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Abstract 
Heart function monitoring by attaching an accelerometer directly to the heart 

ventricle has been established as an effective way of diagnosing ischemia. The method 

holds a number of advantages over conventional monitoring techniques: high 

specificity and accuracy surpassing that of electrocardiography, and the ability to 

conduct non-stop monitoring unlike x-ray imaging. To this date, the drawback has been 

that the accelerometer-based devices have been too large to be used in the post-

operative period, when the patient’s chest is closed. This period is of great interest. 

 
The PhD project has focused on developing a heart monitoring device intended 

to be used on patients recovering from a Coronary Artery Bypass Graft. The device is 

intended to be used during surgery and for the subsequent recovery period (3-5 days). 

The project has employed commercial 3-axis accelerometers. 

 
This PhD project has contributed to four different generations of devices, each 

one featuring incremental improvements. The first generation validated the concept, 

the second outlined the form factor of the device, and the third added extra 

functionality  and revised the form of the implant. The fourth generation device also 

featured a newer, more compact sensor, which in turn, allowed to further miniaturize 

the device and evaluate different implant shapes. This evolutionary approach allowed 

us to formulate testing methodology for the devices. The latest generation devices 

underwent tests of: leakage current according to IEC60601 standard (current below 

0.01 mA), including after cyclical loading of the capsule-cable joint, pull-out force 

measurements, implant stability evaluation that yielded tilt of no more than 4 degrees.
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Paper Summary 
 
 
Paper I 
 
Paper I deals with the first prototype. The paper describes the fabrication, 

characterization and brief animal tests. The system was able to perform its 

function – monitoring from a closed chest condition. Due to system 

limitations a conclusion is made that a revision of the design is necessary. 
 
Paper II 
 
The third generation prototype uses the CMA-3000A sensor, same as two 

previous generations, but uses capsules made by additive manufacturing. 

This allowed the reduction of the overall size of the device. This 

generation added the pacing functionality to the system. 
 
Paper III 
 
Paper III goes in detail describing the second generation device – a device 

that added the easy, one step implantation. The fabrication and testing of  

the device, including animal trials, are described in this paper. The 

characterization was far more in depth than in earlier papers. 

 
Paper IV 
 
Paper IV is about the latest generation device featuring a lessons learned 

approach and using a prototype, extra compact accelerometer provided by 

a partner company. The device in this paper is far more compact than even 

the generation three device. Along with the same tests made on previous 

devices, the paper includes the evaluation of rotation of the capsules  

insidethe channel where the device is implanted. 
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1 Introduction 

1.1 Research context and motivation 

The use of MEMS (Microelectromechanical system) accelerometers for 

monitoring cardiac activity has long been proposed in a number of forms. 

Publications on the topic can be found as early as 1993 [1]. In this project, 

an accelerometer is used for monitoring patients recovering from coronary 

artery bypass grafting (CABG). Coronary artery bypass grafting is a type of 

open chest surgery where arteries or veins from elsewhere in the patient's 

body are grafted to the coronary arteries. This is done to bypass 

atherosclerotic narrowings and to improve the blood supply to the 

myocardium (heart muscle). See Figure 1.   

 

Figure 1 A typical coronary artery bypass set-up – single bypass. 
Graft shown in white. Figure adopted from [2]. 
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Patients recovering from a CABG are at a risk of graft occlusion leading to 

cardiac ischemia. Ischemia is a condition when insufficient blood is 

delivered to the organ. Ischemia may lead to cardiac infarction. A study 

published in 2004 reported 4% of grafts occluding immediately after the 

chest is closed [3]. CABG is a “mass market” procedure, in 2006 in United 

States alone 444000 CABGs were carried out [4]. This, together with the 

limitations of presently available heart monitoring techniques, creates a 

niche for a new monitoring system.  

 To formulate the requirements for the new system, it is important to 

realize just what are the shortcomings of existing ones. ECG 

(electrocardiography), is an ubiquotous heart monitoring technique that is 

common in hospitals world-wide. ECG systems are affordable and well 

established in clinical practice. However, the detection of ischemia by ECG 

is problematic due to lack of specificity [5, 6]. Angiography, a technique 

where a contrast medium with high x-ray absorption is injected into the 

bloodstream, highlighting the vascular system in an x-ray image, is an 

efficient way of diagnosing the condition of the graft [3]. This technique is 

unsuitable for non-stop, 24-7 monitoring due to the need to inject contrast 

medium and ionising radiation exposure. The patient’s exposure to radiation 

must follow the ALARA (As Low As Reasonably Acheivable) principle [7], 

and subjecting a living person to non-stop radiation would be a clear 

violation to this principle. A non-negligible problem with angiography is the 

cost of equipment. Somewhat similar is the issue with ultrasound imaging 

and characterization. High degree of accuracy is attainable with this 

technique [6, 8], but the limitation is the inability to conduct non-stop 

monitoring. This technique requires an operator to work with the patient, 

and it would not be reasonable to have a team of operators just for one 

patient, especialy given the large number of CABGs performed world-wide. 

Other techniques exist, but these are the most commonly used. A system 

capable of rapid, accurate and specific ischemia detection was demonstrated 

previously [9]. The system consisted of two, two-axis accelerometers in an 

arrangement that permitted to monitor all 3 translational axis. The 

accelerometers were attached directly to the heart surface by sutures. A 
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revised design with one 3-axis accelerometer was subsequently presented 

[10]. The system was successful with one exception – the large size of the 

accelerometers available at that time made the device impossible to remove 

from a closed chest without surgery, making the device undesirable for post-

operative monitoring. At one stage, a custom 3-axis accelerometer was 

fabricated with the goal of miniaturization, moving closer to the limit when 

the system would be small enough to facilitate extraction from the patient 

without having to re-operate. The manufacturing of custom MEMS is a 

costly and time consuming buisness and it became clear that a commercial, 

off-the-shelf device is necessary for this project to advance. Summary of 

technique advantages and shortcomings for post CABG monitoring is 

presented in Figure 2. 

 

Figure 2 Diagram indicating desirable chatacteristics of existing 
systems: ECG (gold line),  x-ray imaging (blue line), ultrasound 

(purple line) and the system under development in this project (green 
line). 

The goal of this project is to develop a monitoring device to be used during 

the in-hospital stay period (4-7 days) of patients undergoing post CABG 

recovery. The sensing principle will be motion sensing by means of an 
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accelerometer, the same as in [9, 11]. The accelerometer would have to be a 

commercial one as developing a new sensor is too costly and takes too long. 

The sensors placement on the heart must be such, that removal of the 

accelerometer would not need a surgical procedure. The focus of this work 

is the encapsulation and integration of the device. 

1.2 Structure of the thesis 

The thesis is separated into four sections. Section 1 is the introduction 

where the relevance and motivation of the work is described. Section 2 deals 

with the background, describing the technology used in fabricating the 

device and a review of existing technologies that influenced the device 

under development. Section 3 deals with the work done in this project. Four 

generations of devices are described; the emphasis is placed on aspects not 

detailed in the papers. Section 4 contains conclusions, potential future work 

and “cautionary tales” – things that did not go right in the project. 
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2 Background 

2.1 Accelerometer technology 

By definition, an accelerometer is an electromechanical device used to 

measure acceleration forces. Acceleration forces could be static like the pull 

of gravity or dynamic – caused by movement or by vibrations.   

MEMS accelerometers are one of the simplest and perhaps the most 

easily applicable MEMS devices. Such devices are widely used in many 

industries: automotive, gaming, telecommunications, etc.  The first MEMS 

accelerometers appeared in 1979 at Stanford University but it took well into 

the 1990s for these devices to become accepted by the mainstream industry 

[12]. MEMS accelerometers were first used in the automotive industry, 

where they replaced the ball-in-tube sensors used in airbags. The demand 

for sensors from the automotive industry triggered development of MEMS 

sensors, and at the turn of the century MEMS sensors made their way into 

domestic electronics. They are now found in just about every laptop HDD, 

smartphone or gaming console controller. 

MEMS accelerometers, in priciple, consist of two components: the 

sensing die, and the ASIC (Application Specific Integrated Circuit). The 

sensing die is the micromechanical system where the geometry is tailored to 

respond to acceleration. This can be a beam or moving plates. The sensing 

can be based on a number of physical principles. To list some of the more 

common ones: piezoelectric, piezoresistive and capacitive. A piezoelectric 

accelerometer takes advantage of the direct piezoelectric effect: material 

strain produces a charge (contrary to the inverse piezoeffect, where the 

crystals deforms when subjected to an electric charge), the charge can then 

be converted into acceleration. The physical origin of the piezoelectric effect 

is the charge asymmetry within the crystal structure [13]. Piezoresistive 

accelerometers are similair, but the strain produces a change in the 

resistivity of the sensing element, rather than a charge. Capacitive sensors 

are different, a capacitive accelerometer relies on the change in capacitance 

of the device induced by the change in the electric field propagation media. 
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In its simplest form the device is a set of fixed electrodes and a set of 

moving electrodes or two sets of fixed electrodes with a dielectric material 

in between them. The relative position of the electrodes, or of the body that 

is between the two electrodes, leads to a change in capacitance that can be 

recorded and translated into acceleration. Of course, neither charge, 

resistivity or capacitance are measured directly. The ASICs of MEMS 

accelerometers vary in complexity, a good example is the Wheatstone 

bridge (Figure 3) set-up – a  common way of measuring the signal from the 

sensing die in piezoresistive accelerometers. In this set-up the sensing die 

acts as a resistor in the bridge, and acceleration that causes the bridge to 

become unbalanced which is easy to interpret as electrical signals. 

 

Figure 3 A typical Wheatstone bridge configuration. 

Of course, MEMS accelerometers are more than just a die and an ASIC. The 

sensor needs an electrical interconnect system and encapsulation to protect 

the sensor from the environment. The process of taking the chip off a wafer 

and turning it into a working device is called “microsystem packaging”. 

This is a potential bottleneck in miniaturization and can be a costly process, 

reaching up to 95% of the end systems cost [14]. There is no standard, one-

size-fits-all packaging solution that can be used everywhere. A common lay-
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out of a modern accelerometer is a MEMS-on-chip design, when the sensing 

die is placed on top of the ASIC. Typically a grid of solder balls (referred to 

as BGA, Ball Grid Array) is placed on the bottom of the ASIC. An example 

of such device is shown in Figure 4. 

 

Figure 4 CMA3000-A01 3-axis accelerometer. Left side shows the 
top of the sensor, right side the bottom where the ASIC and the BGA 

are visible. Adopted from [15] 

 In this project an attempt is made to leverage the industry’s drive for 

miniaturization and develop an encapsulation for an existing device by 

providing additional, mission specific encapsulation. 

2.2 The human heart 

The human heart is a vital organ that is responsible for supplying the body 

with blood. The heart is located inside the chest cavity. It is contained inside 

the pericardium – a protective sac that also contains lubricating fluid. The 

heart consists of four chambers: right atrium, right ventricle, left atrium and 

left ventricle. The blood arrives into the heart from the body to the right 

atrium. From the right atrium it comes into the right ventricle and is then 

pumped into the pulmonary artery to the lungs. Inside the lungs blood 

exchanges carbon dioxide for oxygen by means of diffusion. This 

oxygenated blood comes into the left atrium and from there into the left 

ventricle. The left ventricle ejects the blood into the rest of the body through 

the aorta. The left ventricle is the larger one, with a significantly thicker 

wall: up to 15mm [16], whereas right ventricle wall thickness is about 5mm 

[17]. The actual heart walls consist of three layers: epicardium, myocardium 

and endocardium. The epicardium is the outer layer; it consists of mostly 
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connective tissue. Below the myocardium is the muscle that creates the 

contractions. The inner most layer is the endocardium, it has a function in 

the development of the heart [18]. A schematic drawing of the human heart 

is shown in Figure 5.   

 

Figure 5 A schematic illustration of the human heart. Adopted from 
[19] 

2.3 Ischemia detection: state of the art 

The monitoring of the condition of patients recovering from CABG is 

a large research field and there is several techniques capable of detecting 

myocardial ischemia. The techniques varies and can conduct the monitoring 

under different conditions and with different accuracy. The device under 

development in this thesis is designed to provide accurate, specific 

monitoring with rapid detection and ability to provide continuous 

monitoring in the intraoperative and postoperative phases. The techniques in 

this overview will be compared to these requirements. 

2.3.1 “Gold standard” for myocardial ischemia detection 

Transesophageal Echocardiography and angiography are two 

techniques referred to as “gold standard”. These techniques have proven 

ability to detect ischemia; however, certain drawbacks are shared by both of 

the techniques. 
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Transesophageal Echocardiography is a technique where an 

ultrasound probe is inserted into the patient’s throat and positioned inside 

the oesophagus (the passage from the throat into the stomach) 

corresponding to a position behind the heart. The technique is commonly 

used [20]. The disadvantage is that it is an uncomfortable technique for the 

patient and cannot be used for long term continuous monitoring. 

Angiography is a technique where a contrast medium is injected into 

the patient’s bloodstream and an x-ray machine is used to map the vascular 

system through which that contrast medium is coursing. This is a highly 

accurate way of evaluating the condition of the graft, [21]. The injection of 

contrast media and exposure to ionising radiation make this method 

unusable for long term, persistent monitoring.  

2.3.2 Electrophysiological methods for ischemia diagnostic 

 ECG remains a commonly used technique for diagnosing ischemia. 

A twelve lead set-up is typically used. ECG performed on a patient that is at 

rest is called “resting ECG”. This is the type of cardiogram that would be 

used to monitor a patient in the post-operative period. Resting ECG is 

criticised for low sensitivity (low probability of detection) to ischemia [22, 

23]. ECG may be taken on a patient that is subjected to exercise, forcing the 

patient’s heart to work harder to supply the body with blood. Exercise ECG 

uses 15 to 18 channel set-up [22].  It is known to have improved 

identification (high probability of detection) of ventricular ischemia [24].  

The obvious limitation is that not all patients can exercise. A study 

investigating the prognostic significance of exercise testing on 6,296 

patients showed that the exercise ECG examination could only be applied to 

62,5% of patients [25]. 

 Enhanced ECG techniques exist, examples include: Ventricular Late 

Potentials (VLP), Body Surface Potential Mapping (BSPM) and 

Cardiogoniometry (CGM).  

 VLP is a technique where the PQRST complex of the ECG is 

recorded and averaged. On the averaged PQRST complex, microvolt level 
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spikes at the end of the QRS indicate ventricular tachycardia. This technique 

primarily focuses on detection of patients at high risk of sudden cardiac 

death after myocardial infarction [22]. The technique is useful for detecting 

the aftermath of an infarction but not early ischemia and is criticised for 

having a large number of false positives [26].  

 BSPM is essentially a form of ECG where the number of electrodes 

can be from 64 to 120. The electrodes are laid out on the patient’s chest, and 

on top of recording the standard PQRST complex the potentials can be 

mapped and matched with the ECG recordings. BSPM features different 

approaches for registering different cardiac conditions from diagnosing old 

myocardial infarctions to recognizing ventricular hypertrophy [22]. BSPM 

ability to diagnose ischemia has also been demonstrated in literature [27]. 

The criticism of BSPM is the complexity and the need for specially trained 

personnel [22]. 

 CGM (Cardiogoniometry) is a spatiotemporal electrocardiographic 

method utilizing computer-assisted three-dimensional data on cardiac 

potentials. CGM uses 4 electrodes to register the so called vector loop. The 

vector loop describes the polarization of the heart during every cycle. This 

can be used to diagnose various heart conditions. The technique is 

promising, but has not yet been proven in large studies [22]. 

2.3.3  Heart sound monitoring for ischemia detection 

 Listening to the heart sounds is perhaps the oldest way of studying 

the condition of the human heart. It has been established that a healthy adult 

human heart produces sounds called S1 (Sound 1) and S2. S1 is the sound of 

atrioventricular valves closure and the beginning of the ventricular 

contraction; S2 is the closing of the semilunar valve and the beginning of 

the diastole [28]. Additional sounds, S3 and S4, can be indicative of 

pathology [28]. The S3 and S4 sounds have been established to correlate 

well with ischemia and ventricular systolic dysfunction [29-31].  The 

hardware used in this type of monitoring is a stethoscope with electronics to 

record and store the sound.  
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The state of the art for these devices comes not in the hardware, but 

in the software. The weakness of the method is that ambient noise will 

interfere with the recording of heart sounds. To overcome the noise, various 

signal processing methods have been suggested in the literature [32-35]. The 

paper from Tseng et al. [35] reports promising results: over 90% accuracy in 

S3 and S4 detection. S3 and S4 sounds in ischemic patients appear as fast as 

the changes in ECG [36]. 

 The monitoring of heart sounds to diagnose myocardial infarction is 

a promising technology – it is non-invasive and based on a very well-known 

phenomena. The technology does have certain limitations. First and 

foremost, the heart sound recordings used in the studies are taken from 

databases (cardiac auscultatory recording database of John Hopkins 

University in [35] and “qdheart” database for [34]). The recordings in these 

databases are controlled for noise they are recordings taken by physicians in 

clinical practice. A patient recovering from CABG will be released from 

intensive care after a few days, and spend the rest of the hospital stay in a 

general ward. The patient will be aware expecting the patient to maintain 

quiet (as quiet as a patient would in during a physician’s stethoscope 

examination) for all this time is an unrealistic expectation. Continuous, non-

stop monitoring of heart sounds has not been demonstrated in literature. The 

second limitation is that S3 sounds can also be found in healthy people 

under 40 years of age [28]. This compromises the technique’s specificity.  

 In closing, monitoring heart sounds is a promising way of post-

operative ischemia diagnostic and could be used to augment ECG and 

accelerometer based techniques. 

2.3.4  Graft patency monitoring by means of 
ultrasound 

 Graft occlusion is a risk for patients recovering from CABG. An 

occluded graft is blocked and cannot supply the blood that is necessary for 

the muscle to survive. Therefore, monitoring the flow inside the graft would 

provide a picture of how well the graft is performing. 
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 In clinical practice, ultrasound technology called Time Transit Flow 

Measurement (TTFM) is typically used to evaluate the graft patency [37]. A 

TTFM system usually consists of two ultrasound transducers that are placed 

on the vessel where the flow is to be measured. The transducers are 

positioned at a predetermined distance and angle. The transducer exchange 

pulses, the pulse traveling up stream will arrive later than the pulse traveling 

downstream. From this difference the flow velocity can be calculated. A 

schematic representation of TTFM is shown in Figure 6. 

 

Figure 6 A schematic representation of transit time flow measurement 
technique 

 An example of a biomedical TTFM probe used for assessing graft 

patency is the Medistim VeriQ (Medistim, Norway). The CAD 

representation of VeriQ placement and a picture of the device in use are 

shown in Figure 7. The system’s ability to predict outcomes in CABG 

procedures have been reported in [38]. 

 

Figure 7 Left: the placement of the VeriQ probe for succesful 
measurement. Right: use of VeriQ in actual surgery. Adopted from 

Medistim promotional materials [39, 40]. 
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 The technology has limitations. The promotional materials [40] point 

out that placement must be strictly as shown in Figure 7, if the graft is bent 

the flow velocity profile is asymmetric and results cannot be interpreted. 

The size of the device is quite large as well, meaning that it would take a 

significant effort to redesign the device to be an implantable post-operative 

monitoring aid.  

2.3.5  Magnetocardiography 

 As the human heart beats its electrical activity produces both electric 

potential and magnetic fields. The measurement of electric potentials of the 

heart is known as ECG, the measurement of magnetic fields is referred to as 

Magnetocardiography (MCG).  

 The fact that the human body produces magnetic fields was known 

for a very long time, but it took into the 1960s to record a 

magnetocardiogram [41]. The magnetic fields produced by the human body 

are faint and hard to detect: 10-11 T – 10-14 T compared to earth’s magnetic 

field of 10-4T [42]. The detection of said fields was made possible by a 

group of devices called Superconducting Quantum Interference Device, 

often abbreviated as SQUID. Early SQUIDs required cooling down to 4°K 

(-269°C) and a shielded room to operate in [42]. In the 1990s the cost of 

such magnetometers was around $2 million [42]. The advances in 

magnetometers as a field of study eventually enabled monitoring and 

detection of ischemia in an unshielded room [43]. The detection of the 

changes in the magnetic field of the heart caused by ischemia is both rapid 

and accurate [43, 44]. The cooling required for the systems of the generation 

used in [43, 44] made the systems rather large [45]. Further advances in 

magnetometers have made it possible to conduct heart monitoring at room 

temperature. In the new systems, SQUIDs are replaced with a device called 

Spin-Exchange Free Relaxation (SERF) magnetometer. SERF 

magnetometers are already hailed as a new era in magnetometry [46]. The 

key component of an atomic magnetometer is a glass cell that contains a 

vapour of alkali atoms. A laser is used to spin polarize the atoms via the 

process of optical pumping. A magnetic field perpendicular to the pump 
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beam rotates the spins by a small angle proportional to the field magnitude. 

The rotation angle can be detected and translated into magnetic field 

magnitude. Researchers have already demonstrated SERF based 

magnetocardiometers that were able to successfully map the magnetic 

activity of the heart [47, 48]. 

 Magnetography appears to be an accurate, rapid, non-invasive and 

safe method of diagnosing heart conditions, including ischemia. Still, even 

the latest devices that require neither cooling nor a shielded room are fairly 

large [47] and have to be positioned directly over  the patient’s chest. For 

persistent monitoring for the entire duration of CABG recovery period a 

way of conducting the monitoring regardless of patients position must be 

developed. This would either require a small magnetometer placed on the 

chest of the patient or one that could map the heart magnetic fields 

regardless of the patient’s position, whether that is realistic remains to be 

seen. 

  

2.3.6 Conclusion on the state of the art 

A large number of fundamentaly different heart monitoring techniques 

exist and are constantly under improvement. Some of the techniques have 

the potential to become new industry standard, but are not at the required 

state of maturity yet. Each of the different techniques evaluated in this  

overview do not alone fulfill all the parameters that the system presented in 

the thesis is set to acheive: accurate, specific and continuous monitoring of a 

patient recovering from a CABG procedure.  

2.4 Accelerometers for heart monitoring 

Using an accelerometer to monitor the heart in some sort of way is not new. 

Plenty of scientifically sound attempts have been made to apply acceleration 

measurements to monitoring the cardiac cycle. Different types of techniques 

are good for different diagnostic purposes. It is convenient to look at these 
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technologies by separating them into two groups: implantable and non-

implantable. 

2.4.1 Non-implantable accelerometers for heart monitoring 

Two key technologies can be distinguished here: 

ballistocardiography and seismocardiography.  

 Ballistocardiography is a technique, hailing from a time before 

MEMS [49]. In this technique a patient is lying on a bed that is suspended 

by springs. If the patient is lying motionless, then the recoil of heartbeat and 

blood being ejected from the heart will cause the bed to oscillate. Measuring 

the acceleration of these oscillations can be used to determine physiological 

parameters such as the stroke volume [50]. The drawback of this technique 

is the special bed or scale used to suspend the patient. 

 A more relevant technique is seismocardiography. 

Seismocardiography is the measurement of chest wall acceleration produced 

by myocardial movement. This is, in a way, similar to listening to heart beat, 

but instead of using a stethoscope an accelerometer is placed on the chest. 

The abundance of modern day hardware that can be used to record the 

acceleration and the relative simplicity of the procedure make the technique 

attractive. Such systems can be assembled form off-the-shelf hardware [51], 

or use a smartphone to achieve the same result [52]. The future of these 

systems is for seismocardiography devices to be integrated into fabrics of 

clothes allowing for monitoring of ambulatory patients [53].    

2.4.2 Implantable accelerometers for heart monitoring 

The use of accelerometers in pacing leads has been proposed a long 

time ago [54]. The parameter of interest to the cardiologists is the so-called 

Peak Endocardial Acceleration or PEA. The theory behind this approach is 

that the contractile state of the heart can be identified by the maximum 

velocity of the contraction. Measuring the endocardial vibration in the right 

ventricle during the isovolumetric contraction phase makes it possible to 

assess a parameter of heart contractility: the systolic isovolumetric peak 

acceleration or PEA [55]. The PEA is recorded by means of a single axis 
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accelerometer attached to the tip of a pacemaker lead [56]. Note that even if 

the sensor is implanted into the right ventricle, the PEA amplitude is 

determined by the contraction strength in the left ventricle, where systolic 

myocardial vibrations are generated. Even more interestingly, the sensor can 

detect an additional signal, designated PEA II [57]. PEA II is recorded 

during the isovolumetric relaxation and corresponds to the second heart 

sound.  Experimental studies indicate that PEA II is the rate of pressure 

gradient rise across the aortic valve at the time of closure. Its role in 

measuring diastolic function has not been confirmed yet. 

Leads with an in-built accelerometer sensor to monitor the vibrations 

corresponding to the first heart sound are a commercial product. An Italian 

company called Sorin Group offers the SonRtipTM – an intra-atrial pacing 

lead with a cleverly designed transducer that aids in monitoring the patient’s 

heart condition. The sensor has proven to be a useful tool in Cardiac 

Resynchronization Therapy (CRT). In a recent study [58], a multicentre 

single blind study with two groups of patients was evaluated.  In one group 

CRT was administered based on PEA based readings, and in a control group 

the treatment was administered based on the centres’ usual practices 

(echocardiography etc.). After one year of treatment, 76% of the group 

treated with the aid of PEA was classified as improved, while in the control 

group 62% of the patients were classified as improved. 

The other example of an implantable accelerometer for heart 

monitoring, is the technology that this project is based on – attaching an 

accelerometer to the left ventricle and processing the acceleration to 

approximate velocity and displacement [9-11]. The distinction from the 

other technology is the comparatively large range of motion characteristic to 

ventricle motion as opposed to the vibrations recorded by the SonRtip. The 

limitation of the sensor presented in [10] is that while it’s placement – 

suturing of the device to the ventricle – is an easy way to couple motion 

sensor to the heartbeat, it does not feature any way of removing it from a 

closed to chest. This forces the surgeon to either limit the sensors 

deployment to operative monitoring, removing the device before the chest is 

closed, or leave it inside and re-operate to remove the sensor. The latter 
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option is very undesirable. Those limitations were dictated by the size of the 

sensors available at that point in time. The emergence of more compact 

sensors that could potentially be packaged in a way that would allow 

surgery-free extraction was the starting point for this project. 

 

2.5 Cardiac implant placement and fixation 

An overview of existing ways of placement and fixation for cardiac 

implants is necessary to formulate a placement solution for the device in this 

project. The requirements for the device under development are: placed in or 

on the left ventricle (this is where the graft is located), usable in a closed 

chest setting, can be removed with-out the need for additional surgery. 

Certain existing devices provide a good reference design. 

2.5.1 Endocardial placement devices 

A widespread type of endocardial implant, an implant that is placed 

inside the heart ventricle or atrium, is the permanent pacemaker pacing lead. 

As the name implies this type of pacing lead is suitable for long-term 

implantation. Their implantation procedure can be carried out through a 

vein, which is minimally invasive, requires only a short recovery period and 

only local anaesthesia. Two types can be distinguished: passive and active 

fixation. Passive fixation works like an anchor, the fins getting caught on the 

surface irregularities of the endocardium [59]. Active fixation works like a 

corkscrew, burrowing into the heart muscle to achieve fixation [59]. An 

illustration of both of these devices is shown in Figure 8. 
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Figure 8 A) Passive fixation lead. B) Active fixation leads 

   The drawbacks of these devices include the simple fact that not every 

patient actually needs a dedicated, permanent pacing lead. CABG recipients 

do not need require permanent pacing, so this procedure would be 

excessive. The other significant drawback is the complications with lead 

extraction. Extraction of leads can be a dangerous procedure with 

complications going as far as death [60].  The active fixation could be an 

interesting solution for the device under development in this project, but it 

would complicate the design. 

2.5.2 Epicardial placement devices 

Epicardial placement devices are the simplest of the group. These are 

the devices that are placed on top of the ventricle. Normally these devices 

use sutures as means of fixation. The accelerometer-based heart monitoring 

device that was created before this project [10], is a good example of an 

epicardial placement. Other examples include certain types of permanent 

pacing leads: patients with certain complications, i.e. artificial heart valves, 

cannot receive transvenous placement and so the electrode is sutured on to 

the heart directly. These devices are uninteresting for this project because 

they are only meant for extraction in an open chest setting. One device, the 

M22 atrial pacing lead (AE Medical, USA) presents an interesting solution. 

The pacing lead has a loop that is put under a suture, when the lead needs to 

be extracted, it is pull out and the loop will compresses through the suture. 

This allows for both long term fixation and extraction without surgery 
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(sometimes called percutaneous removal). A schematic illustration is shown 

in Figure 9. 

 

Figure 9 A schematic illustration of the M22 pacing lead placement 
and extraction. Adopted from [61]. 

 This solution is the type of functionality desirable for the device in 

this project. However, fixing the sensor in just one point might be not 

enough to make the accelerometer follow the ventricle motion precisely. 

2.5.3 Sub-epicardial placement devices 

There is a class of devices that follow the desired operational 

protocol: implanted during the open chest surgery, kept inside the patient for 

the recovery period (closed chest) and removed by pulling out through a 

channel in a closed chest. This family of devices is called „temporary 

myocardial pacing leads“, also known as „heartwires“. Some sources refer 

to this as epicardial pacing [62], for the classification in this work it will be 

referred to as sub-epicardial due to the fact that the active part is placed 

below the external heart layer. Heartwires are placed within the myocardium 

by making a “stitch” on the outer layer of the heart wall. The tissue pressing 

on the wire in the stitch keeps he wire fixed. It is removed by pulling out. 

The leads are implanted in a way so as the pull-out direction is aligned with 

myocardial fibre orientation [63], minimizing the chance of tearing. 

Schematic illustration in Figure 10. 
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Figure 10 A schematic illustration of a heartwire placement. 

    This is the placement type selected for the device. The procedure is 

widely used in coronary patients, and integrating the system under 

development into clinical practice should be an easy and natural task. The 

fact that tissue pressure is what keeps the device in place is an advantage 

over having 1 point of fixation as in the M22 pacing lead described in the 

previous section. 

2.6 Biocompatible materials 

When discussing biocompatible materials it is important to clearly 

define “biocompatible”. Two somewhat different definitions of a 

“biomaterial” exist. Black, in the introduction of “Biological Performance of 

Materials: Fundamentals of Biocompatibility” states that: “Biomaterials are 

materials of man-made or natural origin that are used to direct, supplement, 

or replace the functions of living tissues. When these materials evoke a 

minimal biological response, they have come to be termed “biocompatible”. 

As it is typically used, the term biocompatible is inappropriate and defective 

of content. Compatibility is strictly the quality of harmonious interaction. 

Thus, the label biocompatible suggests that the material described displays 

universally “good” or harmonious behavior in contact with tissue and body 

fluids. It is an absolute term without any referent” [64]. The author goes on 

to state that the compatibility is a task-specific parameter and, due to vastly 

different physical parameters, no material will be universally biocompatible. 
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While there is no arguing against that, in this paper it is assumed that it is 

safe to use the term “biocompatible” or “biomaterial” as long as the 

application for that material is kept in mind, and there is no reason to over 

define materials. By contrast, Davis in the “Handbook of Materials for 

Medical Devices” gives a succinct definition of a biomaterial: “A 

BIOMATERIAL is a synthetic material that is used to replace or restore 

function to a body tissue and is continuously or intermittently in contact 

with the body fluids” [65]. The objection is that not all materials that are 

used in this field are synthetic, at the very least biodegradable materials are 

often natural in origin, silk being a prime example [66]. In this thesis bio 

inert materials with track records of successful implant applications will be 

used. 

2.6.1 Types of biomaterials 

Biomaterials are represented by a broad range of material types: 

metals, polymers, composites and ceramics. Although harvested tissues can 

be put into this category, they were never considered for this project, and so 

will not be discussed. The other classification is by the specific way of 

interaction with the host (other than just „harmonious“).  

2.6.1.1 Classification by interaction type 

These three interaction types can be singled out: 

Bioinert biomaterials. The type of material to have minimal 

interaction with the implant recipient’s body. Little or no host response. 

Generally a fibrous tissue capsule will form around the implant.  

Bioactive biomaterials. The type of materials to interact and cause a 

certain desired effect i.e. cell adhesion. 

Bioresorbable biomaterials. Materials engineered to dissolve when 

placed inside a human body.  

Of the three types listed, bioinert materials seem to be the most 

attractive, given the temporary nature of the device under development. 
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Black also gives an updated classification of biomaterials based on the 

concept of host response, in this approach 4 types or stages are identified: 

inert, interactive, viable and replant [64]. The first three are analogous to the 

classification listed previously, the fourth one deals with samples cultured in 

vitro from the cells of the patient. This type is beyond the scope of the 

project. 

2.6.2 Classification by material group 

As mentioned previously there is a broad range of biomaterials from 

all forms of material groups. 

Metallic materials are amongst the most important biomaterials, and 

have been used in implantable systems for many years. Metal applications 

are too many to list: all sorts of artificial joints, dental implants, pacemaker 

casings and leads as well as many others. The three principal metallic 

materials are: stainless steels, titanium and alloys and cobalt-base alloys. 

Shape memory alloys, zirconium alloys, tantalum and precious metals are 

also viable options [65]. 

Of stainless steels, the 316L (18Cr-14Ni-2.5Mo) stainless steel, 

which is a vacuum-melted low carbon version of the usual 316 composition, 

is the one most widely used [65]. Vacuum melting improves cleanliness, and 

the chemical make-up is designed for maximal pitting corrosion resistance 

and for a ferrite-free microstructure. Type 316L can be welded. Welding and 

soldering can be used to joint wires [65]. 

Polymeric materials are, perhaps, the most versatile of all the 

biomaterials. To date they have been used in systems that address 

neurological, cardiovascular, ophthalmic and reconstructive surgery related 

problems. They come in form of bulk materials, adhesives or coatings.  

The most telling distinction of polymers from other materials is their 

molecular structure. Polymer materials consist of long molecules; chains of 

atoms held together by covalent bonds, with carbon normally being in high 



F. Tjulkins: Encapsulation of implantable microsensors 

23 

 

proportion. The chains can be linear or branched or chemically cross-linked. 

Polymer materials are commonly classified into three groups:  

• Thermoplastics: These enter the liquid state above a certain 

temperature, and then solidify again upon cooling; hence they 

can be recycled. Thermoplastics can be (semi)crystalline or 

amorphous. 

• Thermosets: These are chemically cross-linked. They 

degrade into "short molecules" above a certain temperature.   

• Elastomers (also referred to as rubber). These can be 

thermoplastic (thermoplastic elastomers (TPE)) or thermosets 

(rubber). 

Ceramics, glasses and glass-ceramics have had a use for a long time 

in the medical industry, though a lot of it was in devices that were not 

implantable. Two areas where ceramics are used in implants are dental 

prosthetics and bone reconstructive implants – the surfaces of these 

materials bond well with bones [65]. Ceramics are difficult to machine and 

process because they are hard and brittle, and sintering temperatures for 

ceramics are also typically high [67]. Due to this, ceramics were not 

considered in this PhD project.  

2.7 Sterilization techniques 

For an implantable device, sterilization is mandatory [68]. 

Sterilization is defined as complete lack of microorganisms on the object 

undergoing sterilization. Due to high survivability of viruses and spores, the 

sterilization methods can often be harsh and potentially this can damage the 

sensor.  

2.7.1 Autoclaving 

Autoclaving is the practice of sterilization by exposure to high 

temperature steam. Exposure of microorganisms to saturated steam achieves 

their destruction by the irreversible denaturation of enzymes and structural 

proteins [69]. The time and temperature can vary, usually 120-130°C for 2-
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15 minutes [64]. Temperature is a concern for MEMS devices. Stresses 

induced by thermal expansion coefficients of multiple materials used in the 

construction can cause the device to fail [70].  

2.7.2 Dry heat 

The process is similar to autoclaving but there is no steam involved, 

only heat. Dry-heat processes takes effect by oxidation of cell constituents 

[69]. Temperature is 160-175°C and time is 30 minutes to 2 hours [64]. This 

process has the same risks as the autoclaving method. 

2.7.3 Gas 

Gas sterilization involves subjecting the object undergoing 

sterilization to ethylene oxide. The gas is flammable and potentially 

explosive. The World Health Organization advises to only use this method if 

alternatives are not available [69]. This method is low temperature: from RT 

(Room Temperature) to 55°C, but is time consuming: from one to 24 hours 

with possible 48 hour outgassing period [64]. 

2.7.4 Plasma 

Plasma sterilization involves room low temperatures (45-55°C), 

moderate times (1-2 hours) and uses gas hydrogen peroxide (H2O2)  [69]. 

This is an attractive method for sterilization of the device under 

development, but there is possible risk of promotion of unwanted 

bioadhesion [71] alongside the typical risk of material compatibility [72]. 

2.7.5 Gamma radiation 

Gamma radiation and electron beams are used to effect ionization of 

the molecules in organisms. The process can potentially be time consuming, 

as some microorganisms need to build up a considerable dose – up to 24 

hours. Process is room temperature [69]. Another advantage is the fact that 

the device can be sterilized while inside the storage container. Gamma 

radiation exposure is a risk for MEMS devices; radiation exposure can cause 

bulk lattice damage and make the die more prone to fracture [70]. 
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2.7.6 Cold solution 

Cold solution sterilization is the process of soaking in a chemical 

solution designed to attack microorganisms i.e. glutaraldehyde. This is a 

room temperature process, 1-3 hours long [69]. An attractive solution for the 

device in this project, providing all components will be compatible with the 

chemicals used for sterilization. 

 

 

2.8 Animal test subject 

Living organisms are highly complex and difficult to emulate. When 

the need arises to study an interaction involving a living organism, it is often 

necessary to use an animal model. Use of animals in medical 

experimentation and study is connected with ethical concerns and as such, 

care must be taken to ensure that the sacrifice of the animal is not in vain. 

The practice of using an animal as a model of a human body is referred to as 

“comparative medicine” [73].  

 In order to obtain the best possible results sound planning is 

crucial. The procedure and the organ of interest must be identified and a 

suitable test animal selected. Conducting experiments on animal test 

subjects that have notable differences from human anatomy has, on 

occasion, lead to false claims of efficacy. For example, when tested in 

humans, certain drugs did not produce the same results as those observed in 

canine (dog) experiments [74]. The device described in this thesis is meant 

for patients recovering from a CABG procedure, and the device is meant to 

be implanted into the left ventricle. The test subject must have a heart with 

anatomy closely resembling that of a human, particularly the left ventricle. 

 In comparative medicine, the hearts of large mammals are 

used as a model for human hearts [75]. Pig, sheep and dog hearts are 

commonly used. In human, dog, sheep and pig hearts the apex is made up of 
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the left ventricle [76, 77]. The main difference between the heart ventricles 

of these species seem to be in the way nerves conduct signals, and not in the 

mechanical properties of the muscle. However, dog hearts do have 

considerably more coronary collateralization – more fine blood vessels in 

the ventricle muscle [75]. In general, the hearts of pigs, dogs and sheep are 

interchangeable for the purpose of modelling a human heart, but the dog 

heart’s amount of fine blood vessels make them slightly less suitable. In 

selecting one out of the three animals mentioned, practicality must be taken 

into account as well. In the modern world dogs are considered companion 

animals and a large number of dog breeds would be unsuitable for 

modelling a human heart due to small size. Sheep are bred for their fleece 

and it’s in the interest of farmers to maintain the animal for as long as the 

fleece can be harvested from it. Pigs are bred for their meat and, in a way, 

using the animal for experimentation (as long as accepted ethical treatment 

standards are upheld) is no different than the animal’s life cycle on a farm. 

This, along with their anatomical similarity, makes pigs the optimal model 

species for the evaluation of the device in this thesis. 
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3 Device Design and Fabrication 

3.1 Introduction  

3.1.1 The four device generations in this PhD project 

The starting point of this PhD project was a device with dimensions 

14,5x11x5,2 mm3, that was tested in both animals and humans as a means of 

intraoperative monitoring [10]. A requirement from our partners in the 

project, the users at Oslo University Hospital, was to fabricate a device that 

could be used in the postoperative stage as well. To save development time, 

a commercialy available sensor was used. At the time, the smallest sensor 

available was CMA3000 (Murata Oy, Finland), first introduced in late 2008. 

In 2014 an even smaller sensor was introduced on the market, the BMA355 

(Bosch Sensortec, Germany). The scope of design and fabrication activities 

in the PhD project was to make a device capable of operating inside a closed 

chest and with features for easy extraction. The requirements formulated 

together with our partners at Oslo University Hospital are summarised in 

Sect. 3.1.2 The test procedures used in the PhD project are summarised in 

Sect. 3.1.3.  

Note that one common trait shared by all four generations is that signal 

I/O and power was transmitted through the cable. The cable was used for 

extracting the device from the patient, and provided a convenient way to 

supply power and signal I/O.  

The development of the system was an iterative, learning process. 

Lessons learned in early stages were carried over to the next generation 

design. In this project, four generations of encapsulation can be 

distinguished. These are summarised in Table 1. Details of the four 

generations are given in Sect. 3.2 to 3.5, and summaries are given below: 

Generation 1 had a silicone rubber based encapsulation, as the 

generations developed and tested prior to this PhD project. Generation 1 

was capable of monitoring, but was difficult to place in a beating heart and 

had no additional functionality. The fixation of the device in the tissue was 
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also not reliable and required sutures. More than a dozen generation 1 

devices were made, and these were used in a number of experiments. The 

surgeons reported that the generation 1 devices needed a complicated 

placement procedure. Furthermore, this generation did not allow for pacing, 

due to the electrically insulating rubber material. A pacing functionality was 

desired by the surgeons. The sensor used in this design, CMA3000-A01 

(Murata Electronics Oy, Finland) introduced in 2008, see data in Table 2, 

was also used in generation 2 and 3. It should be noted that while having a 

number of drawbacks, generation 1 was still a highly successful research 

tool. Generation 1 sensors were used to validate the closed chest monitoring 

in an animal model [78].   

The main effort of the PhD project in the development of generation 1 

was to make a proof of concept device (with fabrication techniques 

developed by Imenes et al. [10].  

Generation 1 of the device is described in Paper I and in several other 

publications [79-82]. Recently, a paper dealing with the “medical” aspects 

of using the sensor in a closed chest setting was published [78]. The HBV 

team, including the author of this thesis are co-authors of that study.  

Generation 2 was a “breakthrough” device that combined the basic 

requirements of operating inside the human body (also fulfilled for 

generation 1) and an easy one-step implantation procedure. The main effort 

of the PhD project in the development of generation 2 was to design and 

fabricate the device using a steel capsule, a round cable and a needle with a 

thread taken from a heartwire (temporary myocardial pacing lead). The steel 

capsule was machined with a CNC (Computer Numericaly Controlled) 

machine. The general layout of this device    − the sensor in a capsule with 

thread and needle attached − paved the way for the subsequent generations.  

Generation 2 of the device is described in Paper III. 

In generation 3 we attempted to leverage the capabilties provided by 

additive manufacturing. The goal was to achieve size reduction by 

redesigning the capsule in ways that would be difficult to do with 
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conventional machining techniques – such as machining non rotational 

simmetry designs. The main effort of the PhD project in the development of 

generation 3 was to achieve minituarization and to introduce electric pacing 

and sensing. 

Generation 3 is described in Paper II. 

Generation 4 featured a more compact sensor than the previous three 

generations. This made room for implementing certain features into the 

capsule design. The capsules were made by additive manufacturing in 

stainles steel.  The main effort of the PhD project in the development of 

generation 4 was to evaluation of the new compact device, optimal selection 

of components, evaluating pacing and sensing with new capsules and 

additional implant stability studies. 

Generation 4 is described in Paper IV.  

3.1.2 Requirements from the users and a summary of the 
main advances for the subsequent device generations 

The advances from one generation to the next were guided by a set of 

design considerations and specifications, mostly based on input from the 

project partners at Oslo University Hospital. The requirements were 

formulated as early as the development of generation 1 device and it took 

until generation 3 to fit all criteria. The first two criteria, that were the most 

crucial, were met on all devices. Summary of the devices can be found in 

Table 1 and Figure 11. The criteria were as follows: 

• Successful acceleration recording – the crucial parameter. A 

packaged device must be able to record the acceleration in vivo. 

Recordings from older devices developed by HBV and Oslo 

University Hospital prior to this PhD project [10, 83] were used for 

reference. 

• The International Electrotechnical Commission (IEC-60601-1) 

regulations set the limit of leakage currents for CF-type (Cardiac 

Floating) devices, i.e. devices with direct contact with the heart. The 

leakage currents must be below 0.01 mA. 
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• The procedure for placing the device in the heart tissue must be easy 

and safe. CABG procedures are performed “off the pump” meaning 

that the patient’s heart is beating. This can make a multi-step 

procedure difficult to employ in practice and be taxing for the 

surgeon. A simple placement (implantation) procedure is preferred. 

• The implant fixation must be such that the device stays in place 

during the time monitoring is necessary, and then the device should 

be easily removed when monitoring is no longer needed. If sutures 

are needed for sensor fixation, the removal will require an extra step 

where the sutures are cut. The alternative is to use degradable 

sutures, but that would mean the device can only be used until the 

sutures start degraded and it cannot be removed before degradation 

of the sutures. Hence, fixation without sutures is preferred. The 

effectiveness of fixation would be determined in an in vivo study. 

Generation 1 needed sutures, Generation 2, 3 and 4 could be secured 

on their own, however, spontaneous unwanted retraction was noticed 

in generation 2 devices. 

• Two key parameters that are closely related are tissue channel 

dilation (expansion) and device package cross-section and volume. 

The device will be placed into the left ventricle. This means that a 

channel will be created first and the device is then positioned in that 

channel. A greater dilation of the channel means that the stress in the 

tissue will be higher. In generations 2, 3 and 4 the channel diameter 

was the same as the diameter of the device. In generation 1 the 

channel diameter was defined by the diameter of the catheter used in 

the placement. A smaller implanted volume is considered a plus for 

similar reasons: the smaller the device, the shorter is the stressed 

domain along the implanted device, and the less traumatic is the 

extraction procedure. A rounded device shape is of course also 

important in this respect. 

• On patients recovering from CABG it is necessary to implant 

temporary pacing leads. Hence, it is desired to integrate the electric 

pacing function on the accelerometer device. This would reduce the 
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number of devices that would be needed to be implanted in the left 

ventricle. 

Table 1. Summary of features of different generation devices. 

Generation Generation 
1 

Generation 
2 

Generation 
3 

Generation 
4 

Acceleration 
monitoring 

Achieved Achieved Achieved Achieved 

Current 
leakage  

 

<10nA <10nA <10nA <10nA 

Implantation 
procedure 

Difficult Simple Simple Simple 

Fixation Sutures 
need 

Achieved Achieved Achieved 

Channel 
dilation 

3.2 mm 2.8 mm 2.8 mm 2.0 mm 

Package 
volume 

 

66 mm3 49 mm3 39 mm3 26 mm3 

Pacing 
function 
integrated 

No No Yes Yes 
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Figure 11 Four generations of devices developed in the project. 

3.1.3 Test procedures used in this PhD project  

Standard tests that were performed on each device generation were 

leakage current measurements and animal trials (implantation of the device, 

monitoring with the sensor, and removal of the device). Leakage current is 

an important design criterion – a device with excess leakage current would 

not be allowed on the market. The animal trials were to establish the 

sensors' capabilities. Some additional tests conducted with the generation 1 

device were different to those conducted on subsequent generations.  

A total of 12 generation 1 devices were made. The devices were tested 

for leakage current and then submitted to the partners at Oslo University 

Hospital. Addition tests as part of this PhD project were a 7-day soak test 

[82] and a destructive pull test. [79]. Furthermore, we tried to understand 

why there was flash (thin film where the mold parts separate) on the molded 

parts [79]. The 12 devices were used in an undisclosed number of animal 

trials, and the HBV team including this PhD student was present for at least 

six of these trials. By late 2013 all sensors were "used-up". Common 
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damages were unseated decoupling capacitors, severed power transmission 

traces and lack of response from accelerometer axes. It was theorized that 

the lack of response was due to damage to the accelerometer’s sensing die 

caused by dropping the sensor. 

Twelve capsules were acquired for construction of generation 2 

devices. Four capsules were used for mock-ups; the rest were used to 

fabricate working devices. Starting with generation 2, pull tests were 

performed. The pull tests were used to establish the forces necessary to 

implant the sensor ("pull in") and remove it ("pull out") – and, hence, 

indirectly the stresses acting on the heart tissue. The tests conducted on 

generation 2 devices are detailed in section 3.3 and [84]. 

Only two devices of generation 3 were made. Generation 3 introduced 

the pacing functionality. Pull tests, leakage currents tests and animal trials 

are described in Paper III [85]. Capsule polishing is described in section 

3.4.1.  

Generation 4 underwent leakage current tests, and animal trials with 

more detailed examination of pacing and implants stability. The descriptions 

can be found in Paper IV and section 3.5.     

3.2 The first generation of the device  

The first generation of the device was a step into unknown territory. 

Key requirements were identified as: compact size – cross section less than 

that of a 3mm2 cylinder, a biocompatible outer layer of encapsulation, 

smooth, rounded edges of the encapsulation. The first requirement was 

suggested from our medical partners based on their experience. 

Biocompatible materials are necessary for harmonious interaction with the 

host. Sharp edges might damage the organ, either by way of cutting or 

pressure induced necrosis. The other constraint was the interconnection 

technology available at that stage. The available interconnect technology at 

that time was a flexible cable-substrate. The cable substrate consisted of a 
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layered structure of Polyimide, copper traces and adhesive layers. The cable 

is described in more detail in [80, 81]. 

3.2.1 The sensor 

The central part of the system was the CMA3000-A01 3-axis 

accelerometer (Murata Electronics Oy, Finland). It is a MEMS-on-chip 

device with 2x2x0.95mm3 dimensions, the most compact available at that 

time. The CMA3000-A01 is analog. The analog version was preferred for 

software compatibility reasons – legacy software works with analog 

devices. Specifications for the accelerometer can be found in Table 2. 

Table 2: Performance specifications of the CMA3000 from Murata 
Technology Oy. 

Property Value 
Acceleration 

range  
± 2 g or ± 8g 1 

Sensitivity 450 mV/g 1, 2 
Supply voltage 

(Vdd) 
1.7 - 2.7 V (2.7 - 3.6 V) 

Current 
consumption 

180 - 200 µA 3 

3 dB bandwidth 0 - 120 Hz (x and z 
direction) 
0 - 200 Hz (y direction) 

1 g = 9 .8 m/s2 
2 at 2.7 V 
3 in active mode 

3.2.2 Assembly and encapsulation 

A silicone compound was used to encapsulate an epicardial fixation 

accelerometer in a project prior to this [10]. Encapsulating the sensor in 

silicone was selected for the first generation in this project as well, using the 

same technology of molding, but with a new mold. The attractiveness of 

silicone is its proven track record as a biomaterial [13], as well as 

availability and ease of processing.  The particular brand of silicone selected 

was Elastosil R 4001/40 (Wacker Chemie, Germany) because it exhibited 

good mechanical properties in the previous research [10]. The specifications 

for this grade of silicone rubber are given in Table 3. The curing temperature 

of 165 °C was deemed a risk for the sensor as it is considerably higher than 
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the sensor storage temperature. Increasing the curing time can allow the 

silicone to cure at a lower temperature. For fabricating this device, we 

worked out an empirical rule – for every 10°C below curing temperature the 

time in the oven has to be doubled. The curing schedule for fabricating 

generation one prototypes was 2 hours at 135°C. 

 Table 3. Elastosil 4001/40 properties. 

Parameter Units Elastosil 40001/40 
Appearance  Clear 
Press cure  Min @  OC 15 @ 165 
Cure catalyst  Platinum 
Tensile strength N/mm2 11 
Elongation at break % 940 

The encapsulation consisted of three parts: the main body that houses 

the sensor, a silicone tail that covers a stretch of the flex and an attachment 

in the front of the sensor to aid fixation. The width of the main body was 

3mm, the height was 2.6mm, the edges had chamfers with the radius if 

0.5mm. The length of the main body was 5mm. The cavity for the tail was 

3mm wide and 2mm in height, the length was 13mm, edges were also 

chamfered with radius of 0.5mm. See Figure 12. 

 

Figure 12 The mold used in the generation one device. 

 The mold required a coat of a mold release agent on the inner 

surfaces. The compound used was NanoMoldcoating™ (MouldPro, 

Denmark). To ensure a strong bond between the polyimide of the cable-

substrate and the silicone structure of the encapsulation a primer was 
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applied before curing. The primer employed in this project is G 790 (Wacker 

Chemie, Germany). An assembled device is shown in Figure 13. 

 

Figure 13 A generation one design. 

3.2.3  Implantation procedure 

The device was planned with myocardial or sub-epicardial placement 

on the left ventricle. The device was somewhat different from the heartwires 

so another implantation procedure was used. The procedure employed in 

this device is known as the „Seldinger technique”, it is named after a 

Swedish radiologist who created this technique and published it in 1953 

[86].  

„Seldinger technique” is a multistage implantation technique. Step one 

is cannulation – a channel is made in the ventricle with a cannula (large, 

hollow needle). Step two is guidewire insertion, the guidewire is inserted 

into the cannula and the cannula is removed from the channel leaving only 

the wire inside. Step three is catheterization; the guidewire is used to guide 
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the introducer catheter containing the sensor into the channel. Step four is 

the removal of the catheter leaving the sensor inside. See Figure 14. 

Figure 14 Schematic illustration of Seldinger technique steps. 1) 
Cannulation. 2) Guidewire insertion. 3) Catheterization. 4) final stage, 

sensor is implanted. 

3.2.4 Deployment in animal trials and system tests 

Generation one sensors were used in a set of animal experiments. The 

performance was satisfactory as a proof of concept study, but revealed a 

number of drawbacks. Characterization included soak testing, leakage 

current measurements and destructive testing. The soak test indicated 

sufficient insulation as the sensor was not affected by the exposure to saline 

solution, destructive tests indicated over 35N force necessary to forcefully 

strip the encapsulation from the sensor-substrate assembly and leakage 

current was below the threshold set by International Electrotechnical 

Commission’s (IEC) standards. The tests and their results are detailed in 

[79, 82]. Sensors performed well in lab trials, but the animal experiments 

exposed the limitations of the design. The study, that our medical partners 

used generation one devices for, needed 4 sensors to be used at the same 

time: one sensor implanted with sub-epicardial placement on the left 

ventricle, one sutured on top of the ventricle close by (reference sensor), one 

sutured to the posterior wall (the back wall) and on the right ventricle. It was 

observed that the Seldinger technique creates a channel that is too dilated. 

This is likely due to the large diameter of the introducer used in the 

procedure. The zig-zag attachment in the tip of the device was not enough to 

ensure fixation so additional stitches had to be used. It is still possible to 
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pull the device out, but the stitch has to be firm enough to ensure fixation 

but loose enough to make the extraction possible. This makes the procedure 

less reliable and less predictable. The other problem was that the flexible 

substrate-cable is very stiff in the lateral direction, and may cut the tissues in 

the point of contact (the channel under the rib cage where the cable exits the 

body). While the results were positive, and the concept was validated, it was 

obvious that a redesign was necessary.  An experimental set-up from one of 

the animal trials is shown in Figure 15. 

 

Figure 15 The set-up from one of the animal trials. In the middle a 
sensor is placed sub-epicardialy with the reference sutured left of it.  
Towards the right the cable from the sensor placed on the posterior 
wall can be seen, top center the tip of the sensor sutured to the right 

ventricle can be seen. 
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3.3 The second generation of the device 

Generation two devices were called to address the problems with the 

implantation method used to achieve subepicardial fixation. This device is 

described in Paper II or [84]. The decision was to emulate the heartwires not 

just in the placement but also in the layout. Generation two device consisted 

of a round cable, a tapered, cylindrical capsule containing the sensor, and a 

thread with a needle salvaged from a heartwire. The acceleration sensor was 

the same as in generation one (CMA3000-A01). This device was somewhat 

less manufacturable (requiring more manual work) than the previous 

generation but proved to be superior in animal trials. 

3.3.1 Assembly and encapsulation 

The chief component of the encapsulation of the second generation 

device is the capsule containing the sensor. A cylindrical shape was selected 

due to ease of manufacturing. 316L formulation of stainless steel was 

selected. 316L is a widely used biomaterial and has excellent mechanical 

properties [65]. The dimensions of the capsule are shown in Figure 16. The 

tip of the capsule is solid except a channel for the thread due to machining 

method limitations. 

 

Figure 16 Dimension of the capsule used in the second generation 
device. All dimensions in mm unless otherwise stated. 

 A thread with a needle, taken from a commercial heartwire, was 

attached to the capsule. It was accomplished by feeding a stretch of the 

thread through the channel in the tip and tying a knot on the end inside the 

capsule. Two types of threads were used in prototype assembly: a non-
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absorbable, monofilament polypropylene suture; Surgipro II V-20 

(Covidien, USA) and a steel wire Ethicon MPW10 temporary myocardial 

pacing lead (Johnson and Johnson, USA). Both the pacing lead and the 

suture had the same type of needle: half circle, taperpoint, arc length 26mm. 

The polypropylene suture was very robust and was the preferred solution for 

sensors that would be re-used. However, in animal trials, the metal thread 

from the Ethicon lead demonstrated advantages – the metal wire could be 

bent or kinked for additional fixation. Figure 17 shows the package of both 

the suture and the heartwire used in the construction of generation two 

prototypes. 

 

Figure 17 Surgipro II V-20 (top) and Ethicon MPW10 (bottom). 

  A critical part of the system is the joint between the capsule and the 

sensor-cable assembly. The mechanical joining techniques that was 

considered: crimping, threaded connection and welding. Crimping is the 

technique of joining two pieces of metal or other ductile material by 

deforming one or both of them to hold the other. This process does not have 

a high degree of control over joint geometry. A threaded connection would 

require making room for the thread inside the capsule and that would be 

undesirable. Welding, for example a laser welded connection between 

capsule and a feedthrough, is a very popular way of making hermetic 

connections for medical devices [87, 88]. This is a highly attractive method, 

but it was decided against using this technique due to lack of flexibility. 

Welding would require a metal feedthrough to be a part of the cable and 
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would have to match the capsule. It was foreseen at that point, that neither 

the cable, nor the capsule are final. A new feedthrough would have to be 

made for every change in the cable or capsule. Both the feedthrough and the 

laser welding would have to be outsourced. A consensus solution, one that 

allows for control of the joint geometry, possesses sufficient mechanical 

strength and is flexible enough to be applied to various geometries of 

capsules and cables was needed. Potting, a process of filling a complete 

assembly with an adhesive compound, was selected as the solution for the 

joint.    

 To create the joint, the capsule was filled with adhesive and the 

sensor was placed inside. The displaced excess adhesive was removed and a 

swab was used to shape the geometry of the transition between. In the 

process of manufacturing prototypes it became apparent that the “ideal” 

adhesive would need to have conflicting properties. Low viscosity adhesive 

easily fills the inside cavity of the capsule, whereas a high viscosity 

adhesive was difficult to get inside the cavity. A low viscosity adhesive, 

however, gave very little control over the transition geometry, whereas a 

high viscosity adhesive was easy to shape. Three adhesives were used in the 

fabrication of generation two prototypes: the 353ND-T Epoxy (Epotek, 

USA), 203TX Cyanoacrylate adhesive (Panacol, Germany) and MED-4211 

two component silicone (Nusil, USA). Specifications are listed in table 4. 

Table 4 Adhesive properties per specification. 

 Appearance Viscosity@ 
20RPM/23°C 

Curing Post curing 

Cyanolit 
203TX 

transparent 2,200 cPs Dependant 
on 
conditions 

24 hours at 
room 
temperature 

353ND amber 9,000-
15,000 cPs 

Minimum 
30 min at 
80°C 

n/a 

MED-
4211 

translucent 
grey 

Part A: 
105,000 cPs 

Part B: 1,500 
cPs 

3 min at 
150°C 

1 hour at 
150°C 
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 MED-4211 adhesive was eliminated from further trials when it 

demonstrated poor adhesion to metal. 353ND-T and 203TX adhesives both 

proved to be usable for fabrication of the device. A SolidWorks CAD 

(Computer Aided Design) model of the assembly can be seen in Figure 18 

and photo of an assembled device can be seen in Figure 19. 

 

Figure 18 A CAD model of a generation two prototype. Capsule 
made transparent to provide a view of the inside. 

 

Figure 19 Left, a capsule and a sensor-cable assembly prior to 
potting, right, an assembled device. Coin shown for scale purposes. 
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3.3.2 Implantation procedure 

The implantation procedure for the generation two device would 

closely emulate that of a heartwire, not only in sub-epicardial placement but 

also by the procedure used to get there. The needle is used to make a 

channel in the tissue, and then the thread is used to pull the capsule into the 

channel. This technique is called “blunt dissection”. After the capsule is 

placed, the thread with the needle is cut. Procedure shown in Figure 20. 

Figure 20 Placement by blunt dissection. A) Channel has been made 
and the sensor is pulled into the channel. B) Device placed, white 

oval highlights the device position. 

3.3.3  Animal trials and system tests 

3.3.3.1 Pull-in tests 

It is important to estimate the forces acting on the device assembly 

and to evaluate the robustness of the adhesive joint and to evaluate the 

forces acting on the organ. To approximate cardiac tissue, a soft tissue 

phantom (Blue Phantom, USA) was used. It is to be understood that this 

phantom lacks a number of features present in a living heart, such as heart 

contractions, blood vessels and a fibrous layer. However, as it is tailored to 

represent soft tissue and is intended to be used in ultrasound guided biopsy 

training. We therefore found the soft tissue phantom suitable for carry out 

initial testing.  However, to provide data closer to real-life scenarios, pig 

hearts were acquired from a butcher to be used as an alternative to the 

phantom. A force gauge (Model M4-2, Mark-10, USA) was used to record 

pull in and pull-out forces. The device sampling rate for continuous, force-

over-time measurements is 10Hz, for single measurements 3000Hz. The 

resolution is 0.005N, accuracy is -/+0.2% of scale (0.02N). The pulls 
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indicated a near linear increase of force as the capsule dissects the channel. 

The Blue Phantom demonstrated much higher forces than those found on 

the pig hearts, particularly on the pull-out. The placement procedure would 

also go more smoothly on the phantom. On the pig heart, initial resistance 

would be followed by capsule quickly entering the channel, on the phantom 

the capsule would enter the channel proportional to the force applied. Over a 

series of 15 pulls on the phantom pull in force average was 5.5N and pull-

out 4N. The pig hearts displayed average 3.9N for pull in and 1N for pull-

out.      

 

Figure 21 Pull in and pull-out force-over-time curves for one of the 
pulls on the phantom. 

 

Figure 22 Pull in and pull-out force-over-time curves for one of the 
pulls on a pig heart. 
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Figure 21 and Figure 22 represent a typical force-over-time curve for 

a capsule being placed (pulled in) and pulled out. On both figures the peak 

of the pull in curve means the sensor is placed as desired, pull-out peak 

means the sensor started moving out of the channel at this force. More pull 

data is available in Paper IV. Pulls were conducted with both functioning 

devices and mock-ups without the sensor inside, no mechanical damage to 

the assembly was observed. 

3.3.3.2 Animal trials 

The generation two sensors were used in a number of animal trials, 

normally it would be deployed alongside generation one sensors that acted 

as a reference. The placement by blunt dissection as opposed to Seldinger 

technique was found to be a good solution. The new technique is less 

traumatic – the channel is dilated less and is simpler to execute with a less 

possibility for errors. On two occasions unwanted retraction from the 

channel, in the direction of the cable, was observed. To avoid retraction an 

additional stitch was made with the thread attached to the capsule. Probably 

the placement of the sensor is dependent on the doctor performing the 

operation. The retraction was observed only in two cases, the rest of the 

times the sensor was deployed, placement was found to be stable. 

3.4 The third generation of the device  

Generation three had the same general lay-out as the generation two 

and used the same accelerometer. The innovation was in the capsule shape 

and the manufacturing method of the capsule. Generation three metal 

capsules were made by additive manufacturing using a Concept Laser M2 

Cusing (Concept Laser, Germany) machine. These capsules allowed testing 

geometries that are difficult to manufacture with traditional methods. 

However, post processing steps was necessary. The material used is the 

same as in the previous generation device, 316L Stainless Steel. In addition 

pacing and electric sensing function were integrated into this prototype. This 

was an important development. Heartwires are commonly used on CABG 

patients. If the device under development is unable to be used for pacing, 
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then heartwires would have to be implanted in addition to the device. Using 

the metal capsule as a unipolar pacing electrode allows decreasing the 

number of implanted devices. 

3.4.1 Capsule 

The generation three devices followed the generation two device 

assembly process, but for two distinctions: the capsule and the integrated 

monopolar pacing lead function. The capsules made by additive 

manufacturing allowed for geometries that are hard to attain by machining. 

The AM capsules, however, required post processing procedures (polishing) 

to be made suitable for use. Multiple capsule geometries were 

manufactured, but the selection was made in favour of the capsule that 

would make the smallest device. This was achieved by flattening the top and 

bottom of the cylindrical capsule, leaving just enough room to place the 

sensor and to secure it with an adhesive. The dimensions are presented in 

[85].  

The capsules were washed prior to being sent to our laboratory. Upon 

visual inspection rust was observed on some of the capsules, see Figure 23. 

Rust on stainless steel is not an unknown phenomenon. Rusting of stainless 

steels is a surface effect, this can occur when a layer on the surface of the 

material is not sufficiently mixed with chromium and may rust. This can 

happen after procedures such as welding [89]. The Direct Metal Laser 

Sintering (DMLS) used in Cusing machines is equivalent to welding fine 

steel powder [90].  
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Figure 23 Capsule used in the assembly of generation three 
prototype before any post processing steps. Note the rust spot. 

It was decided to polish the capsules to remove rust. Surface 

roughness was also unacceptable. Polishing was conducted by a two-step 

procedure. The first step was to polish the capsules on a Struers Knuth Rotor 

grinding station. The capsules were first polished with a P1500 grit SiC 

paper, then with a P2100 grit paper. The polishing cleared the rust and made 

the surface considerably less rough. No rusting was observed on polished 

capsules, even after lengthy exposure to saline solution, such as the leakage 

current test detailed in [85].  Abrasive polishing left a small number of 

“pits” on the surface of the capsule. These surface defects sensitize the 

metallic part to pitting corrosion [64]. The 316L formulation of stainless 

steel is vulnerable to pitting corrosion [91]. The risk of such corrosion was 

reduced by performing electrochemical polishing (ECP) [92-94]. Not only 

does the electrochemical polishing make the surface smoother, it also 

preferentially removes iron atoms compared to chromium leaving a more 

corrosion resistant layer on the surface [93]. The surface of the capsule is 

rough not just on the outside, but also the inside. Figure 24 shows the cross 

section of a polished capsule of the same design as in [85]. 
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Figure 24 Cross section of a capsule used in generation three 
device, note the inner surface roughness. 

With the idealised geometry from the CAD file, assuming 316L steel 

density is 8000kg/m3 the mass of the capsule after two polishing steps is 

still about 20% higher. See Table 5. 

Table 5. Capsule mass comparison. 

 Calculated Unprocessed Mechanical 
polish 

ECP 

Mass 
(g) 

0,0510 0,0990 
0,1080 
0,0940 

0,0710 
0,0740 
0,0699 

0,0602 
0,0615 
0,0595 

3.5 Assembly and encapsulation 

The solution used to enable pacing functionality made the assembly 

process more complex. The potting would take 3 steps. First, a drop of 

adhesive was put into the capsule’s tip. The second step would involve 

placing conductive adhesive on a dedicated pad on the bottom of the 

substrate and placing the assembly inside. The third step would be 

completing the potting. The schematic illustration of the device is shown in 

Figure 25. 
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Figure 25 Schematic illustration showing the way of achieving an 
electrical connection to the capsule. Top – substrate with a contact 

pad to connect to metal capsule. Bottom – cross section of an 
assembled device, non-conductive adhesive not shown.  

3.5.1 Animal trials and system tests 

Two devices of generation three was made. The devices demonstrated 

good performance in both system tests and animal trials. The details of the 

tests can be found  in [85]. Some concerns were raised as to the current 

density. The surface area of the capsule is larger than that of a pacing lead, 

which could, in theory, lead to insufficient current density and inability to 

pace. The pacing threshold recorded when pacing the heart was at the lower 

end of the scale of the pulse generator. This leads to a conclusion that 

current density achievable on that capsule is sufficient. Experimental set-up 

is shown in Figure 26. 

 

Figure 26 A generation three sensor implanted alongside a heartwire 
in a sensing and pacing set-up. 

3.6 Generation four 
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The generation four devices used a new, more compact accelerometer. 

The sensor was provided by a partner company, the sensor is much like the 

Bosch BMA355. The sensor dimensions are 1.5x1.2x0.8 mm3. The other 

important advantage of this sensor over the CMA3000A device is the high 

maximum storage temperature - +150°C. This temperature is higher than the 

temperature used in autoclaving and should enable safe sterilization of the 

devices with this method. The layout was the same as the previous devices, 

but the capsules were more compact and had a number of distinct features. 

As this was device was assembled late in the project, it also the best 

characterized device. 

  

3.6.1  Cable flexural rigidity evaluation 

Over the course of the project two approaches were used: a round 

cable [84] and an integrated cable and flex substrate solution [79, 80]. The 

cables evaluated are: 

A. A round cable that was used in early stages of the project [10] 

(a custom cable ordered from New England Wire 

Technologies, USA), outer diameter of 2.0mm. The system 

requires five conductors, and this cable has ten, and its outer 

diameter is larger than some of the capsules. This would 

further complicate its use with some capsules. However, it has 

been successfully used previously as well as being approved 

for clinical trials.  

B. A flex in tube design; a narrow, flat flex cable-substrate inside 

a polyethylene terephthalate (PET) tube, with an outer 

diameter of 1.2mm. The flex cable-substrate is a custom 

solution from Dyconex (Switzerland).  

C. A silicone overmolded flex; the same flex cable-substrate as in 

B, but overmolded with a two-component silicone (MED-4211 

from NuSil, USA) using a custom mold.  

D. A custom made round cable manufactured by New England 

Wire Technologies (USA). Outer diameter of 1.2mm. 
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E. A flex in a silicone tube with an outer diameter of 1.2mm. The 

flex is the same flex cable-substrate as in B and C.  

Schematic illustration of the cables cross sections are shown in Figure 

27. Cables shown are to scale. 

 

Figure 27 Cross sections of cables evaluated for flexibility. 

A sensor implanted into the cardiac tissue will be subjected to a 

number of forces. The force the bending of the cable exerts on the implant 

may cause accidental retraction. A test setup was made to imitate this 

situation and to measure the force from the different cables. The sensor 

placement in a patient was approximated with a set of two fixtures: one 

fixture to emulate the placement in the heart and the second where the cable 

exits through the chest and is fixed, see Figure 28. The heart motion was 

approximated by motion along two axes only. The force gauge was placed 

on the bench and the cable was attached to the force gauge, the other end of 

the cable was attached to a moving stage – an orbital shaker (GFL 3005 

from GFL, Germany) with 20mm circular orbit. 100mm long stretches of 

cable were used in the test. Two sets of experiments were conducted with 

varying maximum distance between the fixtures (varying slack): 95mm and 

80mm. It is to be understood that the cable organization in the chest cavity 

will always be decided by the medical professional performing the surgery. 

However, the results of this experiment can help formulate guidelines on 

cable organization. 
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Figure 28 Schematic illustration of the flexural rigidity test. A) Start of 
test, platform at 12 o’clock position. 1 – clamp on the moving platform 
(fixture to emulate the placement in the heart), 2 – cable under test, 3 
– force gauge (fixture to emulate the cable exit through the chest). B) 

Moving platform in 6 o’clock position. 

The test revealed significant differences in cable rigidity. The A and 

B type cables turned out to have the greatest rigidity. With 5mm slack cable 

A displayed 0.035N force (in both 6 o’clock and 12 o’clock positions). 

Cable B recorded forces or 0.11N in the 6 o’clock position and as high as 

0.26N in the 12 o’clock position. Slacking the cable greatly reduced the 

forces, even cable B displaying forces of 0.03N at 6 o’clock and 0.025N at 

12 o’clock. The forces recorded with the thinner cables (C, D, E) were 

below the accuracy of the force gauge (0.02N). 

3.6.2 Joint design analysis 

The joint between capsule and cable could not be manufactured 

uniformly. As the capsules and cables got smaller, manual handling became 

more and more of a problem. It is relevant to know whether the 

inconsistencies of joint geometry can compromise the assembled system. A 

FEM model was created with this purpose in mind using the COMSOL 

platform. Three types of joint geometry were prevalent: “normal” – the 

transition is hemispherical or close to it, “bent” – the cable was not held 

upright during the curing process and the cable is off-axis to the capsule, 

“overflow” – too much excess adhesive resulting in a much larger joint. See 

Figure 29. 
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Figure 29 Joint geometris evaluated in the model. A) normal, B) 
bent, C) overflow. 

The model consisted of the metal capsule, and the adhesive with a 

channel in the middle corresponding to the cable. Diameter corresponded to 

the type C capsule’s channel found in Paper IV. Two different models were 

created for each geometry. One model had the forces pushing on the inner 

channel in the Y direction to represent the loading from the cyclical motion 

inside the heart. Second model with loading directed in the Z direction to 

represent the loads during pull-out. Force directions are indicated in Figure 

30. The decision to use the 0.2N force in the lateral direction was based on 

the force measured in the cable stiffness test found in paper IV. Force 

simulating the pull-out was double the maximum pull-out force found in a 

living heart for C type capsule. The material properties for the 353ND-T 

epoxy were taken from [95]. Young’s modulus – 2.1 GPa, Poisson’s ratio – 

0.391, density 1020 kg/m3, yield strength – 36 MPa (36 000 000 N/m2). The 

fixed constraints were on the outer walls of the steel capsule. The success 

criteria was if the von Mises stresses in the joint are below the yield strength 

then the design is sound. The model probes were set-up to calculate peak 

stress concentrations and the average for the entire joint. 
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Figure 30 Forces applied in the two models for the «normal» 
geometry, the boundary where the force was applied is highlighted in 

blue.  

The results indicated that all three geometries are suitable and do not 

compromise the mechanical integrity of the joint. Stresses are concentrated 

along the edges of the capsule in the direction of the sideways pressure. For 

the pull-out, the “bent” geometry showed stress concentrations at the edge 

of the transition.  The calculated stress values distributions are shown in 

Figure 31 and the peak and average stress values are summarized in table 6. 

 

Table 6. Von Mises stress values from the models. 

Geometry Sideways load  Pull-out load 

Peak 
(N/m2) 

Average 
(N/m2) 

Peak 
(N/m2) 

Average 
(N/m2) 

Normal 81,736 9,096 1,297,707 343,011 

Bent 89,117 9,113 1,740,252 343,220 

Overflow 120,407 13,296 1,106,251 288,581 
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Figure 31 Left column – sideways stress distributions, right column – 
pull-out stress distributions. 

 Overflow geometry yielded high stresses for sideways load. This is 

due to the fact that in this type of loading, stress is concentrated on the edge 

on the metal capsule. The overflow joint has the adhesive on both the inner 

edge and the outer edge, compared to other geometries. However, the larger 

area over which the load is distributed reduces the pull-out stresses. The 

“bent” geometry, in the case of a pull-out loading has a stress concentration 

in the part of the joint that directly over the central axis of the capsule. The 

normal geometry distributes the stresses more evenly than the other 

geometries. 
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4 Concluding remarks and potential future 
work 

The project has achieved its main goal. Heart monitoring with easy 

implantation and removal with additional pacing capability was 

demonstrated. Over the four generations of the prototypes developed, each 

individual generation decreased traumatism, improved usability and added 

functionality. System tests, such as leakage current recordings, indicated 

compliance to the appropriate standards. The animal model trials have 

verified two important aspects: traumatism level and ability to sense heart 

ventricle motion. The traumatism level was deemed to be acceptable. 

Momentary bleeding was observed, likely from the fine blood vessels in the 

cardiac muscle, in a minority of the implantations of generation 2 devices. 

Most implantations showed no signs of bleeding. Arrhythmia was never 

observed in any of the animal tests, including after pull-out. It can be 

concluded that the fixation of the implant in the tissue is sufficient to 

perform heart monitoring in open and closed chest conditions. This is the 

main acheivement of the project. The fixation, however, may still be 

vulnerable to extraction, so organising the cable and taking care not to 

disturb the sensor is important. 

This technology is targeted at patients recovering from CABG. It is 

targeted for 4-7 days inside the patient, followed by extraction. The device 

is not to be reused. The device developed in this project fits those conditions 

well. Given the limitations of time, funding and access to animal models 

there are still ways to improve the device. Some future work is described in 

the following section, roughly in the order of importance. 

4.1 Device regulatory status 

The devices presented in this thesis were fabricated using 

prototyping means, and they would have to be redesigned for manufacturing 

before any such certification or approval would be relevant. Clinical studies 

with humans do not require a CE mark – a risk assessment is sufficient. 

Such a risk assessment was carried out for the device presented by Imenes et 
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al. [10]. The devices described in this thesis only underwent the risk 

assessment necessary for animal trials. Subsequent human trials will be 

conducted after due risk assessment, with a device adopted for commercial 

manufacturing. 

In this PhD project, prototype devices have been used in animal trials 

in a pre-clinical stage. The device described in this thesis is an active, 

implantable diagnostic device that is in direct contact with the circulatory 

system. This puts the device into Class III according to the 93/42/EEC 

directive [96].  

Class III devices require extensive testing before they are allowed on 

the market. In Europe a certificate of conformity mark (CE mark) must be 

obtained. Obtaining the CE mark means going through a conformity 

assessment procedure, such as having a notified body conducting an audit of 

the device’s design, based on the standard ISO 13485:2003. In the United 

States, the Food and Drug Administration mandates that the device must 

pass premarket approval – a process of scientific and regulatory review to 

evaluate the safety and effectiveness of Class III medical devices.  

4.2 Potential future work 

4.2.1 Survival trials 

“Survival” in this case refers to the test subject in an animal model 

study. The performance of the sensor should be evaluated in a living organ 

for the entire duration of a 4-7 day hospital stay timeframe. The remodeling 

of the tissues could affect the pull-out procedure, and in vivo force 

recording would be interesting. However, the scar tissue formation might be 

incomplete and an extraction after 4 days might not be different from an 

extraction on the same day. Timeframe given for scar tissue encapsulation of 

implants is given as “weeks” [64]. 
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4.2.2 Finite Element Model 

A working Finite Element Model would simplify testing of capsule 

geometries. This could also greatly reduce the number of animal trials 

necessary to establish the preferred geometry. Models that describe the 

mechanical properties of the heart muscle do exist, such as [97], and could 

serve as a basis for  a working model. In this project, some attempts were 

made at a model to study tissue – capsule interaction. However, due to 

problems with the model it was decided to focus on work with actual 

sensors. 

4.2.3 Smaller accelerometer 

Within this project an effort was made to use the smallest, comercialy 

available accelerometers. Due to this, prototypes and custom made devices 

were not considered. However, MEMS Tronics, a global MEMS foundry, 

has a prototype 3-axis accelerometer with 1.05x1.65mm2 footprint (height is 

not specified) [98] that is in a high state of readiness. If the height is 

comparable to the Bosch BMA 355 then the encapsulation for this sensor 

could be made even more compact. 

4.2.4 Reusable device 

The sensor is disposable, targeted at single use. However, there might 

be a need for a reusable device. This could be either a device for clinical 

practice or a device that could be used for training. For clinical practice, the 

redesign would have to include measures that would ensure the device 

remains functioning after multiple sterilization and implantation procedures. 

The device would also need a reliable and simple way to re-attach the thread 

to the capsule after it is removed. A reusable device used for training would 

only need to take care of the needle re-attachment. A capsule was fabricated 

for such a device – the channel in the tip was replaced by a “needle eye” 

type of design. See Figure 32. This design was never tried out in an animal 

model, as priority had to be given to other devices. 
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Figure 32 Capsule model with an «eye» for needle attachement. 

4.2.5 6-axis sensing   

The limitation of the system under development in this thesis is that it 

only monitors 3 translational axis. Heart motion has a rotational component 

to it as well. A 6-axis sensor that  can monitor rotation together with 

translational axis would be more descriptive of the ventricle motion. To the 

best of author’s knowledge, this work is already underway at the 

Intervention Centre of Oslo University Hospital. However, currently 

available IMUs (Inertial Measurement Units, a common name for a 

combined 3-axis accelerometer and 3-axis gyro) are far too large to permit 

sub-epicardial placement. 

4.2.6 Active fixation 

An active fixation, such as a retractable screw, would simplify the 

implantaion procedure. It could remove the subjectivism due to different 

techniques of blunt dissection that would be individual for any given 

physician. This might not be feasible for a disposable device, as this would 

complicate the design and make it more expensive.  

4.2.7 Use in long term monitoring 

Long term monitoring of the human heart is typically accomplished 

by pacemakers where electrodes are placed inside the ventricles and atria of 
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the human heart. However, in certain cases, permanent pacemaker leads are 

implanted directly on top of a ventricle, not inside. This type of lead, if 

equipped with an accelerometer, would provide the same effect as the sensor 

in [10]. The actual encapsulation would have to be revised to be suitable for 

permanent implantation and additional signal processing would be 

necessary to filter out non-cardiac components of the acceleration. In a long 

term monitoring device using a cable would not be possible so a wireless 

protocol would be necessary to transfer data and a battery or an energy 

harvester. The accelerometer used in generation 4 devices, the BMA355, has 

a current consumption of 130µA at full operation and 6.5µA in low power 

mode [99]. Whether currently available batteries are sufficient or an 

additional energy harvester would be necessary to ensure sufficient long 

term operation, is a question that needs a separate study. 

4.2.8 Bipolar pacing 

The device in this thesis works as a unipolar pacing lead – it needs a 

second electrode to form a circuit and conduct pacing or ventricle electrical 

activity sensing. Bipolar devices come with two electrodes and allow pacing 

and sensing with just one implant. Bipolar pacing is not necessarily better 

than unipolar, both have their uses [100]. However, there could be a 

situation where bipolar pacing would be preferable and this could be 

implemented by a slight redesign of the existing system. 

4.2.9 Expanding the diagnostic application 

The advantage of ventricle motion sensing over ECG will always be 

that it is a direct way of characterizing heart contractions. ECG effectively 

records what the nervous system tells the heart muscles to do, whereas 

ventricular motion recording tells you what the muscle is actually doing. 

This might be advantageous not only for ischemic patients but also for other 

heart conditions. To author’s best knowledge, the Intervention Centre team 

had deployed the sensor in heart failure trials. The experimental conditions 

are when the function of the left ventricle is replaced by a pump and only 

the right heart (ventricle and atrium) remain functioning. The device was 
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used to sense the failures in right heart. This is a potential avenue for future 

work. 

4.3 Cautionary tales 

The project was quite successful; the design was validated both in 

system test and animal experiments. This is not to say that the project didn’t 

have its fair share of failures. Among a number of things that didn’t go right 

two in particular stand out. 

4.3.1 Capsule with a collapsible ring design 

A collapsible ring was an attempt to emulate the M22 pacing lead 

fixation solution (described in 2.5.2). Capsules made by additive 

manufacturing could, in principle, seamlessly integrate this flexible ring into 

the capsule design. A capsule was modelled with a ring on the tip. The 

thickness of the ring was 0.1mm. See Figure 33. 

 

Figure 33 The capsule with a collapsible ring CAD image. 

 COMSOL FEM (Finite Element Modeling) suite was used to evaluate the 

ability of the ring to collapse under applied force. The model demonstrated 

that the ring would deform under 6N load. The integral von Mises stress was 

0.15 N·m2, the maximal von Mises stress was 3.34·1010  N·m2. The 

maximum stress was a concern, however, the stress concentrations were 

only found on the edges of reference geometry used to set up boundary 

conditions. The cause could be the unrealistic constraint of the boundary 

loads. The face where the load was applied would not deform and that 

would cause the stress to be concentrated on the border of the loaded face 
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and the rest of geometry. Despite these stress concentrations concerns a 

batch of these capsules were included in the order sent to the company 

responsible for additive manufacturing. The results were a spectacular 

failure. The rings ended up being sharp, stiff, and prone to breaking at 

unpredictable loads and in unpredictable places. Figure 34 demonstrates an 

untouched capsule with a ring and two that failed in different ways. 

Figure 34 A) Capsule «as is». B) Ring that separated at the base. C) 
Ring that tore on the right hand side. 

The end result was so different in geometry and material properties to the 

model that the results were made completely irrelevant. No further attempts 

at making a collapsible ring by additive manufacturing were undertaken. 

4.3.2 Heat shrink encapsulation 

At very early stages of the project, before the silicone based, 

generation one encapsulation was designed, an encapsulation based on 

medical grade heat shrink tubing was considered. This, in theory, would 

allow for very cheap and quick encapsulation for the device. The 

complications were finding a suitable heat shrink with appropriate diameter 

and stiffness. Sealing one end of the tube would also turn out to be a 

challenge. The idea was abandoned when it became apparent that a 

sufficiently  tapered tip is impossible to achieve without using a long stretch 

of tube and that a neat welding joint is beyond the ability of the author to 

create. Measuring the tube stiffness using the procedure from Paper IV 
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indicated that the stiffness of the cables is such that the forces they create 

during cyclical loading are on the order of the force necessary to pull out the 

implant.  
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