
Research Article
A Variable Depth Search Algorithm for Binary Constraint
Satisfaction Problems

N. Bouhmala

Department of Technology and Maritime Innovation, Buskerud and Vestfold University College, P.O. Box 4, 3199 Borre, Norway

Correspondence should be addressed to N. Bouhmala; noureddine.bouhmala@hbv.no

Received 7 October 2014; Revised 5 March 2015; Accepted 1 April 2015

Academic Editor: Jianming Shi

Copyright © 2015 N. Bouhmala.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The constraint satisfaction problem (CSP) is a popular used paradigm to model a wide spectrum of optimization problems in
artificial intelligence. This paper presents a fast metaheuristic for solving binary constraint satisfaction problems. The method can
be classified as a variable depth search metaheuristic combining a greedy local search using a self-adaptive weighting strategy on
the constraint weights. Several metaheuristics have been developed in the past using various penalty weight mechanisms on the
constraints.What distinguishes the proposedmetaheuristic from those developed in the past is the update of k variables during each
iteration when moving from one assignment of values to another. The benchmark is based on hard random constraint satisfaction
problems enjoying several features that make them of a great theoretical and practical interest. The results show that the proposed
metaheuristic is capable of solving hard unsolved problems that still remain a challenge for both complete and incompletemethods.
In addition, the proposed metaheuristic is remarkably faster than all existing solvers when tested on previously solved instances.
Finally, its distinctive feature contrary to other metaheuristics is the absence of parameter tuning making it highly suitable in
practical scenarios.

1. Introduction

Organizations like companies or public institutions are con-
fronted in their daily lifewith a large number of combinatorial
optimization problems which occur in many different appli-
cation domains such asOperations Research (e.g., scheduling
and assignment), hardware design (verification and testing,
placement and layout), financial decision making (option
trading or portfolio management), or even biology (DNA
sequencing). The domain of combinatorial optimization
refers to optimization problems where the search space (i.e.,
the set of all feasible solutions) is discrete. The constraint
satisfaction problem (CSP)which canmodel awide spectrum
of combinatorial optimization problems rising in the field
of artificial intelligence has become an important field of
study in both theoretical and applied computer science.
Constraint technology is making a considerable commercial
impact worldwide due to its ability to solve highly complex
applications operating in the most difficult environment
counting on first-class technology to perform the job. ILOG
and Cosytec are two of the leading companies producing
software based on this technology. A large number of systems

based on the constraints technology have been developed.
Examples include the APACHE system [1] used at Roissy
Airport in Paris, PLAN system [2] which is a medium-long
term scheduling system for aircraft assembly line scheduling,
the COBRA system [3] that generates work plans for train
drivers and conductors of North Western Trains in the UK,
and TAP-AI which is a planning system for crew assignment
in the airline SAS [4]. Disasters which have long impacted
world nations, resulting in mass casualties and huge financial
tolls where technology and humans have to work together
hand-in-hand without fault, with every single step of a
mission meticulously planned out, are another research area
where solutions based on constraint technology have received
a great attention lately [5, 6]. The handbook of Constraint
Programming [7] lists example applications of several areas
modeled as CSPs.The paper is organized as follows. Section 2
explains the constraint satisfaction problem. Section 3 pro-
vides a survey of methods used to solve the constraint
satisfaction problem. Section 4 introduces the metaheuristic
in detail. Section 5 presents the results while Section 6 con-
cludes the paper.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 637809, 10 pages
http://dx.doi.org/10.1155/2015/637809



2 Mathematical Problems in Engineering

2. CSP

TheCSP consists of assigning values to variableswhile satisfy-
ing certain constraints. Constraints can be given explicitly, by
listing all possible tuples or implicitly, by describing a relation
in some mathematical form. As a domain example, consider
problems that occur in production scheduling. Scheduling is
concerned with the allocation of resources to activities with
the goal of optimizing some performance objectives while
satisfying certain restrictions or constraints. Depending on
the problemposed, resourcesmay refer tomachines, humans,
and so forth, activities could be manufacturing operations,
objectives could be the minimization of the schedule length,
and finally constraints may state the precedence relationship
among activities as they govern the schedule solution.

A CSP is a tuple ⟨𝑋,𝐷, 𝐶⟩, where

(i) 𝑋 is a finite set of variables:𝑋 = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
},

(ii) 𝐷 is a finite set of domains:𝐷 = {𝐷
𝑋
1

, 𝐷
𝑋
2

, . . . , 𝐷
𝑋
𝑛

}.
Thus each variable 𝑋

𝑖
∈ 𝑋 has a corresponding dis-

crete domain𝐷
𝑋
𝑖

from which it can be instantiated,
(iii) 𝐶 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑘
} is a finite set of constraints.

Each 𝑘-ary constraint restricts a 𝑘-tuple of variables
(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑘
) and specifies a subset of𝐷

1
×⋅ ⋅ ⋅×𝐷

𝑘
,

each element of which is values that the variables
can not take simultaneously. This set is referred to
as the no-good set (i.e., an assignment set that is not
contained in any solution.)

A solution to a CSP requires the assignment of values
to each of the variables from their domains such that all
the constraints on the variables are satisfied. In this paper,
attention is focused on binary CSPs, where all constraints
are binary; that is, they are based on the Cartesian product
of the domains of two variables. However, any nonbinary
CSP can theoretically be converted to a binary CSP [8, 9].
The structure of a binary CSP can be better visualized by
a graph 𝐺(𝑉, 𝐸) where the set of vertices 𝑉 corresponds
to the variables and each edge (𝑋

𝑖
, 𝑋
𝑗
) ∈ 𝐸 represents a

constraint connecting the pair of variables involved in this
constraint. The CSP in its general form is NP-complete [10]
and has been extensively studied due to its simplicity and
applicability [7]. The simplicity of the problem coupled with
its intractability makes it an ideal platform for exploring new
algorithmic techniques. This has led to the development of
several algorithms for solving CSPs which usually fall into
two main categories: systematic algorithms and local search
algorithms.

3. A Brief Survey of Methods

Systematic search algorithms rely on a systematic way in
their exploration of the search space. These methods [11–
16] aim at exploring the entire solution space using tree
search algorithms. The two main components of a tree
search are the way to go forward, that is, which decision
is taken at which point of the search and the way to go
backwards, that is, the backtracking strategy that defines how
the algorithm will behave when an inconsistency is detected.

In practice, methods based on systematic tree search may
fail to solve large and complex CSPs instances because
the computing time required may become prohibitive. For
instance, a CSP with 𝑛 variables, each with a domain of
size 𝑚, makes the search space which is to be explored
proportional to 𝑂(𝑚

𝑛
), that is, exponential in the number

of variables. Most searches that come up in CSPs occur over
spaces that are far too large to be searched exhaustively. One
way to overcome the combinatorial explosion is to give up
completeness. Stochastic local search (SLS) algorithms are
techniques which use this strategy and gained popularity due
to their conceptual simplicity and good performance. These
methods start with an initial assignment of values to variables
randomly or heuristically generated. During each iteration,
a new solution is selected from the neighborhood of the
current one by performing a move. A move might consist
in changing the value of one randomly selected variable.
Choosing a good neighborhood and a method for searching
it is usually guided by intuition, because very little theory is
available as a guide. If the new solution provides a better value
in light of the objective function, the new solution becomes
the current one. In order to avoid premature convergence,
SLS methods resort to some sort of randomization (noise
probability) to avoid local minima and to better explore
the search space. The search is iterated until a termination
criterion is reached. Most algorithms applied to CSPs use
the so-called 1-exchange neighborhood under which two
solutions are direct neighbors if, and only if, they differ at
most in the value assigned to one variable. A basis for many
SLS algorithms is the minimum conflict heuristic MCH [17].
MCH iteratively modifies the assignment of a single variable
in order to minimize the number of violated constraints.
Since the introduction of MCH there have been a large
number of local search heuristics proposed to tackle CSPs.
Several representative state-of-the-art SLS in the literature
include the break method for escaping from local minima
[18], various enhanced MCH (e.g., randomized iterative
improvement of MCH called WMCH [19], MCH with tabu
search [20, 21]), and a large body of work on evolutionary
algorithms for CSPs [22–26] for interested readers. Weights-
based algorithms have been advocated by the intuition that,
by introducing weights on variables or constraints, local
minima can be avoided and the search process can learn
to distinguish between critical and less critical constraints.
Methods belonging to this category include genet [27],
guided local search [28], discrete Lagrangian search [29],
the exponentiated subgradient [30], the scaling and prob-
abilistic smoothing [31], evolutionary algorithms combined
with stepwise adaptation of weights [32–34], methods based
on dynamically adapting weights on variables [35], or both
(i.e., variables and constraints) [36]. Weighting schemes have
been also combined with systematic methods to reduce the
size of tree search methods and consequently speeding up
the solving time [37–39]. Recently, an improved version of
the Squeaky Wheel Optimization (SWO) [40] originated
in [41] has been proposed for the scheduling problem. In
SWO, a greedy algorithm is used to construct an initial
solution which is then analyzed in order to identify those
tasks that if improved are likely to improve the objective



Mathematical Problems in Engineering 3

function score. The improved version provides additional
postprocessing transformations to explore the neighborhood
enhanced with a stochastic local search algorithm. Methods
based on large neighborhood search have recently attracted
several researchers for solving the CSP [42]. The central
idea is to reduce the size of local search space relying on a
continual relaxation (removing elements from the solution)
and reoptimization (reinserting the removed elements). Sys-
tematicmethods exhibit poor performance on large problems
because bad decisions made early in the search persist for
exponentially long times. In contrast, stochastic local search
methods replace systematicity with stochastic techniques for
diversifying the search. However, the lack of systematicity
makes remembering the history of past states problematic.
To this end, hybrid search methods offering desirable aspects
of both systematic methods and local search methods are
becomingmore andmore popular and interested readersmay
refer to [43–45] to get a deeper understanding on thesemixed
methods.

4. Variable Depth Search Algorithm

Traditional local search algorithms for solving CSP problems
start from an initial solution 𝑠 and repeat replacing 𝑠 with
a better solution in its neighborhood 𝑁(𝑠) until no better
solution is found in 𝑁(𝑠), where 𝑁(𝑠) is a set of solutions
obtained from 𝑠by updating the value of one selected variable.
A solution 𝑠∗ is called locally optimal if no better solution
exists in𝑁(𝑠∗).The algorithmproposed in this paper belongs
to the class of variable depth search algorithms where an
existing solution is not modified just by making a change to a
single variable; instead, the changes affect as many variables
as possible when moving from one solution to another.
The algorithm is inspired from the famous Kerninghan-Lin
algorithm used for solving the graph partitioning problem
[46] and the traveling salesman problem [47]. The idea is to
replace the search for one favorable move (i.e., the update of
one variable) by a search for a favorable sequence of moves
(i.e., the update of a series of variables) using the criterion of
score to guide the search.The different steps of the algorithm
are described in Algorithm 1.

(i) Random-initial-solution (): the algorithm starts
building an initial solution. The initial solution is
simply constructed by assigning to each variable 𝑋

𝑖

a random value V
𝑖
from 𝐷

𝑋
𝑖

(Line 5 of Algorithm 1).
Based on these values, the status of each constraint is
set to either violated or nonviolated.

(ii) Assign-Initial-Weights (): during this step the algo-
rithm assigns a fixed amount of weight equal to 1
across all the constraints (Line 6 of Algorithm 1). The
distribution of weights to constraints is a key factor
to the success of the algorithm. During the course
of the search, the algorithm forces hard constraints
(i.e., those with large weights) to be satisfied thereby
preventing the algorithm at a later stage from getting
stuck at a local optimum.

(iii) Stopping criterion: the outer loop (Line 7 of
Algorithm 1) determines the stopping criterion met

by the algorithm. The algorithm stops if a solution
has been found (i.e., all the constraints are satisfied)
or if a time limit has been reached.

(iv) Random-selected-variable (): a starting random vari-
able from which the searching process begins is
selected and added to the set T (Lines: 9, 10, and 11
of Algorithm 1).

(v) Inner loop: the inner loop (Lines: 12, 13, 14, 15, 16,
17, and 18 of Algorithm 1) proceeds by repeatedly
selecting for each variable 𝑋

𝑖
removed from the set

𝑇, the value Vbest from its domain 𝐷
𝑋
𝑖

producing
the highest score. Given the choice between several
equally high scores, the algorithm picks one value
at random. The score of a variable 𝑋V

𝑗

𝑖
is defined as

the increase (or decrease in the number of violated
constraints) in the number of nonviolated constraints
if𝑋
𝑖
is assigned the value V

𝑗
. The score is given by

Score (𝑋Vbest
𝑖

) = New (𝑋
Vbest
𝑖

) − Current (𝑋Vcurrent
𝑖

) , (1)

New (𝑋
Vbest
𝑖

)

=

|Neigh(𝑋
𝑖
)|

∑

𝑋
𝑗
∈Neigh(𝑋

𝑖
)

Ω(𝑋
𝑖
, 𝑋
𝑗
) ∗ Φ (𝑋

Vbest
𝑖

, 𝑋
Vcurrent
𝑗

) ,

Current (𝑋Vcurrent
𝑖

)

=

|Neigh(𝑋
𝑖
)|

∑

𝑋
𝑗
∈Neigh(𝑋

𝑖
)

Ω(𝑋
𝑖
, 𝑋
𝑗
) ∗ Φ (𝑋

Vcurrent
𝑖

, 𝑋
Vcurrent
𝑗

) .

(2)

Equations (2) calculates the sum of the weights of the satis-
fied constraints the variable 𝑋

𝑖
is involved with. Ω(𝑋

𝑖
, 𝑋
𝑗
)

denotes the weight of the constraint connecting 𝑋
𝑖
and 𝑋

𝑗

while the second term returns the value of 1 if the constraint is
satisfied and 0 otherwise.Thus, after the selection of Vbest and
inserting 𝑋Vbest

𝑖
into the set 𝑀Best, the status (i.e., violated or

nonviolated) of the constraints for the neighboring variables
of𝑋
𝑖
is updated. Consider the following:

(i) Highest cumulative score: an iteration of the algo-
rithm terminates when the set 𝑇 becomes empty. In
this way, a sequence of scores with corresponding
variables and their selected values is formed. There-
after, the algorithm identifies the subset of variables
having the highest cumulative score (HCS) (Line 19
of Algorithm 1). The identification of this subset is
equivalent to choosing 𝑘 so that HCS(𝑘) in (3) is
maximum, where 𝑆

Vbest
𝑋
𝑖

represents the score of the
variable 𝑋

𝑖
corresponding to the value Vbest. Finding

𝑘 is the same as solving the maximum subarray
problem introduced for the first time in [48]. The
problem is usually solved using Kadane’s algorithm
[49] which simply accumulates a partial sum and



4 Mathematical Problems in Engineering

input: Problem Instance
output: Number of satisfied constraints
(1) begin
(2) Let𝑁𝑒𝑖𝑔ℎ(𝑋

𝑖
) = {𝑋

𝑗
| (𝑋
𝑖
, 𝑋
𝑗
) ∈ 𝐸, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛};

(3) Let𝑋V𝑗
𝑖
denotes the assignment of the value V

𝑖
from𝐷

𝑋𝑖
to𝑋
𝑖
;

(4) Let𝑀Best = {𝑋
Vbest
𝑖

| 𝑆𝑐𝑜𝑟𝑒(𝑋
Vbest
𝑖

) >= 𝑆𝑐𝑜𝑟𝑒(𝑋
V𝑗
𝑖
), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , |𝐷

𝑋𝑖
|}

(5) Random-Initial-Solution ();
(6) Assign-Initial-Weights ();
(7) while (!𝑠𝑡𝑜𝑝) do
(8) 𝑀Best = 0;
(9) 𝑇 = 0;
(10) 𝑋

𝑖
← Random-Selected-Variable ();

(11) 𝑇 ← 𝑇 ∪ {𝑋
𝑖
};

(12) while (𝑇 ̸= 0) do
(13) 𝑇 \ {𝑋

𝑘
} ← Remove a random variable𝑋

𝑘
from 𝑇;

(14) 𝑋
Vbest
𝑘

← Assign the value Vbest to𝑋𝑘 producing the highest score;
(15) 𝑇 ← 𝑇 ∪ {𝑋

𝑗
|𝑋
𝑗
∈ 𝑁𝑒𝑖𝑔ℎ(𝑋

𝑖
) ∧ 𝑋

𝑗
∉ 𝑇};

(16) 𝑀Best ← 𝑀Best ∪ {𝑋
Vbest
𝑘

};
(17) Update-Score of Neigh (𝑋

𝑘
);

(18) end
(19) Identify the set of variables with the highest cumulative score (HCS):
(20) HCS(𝑘) = ∑

𝑘

𝑖=1,𝑋
Vbest
𝑖
∈𝑀best

(𝑆
𝑋
Vbest
𝑖

);
(21) if (HCS(𝑘) ≥ 0) then
(22) Assign all the variables up to the index 𝑘 with their new best values;
(23) else
(24) Assign the variable at the index 1 with its new best value;
(25) end
(26) Adjust-Weights ();
(27) end
(28) end

Algorithm 1: VNS-CSP.

updates the optimal range when this partial sum
becomes larger than the global sum. If HCS ≥ 0, the
solution is updated by substituting all the variables up
to the index 𝑘 with their new values; otherwise the
update is restricted to just the first variable (index 1)
(Lines: 20, 21, 22, 23, and 24 of Algorithm 1):

HCS (𝑘) =
𝑘

∑

𝑖=1,𝑋
Vbest
𝑖
∈𝑀best

𝑆
𝑋

Vbest
𝑖

. (3)

(ii) Adjust-Weights: finally, the algorithm proceeds with
the weighting process divided into two distinct steps
(Line 25 of Algorithm 1). The weights of each newly
violated constraint are then increased by one, whereas
the newly satisfied constraints will have their weights
decreased by one before another round of the algo-
rithm is repeated or the stopping criterion is reached.
This weighting procedure is the same as the one
adopted in [18].

5. Experimental Results

5.1. Test Instances. The performance of the metaheuristic
(VNS-CSP) has been tested on hard random CSP problems

taken from Lecoutres benchmark [50] under the name RB-
Model. This model enjoys several features that makes it of
a great theoretical and practical interest [51]. Tables 1 and 2
show the list of problem instances used in the experiments.
The list contains 8 classes of problems each of which is
composed of 5 instances, giving a total of 40 instances.
Table 1 shows the list of solved hard problems, while Table 2
refers to those problems that remain challenging for most
solvers. They are all located in the exact phase transition
point [52] and the hardness of solving these instances grows
exponentially with the number of variables. The first column
denotes the number of variables, the second column the
domain size of the each variable, and the third column
the number of constraints; the fourth column specifies the
combination of values not allowed (no-good) and the last
column shows whether the instance has already been solved
by an existing solver. All the benchmark instances used in this
experiment are satisfiable instances. Each problem instance
was run 100 times (i.e., each run is performed with a different
seed) with a cut-off parameter (max-time) set to 15 minutes.
The tests were carried out on a DELLmachine with 800MHz
CPU and 2GB of memory. The code was written in C and
compiled with the GNU C compiler version 4.6.



Mathematical Problems in Engineering 5

Table 1: Solvable instances.

Instance Variables Values Constraints No-good Solved
frb30-15-1.csp 30 15 284 56 Yes
frb30-15-2.csp 30 15 284 56 Yes
frb30-15-3.csp 30 15 284 56 Yes
frb30-15-4.csp 30 15 284 56 Yes
frb30-15-5.csp 30 15 284 56 Yes
frb35-15-1.csp 35 17 346 72 Yes
frb35-15-2.csp 35 17 346 72 Yes
frb35-15-3.csp 35 17 346 72 Yes
frb35-15-4.csp 35 15 346 72 Yes
frb35-15-5.csp 35 15 346 72 Yes
frb40-19-1.csp 40 19 410 90 Yes
frb40-19-2.csp 40 19 410 90 Yes
frb40-19-3.csp 40 19 410 90 Yes
frb40-19-4.csp 40 19 410 90 Yes
frb40-19-5.csp 40 19 410 90 Yes
frb45-21-1.csp 45 21 476 110 Yes
frb45-21-2.csp 45 21 476 110 Yes
frb45-21-3.csp 45 21 476 110 Yes
frb45-21-4.csp 45 21 476 110 Yes
frb45-21-5.csp 45 21 476 110 Yes
frb53-24-3.csp 53 24 585 144 Yes

Table 2: Benchmark instances: unsolvable instances.

Instance Variables Values Constraints No-good Solved
frb50-23-1.csp 50 23 544 132 No
frb50-23-2.csp 50 23 544 132 No
frb50-23-3.csp 50 23 544 132 No
frb50-23-4.csp 50 23 544 132 No
frb50-23-5.csp 50 23 544 132 No
frb53-24-1.csp 53 24 585 144 No
frb53-24-2.csp 53 24 585 144 No
frb53-24-4.csp 53 24 585 144 No
frb53-24-5.csp 53 24 585 144 No
frb56-25-1.csp 56 25 627 156 No
frb56-25-2.csp 56 25 627 156 No
frb56-25-3.csp 56 25 627 156 No
frb56-25-4.csp 56 25 627 156 No
frb56-25-5.csp 56 25 627 156 No
frb59-26-1.csp 59 26 669 169 No
frb59-26-2.csp 59 26 669 169 No
frb59-26-3.csp 59 26 669 169 No
frb59-26-4.csp 59 26 669 169 No
frb59-26-5.csp 59 26 669 169 No

5.2. Algorithm’s Behavior. The plots depicted in Figures 1
and 2 show the evolution of the mean satisfied number
of constraints as a function of the number of iterations
for 4 hard problems that remain difficult for most solvers.
These plots have been selected as they represent the general
trend observed on all the problem instances. Investigating

the trends of the algorithm from the plots suggests the
presence of three different distinct phases. The first phase
corresponds to the first iteration of the algorithm where all
the constraints are assigned a weight equal to 1. This similar
weight provides all the constraints with equal chances for
being satisfied. In all the studied cases, the curves have a ten-
dency to go uphill showing an improvement in the number
of satisfied constraints. The second phase which takes most
of the time corresponds to a diversification stage. During
this second phase, the weights assigned to various constraints
alter after each iteration depending on the status of the
constraints (i.e., satisfied or unsatisfied) forcing the algorithm
to favor the satisfaction of hard constraints (i.e, constraints
with higher weights). This weighting of constraints results
in worsening the quality of the solution by falling drastically
during early stages of this phase (on average between 33% and
53%) and continues to exhibit a varying increasing decline
rate over time before the curves start moving uphill marking
the start of the intensification phase. This phase which tends
to be of short duration compared to the diversification
phase is characterized by the absence of downhill moves. A
downhill move occurs when the set of changes determined
by the algorithm reduces the number of satisfied constraints.
During the intensification phase, the algorithm intensifies the
search around promising areas of the search spacemaking the
number of satisfied constraints to climb sharply until all the
constraints of the problem are satisfied. The termination of
the diversification phase ensures that each constraint relating
atmost two variables is assigned an ideal weight expressing its
relative hardness taking into account the values assigned to its
relating variables and the values of the variables defining the
neighboring constraints.This ideal weight leads the system to
enter a state of balance that is required for the intensification
phase to be triggered leading the algorithm to easily reach
the solution of the problem. Figures 3 and 4 show the
evolution of the number of satisfied constraints and the sum
of weights of satisfied constraints through the diversification
and intensification phases, respectively. Figure 3 reveals that
improving the sum of weights of satisfied constraints does
not necessarily imply an increase in the number of satisfied
constraints. Satisfying constraints with large weights may
introduce a new set of unsatisfied constraints leading to
a further decrease in the number of satisfied constraints.
Another interesting remark to be drawn from this plot is
the ability of the algorithm to escape from the so-called
plateau regions or local optima. Plateaus represent regions
of the search space containing states with only equal or
disimproving costs leaving the best solution unchanged.
Figure 4 shows a continuous improvement of the two curves
during the intensification phase until the solution of the
problem is reached. Figure 5 shows the impact of weighting
and nonweighting strategies on the algorithm’s convergence.
The plot illustrates the easiness encountered by the algorithm
without the weighting mechanism in improving the number
of satisfied constraints during the first iterations of the
algorithm (up to 96% of the constraints are satisfied) before
getting permanently stuck in long plateau regions or a local
maximum leading to a premature convergence due to its
greedy bias. The superior performance of the algorithm is



6 Mathematical Problems in Engineering

300

350

400

450

500

550

600

650

700

0 20 40 60 80 100 120

Sa
tis

fie
d 

co
ns

tr
ai

nt
s

Iterations

frb59-26-1

(a)

300

350

400

450

500

550

600

650

0 20 40 60 80 100 120

Sa
tis

fie
d 

co
ns

tr
ai

nt
s

Iterations

frb56-25-2

(b)

Figure 1: Evolution of the number of satisfied constraints: (a) frb59-26-1 and (b) frb56-25-2.

250

300

350

400

450

500

550

600

0 20 40 60 80 100 120 140

Sa
tis

fie
d 

co
ns

tr
ai

nt
s

Iterations

frb53-24-4

(a)

250

300

350

400

450

500

550

0 20 40 60 80 100 120

Sa
tis

fie
d 

co
ns

tr
ai

nt
s

Iterations

frb50-23-1

(b)

Figure 2: Evolution of the number of satisfied constraints: (a) frb53-24-4 and (b) frb50-23-1.

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

Va
lu

e

Iterations

Number of satisfied constraints
Sum of weights of satisfied constraints 

Figure 3: Evolution of the number of satisfied constraints and the
sum of weights of satisfied constraints for frb59-26-3 during the
diversification phase.

0

1000

2000

3000

4000

5000

6000

7000

8000

46 48 50 52 54 56 58

Va
lu

e

Iterations

Number of satisfied constraints
Sum of weights of satisfied constraints

Figure 4: Evolution of the number of satisfied constraints and the
sum of weights of satisfied constraints for frb59-26-3 during the
intensification phase.



Mathematical Problems in Engineering 7

250

300

350

400

450

500

550

0 100 200 300 400 500

Sa
tis

fie
d 

co
ns

tr
ai

nt
s

Iterations

No weight
Weight

Figure 5: Impact of the nonweight mechanism on the algorithm’s
convergence for frb50-23-3.

furthermade evident by looking at Table 3 which presents the
results for already solved problem instances and unsolvable
problem instances (instances in bold) that still present a
challenge for all existing solvers. The results illustrate the
performance of the algorithm reflecting its success ratio (i.e.,
defined as the ratio of successful runs with respect to the
total number of runs) and the amount of time taken to reach
the solution. From these results, the algorithm has a very
good reliability (the success ratio is 100%). In terms of speed,
VNS-CSP reaches the solutions in short computational times.
Hence much of the difference in the run time (max-min) is
due to the different random initial solutions and to the first
chosen random variable that initiates the searching process.

5.3. Comparison with State-of-the-Art Solvers. Tables 4–7
compare the time (i.e., the average time over 100 runs)
required for different state-of-the-art solvers relative to that
required by VNS-CSP. All these solvers are complete (i.e.,
systematic) solvers. The dash symbol means that the solver
could not find the solution after 30 minutes. The first row
on each table refers to the metaheuristic proposed in this
work VNS-CSP. In all cases, the proposed metaheuristic
remains the fastest of them all. The time of the proposed
metaheuristic ranges from 10% to 90% of the time of the
best solver and from 5 to several hundred times faster than
the slowest solver. Table 8 compares VNS-CSP against two
variants of Ant Colony Optimization (ACO) algorithms and
tabu search.This table is extracted from [53].The first column
shows the 8-class problems each of which is composed of
5 different instances. The second and third columns show
the results of the two variants of ACO. The first number
represents the number of solved instances, while the number
in bracket gives the average CPU time on 3GHz Intel Xeon.
The last column shows the result of VNS-CSP. The time in
bracket is the average time taken on DELL machine with
800MHz CPU. This table is only meant as a rough guide
since VNS-CSP and the other algorithms are run on different

Table 3: Benchmark instances: all unsolved instances solved.

Execution time and success ratio
Instances Min (sec) Max (sec) Mean (sec) Success ratio
frb30-15-1.csp 0.18 0.20 0.19 100%
frb30-15-2.csp 0.15 0.17 0.16 100%
frb30-15-3.csp 0.16 0.17 0.17 100%
frb30-15-4.csp 0.18 0.19 0.19 100%
frb30-15-5.csp 0.14 0.23 0.20 100%
frb35-17-1.csp 0.22 0.27 0.25 100%
frb35-17-2.csp 0.29 0.42 0.31 100%
frb35-17-3.csp 0.21 0.25 0.24 100%
frb35-17-4.csp 0.20 0.23 0.22 100%
frb35-17-5.csp 0.27 0.30 0.28 100%
frb40-19-1.csp 0.37 0.42 0.41 100%
frb40-19-2.csp 0.34 0.38 0.36 100%
frb40-19-3.csp 0.41 0.43 0.42 100%
frb40-19-4.csp 0.36 0.42 0.38 100%
frb40-19-5.csp 0.39 0.41 0.40 100%
frb45-21-1.csp 0.50 0.54 0.52 100%
frb45-21-2.csp 0.52 0.55 0.54 100%
frb45-21-3.csp 0.60 0.66 0.62 100%
frb45-21-4.csp 0.54 0.56 0.54 100%
frb45-21-5.csp 0.53 0.58 0.56 100%
frb50-23-4.csp 0.78 0.86 0.81 100%
frb53-24-2.csp 0.87 0.92 0.89 100%
frb50-23-1.csp 0.72 0.84 0.79 100%
frb50-23-2.csp 0.73 0.76 0.75 100%
frb50-23-3.csp 0.86 0.93 0.88 100%
frb50-23-5.csp 0.77 0.81 0.80 100%
frb53-24-1.csp 0.95 1.01 0.98 100%
frb53-24-3.csp 0.88 0.95 0.87 100%
frb53-24-4.csp 1.05 1.09 1.07 100%
frb53-24-5.csp 1.15 1.18 1.17 100%
frb56-25-1.csp 1.20 1.22 1.21 100%
frb56-25-2.csp 0.99 1.03 1.01 100%
frb56-25-3.csp 1.01 1.05 1.02 100%
frb56-25-4.csp 0.98 0.99 0.99 100%
frb56-25-5.csp 1.09 1.14 1.11 100%
frb59-26-1.csp 1.24 1.33 1.30 100%
frb59-26-2.csp 1.22 1.26 1.24 100%
frb59-26-3.csp 1.31 1.34 1.32 100%
frb59-26-4.csp 1.30 1.32 1.31 100%
frb59-26-5.csp 1.23 1.27 1.24 100%

machines. The table shows that the two variants of ACO
and tabu are outperformed by VNS-CSP. VNS-CSP solved
all the instances, while ACO-vertex has been able to solve 29
out of 40, ACO-clique 28 out of 40, and tabu 36 out of 40.
Comparing the time of the different algorithms, VNS-CSP is
the one requiring the least amount of time.



8 Mathematical Problems in Engineering

Table 4: Comparing various solvers: frb30 instances.

Solver frb30-15-1 frb30-15-3 frb30-15-4 frb30-15-5
VNS-CSP 0.19 0.17 0.19 0.20
Abscon112v4 0.91 1.41 1.33 1.65
Abscon 112v4ESAC 0.88 1.36 1.35 1.67
Bpsolver09 0.67 2.49 2.59 1.3
Choco2.1.1 1.48 2.21 2.55 1.58
Choco2.1.1b 1.82 1.14 2.33 0.90
Concrete 1.89 1.25 2.20 1.75
Concrete DC 2.59 2.94 3.30 2.41
Conquer 2.45 2.77 1.00 1.61
Mistral 0.21 0.22 0.26 0.08
pcs 3.05 2.51 1.93 1.07
pcs-restart 4.92 0.55 2.55 0.70
SAT4JCSP 3.74 4.81 5.50 3.95
Sugarv1.14.6 +
minisat 3.3 1.17 1.97 1.15

Sugarv1.14.6 +
picosat 2.11 1.47 1.81 1.57

Table 5: Comparing various solvers: frb35 instances.

Solver frb35-17-1 frb35-17-2 frb35-17-4
VNS-CSP 0.25 0.31 0.22
Abscon112v4 4.37 6.71 3.54
Abscon 112v4ESAC 3.92 6.38 3.87
Bpsolver09 16.81 67.03 25.30
Choco2.1.1 4.02 35.90 8.47
Choco2.1.1b 5.40 16.27 1.70
Concrete 5.20 10.86 4.49
Concrete DC 6.68 7.05 5.83
Conquer 2.74 14.73 5.57
Mistral 0.64 3.08 0.25
pcs 42.05 27.39 8.15
pcs-restart 47.99 27.07 1.94
SAT4JCSP 51.20 212.57 43.08
Sugarv1.14.6 + minisat 13.69 25.35 4.17
Sugarv1.14.6 + picosat 14.89 4.72 14.37

6. Conclusions

This paper proposes a variable depth search algorithm for
the CSP problem. The heart of the metaheuristic relies on
a combination between an adaptive weighting strategy on
the constraint weights and a greedy search.This combination
proved to be an excellent mechanism to guide the search
in order to achieve a suitable trade-off between inten-
sification and diversification. The proposed metaheuristic
has been experimentally evaluated on hard random CSP
problems belonging to RB-Model. The difficulty of solving
some of these problems by state-of-the-art solvers highlights
the capabilities of the proposed metaheuristic. Indeed, the
experimental results have been very positive, solving all
unsolvable instances in very short computational times.Most

Table 6: Comparing various solvers: frb40 instances.

Solver frb40-19-1 frb40-19-4 frb40-19-5
VNS-CSP 0.41 0.38 0.40
Abscon112v4 1.30 82.98 37.29
Abscon112v4ESAC 1.32 79.60 36.6
Bpsolver09 361.45 137.45 199.04
Choco2.1.1 25.43 24.33 161.97
Choco2.1.1b 25.43 24.33 161.97
Concrete 15.36 87.77 177.15
Concrete DC 21.27 114.80 89.01
Conquer 21.66 9.49 94.78
Mistral 2.15 7.73 63.46
pcs 1758.00 — —
pcs-restart — — 1107.76
SAT4JCSP 272.64 500.71 10.49
Sugarv1.14.6 + minisat 48.30 186.73 —
Sugarv1.14.6 + picosat 41.52 364.37 297.49

Table 7: Comparing various solvers: frb45 and frb53 instances.

Solver frb45-21-2 frb45-21-4 frb45-21-5 frb53-24-3
VNS-CSP 0.54 0.54 0.56 0.87
Abscon112v4 275.31 478.01 1228.41 1342
Abscon112v4ESAC 284.00 441.30 1194.47 245.31
Bpsolver09 — — — —
Choco2.1.1 1305.51 65.05 1635.94 —
Choco2.1.1b 423.62 217.20 89.18 —
Concrete 394.55 330.23 672.39 —
Concrete DC 498.34 359.80 1023.49 —
Conquer 800.71 716.26 878.97 —
Mistral 224.39 66.05 121.84 —
pcs — — — —
pcs-restart — — — —
SAT4JCSP — — — —
Sugarv1.14.6 +
minisat 56.95 — 1114.95 —

Sugarv1.14.6 +
picosat 795.52 — — —

Table 8: Comparing VNS-CSP with tabu and ACOmetaheuristics.

Instances ACO-SSP
(vertex)

ACO-SSP
(clique) Tabu VNS-CSP

frb30-15 5 (0.4) 5 (1.3) 5 (0.5) 5 (0.18)
frb35-17 5 (3.0) 5 (5.0) 5 (0.9) 5 (0.26)
frb40-19 5 (7.0) 5 (103.5) 5 (9.1) 5 (0.39)
frb45-21 5 (467.7) 5 (354.1) 5 (43.4) 5 (0.56)
frb50-23 3 (430.4) 3 (680.5) 4 (9.9) 5 (0.80)
frb53-24 3 (105.7) 3 (530.8) 4 (291.6) 5 (0.99)
frb56-25 2 (535.8) 2 (170.2) 4 (329.3) 5 (1.01)
frb59-26 1 (63.6) 0 (—) 4 (523.7) 5 (1.28)



Mathematical Problems in Engineering 9

metaheurirics have a predefined set of parameters that has
to be calibrated with respect to the problem at hand. This
parameter tuning which becomes a tedious task as the
number of parameter increases plays a significant impact on
the solving progress and therefore the solution quality. What
distinguishes the proposed metaheuristic from state-of-the-
art techniques is the absence of parameter tuning making it
highly suitable in practical scenarios.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. Dincbas and H. Simonis, “APACHE—a constraint based,
automated stand allocation system,” in Proceedings of the
Advanced Software Technology in Air Transport (ASTAIR ’91),
pp. 267–282, Royal Aeronautical Society, London, UK, 1991.

[2] J. Bellone, A. Chamard, and C. Pradelles, “PLANE -an evolutive
planning system for aircraft production,” inProceedings of the 1st
International Conference on Practical Application of Prolog, 1992.

[3] H. Simonis and P. Charlier, “COBRA—a system for train crew
Scheduling,” in Proceedings of the Workshop on Constraint
Programming and Large Scale Combinatorial Optimization
(DIMACS ’98), Rutgers University, New Brunswick, NJ, USA,
September 1998.

[4] G. Baues, P. Kay, and P. Charlier, “ Constraint based resource
allocation for airline crew management,” in PRoceedings of the
ATTIS, Paris, France, April 1994.

[5] R. Amadini, I. Sefrioui, J. Mauro, and M. Gabbrielli, “A
constraint-basedmodel for fast post-disaster emergency vehicle
routing,” International Jorunal of Interactive Multimedia and
Artificial Intelligence, vol. 2, no. 4, pp. 67–75, 2013.

[6] K. Kinoshita, K. Iizuka, and Y. Iizuka, “Effective disaster
evacuation by solving the distributed constraint optimization
problem,” in Proceedings of the 2nd IIAI International Confer-
ence on Advanced Applied Informatics (IIAIAAI ’13), pp. 399–
400, Los Alamitos, Calif, USA, September 2013.

[7] F. Rossi, P. V. Beek, and T. Walsh, Handbook of Constraint
Programming (Foundations of Artificial Intelligence), Elsevier
Science, New York, NY, USA, 2006.

[8] R. Dechter and J. Pearl, “Tree clustering for constraint net-
works,” Artificial Intelligence, vol. 38, no. 3, pp. 353–366, 1989.

[9] F. Rossi, C. Petri, and V. Dhar, “On the equivalence of constraint
satisfaction problems,” in Proceedings of the European Confer-
ence on Artificial Intelligence (ECAI ’90), pp. 550–556, 1990.

[10] A. K. Mackworth, “Consistency in networks of relations,”
Artificial Intelligence, vol. 8, no. 1, pp. 99–118, 1977.

[11] R. Dechter and D. Frost, “Backjump-based backtracking for
constraint satisfaction problems,”Artificial Intelligence, vol. 136,
no. 2, pp. 147–188, 2002.

[12] N. Jussien, G. Rochart, and X. Lorca, “Choco: an open source
java constraint programming Library,” in Proceedings of the
Workshop on Open-Source Software for Integer and Contraint
Programming (OSSICP ’08), pp. 1–10, Paris, France, June 2008.

[13] S. Merchez, C. Lecoutre, and F. Boussemart, “AbsCon: a proto-
type to solve CSPs with abstraction,” in Principles and Practice
of Constraint Programming—CP 2001, vol. 2239 of Lecture Notes

in Computer Science, pp. 730–744, Springer, Berlin, Germany,
2001.

[14] J.-C. Régin, “AC-*: a configurable, generic and adaptive arc
consistency algorithm,” in Principles and Practice of Constraint
Programming—CP 2005, vol. 3709 of Lecture Notes in Computer
Science, pp. 505–519, Springer, Berlin, Germany, 2005.

[15] D. Sabin and E. C. Freuder, “Contradicting conventional
wisdom in constraint satisfaction,” in Proceedings of the 11th
European Conference on Artificial Intelligence (ECAI ’94), pp.
125–129, Amsterdam, The Netherlands, August 1994.

[16] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compiling
finite linear CSP into SAT,” Constraints, vol. 14, no. 2, pp. 254–
272, 2009.

[17] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird,
“Minimizing conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems,”Artificial Intelligence, vol.
58, no. 1–3, pp. 161–205, 1992.

[18] P. Morris, “The breakout method for escaping from local
minima,” in Proceedings of the 11th National Conference on
Artificial Intelligence (AAAI ’93), pp. 40–45, 1993.

[19] R. J. Wallace and E. C. Freuder, “Heuristic methods for
over-constrained constraint satisfaction problems,” in Over-
Constrained Systems, vol. 1106 of Lecture Notes in Computer
Science, pp. 207–216, Springer, Berlin, Germany, 1996.

[20] P. Galinier and J.-K. Hao, “Tabu search for maximal constraint
satisfaction problems,” in Principles and Practice of Constraint
Programming-CP97, vol. 1330 of Lecture Notes in Computer
Science, pp. 196–208, Springer, Berlin, Germany, 1997.

[21] T. Stützle, Local search algorithms for combinatorial problems—
analysis, improvements, and new applications [Ph.D. thesis], TU
Darmstadt, FB Informatik, Darmstadt, Germany, 1998.

[22] N. Bacanin andM. Tuba, “Artificial bee colony (ABC) algorithm
for constrained optimization improved with genetic operators,”
Studies in Informatics and Control, vol. 21, no. 2, pp. 137–146,
2012.

[23] M. R. Bonyadi, X. Li, and Z. Michalewicz, “A hybrid particle
swarm with velocity mutation for constraint optimization
problems,” in Proceedings of the 15th Genetic and Evolutionary
Computation Conference (GECCO ’13), pp. 1–8, ACM, New
York, NY, USA, July 2013.

[24] D. Curran, E. Freuder, and T. Jansen, “Incremental evolution of
local search heuristics,” inProceedings of the 12thAnnualGenetic
and Evolutionary Computation Conference (GECCO ’10), pp.
981–982, ACM, New York, NY, USA, July 2010.

[25] S. Voß, “Meta-heuristics: state of the art,” in Local Search for
Planning and Scheduling, vol. 2148 of Lecture Notes in Computer
Science, pp. 1–23, Springer, Berlin, Germany, 2001.

[26] Y. Zhou, G. Zhou, and J. Zhang, “A hybrid glowworm swarm
optimization algorithm for constrained engineering design
problems,” Applied Mathematics and Information Sciences, vol.
7, no. 1, pp. 379–388, 2013.

[27] A. Davenport, E. Tsang, C. J. Wang, and K. Zhu, “Genet: a
connectionist architecture for solving constraint satisfaction
problems by iterative improvement,” in Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI ’94), pp.
325–330, Seattle, Wash, USA, August 1994.

[28] C. Voudouris and E. P. K. Tsang, “Guided local search,” in
Handbook of Metaheuristics, vol. 57 of International Series
in Operation Research and Management Science, pp. 185–218,
Kluwer Academic Publishers, Boston, Mass, USA, 2003.



10 Mathematical Problems in Engineering

[29] Y. Shang and B. W. Wah, “A discrete Lagrangian-based global-
search method for solving satisfiability problems,” Journal of
Global Optimization, vol. 12, no. 1, pp. 61–99, 1998.

[30] D. Schuurmans, F. Southey, and R. C.Holte, “The exponentiated
subgradient algorithm for heuristic Boolean programming,” in
Proceedings of the 17th International Joint Conference on Artifi-
cial Intelligence (IJCAI ’01), pp. 334–341,MorganKaufmann, San
Francisco, Calif, USA, August 2001.

[31] F. Hutter, D. A. D. Tompkins, and H. H. Hoos, “Scaling and
probabilistic smoothing: efficient dynamic local search for SAT,”
in Principles and Practice of Constraint Programming—CP 2002,
vol. 2470 of Lecture Notes in Computer Science, pp. 233–248,
Springer, Berlin, Germany, 2002.

[32] D. A. H. Amante and H. T. Marin, “Adaptive penalty weights
when solving congress timetabling,” in Advances in Artificial
Intelligence—IBERAMIA 2004, vol. 3315 of Lecture Notes in
Computer Science, pp. 144–153, Springer, Berlin,Germany, 2004.

[33] M. R. Karim, “A new approach to constraint weight learning for
variable ordering in CSPs,” in Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’14), pp. 2716–2723, Beijing,
China, July 2014.

[34] R. Shalom, M. Avigal, and R. Unger, “A conflict based SAW
method for constraint satisfaction problems,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’09), pp.
373–380, IEEE, Trondheim, Norway, May 2009.

[35] W. Pullan, F.Mascia, andM. Brunato, “Cooperating local search
for the maximum clique problem,” Journal of Heuristics, vol. 17,
no. 2, pp. 181–199, 2011.

[36] S. Fang, Y. Chu, K. Qiao, X. Feng, and K. Xu, “Combining edge
weight and vertex weight for minimum vertex cover problem,”
in Frontiers in Algorithmics: 8th International Workshop, FAW
2014, Zhangjiajie, China, June 28–30, 2014. Proceedings, vol.
8497 of Lecture Notes in Computer Science, pp. 71–81, Springer,
2014.

[37] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting
systematic search by weighting constraints,” in Proceedings of
the 16th European Conference on Artificial Intelligence (ECAI
’04), pp. 146–150, August 2004.

[38] M.-J. Huguet, P. Lopez, and W. Karoui, “Weight-based heuris-
tics for constraint satisfaction and combinatorial optimization
problems,” Journal of Mathematical Modelling and Algorithms,
vol. 11, no. 2, pp. 193–215, 2012.

[39] M. Mouhoub and B. Jafari, “Heuristic techniques for variable
and value ordering in CSPs,” in Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation (GECCO
’11), pp. 457–464, ACM, Dublin, Ireland, July 2011.

[40] A. Alexiadis and J. Refanidis, “Post-optimizing individual
activity plans through local search,” in Proceedings of the 8th
Workshop on Constraint Satisfaction Techniques for Planning
and Scheduling Problems (COPLAS ’13), pp. 7–15, 2013.

[41] D. Joslin and D. P. Clements, “Squeaky wheel optimization,”
Journal of Artificial Intelligence Research, vol. 10, pp. 353–373,
1999.

[42] H.-J. Lee, S.-J. Cha, Y.-H. Yu, and G.-S. Jo, “Large neighbor-
hood search using constraint satisfaction techniques in vehicle
routing problem,” inAdvances in Artificial Intelligence, vol. 5549
of Lecture Notes in Computer Science, pp. 229–232, Springer,
Berlin, Germany, 2009.

[43] W. S. Havens and B. N. Dilkina, “A hybrid schema for sys-
tematic local search,” in Advances in Artificial Intelligence: 17th
Conference of the Canadian Society for Computational Studies of

Intelligence, Canadian AI 2004, London, Ontario, Canada, May
17–19, 2004. Proceedings, vol. 3060 of Lecture Notes in Computer
Science, pp. 248–260, Springer, Berlin, Germany, 2004.

[44] N. Jussien and O. Lhomme, “Local search with constraint prop-
agation and conflict-based heuristics,”Artificial Intelligence, vol.
139, no. 1, pp. 21–45, 2002.

[45] P. V. Hentenryck and L. Michel, Constraint-Based Local Search,
MIT Press, 2005.

[46] B. W. Kerninghan and S. Lin, “An efficient heuristic procedure
for partitioning graphs,” Bell System Technical Journal, vol. 49,
no. 2, pp. 291–307, 1970.

[47] S. Lin and B. W. Kerninghan, “An effective heuristic for the
traveling salesman problem,” Operations Research, vol. 21, no.
2, pp. 498–516, 1973.

[48] U.Grenander,PatternAnalysis, Springer, Berlin,Germany, 1978.
[49] J. Bentley, “Programming pearls: perspective on performance,”

Communications of the ACM, vol. 27, no. 11, pp. 1087–1092, 1984.
[50] C. Lecoutre, 2010, https://www.cril.univ-artois.fr/∼lecoutre/

benchmarks.html.
[51] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre, “Random

constraint satisfaction: easy generation of hard (satisfiable)
instances,” Artificial Intelligence, vol. 171, no. 8-9, pp. 514–534,
2007.

[52] K. Xu and W. Li, “Exact phase Transition in constraint satisfac-
tion problems,” Journal of Artificial Intelligence Research, vol. 12,
pp. 93–103, 2000.

[53] C. Solnon, Ant Colony Optimization and Constraint Program-
ming, Wiley-ISTE, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


