance. Firstly, light can be partially blocked by the
lens barrel, i.e. the peripheral light rays are partially blocked at extreme wide angles
and there will be less light at the edges of the picture. [4] This effect is most visible at

 Lenses

7

larger apertures. Secondly, when the light travels through the lens the light rays at
the periphery of the lens will have to travel longer than the light rays in the center.
This is more noticeable with wide-angle lenses. [4] In this case the cosine fourth law
of illumination falloff kicks in. [4] The law states that the light reduction is proportional
with the fourth power of cosine to the angle between the periphery light ray and the
optical axis. Light rays that are further away from optical axis need to travel longer
and therefore more vignetting will be visible. [4]

Figure 3: Optical vignetting

3.4 Distortion

In a picture that is taken with a very wide angle lens, you will notice that the picture is
bended, a kind of deformation of the image. The lens deforms and bends the straight
lines and makes them curvy. This is caused by the design of the lens or the position
of the camera relative to the subject. [5] There are three known types of optical
distortion: Barrel, pincushion and mustache. [5] For our study the barrel distortion is
the most relevant. Barrel distortion occurs when the field of view of the lens is wider
than the size of the image sensor. The picture is squeezed to fit, and the result of this
is that straight lines are curved at the edges of the picture. The lines in the center are
more or less straight. However the further the lines are from the image center the
more curved they are. [5]

Figure 4: Distortion

 Lenses

8

4. Lens System Solutions

There are two main solutions we have looked into. They both share the same camera
rig dictated by available hardware from earlier project teams, but the lenses create
two distinctly different experiences. Since this is a bachelor project, we neither have
the time nor resources to run tests and experiment to find the best solution, and have
chosen what we think to be the optimal one according to criteria described in section
5.1.

4.1 Proposal 1: Three front-facing, one rear

The first proposed solution is to use three cameras to cover over 200 degrees in front
of the driver, and use one fisheye camera to capture 180 degrees behind the vehicle.
The data from the three front-facing cameras can then be merged into one single
image, and leave the last camera to act as a rear-view mirror. This solution will not
have much distortion and virtually no vignetting, but two seams will be present in
front of the driver and need to be handled carefully. Using lenses with about 80
degrees of horizontal view, the stich will appear roughly in the area where the A-pillar
normally is placed in a typical family car.

Distortion will be a key factor as the task of merging the images becomes harder and
harder as the distortion rate grows. The described solution will cover 360 degrees of
view, but not in a single continuous image, and the view in the vertical angle will be
limited. This solution should, however, be possible to extend with more cameras to
either cover more vertical space with cameras above or below the existing, or use
more cameras to cover more horizontal space. The low level of distortion should
translate into a much easier job of merging the images together. The way that three
cameras cover the key area for driving also leaves room available in the Oculus
viewable sphere to put specialized camera views or other useful information.

Lens Angle
of
view

Focal
length

Distortion
(tv)

Aperture Focus
range

Price Availability

Tamron
M23FM06
[6]

74.3 x
58.4

6mm -2.1% F/1.8 0.1m -
∞

$500 Not in stock

Kowa
LM6JC
[7]

81.9 x
61.2

6mm -10.7% F/1.4 0.1m -
∞

1000
NOK

In stock

Kowa
LM8JC
[8]

64.2 x
47.7

8mm -6.2% F/1.4 0.1m -
∞

1000
NOK

In stock

Table 1: Overview of lenses we have considered

 Lenses

9

4.2 Proposal 2: Four fisheye lenses

Proposal 2 is to cover about 180 degrees with each camera, and use four to cover
360 degrees field of view. Then each image will be almost spherical and quite
distorted with a visible vignetting frame. With this solution, merging the images
together to a more or less seamless image will most likely require lots of
computational power to fix the distortion. For this type of solution is it probably better
to leave each sphere as four separate images rendered in the Oculus Rift. This will
provide the user with much greater vertical viewing angle, and no seams will be
visible for the driver in a normal front facing driving position. It’s also not entirely clear
how this system can be extended with more cameras as two cameras alone cover
360x140 degrees of view. The vignetting also makes it hard to stich the images
together to a continuous image.

Lens Angle
of
view

Focal
length

Distortion
(tv)

Aperture Focus
range

Price Availability

Fujinon
FE185C
O086H
A-1 [9]

185 x
140

N/A N/A F/1.8 0.2m -
∞

$800 Available

Table 2: Overview of fisheye lens

4.3 Proposal 3: Produce our own lenses

A third alternative is to build our own lens system. This would be a very simple
solution, which as an added bonus could be serviceable in the field if a lens
somehow is broken. The basic idea is to create a small hole in front of the camera so
the light entering the lens would be focused towards the image sensor. The angle of
view would be decided by the size of the hole and the distance from the hole to the
sensor. The solution would be very affordable, potentially user serviceable and
should give a very low level of optical distortion. Another advantage is how easy it
would be to test different types of aperture and angle of views.

The camera system shares the setup with proposal 1: Three front-facing and one
rear-facing camera. The lens casings could be 3D printed to fit with the C-mount, and
different size holes from 1 mm up to 5 mm could be drilled in the center of the lens.
We could also add a hard eye lens of +1 that could be fixed to the print to focus the
light even more. It might also be possible to create a rectangular lens, which might be
more suitable for the live-merging we want.

 Lenses

10

4.3.1 Testing Proposal 3

Our initial testing of proposal 3 has not been promising. On our first test we attached
our 1mm lens to the outside of the camera C-mount. Using ideal exposure time to
keep a frame rate of 49.5 FPS, we didn’t have any light in the image, and as we
increased exposure time the image started to appear, but very blurry. A larger
aperture opening improved the light performance slightly, but didn’t improve the
blurry image. In later testing we have tried to mount 1mm to 2mm lenses closer to the
image sensor inside the C-mount. This performed about the same in regards to
exposure time and light sensitivity, but degraded the color performance and the
image is still unusably blurry. If we can’t greatly improve the focus of the image, this
will not be a viable solution, and therefore this solution is not included in the selection
area until we reach a usable version of this proposal. However, this approach is still
worth pursuing in the future to allow a user to create an emergency solution in the
field and as a means to test a variety of different field of view combinations.

5. Pugh Matrix Comparison of Proposals

The three possible solutions will be compared on a Pugh matrix. The rating and
importance of each criterion is given on a scale of 1-3. The score is calculated by
multiplying the rating with the importance of the criterion. Higher is better. The
proposal relies on the best lenses in each category. If another lens is picked the
matrix needs to be updated to reflect the differences in the optical performance of the
selected lens.

5.1 Comparison Criteria

Total horizontal
viewing angle

3 - The combined view of all cameras in
the horizontal space.

1 = < 150 degrees
2 = 150 – 180

degrees
3 = >180 degrees

Vertical viewing
angle

2 - This refers to the angle of view in the
vertical space. More vertical space will
provide the operator with a more lifelike
view and more awareness.

1 = < 50 degrees
2 = 50-60 degrees
3 = < 60 degrees

Distortion 3 - Distortion is how much the cameras
alter the reality to capture the
information to the image sensor. This is
a combination of the optical properties
of the lens and the image sensor itself.
More distortion will give an unnatural
picture, and require more computational
time to restore the distorted image and
merge the images to a continuous
picture.

1 = > 20%
2 = 10 – 20%
3 = < 10%

 Lenses

11

Light sensitivity /
Field of depth

1 - A short exposure time as a result of
a high frame rate means we need to
capture as much light as we can while
the shutter is open. However a low
aperture also means short field of depth,
so this must be balanced. Field of depth
is also a factor as less aperture gives
less depth of field.

1 = > F/1.8
2 = F/1.6 – F/1.8
3 = < F/1.6

Extendibility 1 - How easy it is to extend the system
with more cameras to provide the
system operator with additional
information.

1 = Complex to
stich in more
cameras

2 = Acceptable to
implement
more cameras.

3 = Easy to
implement
more cameras

Cost How expensive is the solution. 1 = > 10 000 NOK
2 = 5 000 –

10 000 NOK
3 = < 5 000 NOK

Table 3: Pugh matrix criteria

5.2 Pugh Matrix Proposals

Options

Proposal 1 Proposal 2

Criteria Importance Rating Score Rating Score

Total horizontal
viewing angle

3 2 6 3 3

Vertical viewing
angle

2 2 4 3 6

Distortion 3 3 9 1 3

Light sensitivity /
Field of depth

2 3 6 1 1

Extendibility 1 2 2 1 1

Cost 2 2 4 1 2

Total 31 16
Table 4: Pugh matrix on lens setup

Our recommendation is to choose proposal 1, which both scores highest in the Pugh
matrix comparison and in our analysis. This in our opinion the optimal solution that
provides an image that is more comfortable for the user and more flexible for the
developers.

 Lenses

12

6. Conclusion

Lenses are highly complex, and all the variables create different challenges,
solutions and user experiences. We have decided to go for the solution with three
front-facing lenses and on rear-facing fisheye lens. For the fish eye lens the Fujinon
FE185C086HA-1 is the lens of choice, and for the front facing we decided to go with
the Kowa LM6JC. This solution will cover well over 360 degrees of view, even if we
choose to crop the image of the front facing cameras. We believe this solution will be
the most effective and give the most pleasant experience for the user. If the live
merging and distortion correction is faster and smoother than expected, an all fisheye
solution will provide the user with more vertical field of view and this can be research
further in future development.

 Lenses

13

Bibliography

[1] "Mesa public schools," [Online]. Available: www.mpsaz.org/rmhs/sewqright/photography-
resource/files/camera_exposure_chart2.pdf. [Accessed 19 05 2016].

[2] Nikon Usa, "Nikon Usa," [Online]. Available: www.nikonusa.com/en/learn-and-
explore/article/g3cu6020/understanding-focal-length.html. [Accessed 08 March 2016].

[3] Nikon Usa, "Nikon Usa," [Online]. Available: www.nikonusa.com/en/learn-and-
explore/article/g3cu601r/understanding-maximum-aperture.html. [Accessed 08 March
2016].

[4] Photographylife, "Photographylife," [Online]. Available: https://photographylife.com/what-
is-distortion. [Accessed 8 March 2016].

[5] Photographylife, "Photographylife," [Online]. Available: https://photographylife.com/what-
is-vignetting. [Accessed 08 March 2016].

[6] Tamron, "Tamron Lenses," Tamron, [Online]. Available:
http://www.tamron.biz/en/data/fa/catalog/fa_e.pdf. [Accessed 16 March 2016].

[7] Kowa Europe, "Kowa Lenses," Kowa, [Online]. Available: http://www.kowa-
europe.com/lenses/en/LM6JC.1309.php. [Accessed 16 March 2016].

[8] Kowa Europe, "Kowa Lenses," [Online]. Available: http://www.kowa-
europe.com/lenses/en/LM8JC.1496.php. [Accessed 16 March 2016].

[9] Fujifilm, "Fujinon CCTV Lens," Fujifilm, [Online]. Available:
http://www.fujifilm.com/products/optical_devices/pdf/cctv/fa/fisheye/fe185c086ha-1.pdf.
[Accessed 16 March 2016].

Research Document
Motion Sickness 1.0

Created by: Ingvild Damtjernhaug
19.02.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 References 3
1.3 List of Figures 3

2. Context 4

3. What is motion sickness? 4
3.1 Types of Motion Sickness 5

4. Virtual Reality and Motion Sickness 5

5. Factors Contributing to Motion Sickness 5
5.1 Speed of Movement and Acceleration 6
5.2 Degree of Control 6
5.3 Duration 6
5.4 Altitude 6
5.5 Binocular Display 7
5.6 Field of View 7
5.7 Latency 8
5.8 Distortion Correction 9
5.9 Flicker 9
5.10 Experience 9

6. Conclusion 10

Bibliography 11

3

1. Document Overview

The research document on “Motion Sickness” takes a closer look at factors that
contributes to motion sickness and why this is important in Project Argos.

Describes

 the context, why it applies to Project Argos.
 what motion sickness is and what symptoms that may occur.
 different types of motion sickness.
 the relationship between motion sickness and virtual reality.
 factors contributing to motion sickness.
 a conclusion.

1.1 Document History

Version Changes Date Created by

0.1 Document created 19.02.2016 Ingvild Damtjernhaug

0.2 Formatted 10.04.2016 Trond Egil Hammer

0.3 Added sections about factors and
experience, references, formatted
front page

09.05.2016 Ingvild Damtjernhaug

0.4 Added more on sections about
factors contributing to motion
sickness, document overview,
conclusion and pictures

18.05.2016 Ingvild Damtjernhaug

0.5 Restructuring of paragraphs,
corrections and clarifications

19.05.2016 Morten J. Barbala

1.0 Final review 20.05.2016 Trond Egil Hammer
Ingvild Damtjernhaug
Morten J. Barbala

1.2 References

Title Document Version

Tec.Doc. Lenses doc-21321_lenses_2_0.docx 2.0

Tec.Doc. VR Goggles doc-21321_VR_goggles_3_0.docx 3.0

Glossary doc-1113_glossary_2_0.docx 2.0

Requirements doc-1213_requirements_2_0.docx 2.0

1.3 List of Figures

Figure 1: Vestibular system, inner ear 4

Figure 2: Area postrema 4

Figure 3: Binocular display 7

doc-21321_lenses_2_0.docx
doc-21321_VR_goggles_3_0.docx
../../Project%20documents/Documents/doc-1113_glossary_2_0.docx
../../Requirements%20documents/Documents/doc-1213_requirements_2_0.docx
file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_motion_sickness_1_0.docx%23_Toc451694084
file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_motion_sickness_1_0.docx%23_Toc451694085
file://///KDP40043734/argosserver/Argos/Technical%20documents/Documents/doc-21321_motion_sickness_1_0.docx%23_Toc451694086

4

2. Context

Project Argos is a system that makes it possible to drive a vehicle by seeing through
virtual reality goggles (VR goggles). Many people experience motion sickness when
using VR goggles, so it is important to know which factors that cause motion
sickness, both at this stage and for further development. It must be possible to wear
the goggles without experiencing motion sickness; this is one of the main
requirements of the system.

Our hypothesis is that delay is the most important factor, but there are probably more
factors that impact the experience. The project team needs to know how to reduce
the chances of a user experiencing motion sickness as there is no way for a user to
escape the discomfort of motion sickness. Therefore it is important to understand its
causes and implement strategies to minimize the risk for it to occur.

3. What is motion sickness?

Motion sickness is also known as kinetosis or travel sickness. It is a condition in
which a disagreement exists between visually perceived movement and the
vestibular system’s sense of movement. In
other words, you can experience motion
sickness when the eyes tell the body you are at
rest, but the balance organ in your inner ear
says you are moving, or vice versa. The visual
system is the eyes and the perception of the
visual impressions. The vestibular system is
located in the inner ear, and is the system that
deals with balance and coordinating movement
with balance. The proprioceptive senses gives
the human body the ability to sense stimuli
regarding position, motion and equilibrium.

Dizziness, fatigue and nausea are the most common symptoms, but other
syndromes and illnesses can also be associated with motion sickness. Some people
can experience headache, cold sweat, vomiting, shallow breathing and/or extreme
tiredness related to motion sickness. Which symptoms and how strong the symptoms
will be, differs from person to person. Some people never experience motion
sickness. The scientists are not sure why some people seem to steer clear of the
symptoms related to motion sickness and others do not. [1]

There are different hypothesis for the cause of motion sickness.
The most common is that it functions as a defense mechanism
against neurotoxins. The area postrema in the brain is
responsible for inducing vomiting when poison is detected, and for
resolving conflicts between vison and balance. The discordance
between what the eye sees and what the brain senses, will make
the brain believe that the person is hallucinating and conclude
that the hallucinating is due to poison ingestion. The body
responds by vomiting, to clear the assumed toxin. [2] Figure 2: Area postrema

Figure 1: Vestibular system, inner ear

../../Requirements%20documents/Documents/doc-1213_requirements_2_0.docx

5

3.1 Types of Motion Sickness

Depending of the cause, motion sickness can also be referred to as sea-sickness,
car-sickness, simulation-sickness or air-sickness. They are all really the same,
caused by motion sickness, and can be divided into three categories: Motion
sickness caused by motion that is felt but not seen, caused by motion that is seen but
not felt or caused by different motion detected by both the systems.

4. Virtual Reality and Motion Sickness

Motion sickness due to virtual reality is often called simulator sickness and is very
similar to motion sickness induced by film. In virtual reality, however, the effect is
made more acute as all external reference points are blocked from vision. [3] This is
a form of induced motion sickness, which differs from “the regular” motion sickness.
The motion sickness people are most familiar with comes from actual motion, e.g. the
movement in a car causing car-sickness or in a boat causing sea-sickness.

The feelings of discomfort associated with simulator sickness occur when visual
information from a simulated environment signals self-motion in the absence of any
actual movement. However, it is still the actual conflict between the visual, vestibular,
and proprioceptive senses that causes discomfort. Simulator sickness has several
symptoms and they are similar to the symptoms for motion sickness in general.
Some users might experience some degree of simulator sickness after a short period
of time using VR goggles, while others may never experience it.

The symptoms of simulator sickness are primarily characterized by disorientation,
nausea and oculomotor discomfort. The disorientation is caused by a sense of
disrupted balance, called ataxia. Ataxia is disruptions in balance and coordination of
movements. [1] The nausea is believed to stem from vection, the illusory perception
of self-motion. The oculomotor discomfort gives symptoms that are unique to using a
virtual environment, such as eye strain/fatigue. [2] In Project Argos this can actually
be worse than normal simulator system, as the system is mounted in a vehicle in
motion. This means we can potentially get the normal motion sickness on top of the
simulator sickness. If the delay between the visual input and the physical input is
large that could exaggerate the motion sickness effects.

5. Factors Contributing to Motion Sickness

The exact causes of simulation sickness and of all other forms of motion sickness are
still being researched. The following section lists factors that have been studied as
potential contributors to motion sickness. It is difficult to know the particular cause for
simulator sickness and consequently different users will have different experiences.
Sensitivity to different types of stimuli can also vary and the symptoms can take a
while to manifest.

6

Motion sickness susceptibility varies in the population and correlates with the
intensity of simulator sickness experiences. [4] This means users who know they
tend to experience motion sickness in vehicles, rides, and other contexts should
approach using VR carefully. People who use VR a lot will often tolerate more. Long
exposure to virtual environments can train the brain to be less sensitive to their
effects. [3] As such, a driver using Project Argos will probably become less
susceptible to simulator sickness than most users.

5.1 Speed of Movement and Acceleration

The speed is not necessarily what causes simulator sickness. Slower speeds will
generally feel more comfortable, but the most important issue is acceleration, which
is the stimulus to which the inner ear vestibular organs respond. [5] Acceleration,
linear or angular, in any direction conveyed visually, but not to the vestibular organs,
constitutes a sensory conflict that can cause discomfort. An instantaneous burst of
acceleration is more comfortable than an extended, gradual acceleration to the same
movement velocity. Discomfort will increase as a function of the frequency, size, and
duration of acceleration. The vestibular organs do not respond to constant velocity,
so constant visual motion represents a smaller conflict for the senses. [6] The more
coordinated the movement the driver feels with what he/she sees, the less conflict for
the senses.

5.2 Degree of Control

Taking control of the camera away from the user or causing it to move in ways not
initiated by the user can lead to motions sickness. Some theories suggest the ability
to anticipate and control the motion experienced plays a role in staving off motion
sickness, and this principle appears to hold true for motion sickness due to VR as
well. Unexpected camera movement (or cessation of movement) outside the user’s
control can be uncomfortable. [6]

5.3 Duration

The longer the driver remains in a virtual environment, the more likely the driver is to
experience motion sickness. But as stated in Section 5, the driver will also tolerate
more after a period of much exposure to virtual environment.

5.4 Altitude

The altitude of the driver, or the height of the user’s point of view (POV), can be an
indirect factor in simulator sickness. The lower the user’s POV, the more rapidly the
ground plane changes and fills the user’s FOV, creating a more intense display of
visual flow. [6]

7

5.5 Binocular Display

Virtual Reality is perceived different from “real world”. One of the most important
reasons for this is the screen you look at. With VR the object (more precisely the
screen), is placed in a fixed potion. The eyes do not need to adjust to the right
distance, because the distance from the screen to your eyes does not change.

The Oculus Rift has two separate displays. Binocular disparity is one of the key

features in VR goggles, and
gives the depth vision, but it is
not without its costs.
Stereoscopic images can force
the eyes to converge on one
point in depth while the lens of
the eye accommodates (focuses
itself) to another. [6] This can put
an extra strain on the eyes,
especially if the VR goggles do
not have any eyesight correction
adjustments or if the user has a
pre-existing eye condition.

Content that the user focuses on for extended periods of time (such as menus or
maps), should be placed in a range of 0.75 to 3.5 meters away. Some people find
viewing stereoscopic images uncomfortable, and research has suggested that
reducing the degree of disparity between the images to create a monoscopic display
can make the experience more comfortable. [7] This will not apply to Project Argos
yet, because the picture is not in 3D, but would be worth getting closer into in further
development.

5.6 Field of View

Field of view can refer to two kinds of field of view: The area of the visual field
subtended by the display, called display FOV (dFOV), and the area of the virtual
environment that the graphics engine draws to the display, called camera FOV
(cFOV). A wide dFOV is more likely to contribute to simulator sickness primarily for
two reasons related to the perception of motion. Firstly, motion perception is more
sensitive in the periphery, making users particularly susceptible to effects from both
optic flow and subtle flicker in peripheral regions. Secondly, a larger display FOV,
when used in its entirety, provides the visual system with more input than a smaller
display FOV. [4] When that much visual input suggests to the user that they are
moving, it represents an intense conflict with bodily (i.e. vestibular and
proprioceptive) senses, leading to discomfort.

Reducing display FOV can reduce simulator sickness, but also reduces the level of
immersion and situational awareness with the Oculus Rift. [8] This is not desirable in
Project Argos, but to best accommodate more sensitive users who might prefer that
compromise, it might be allowed for the user to adjust display FOV. Visibility of on-
screen content should not be adversely affected by changing display FOV. Having a

Figure 3: Binocular display

8

cockpit or vehicle obscuring much of the vection-inducing motion in the periphery
may also confer a similar benefit for the same reasons. However, the smaller the
user’s view of their environment is, the more he/she will have to move his/her head to
maintain situational awareness, which can also increase discomfort.

Manipulating camera FOV can lead to unnatural movement of the virtual environment
in response to head movements. For example, if a 10° rotation of the head creates a
rotation of the virtual world that would normally require a 15° rotation in reality. In
addition to being discomforting, this can also cause something known as vestibular-
ocular reflex (VOR) gain adaptation. [10] The human eyes and vestibular system
normally work together to determine how much the eyes must move during a head
movement in order to maintain stable fixation on an object. If the virtual environment
causes this reflex to fail to maintain stable fixation, it can lead to an uncomfortable re-
calibration process both inside the VR goggles and after use.

5.7 Latency

There are different types of latency. It can be latency with the head mounted display
(HMD), as you move your head the system uses some time to register the movement
and move the virtual world. To combat this it is important to have a fast refresh rate
on the display. It is also important to make sure the VR experience does not lag or
drop frames. In Project Argos you can also experience delay from when the camera
captures a frame until it is displayed in the HMD. This is called glass-to-glass latency
and requires fast cameras, transfer speed and computational speed to reduce. Past
research findings on the effects of latency are somewhat mixed. Many experts
recommend minimizing latency to reduce simulator sickness because lag between
head movements and corresponding updates on the display can lead to sensory
conflicts and errors in the vestibular-ocular reflex. The producers of the Oculus Rift
encourage minimizing latency as much as possible. [9]

It is worth noting that some research with head-mounted displays suggests a fixed
latency creates about the same degree of simulator sickness whether it’s as short as
48 ms or as long as 300 ms. [8] However, variable and unpredictable latencies in
cockpit and driving simulators create more discomfort the longer they become on
average. This suggests that people can eventually get used to a consistent and
predictable bit of delay, but fluctuating, unpredictable delays are increasingly
discomforting the longer they become on average. [8]

Adjusting to latency and other discrepancies between the real world and VR can be
an uncomfortable process that leads to further discomfort when the user adjusts back
to the real world outside of VR. The experience is similar to getting on and off a
cruise ship. After a period feeling seasick from the rocking of the boat, many people
become used to the regular, oscillatory motion and the seasickness subsides, but
upon returning to solid land, many of those same people will actually experience a
“disembarkment sickness”. This is because the body has to readjust once again to its
new environment. [10] The less you have to make the body adjust to entering and
exiting VR, the better.

9

5.8 Distortion Correction

We have two types of distortion: The normal distortion that the HMD needs to
account for, which the Oculus SDK specifies, and the distortion the cameras create in
the video images. It is important that the HMD distortion is done correctly and
according to the SDK’s guidelines. Incorrect distortion can be perceived as fairly
correct, but still feel disorienting and uncomfortable. The producer of the Oculus Rift
carefully tune the distortion settings to the optics of the Rift lenses and are continually
working on ways of improving distortion tuning even further. [9]

The lenses in the camera rig in Project Argos distort the image shown on the display
in the VR goggles. The distortion depends on both the lenses and the image sensors
on the cameras, is corrected by the post-processing in the software TinyArgos 2.0.
The edges of the video will be slightly warped because of the wide angle of the lens,
and in TinyArgos 2.0 we reverse that effect by de-warping the images. See the
Technical Documentation on Lenses for more information.

5.9 Flicker

Flicker plays a significant role in the oculomotor component of simulator sickness. It
can be worsened by high luminance levels and is perceived most strongly in the
periphery of your field of view. Although flicker can become less consciously
noticeable over time, it can still lead to headaches and eyestrain. The OLED displays
used for VR provide many advantages, but also carry with them some degree of
flicker, similar to CRT displays. See Technical Documentation on VR goggles for
more information.

Different people can have different levels of sensitivity to flicker. However, the 75-hz
display panels of the Oculus Rift DK2 used in Project Argos are fast enough that the
majority of users will not perceive any noticeable flicker. Future VR goggles will have
even faster refresh rates and therefore less perceptible flicker. This is more or less
out of our hands as developers, but it is included here as a reminder for future
development.

5.10 Experience

The more experience users have had with a virtual environment, the less likely they
are to experience simulator sickness. [4] Most users will need time to acclimate to
using the VR goggles and Project Argos while driving a vehicle. Drivers who use
Project Argos repeatedly will probably be more resistant to simulator sickness than a
new user. New users should not be thrown immediately into intense driving sessions.

doc-21321_lenses_2_0.docx
doc-21321_VR_goggles_3_0.docx

10

6. Conclusion

Simulator sickness refers to symptoms of discomfort that arise from using simulated
environments, and are caused by conflicts between the visual and bodily senses.
Numerous factors contribute to simulator sickness, but several of the factors are out
of the hands of the developers in Project Argos. Additionally, some of them do not
apply to the project at this stage, but are worth a closer look in further development.
Project Argos use Oculus Rift DK2. See technical documentation on VR goggles for
more information.

Some problems will probably solve themselves by updating to the newest version of
the VR goggles, but when performing the internal acceptance test for the system,
none of the test drivers experienced any discomfort. It seems that the glass-to-glass
latency is low enough that it do not exaggerate the effects of motion sickness, and
the HMD latency is present but not too intrusive. However, the duration was not very
long and the drivers did not wear the VR goggles for more than maximum 15 min at a
time. Testing for motion sickness should be given more attention in further
development.

doc-21321_VR_goggles_3_0.docx

11

Bibliography

[1] B. S. Hromatka, Y. Joyce and N. Ericsson, "Generic variants associsted with motion
sickness point to roles for inner ear development, neurological processes, and glucose
homeostasis," vol. 1, 2015.

[2] C. R. Sherman, "Motion sickness: review of causes and preventing srategies," 2002.

[3] R. S. Kennedy, N. E. Lane and K. S. Berbaum, "Simulator sickness questionnaire: An
enhanced method for quantifying simulator sickness.," no. 3.

[4] K. M. Stanney, K. S. Hale and Nahmens, "What to expect from immersive virtual
environment exposure: influences of gender, body mass index, and past experince,"
2003.

[5] R. H. So, W. T. Lo and A. T. Ho, "Effects of navigation speed on motion sickness caused
by an immersive virtual environment," 2001.

[6] A. Rolnick and R. E. Lubow, "Why is the driver rarly motion sick? The role of
controllability in motion sickness," 1991.

[7] J. A. Ehrlich and M. J. Singer, "Simulator sickness in stereoscopic vs. monoscopic
helmet mounted displays.," 1996.

[8] M. H. Draper and V. J. Gawron, "Effects of image scale and system time dealy on
simulator sickness within head-coupled virtual enivironments".

[9] "Oculus Rift," [Online]. Available: http://developer.oculus.com. [Accessed 18 May 2016].

[10] J. T. Reason and J. J. Brand, Motion Sickness, Academic Press, Inc, 1975.

[11] S. H. Schwartz, Visual Perception, The McGraw-Hill Companies, 2004.

Argos User Guide 1.0

Created by: Morten J. Barbala
02.05.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

User Guide

2

Table of Contents

1. Document Overview 3
1.1 Document History 3
1.2 List of Figures 3
1.3 List of Tables 3

2. Launch Guide 4
2.1 Troubleshooting 4

3. List of Controls 4

4. Examples of Use 5
4.1 Live Video 5
4.2 Recording 5
4.3 Playback 6

User Guide

3

1. Document Overview

The user guide is a guide and manual for the Argos system. It contains a list of
controls (keyboard presses), a launch guide, a list of possible issues when
troubleshooting and descriptions of standard use.

Describes

 how to successfully launch the system.

 possible issues when troubleshooting.

 all available keyboard controls and actions.

 standard use of the system.

1.1 Document History

Version Changes Date Author

0.1 Created document 02.05.2016 Morten J. Barbala

0.2 Added new controls and corrected
examples of use

06.05.2016 Morten J. Barbala

0.3 Implemented document standard.
Wrote document overview. Fixed
new controls and examples of use

13.05.2016 Morten J. Barbala

0.4 Added new keyboard controls and
updated examples of use. Added
troubleshooting, launch guide and
system requirements. Created
figure over keyboard controls.

18.05.2016 Leiv Fredrik Berge,
Morten J. Barbala

0.5 Corrected document overview and
headings. Removed “System
Requirements”. Added list of figures
and list of tables. Rewriting,
corrections and clarifications.

19.05.2016 Morten J. Barbala

1.0 Final review 20.05.2016 Ingvild Damtjernhaug,
Morten J. Barbala,
Thomas Hansen

1.2 List of Figures

Figure 1: Keyboard controls 5

1.3 List of Tables

Table 1: Keyboard controls 4

User Guide

4

2. Launch Guide

You must launch the TinyArgos.exe executable file to start using the Argos system.
The program must be launched from a disk that is fast enough to handle the data
transfer speed if you want to use recording or playback. TinyArgos 2.0 creates a
console window where the program status is displayed and a rendering window that
duplicates the virtual world as it is displayed in the VR goggles. The console windows
display framerate, package delivery and configuration loading status.

2.1 Troubleshooting

Make sure:

 The Oculus and tracker is connected

 The Oculus Rift is turned on

 The Oculus Rift is in direct to HMD

 The Oculus runtime library is updated

 The Oculus runtime is running

 The OpenGL runtime is updated

 The glew32.dll file is placed in the same directory as the executable

 The cameras is assigned correct IP-address

 The latest graphics card drivers is installed

 The latest network card driver is installed

 The four ports on the NIC is teamed up as one port

 The DHCP server application is running

 The executable is placed on a sufficiently fast drive

 The RAID0 setup is working correctly

3. List of Controls

The user will use the keyboard to control the Argos system. The list of controls
contains the keys and the actions they are bound to. See fig. 1 for a visual
representation of the keyboard controls.

1, 2, 3, 4, 5 Load main config file, this stops playback

6, 7, 8, 9, 0 Load HUD config file, this is disabled in playback

W, A, S, D Rotate view (debug mode only)

Spacebar Reset and center view

R Start/stop recording

P Bring up explorer to select file for playback

Right Ctrl Pause/Play playback

Left, Right Skip 10 seconds forwards/backwards in playback

Delete,
Page Down

Skip 1 minute forwards/backwards in playback

Table 1: Keyboard controls

User Guide

5

Figure 1: Keyboard controls

4. Examples of Use

The following sections describe typical usage scenarios for live video, recording and
playback.

4.1 Live Video

1. Launch TinyArgos.
2. Use keys “0-5” to set virtual world from config files.
3. Choose HUD config with keys “6-0”.
4. Move head and look around to see the virtual world.
5. Change virtual world with keys “0-5”.
6. Change HUD “6-0”.
7. Move head and look around to see the virtual world.
8. Exit TinyArgos.

4.2 Recording

1. Launch TinyArgos.
2. Use keys “0-5” to set virtual world from config files.
3. Use keys “6-0” to set HUD.
4. Press “R” to start recording, an icon in the top-right corner will be visible to

indicate that video is recording.
9. Press “R” to stop recording, the recording icon will disappear.
10. Exit TinyArgos.

User Guide

6

4.3 Playback

1. Launch TinyArgos.
2. Press “P” to bring up the file explorer.
3. Navigate to recording folder. The explorer will open in the last recording folder

that was played. To find any other recordings go back one level. If no
recording exists, the computers “document” folder will be opened. The
recordings are stored in an ‘YYYYMMDD.HHMMSS’ format.

4. Select a directory with recorded video.
5. Select config.xml file in the selected directory.
6. Press “Open” to start playback.
7. A loading icon is displayed and the playback will start after buffering for a

couple seconds.
8. Move head and look around to see the virtual world.
9. Press “right ctrl” to pause/play.
10. Press “left” and “right” to skip 10 seconds forwards and backwards in

playback.
11. Press “delete” and “page down” to skip 1 minute forwards and backwards in

playback.
12. Use keys “1-5” to load a standard config file and quit playback.
13. Exit TinyArgos.

Glossary 2.0

Created by: Trond Egil Hammer
15.01.2016

Bachelor project 2016 at
Faculty of Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

Glossary

2

1. Document Overview

The glossary contains an alphabetical list of terms with the definitions for those terms
used in Project Argos.

1.1 Document History

Version Changes Date Created by

0.1 Document created 15.01.2016 Trond Egil Hammer

0.2 Update, added descriptions 15.02.2016 Trond Egil Hammer

1.0 Added descriptions 10.04.2016 Trond Egil Hammer

1.1 Converted to word-file, updated,
added descriptions

25.04.2016 Ingvild Damtjernhaug

1.2 Added descriptions 28.04.2016 Ingvild Damtjernhaug

1.3 Added descriptions, document
overview, header and fixed
formatting and front page.

02.05.2016 Ingvild Damtjernhaug

1.4 Added descriptions, formatted 18.05.2016 Ingvild Damtjernhaug

1.5 Added shader and vertex 20.05.2016 Thomas Hansen

2.0 Final review 20.05.2016 Ingvild Damtjernhaug,
Morten J. Barbala,
Thomas Hansen

Glossary

3

2. Glossary

Terms Descriptions

Allied Vision
Manufacturer of cameras and GigE Vision
SDK.

API
Application programming interface. A set of
routines, protocols and tools for building
software applications.

Architecture
In the meaning Software Architecture. The
high level structures of a software system.

Argos
The name of the project. Named after the
Greek God that never closed his eyes.

Argos Machine(PC) Computer that runs the Oculus Rift.

Artifact A document produced from finished tasks.

Ataxia
Dysfunctions in parts in the human nervous
system that coordinates movement.

Backbone The server and the hardware.

Binocular display
A pair of identical or mirror-symmetrical
displays mounted side-by-side.

Burndown report
Reports on condition in the project. It shows
the actual and estimated amount of work to be
done in an iteration.

C mount
A type of lens mount that provides the male
thread.

Cat6/Cat5e
Category 6 or 5e twisted pair network cable. A
type of Ethernet cable.

cFOV Camera field of view.

Crossfire

Is a brand name for the multi-GPU solution by
Advanced Micro Device (AMD). A technology
that allows up to four GPUs to be used in a
single computer.

Cyber-Physical System
A system composed of physical entities
controlled or monitored by computer based
algorithms.

dFOV Display field of view.

DHCP

Dynamic Host Configuration Protocol. A
standardized network protocol used on
Internet Protocol networks for dynamically
distributing network configuration parameters.

DirectX
A collection of APIs for handling tasks related
to multimedia on Microsoft platforms.

Glossary

4

DK2
Second Oculus Rift developer kit, which
includes an HMD, external tracker, and an
SDK.

eBus
Energy Bus. A 2-wire digital seral data-bus
communication interface.

External supervisor
The supervisor from KDS (the company that
owns the project).

Fish eye lens

A type of lens with ultra wide angle that
produces strong visual distortion intended to
create a wide panoramic or hemispherical
image.

Flicker
Visible fading between cycles displayed in the
VR-headset.

Flowchart
A type of diagram that represents workflow or
process. Showing the steps as boxes.

FOV Field of view.

Frame grabber
A unit that captures (i.e. “grabs”) individual,
digital still frames from the cameras.

Fujinon Manufacturer of lenses.

Gantt
A type of bar chart that illustrate a project
schedule.

Gigabit PoE Switch
A network switch with 1 Gb/s transfer speed,
see also PoE.

GigE Vision Camera
The cameras uses in the Argos System based
on the GigE Vision standard.

GLFW

A utility library for use with OpenGL. It
provides the ability to create and manage
windows and OpenGL context, and handle
keyboard and mouse input.

GPS

Global Position System. Spaced based
navigation system that provides location and
time anywhere on or near the Earth where
there in an unobstructed line of sight to four or
more GPS satellites.

GPU Graphics processing unit.

Head mounted display
A general term for any display device worn on
the head.

Heads-up display

A transparent display that presents data
without requiring users to look away from their
usual viewpoint. Takes it names from the
heads-up displays used in modern aircraft.

HMD See head mounted display.

HUD See heads-up display.

I7 5930K Intel Processor used in the Argos machine.

Glossary

5

IDS Integrated Defence Systems, a part of KDS.

Internal supervisor
Our supervisor at University College of
Southeast Norway.

Iteration

The act of a repeating process. In agile
software development, iteration is a single
development cycle, often measured as two
weeks.

Kanban board
A work and workflow visualization tool that
helps optimizes flow of work. We use a
physical board with sticky notes.

KDA Kongsberg Defence & Aerospace.

KDS Kongsberg Defence Systems.

KOG Kongsberg Gruppen.

Latency

The time delay from when one thing happens
till the effect is seen. E.g. glass-to-glass
latency, the latency from a image is captured
by the camera, till it is displayed on a monitor.

Linux Computer operating system.

LMC
Last Mile Communication. Company that
delivers lenses.

Markers Elements that appears in HUD.

Merge pictures
Stitch live video from the cameras into a
continuous video stream.

MTBF
Mean time between failures. The predicted
time between inherent failures of a system
during operation.

MTTR
Mean time to repair. A basic measure of the
maintainability of repairable items.

Mutex

A synchronized mechanism for enforcing
limits on access to a resource in an
environment where there are many threads of
execution.

MVC
Model-view-controller. A software architectural
pattern for implementing user interfaces on
computers.

N2
N2 chart or diagram. A diagram with the shape
of a matrix, representing functional or physical
interfaces between system elements.

NIC

Network Interface Controller, also known as
LAN adapter or network interface card. A
computer hardware component that connects
a computer to a computer network.

nVidia Titan X
The Graphics Processing Unit in the Argos
Machine.

Glossary

6

NVMe

Non-volatile memory express. A specification
that allows a solid-state drive to make
effective use of the high-speed of a PCIe bus
in the computer.

Oculomotor nerve
One of the nerves that controls the eyes
movements and the ability to focus.

Oculus
The company behind the virtual reality
goggles used in Project Argos.

OpenGL
A cross language, cross platform API.
Typically used to interact with the GPU.

OpenUP
Project management model used in Project
Argos.

Overlay graphic Graphic added to viewed picture.

PBO

Pixel buffer object used by the OpenGL
library. A Buffer Object that is used for
asynchronous pixel transfer operations is
called a Pixel Buffer Object.

Pipe-filer
A software architecture style used in Project
Argos.

Pleora The company behind eBus SDK.

PoE

Power over Ethernet. A description of any of
several standardized or ad-hoc systems which
pass electrical power along with data on
Ethernet cabling.

Proprioceptive system
Located in the human brain, and work
together with the vestibular system.

RAID 0

Redundant array of independent disks. A
storage virtualization technology that
combines multiple physical disk drive
components into a single logical unit for the
purposes of data redundancy, performance
improvement or both.

Real-time

As in computing. Describes software and
hardware systems that has some kind of real-
time constraint, for example from an event
occurs to the system response. Distinguish-
reporting, depicting or reacting to event at the
same rate and sometimes at the same time as
they unfold.

Rift
VR HMD designed for use with desktop
computers.

SDK Software development kit.

Glossary

7

Sequence diagram
An interaction diagram that shows how the
processes operate with one another and in
what order.

Shader

In computer graphics a shader is a computer
program that is used to produce appropriate
levels of color and special effects or do post-
processing on video.

Simulation Sickness A variant of motion sickness.

SLI
Scalable Link Interface is nVidias solution to
connect two or more video cards together.

SSD
Solid state drive/disk. A solid state storage
device.

Stakeholder
A person, group or organization with an
interest in the project.

Stereoscopic images
Technique for creating the illusion of depth on
an image.

Tamron
Company manufacturing photographic lenses,
optical components and commercial/industrial-
use optics.

Task
An activity that needs to be accomplished
within a defined period of time or by a
deadline.

Throughput
The rate of which something can be
processed.

TinyArgos The software in Project Argos.

TinyArgos 2.0
The version of the software that’s being
developed by our bachelor group.

TinyXML2 An OS independent XML parser for C++.

Topology
Network topology. A “map”. The arrangement
of the various elements of a computer
network.

UML

Unified Modeling Language. A general-
purpose modeling-language in the field of
software engineering. It gives a standard way
to visualize the design of a system. Project
Argos uses multiple ULM-diagrams.

Use-case
An UML-diagram. A list of actions/event steps
defining the interactions between an actor and
a system.

Vection The human illusion of self-motion.

Vergence

A vergence is the simultaneous movement
both eyes in opposite directions to obtain or
maintain single binocular vison. (Use both
eyes to see)

Glossary

8

Vertex
In computer graphics a vertex is a data
structure that describes attributes as the
position of a 2D or 3D point.

Vestibular system
Part of the human balance system, located in
the inner ear.

Vestibular-ocular reflex

A reflex eye movement that helps stabilizes
what the eyes see. If the head moves to the
right, the eyes will move the left, to stabilize
vison.

Vignetting

In the sense of photography and optics.
Reduction of an image's brightness or
saturation at the periphery compared to the
image center.

Virtual reality
A computer-simulated environment designed
to model real or imaginary worlds.

Visual Studio
Microsoft Visual Studio. An integrated
development environment (IDS). The program
we develop the software in.

VOR See vestibular-ocular reflex.

VR
Short for Virtual Reality, see virtual reality for
more.

WBS See work breakdown structure.

Work Breakdown
Structure

A deliverable-oriented decomposition of a
project into smaller components. It organizes
the group’s work into manageable sections.

Xeon
A brand of x86 microprocessors designed and
manufactured by Intel Corporation.

XML

Extensible Markup Language. A markup
language that defines a set of rules for
encoding documents in a form that is both
human-readable and machine-readable.

Gruppekontrakt 1.0

Skrevet av: Ingvild Damtjernhaug
15.01.2016

Bachelor project 2016 at
Faculty for Technology and Maritime Sciences,
University College of Southeast Norway
Project owner:
Kongsberg Defence Systems

2

1. Introduksjon

Dette dokumentet inneholder en bindende avtale mellom gruppemedlemmene i
bachelorgruppe 2016-11. Gruppemedlemmene (heretter kalt «medlemmene») har
utarbeidet kontrakten i fellesskap, og kontrakten er gjeldende gjennom hele
bachelorprosjektperioden.

2. Medlemmene og rollefordeling

Gruppe 2016-11 «Project Argos» består av

Prosjektleder: Leiv Fredrik Berge
Lead Developer: Mathias Havdal
Analytiker: Trond Egil Hammer
Dokument ansvarlig: Ingvild Damtjernhaug
Arkitekt: Thomas Hansen
Tester: Morten J. Barbala

3. Avtalen

§1 Demokrati
Alle avgjørelser skal baseres på flertallet i gruppa. Medlemmene bør likevel prøve å
komme fram til fullstendig enighet.
§2 Plikter
Det er møte- og forberedelsesplikt for alle. Ved sykdom eller annen gyldig
fraværsgrunn skal ett eller flere av de andre medlemmene varsles så tidlig som
mulig. Medlemmene forplikter seg også til å levere avtalt arbeid til rett tid, eller si fra i
god tid hvis forsinkelser oppstår. Medlemmene forplikter seg til å følge opp
ansvarsområdene som følger av rollefordelingen.
§3 Arbeidstider
Før påske vil arbeidet med bachelorprosjektet legges til tirsdag, halv dag onsdag,
torsdag og fredag. Fra og med påske vil all alle fem arbeidsdager settes av til
prosjektet. Medlemmene skal, om ikke annet er avtalt, være til stede på
arbeidsrommet i «kjernetiden» mellom kl.09.00 og 15.00.
§4 Møtetider
Møtetider skal avtales slik at ingen i gruppen hindres i forberedelser eller oppmøte.
Alle medlemmer plikter og stille klar og forberedt til det daglige «stand-up-møte» kl.
09.45.
§5 Tvister
Uenigheter og problemer bør bli behandlet og løses internt i gruppen. Hvis dette slår
feil, skal veileder kontaktes.
§6 Arbeidsdeling
Alt arbeid skal deles så likt og rettferdig som mulig. Alle har rett til å påpeke forhold
de mener er urettferdige. Totalt må hvert medlem bruke ca. 500 timer på prosjektet.
Dette inkluderer alt relatert arbeid, slik som f.eks. møter med oppdragsgiver og
veileder. Det skal føres individuelle timelister som dokumenterer tidsbruken.
§7 Samarbeid

3

I en gruppe gjelder en for alle, alle for en. Det er viktig at alle forsøker å dele tid,
arbeid, erfaringer og kunnskap. Det er en selvfølge å hjelpe til hvis noen står fast.
§9 Kontraktsbrudd
Alvorlige og/eller gjentatte regelbrudd kan føre til eksklusjon fra gruppen. Dette må i
så fall skje i samråd med veileder og skolen.

Sted og dato

___________ ___________ ___________ ___________
Leiv Fredrik Berge Ingvild Damtjernhaug Morten J.Barbala Mathias Havdal

___________ ___________
Thomas Hansen Trond Egil Hammer

	Sensurark 2016-11
	forntpage
	introdoc
	project_plan_2_0
	risk_analysis_2_0
	requirements_2_0
	test_specification_2_0
	test_log_index
	architecture_notebook_2_0
	technical_solutions_1_0
	Iteration_report_2_0
	evaluation_1_0
	future_work_1_0
	network_solutions_2_0
	GigE_Vision_SDK_1_0
	VR_goggles_3_0
	Graphics_library_technical_document_1_0
	Architecture_style_1_0
	lenses_2_0
	motion_sickness_1_0
	user_guide_1_0
	glossary_2_0
	Gruppekontrakt_1_0

