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Chapter 1

Abstract

The motivation for this thesis has been to clarify the significance of quantization errors
in MEMS (Micro Electro-Mechanical System) products and to see how they combine with
normal distribution errors. As a case study, an integrated absolute pressure sensor for the
automotive market was chosen. Combinations of errors in such sensors are often treated as
if they were simple normal distributions and question was if this is sufficiently correct when
considering spread in accuracy and when at the end considering final product capability.

For a product to be capable of meeting its performance specification at the highest possible
yield level it is important to find the most correct way of calculating capability. Many natural
parameters are normal distributed and in practice one often assumes data distributed such
way. This has also been the practice for the heavy vehicle TPM (Tyre Pressure Monitoring)
sensor from Infineon Technologies SensoNor, the sensor selected herein as a case study. It
has quantization in the signal path. However it is assumed that the errors are normal
distributed when calculating its capability. This was background for the establishment of
this thesis, with the literal quotation to

To investigate quantization errors and their influence on capability of MEMS
products.

The heavy vehicle TPM sensors are calibrated, meaning errors from digitizing during this
process also contributes in the error picture and effects capability.

Theoretical calculations, simulations and measurements are performed. Results are an-
alyzed, compared, and discussed in order to conclude and give design considerations for
future products.

All together 4 simulation models were established. The last of the models made, the Final
Model, was the most flexible one, being able to simulate both the sensor and the calibration
process. Different error contributions from LNA gain change, different ADC resolutions,
and different coefficient round offs were analyzed and discussed. The sources of errors were
considered such way that it came clear how they contributed to spread isolated and in com-
bination with each other.

Especially in focus through out this work was a specific LNA (Low Noise Amplifier) gain
reduction for the heavy vehicle TPM sensor. What change in error contributions such a
reduction of the signal gain before quantization give, and how it at the end effects the total
product capability.
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It was concluded that a LNA gain reduction results in larger spread in sensor measure-
ment performance, and that it at the end makes the product less capable. It was also
concluded that coefficient round offs, especially round offs for one sensor PROM coefficient
(PZ1PROM ), gave significantly increased error on the pressure output signal when reducing
LNA gain. A reduction from LNA gain 16 to LNA gain 10 gave an increase in (PZ1PROM )
round off error with a factor of 1.6, from 1.37 to 2.19 kPa for the worst situation (at the
highest temperatures) for 2.5 sensors simulated.

Based on the (PZ1PROM ) finding it was recommended to optimize PROM coefficient scal-
ings for future TPM sensor designs.
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Chapter 2

Introduction

The project has been carried out as a master thesis in collaboration between the Institute
for Microsystem Technology (IMST) at the College of Vestfold (HVE), and the company,
Infineon Technologies SensoNor AS.

Tyre Pressure Monitoring Systems (TPMSs) are considered a safety application for cars
and trucks in the 21th century. Having an accurate monitoring system for tyre pressure
makes it easier keeping tyres from being underinflated. Keeping the tyre pressure inside
manufacturer’s recommendations is important. There are several aspects with it. Correct
tyre pressure is considered a safety, environmental and economical issue, and

• Reduces the risk for fatal injuries on the road (safety asp.)

• Reduces fuel consumption and CO2 emmision (environmental asp.)

• Increases tyre lifetime (economical asp.)

NHTSA ([1]) states on one of their web sites that approximately 120 motor vehicle fatalities
and 8500 injuries can be prevented annually in the United States alone having all passenger
vehicles equipped with TPMS. After a series of fatal car accidents related to tyre failures in
the late 90’s and 2000 a well known TREAD act. ([2]) was signed by President Clinton 1st
Nov, 2000, claiming for a federal law for a tyre pressure monitoring system. This resulted
later in a final rulemaking ([3]), from NTHSA, claiming TPMS mandatory for all vehicles
less than 10000 pounds, from model year 2008 at the latest.

The advantages of having installed a TPMS are all important, and the system performance
rely in the highest degree on the performance of the tyre pressure sensor. This sets the
profession of making tyre pressure sensors in a higher context.

When looking closer at the sensor, it was interesting to consider how to determine its pressure
performance and capability. The mean and spread values of the reported pressure from the
sensor are calculated, giving the basis for capability measures. Quantized values from ADC
(Analog to Digital Converter) conversion and round offs in PROM (Programmable Read
Only Memory) coefficients has an inevitable effect increasing spread. They give distinct,
non-continuous values, making correct capability calculations more complex than with only
normal distribution errors. They also give uncorrelated error contributions, e.g. like ADC
and coefficient round off errors, meaning independent of each other. For the purpose of ease
and simplicity, and since it perhaps does not have to be done otherwise to be sufficiently
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accurate, capability calculations for such MEMS devices as the heavy vehicle TPM sensor
are often considered in whole as giving a normal error distribution. How this simplification
makes a difference for spread and capability conclusions for sensors produced is interesting.
Is there as significant difference or not.

Different error contributions in the heavy vehicle tyre pressure sensor were especially con-
sidered when the LNA gain, Gp, was reduced. This sensors is based on a lower pressure
range sensor and the range extension called for a gain reduction in the ADC to prevent it
from overflowing at the highest pressures. The gain of the LNA amplifier was reduced from
16 to 10. This topic is very specific, and this thesis deals with it as one of the main tasks
of investigation. To see how the quantization errors contribute, isolate and together with
coefficient truncating error.
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Chapter 3

Background Information

3.1 High Capability Requirements for Automotive ap-
plications

In the automotive business it is well established to require low ppm (parts per million) failure
rates. Sensor product specifications are expected to reflect as high as 6 sigma (σ) values for
product performance. The specification limits are set during product design period already
and by looking at extensive measurement results from product characterization.

As part of releasing a product for high volume production, product performance is further
verified in product qualification. A certain number of sensors, typically 77 parts from 3 differ-
ent lots, are taken out for distinct extensive tests in a qualification program. The AEC-Q100
standard, provided by the acknowledged Automotive Electronics Council (AEC), [4], defines
how to run such a qualification program for automotive sensors.

The reason for using probability statistics for specifying product performance in automotive
business segment is to focus and rely on process control and thereby avoid 100% testing of
all components at all corners of temperature and pressure. When having a high number
of sensors produced, one can still easily sample a sufficiently high representative number of
sensors among the total population to verify performance. Sampling somewhere between
0.1 and 1 % of the total amount of sensors produced is normal. These production verifi-
cation tests confirm product capability contineously through out production. If the results
show non-capability, alerts are raised and the failing sensors are handled in failure analysis
programs.

3.2 Heavy Vehicle TPM Sensor

Infineon Technologies SensoNor has several cutting edge Si based MEMS sensors available,
as various pressure sensors and inertia sensors, all designed for the automotive market. The
company has had pressure sensors as its core business since established in 1985. The heavy
vehicle TPM sensor belongs to the 4th generation TPM sensors. All of today’s sensors dig-
itize the sensor die pressure signal for flexibility and control reasons.

The pressure monitoring sensor exist of two parts; The pressure sensor die and the ASIC
(Application Specific Integrated Circuit). The ASIC is where the digitizing takes place. The
sensor die and ASIC die are interconnected by wire bonding and encapsulated in a transfer
moulded plastic package. The ASIC outputs fully compensated sensor die data. Fig. 3.1
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shows schematically the heavy vehicle TPM sensor package and internals.

Figure 3.1: Schematics of heavy vehicle TPM sensor. ASIC and sensor die in package.

Packaging is done by plastic transfer molding. Fig. 3.2 shows schematically how the
heavy vehicle TPM sensor measures and compensates pressure. Tin is applied tempera-
ture, vp is pressure die output signal, Gp is LNA gain, Gadc is ADC gain, Padc is ADC
output, Pres is pressure resolution, Tcomp is compensated temperature, and PS0PROM ,
PS1PROM , PS2PROM , PZ0PROM , PZ1PROM and PZ2PROM are digitized and scaled co-
efficient, PROM coefficients. Pin, Praw, and Pcomp are described in Tab. 3.2.

Figure 3.2: Heavy vehicle TPM sensor pressure measurement and compensation schematics.

3.2.1 Pressure Calibration

Sensor calibration is a trade-off between time/cost and test coverage in high volume pro-
duction. For the heavy vehicle TPM sensor there are used four measurement points for
calibration. Several ADC measurements are done at each measurement point in order to
average to more precise values before calculating PROM coefficients. Tab. 3.1 lists the cal-
ibration points.

All six pressure sensor die parameters (ps0, ps1, ps2, pz0, pz1 and pz2) are determined,
digitized, scaled as PROM coefficients, and programmed. When this is done, the sensors
are said to be calibrated.
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Table 3.1: Pressure calibration points for heavy vehicle TPM sensor.
Measurement point Temperature / Pressure
LT - Low Temperature -20 ◦C / 100 kPa
HT - High Temperature 70 ◦C / 100 kPa
HP - High Pressure 25 ◦C / 657.5 kPa
AP - Atmospheric Pressure 25 ◦C / 100 kPa

3.2.2 Pressure Compensation

Pressure sensor compensation is the corrections of the digitized pressure sensor die result
forwarded from the ADC, over the full pressure and temperature range.

The PROM coefficients have the same name as the sensor die parameters for consistency,
just in capital letters and with the extension PROM, meaning they become PS0PROM ,
PS1PROM , PS2PROM , PZ0PROM , PZ1PROM , and PZ2PROM . They have limited resolu-
tions, from 8 to 16 bits, signed or unsigned, and together with the scaling and mathematics
used, they naturally introduce some quantization errors. The significance of the error vary
with Gp, ADC resolution, temperature and pressure.

Some pressure definitions of interest, related to the heavy vehicle TPM sensor and its pres-
sure measurements are found in Tab. 3.2.

Table 3.2: Heavy vehicle TPM sensor measurement parameters, their descriptions, and their
units.

Parameter Description Unit
Pin Applied pressure kPa
Praw ADC raw pressure data output LSB
Pcomp Compensated pressure LSB
Pout Calculated pressure kPa

3.2.3 Pressure Characterization

Characterization runs are performed to verify the capability of calibration. For the heavy
vehicle TPM sensor such a run is typically a 5x5x3 run, meaning a run over 5 pressures,
5 temperatures and 3 supply voltages, giving 25 verification points at each supply voltage
(Tab. 3.3).

Table 3.3: Example of heavy vehicle TPM sensor pressure characterization run.
Parameter Set point Unit
5 pressures 100, 657.5, 1000, 1250, 1500 kPa
5 temperatures -40, -20, 25, 70, 125 ◦C
3 supply voltages 2.1, 3.0, 3.6 V

3.3 Model of The Heavy Vehicle TPM Sensor

The sensor model for the pressure sensor (not to be mixed with the sensor simulation model)
is central for establishing the simulation models correctly. Each sensor parameter describing
the pressure sensor die performance is listed in Tab. 3.4([9]). The typical, min and max
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parameter values are interesting for the modeling as this tells the variations to be expected.

Some, however not all, pressure sensor parameters are considered to have variations in the
later described simulations. The considerations are based on sensor die characterization re-
sults, whereas some parameters show very little variation. These parameters showing little
variation was set constant at typical values for the simulations. (The same is done when
calibrating sensors in production).

Six parameters are describing the sensor die performance of the heavy vehicle TPM sensor
in terms of its pressure sensitivity and zero point over the full supply voltage, pressure, and
temperature range. These coefficients are:

Table 3.4: Heavy vehicle TPM sensor die parameters.
Sensor parameter Description Unit

ps0 Sensitivity µV/VkPa
ps1 1st order temperature dependency of sensitivity 1/◦C
ps2 2nd order temperature dependency of sensitivity 1/◦C2

pz0 Zero point µV/V
pz1 1st order temperature dependency of zero point µV/V ◦C
pz2 2nd order temperature dependency of zero point µV/V ◦C2

To be able to simulate the pressure sensor it is important to know the mathematics describ-
ing its behaviour from input to output, i.e. to know its transfer function.

The sensor die output signal is defined by([10]):

vp =
ps0 · Pin + pz0 + pz1 · (Tin − 25) + pz2 · (Tin − 25)2

1 + ps1 · (Tin − 25) + ps2 · (Tin − 25)2
(3.1)

Where:

vp is the sensor die output signal in µV/V

The ADC output after pressure conversion is given by ([10]):

Padc = vp ·Gp ·Gadc (3.2)

Where:

Gadc is the ADC gain in LSB/(V/V), given by design as ([10]):

Gadc = 2res/(2 · 0.88) (3.3)

The ADC output signal is a scaled to 12 bits and becomes the raw data signal ([10]):

Praw = Padc · 212−res (3.4)

Fig. 3.2 gives a graphical presentation of the resolution dependent scaling.

Combining Eq. 3.2, Eq. 3.3, and Eq. 3.4 gives the expression for Praw which is resolution
independent, but linearly dependent of the LNA gain, Gp:

Praw = vp ·Gp · 2(12−res+res)/(2 · 0, 88)

= vp ·Gp · 212/(1, 76)
= vp ·Gp ·G12

(3.5)
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The six sensor die parameters are digitized to be able to compensate the sensor. After
digitizing the parameters, the expression for raw pressure data in LSB’s is given as ([10]):

Praw =
PS0 · Pin + PZ0 + PZ1 · (Tin − 25) + PZ2 · (Tin − 25)2

1 + PS1 · (Tin − 25) + PS2 · (Tin − 25)2
(3.6)

Where:

PS0, PS1, PS2, PZ0, PZ1 and PZ2 are digitized sensor parameters

After leaving the scaling block of the ADC the amplified and digitized sensor die signal is
further handled by the pressure compensation routine. Sensor library routines are taking the
digitized sensor parameters as input and compensate the sensor over the full temperature
and pressure range.

Ideally the relation between compensated pressure, Pcomp, input pressure, Pin, and resolu-
tion, Rp, for the heavy vehicle TPM sensor, is given by ([10]):

Pcomp = Pin · 26/Rp ⇔ Pin = Pcomp ·Rp/26 (3.7)

By substituting Eq. 3.7 into Eq. 3.6 and re-arranging, compensated pressure is given with
the digitized coefficients as ([10]):

Pcomp =
26

PSO ·Rp
·
[
Praw ·

(
1 + PS1 ·∆T + PS2 ·∆T 2

)
−
(
PZ0 + PZ1 ·∆T + PZ2 ·∆T 2

)]
(3.8)

Where:

(Tin-25) equalt to ∆T

The compensation routine of the heavy vehicle TPM sensor does not handle the digitized
coefficients directly. It handles the PROM coefficients, stored in the device specific memory.
Before the coefficients are stored, scalings are done according to Tab. 3.5([10]), for each of
the coefficients according to calibration results. This is done to obtain higher digital integer
values giving only smaller round off errors in pressure compensation.

Table 3.5: Relations between sensor die parameters, digitized sensor die parameters, and
PROM coefficients.

Sensor parameter Digitized PROM coefficient
ps0 PS0=ps0· Gp· G12 PS0PROM=212/(PS0· Rp)
ps1 PS1=ps1 PS1PROM=PS1·216

ps2 PS2=ps2 PS2PROM=PS2·223

pz0 PZ0=pz0· Gp· G12 PZ0PROM=PZ0·22

pz1 PZ1=pz1· Gp· G12 PZ1PROM=PZ1·25

pz2 PZ2=pz2· Gp· G12 PZ2PROM=PZ2·213

After taking the relations given in Tab. 3.5 into account, the expression for the compensated
pressure data, Pcomp, expressed with PROM coefficients, arrives at ([10]):

Pcomp =PSOPROM · 2−6 · Praw ·
(
1 + PS1PROM · 2−16 ·∆T + PS2PROM · 2−23 ·∆T 2

)
−

PSOPROM · 2−6 ·
(
PZ0PROM · 2−2 + PZ1PROM · 2−5 ·∆T + PZ2PROM · 2−13 ·∆T 2

)
(3.9)
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To finally calculate the measured pressure from the compensated, Pcomp, which is gotten
from the heavy vehicle TPM sensor when performing pressure measurements Eq. 3.10 is
used:

Pout = Pcomp · 2−6 ·Rp (3.10)
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Chapter 4

Theory

To build up basic understanding for the case some theory for capability, normal distribution
error, and quantized errors is needed.

4.1 Capability

As indicated in the start of Chapt. 2, the confidence level of spec limits depends on the
number of σ values reflected. The higher the σ value reflected, the higher the confidence
level, and thus the higher the probability that the sensor perform inside spec. Fig. 4.1 ([5])
shows the probability, P, for a data sample (as e.g. sensor pressure measurement) performing
inside a certain number of σs provided that the data has a normal distribution. The figure
show also what is referred to as the confidence level. On the x-axis ± 1 σ accounts for 68.3%
of all values, while ± 2 σs and ± 3 σs account for 95.4 and 99.7 % respectively. Already
at 3 σ level, only ≈ 0.2 % of the samples (or just 0.1% on each side on the distribution)
are not already accounted for. The probability, P, for each sample value is between 0 and
1. The integral of the complete curve from σ=-∞ to σ=+∞ equals 1, thus covering all
possible sample values. The highest probability is at the mean value, µ, of the distribution.
The percentages on the figure tell the shares of samples falling within ±1, ±2 and ±3 σs.
Tab. 4.1, [6], shows extensively what are the confidence also for higher σ levels (up to 6 σ).
As one can see, operating with 6 σ levels for process and spec limits, gives a high degree
of confidence that the product performs within limits. When a process is capable with 6σ
limits it is likely that all except ≈ 2,0 ppb (parts per billion) are accounted for.

Figure 4.1: Normal distribution. With σs, probability, P, and confidence levels.
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Table 4.1: 1 to 6 σ confidence levels for normal distributions.
σ level Confidence [%]

1 68.2689492
2 95.4499736
3 99.7300020
4 99.9936668
5 99.9999427
6 99.9999998

4.2 Process Capability Calculations

Generally, the definition of process capability is the ability to perform an action. The action
in this respect is the heavy vehicle TPM sensor’s ability to perform pressure measurements
within spec limits. Statistical calculations for product capability are performed by usage of
equations for Cp and Cpk ([5]). Cp or Cpk values equal to 1.0 means the process is marginally
capable. Values > 1.0 means its capable. Values < 1.0 means its not capable. All related
to 3 σ process capability. To have 6 σ process capability one must require Cp or Cpk equal
to 2.0 to have marginal capability.

Cp = (USL− LSL)/6σ (4.1)

Where:

Cp estimates the maximum Cpk value, the capability if the process could be centered.

Cpk,LSL = (µ− LSL)/3σ (4.2)

Where:

Cpk,LSL estimates capability versus the lower spec limit.

Cpk,USL = (USL− µ)/3σ (4.3)

Where:

Cpk,USL estimates capability versus the higher spec limit.

When considering process capability either Eq. 4.2 or Eq. 4.3 is used. Cpk is the smallest
of the two:

Cpk = min(Cpk,USL, Cpk,LSL) (4.4)

4.3 Standard Deviation for Normal Distribution

The standard deviation, normal described by the lower case sigma, σ, is the square root of
the variance. The variance is the average of the squared differences from the mean value,
µ. When not every member of a population is sampled it is common to divide the squared
differences by N-1 instead of N. The explanation for why is complex. Thus the σ expression
becomes ([5],[6]):

σ =

√√√√ 1
N − 1

N∑
i=1

(xi − µ)2 (4.5)

Where ([5],[6]):

µ =
1
N

N∑
i=1

xi (4.6)
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4.4 Formulas of Interest for Normal Distribution and
Digitized Errors

Formulas herein are later verified in Chapt. 6, Simulations.

4.4.1 Combining Non-Correlated Normal Distribution Errors and
Quantized Errors

When analog signals are digitized, as in the sensor ASIC ADCs for calibration and compen-
sation purposes, there will always be round offs or quantizations. The errors introduced in
this process are considered quantization errors. When there are several independent sources
of quantization errors, as well as sources of normal distribution errors, the standard devia-
tion after combination can be determined by taking the square root of the sums of squared
contributions. The relation is verified in the simulation part, in Chapt. 8.1, and in the
measurement part, in Chapt. 8.2.

σ =
√
σ2

1 + σ2
2 + ......+ σ2

n (4.7)

4.4.2 Relation between standard deviation and quantization

The quantization error of the ADC is due to it’s finite resolution, unavoidable for single
measurements. It is resolution dependent in such way that it decreases with increased
resolution, and it is always in the range of 0 to 0,5 times the quantization step, again for
a single measurement. For rms value of quantization error e, quantization step, ∆, and
standard deviation of a quantization error, σ there are relations as given in Eq. 4.8([7]) and
Eq. 4.9([8]).

erms = ∆/
√

12 (4.8)

Where:

∆ is the quantization equal to 1 LSB
erms is the root mean square of the quantization error

σerms = ∆/
√

12 (4.9)

Where:

σ erms is the standard deviation of the quantization error
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Chapter 5

Methods

This chapter describes the work done in form of simulations, measurements and calculations.

5.1 Scope of Work

The work done was determined by the tasks to be solved. The tasks were:

1. To clarify the effect of ADC quantization in terms of product capability. To see how
quantized errors combine with normal distribution errors (This raised the need for
simulations and calculations)

2. To overall clarify the effects of quantization errors in the heavy vehicle TPM sensor
and how this effects product capability. This was more of a general consideration with
the aim of identifying separate sources of errors, rank them, and to consider them
separately and in combination. (This raised the need for simulations and calculations)

3. To especially look at a case were Gp was reduced from 16 to 10. To determine how this
reduction effects the measurement spread, and how it at the end effected the product
capability. (This raised the need for simulations, measurements and calculations)

Out from what is listed above, simulation models were made to:

• Simulate the contribution of ADC quantization errors of top of normal distribution
errors. A relevant question was: Is it necessary to use the dedicated formulas for com-
bining quantization errors and normal distribution errors calculated from (Eq. 4.7),
or is it sufficiently correct to use the formulas for normal distributions calculated from
(Eq. 4.5) when calculating spread of ADC output?

• Simulate the pressure sensor, all the way from variations in sensor die parameters to
ADC conversion and pressure compensation, including a Random Normal Distribution
Generator (the same generator as used to simulate the ADC quantization)

• Simulate the calibration and characterization process, including a Random Normal
Distribution Generator (the same generator as used to simulate the ADC quantiza-
tion)

• Simulate the pressure sensor in the calibration process, making a final, flexible model
were the parameters effecting quantization errors can be adjusted upon user’s wish.
These adjustments include Gp adjustments (selectable 10 or 16), ADC resolution ad-
justments (10, 11, or 12 bit + ideal ADC behaviour as a selection), and coefficient
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round off adjustments (real or ideal for each coefficients)

The Monte-Carlo method were used for the simulations. This method is identified by

1. Defining a domain of possible inputs (determined herein by sensor die parameters)

2. Generate inputs randomly from the domain (work of random normal distribution gen-
erator)

3. Aggregate the results of the individual computations into the final results (E.g. the
aggregation and further handling of the 2500 simulated ADC results)

Measurements were done for the specific LNA gain reduction in order to:

• Confirm the simulation results for Gp=16 and Gp=10 simulations. The spread in
sensor measurement was expected to be inversely dependent of the LNA gain. This
raised the need to complete identical measurement runs, except for the difference in
LNA gain, on a selected number of parts

NOTE: Quantization errors in terms of round off or truncation errors deeper inside library
routines for pressure compensation are outside the scope of work and was thus not consid-
ered herein.

The methods for simulation and measurements are further described in Chapt. 6 and
Chapt. 7.
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Chapter 6

Simulations

Several simulation models had to come in place, and Excel was chosen as simulation tool. It
was in focus to make a flexible simulation model at the end, a model that showed different
error contributions isolated and in combination with each other - the herein called Final
simulation model.

All together it was made 3 (4) models. All of them made usage of a random normal distri-
bution generator, which not are listed herein as a separate model. The model named the
Final model basically consisted of other models implemented in one larger, flexible model:

• ADC model

• Sensor model

• Process model

• (Final model)

6.1 ADC Model

The heavy vehicle TPM sensor ADC has a sigma-delta (Σ∆) converter, with a 2 MHz crystal
oscillator as clock source, and a selectable resolution (5-12 bit).

The ADC model simulates the behaviour of the ADC, and is capable of combining normal
distribution errors with quantized errors. The error contribution from the ADC quantization
is expected to be significant, and highly dependent of the resolution. Higher resolution give
less quantization error, naturally.

The model handles all resolutions (5-12). However, quantization, ∆, in the model was not
limited to what is obtainable by having small resolutions. Quantizations can be adjusted
directly, to much courser steps than obtained by setting low resolutions like 5 and 6 bit.

The purposes of the model was to:

• To verify the theory that tells there is an increased spread with increased quantization
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• To verify if there are significant differences between the conventional method for calcu-
lating spread, using the formula as given in Eq. 4.5, and the method that summarizes
the squared contributions before taking the square root of it all, as described in Eq. 4.7

Fig. 6.1 shows schematics for the ADC simulation model. As indicated, it is possible to
change either resolution or quantization of the input signal.

Figure 6.1: Heavy vehicle TPM sensor ADC simulation model.

A Random Normal Distribution Generator, an ADC input signal generator, was needed to
simulate input signals for the ADC model. Combined functions in Excel were used to sim-
ulate sensor die output signals with normal distribution behaviour and make the Random
Normal Distribution Generator. The output of RAND() function was as used as input to
NORMSINV() function, giving a normal distribution to the ADC model input. A high num-
ber of simulated sensor die values ensured a representative amount of normal distribution
data to be handled by the ADC simulator. Used number is further discussed in Chapt. 9.1.

A customized function is taking the random generated signal, X, and resolution, res, as
input parameters to simulating the actual AD conversion. The input signal in the model is
normalized with a mean value, µ = 0, and a standard deviation, σ=1. The Excel function
STDAV() is used for verification of the generated series of sensor signals.

Quantizations in the ADC are obtained inside the customized function by usage of the
ROUND() function. Eq. 6.1 shows the customized function. Smaller resolutions result in
larger quantization errors, and vica versa.

ADCCALCNORM =
ROUND(X · (2res − 1), 0)

(2res − 1)
(6.1)

Where the relation between quantization and resolution is given by:

∆ = 1/(2res − 1) (6.2)

Substituting Eq. 6.2 into Eq. 6.1 replaces resolution with the quantization, making it
possible to give quantization, ∆, instead of resolution as input parameter.

ADCCALCNORM =
ROUND(X · (2

ln(1/∆+1)
ln2 − 1), 0)

2
ln(1/∆+1)

ln2 − 1
(6.3)

6.2 Sensor Model

The Sensor model simulates the behaviour of the heavy vehicle TPM sensor. Input vari-
ables are Tin, Pin, all the six sensor parameters, LNA gain and ADC resolution. Outputs
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variables are raw data pressure, Praw, and compensated pressure, Pcomp.

There are several ways of considering sensor die parameter variations for the sensor simu-
lations. They can be considered completely independent of each other, or not. As three
coefficients, PS1PROM , PS2PROM , and PZ2PROM have low variation these were set to
constant values, 0,0021/◦C, 0/◦C2, and 0 µV/V respectively.

The Random Normal Distribution Generator was used to generate variations of the three
other sensor die coefficients. E.g. for generating ps0 values it was done the following way

ps0 = 32 +
NORMSINV (RAND())

6
∗ 5 (6.4)

Where:

32 is the typical value of pressure sensor die sensitivity.
NORMSINV() and RAND() is the random generator generating the normal ditribution.
The number 6 in the denominator is to make 6 sigma limits for ps0 according
to max and min values in the sensor die specification.
The factor 5 is the absolute distance from typ to min and from typ to max values in
sensor die specification.

The input pressures and temperature for the sensor simulations were according to Tab. 6.1.
3 pressures and 5 temperatures were chosen. All together 15 measurements points, covering
the corners of the heavy vehicle TPM sensor product specification, covering also the points
where ADC quantization and coefficient round off effects are most significant.

Pin [kPa] Tin Pin [kPa] Tin Pin [kPa] Tin

100 -20 657,5 -20 1600 -20
100 0 657,5 0 1600 0
100 25 657,5 25 1600 25
100 70 657,5 70 1600 70
100 125 657,5 125 1600 125

Table 6.1: 3x5 measurements points for sensor simulations.

LAN gain, Gp, was selectable between 25.6, 16 and 10 in the start. Later this was reduced
to 16 and 10, to simplify the model, and to be according to the most interesting case dealing
with LNA gain change from 16 to 10.

ADC resolution were made selectable. The quantization of the ADC could first of all be
REAL or IDEAL, meaning the sensor could be simulated without any ADC quantization
error when set to IDEAL. When selected as REAL, the ADCres was selectable between 12,
11 and 10 bits as those are the most interesting ones. Lower resolutions are rarely used
(even in TPMS applications were conversion times and current consumptions are crucial).

Round off for coefficients were made selectable, meaning the PROM coefficients could be
REAL or IDEAL. When IDEAL they gave no error contribution, and when REAL they
resulted in spread in the compensated pressure.

Tab. 6.2 summarizes the selectable parameters for the sensor simulation model in addition
to Pin and Tin.
2 different LNA gains (when not including 25.6), 4 different options for ADCres, and 8
different options for coefficients when considering none, one-by-one and all together, gave
totally 3x2x4x8 = 192 plots covering all these combinations. The first factor of 3 comes
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LAN gain ADCres Coeff Round off
(25.6) OFF (Ideal) OFF (Ideal)

16 ON (12 bit) ON
10 ON (11 bit)

ON (10 bit)

Table 6.2: Adjustable parameters for sensor simulations.

were for making Perr vs T plots for Pcalc for all three pressures (100, 657.5 and 1600 kPa).
However not all of these combinations would be interesting, and thus not even all of them
are listen in the appendix (Sect. A.2.3).

For each simulation performed there were calculated the measured pressure, Pout, from
Pcomp according to 3.2. Results are found in Chapt. 8.1.

Figure 6.2: Sensor simulation model.

6.3 Process Model

The Process model simulates data collection, sensor calibration and characterization as per-
formed in production. The calculated PROM values found here are separated from the values
found in the sensor model by calling them CALC PROM values instead of just PROM value
or PROM coefficients. First step of the process model was to collect raw pressure data in a
data collection step.

Second step was to calculate the three CALC PROMs to be found, PSOCALCPROM ,
PZ0CALCPROM and PZ1CALCPROM . PS1CALCPROM , PS2CALCPROM and PZ2CALCPROM

were set to typical values since of the low variation.

Last step of process model was to perform a characterization to confirm measurement ca-
pability.
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Figure 6.3: Process simulation model.

6.4 Final Model

The aim of the Final simulation model is to make the different error sources of the heavy
vehicle TPM sensor visible isolated and in combination with each other in a way that visu-
alize the effects as well as puts the results as figures and in table form. The final simulation
model is built by assembling the building blocks already established when making the ADC,
sensor and process models. Especially by assembling the two latter ones - since the sensor
model is built to already include the ADC model.

Especially one thing is in focus for the final simulation model; the LNA gain. It had earlier
been seen reduced pressure capability when going from Gp=16 to Gp=10, and thus simula-
tions for Gp=16 and Gp=10 is central. These simulation results, which are found in Chapt.
8.1, are also compared to measurement results for verifying theory with measurements.

Inputs to the model are based on the sensor die parameters found in internal documentation.
Since three of the parameters are found to have very small variation from die to die and
from lot to lot, these were kept constant at typical values during simulations. This is also
done in production, meaning it makes the simulations as realistic as possible. This supports
to have the best control of the simulation, and give the best fundament for comparison. A
listing of individually determined and typically set PROM coefficients are found in Tab. 6.3

A high number of sensors, 2500, can be simulated simultaneously in the model. To model
more sensors several successive runs can be performed. The randomized sensor signals are
generated from functions in Excel, giving fairly good and uniform normal distributions.

Table 6.3: Heavy vehicle TPM sensor coefficient calculations. Individual and typical PROM
values.

PROM coefficient Programmed as
PS0PROM Individual value
PS1PROM Typical value
PS2PROM Typical value
PZ0PROM Individual value
PZ1PROM Individual value
PZ2PROM Typical value
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Chapter 7

Measurements

The aim of the measurements was to confirm the simulation results for the LNA gain case.
48 components, two sub lots, was selected for characterization tests, all components from
one of the Infineon Technologies production lines. Three different runs were successfully
completed, each with a different Gp. It was an important point of itself that the exact same
components were used for all runs, and that they were all run through the exact same test
recipe. This was to have good control of the tests, and to isolate the effect of the LNA gain
change.

7.1 Test Performed

Measurement runs with Gp=16 and Gp=10 are run, and also runs with Gp=25.6 were run.
The intention of the last mentioned run was to check results consistency, meaning to see if
the pressure measurement spread with Gp=25.6 was even smaller than for Gp=16. It was
expected that Gp=10 gave the largest spread and Gp=25.6 gave the most. Tab. 7.1 summa-
rizes the tests completed. The recipe used performed both calibration and characterization,
with calibration points (LT, HT, HP and AT) as given in Tab. 3.1, and characterization
points as given in Tab. 3.3.

Calibration and test time for recipe 1088 was 15-16 hours.

Table 7.1: Calibration and characterization test runs. Gp settings, number of components
in runs, and recipe number.

Gp No of components in run Recipe no
Gp=10 48 1088
Gp=16 47 1088
Gp=25.6 47 1088

7.2 Equipment Used

Prototype test equipment at Infineon Technologies were used for measurements with the
intention of confirming the effect of LNA gain change. Test recipes and data logging were
managed from the control equipment. The temperature chamber had a pressure chamber
inside (Fig. 7.1(b)). In this inner chamber there was a PCB holding sockets for one sublot
(24) of sensors. Hardware was wired from from each sensor sockets on the sensor board via
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connectors, all the way out to the test control equipment.

When tests were prepared there was always placed a pressure resistant lid (not visible on
the figure) on the pressure chamber to seal it from the rest of the temperature chamber
volume. The setup made it feasible to change pressure and temperature with high precision
within the range of 100 kPa to 1500 kPa and -40 to 125 ◦C, according to test recipe (1088),
within a fairly short time.

Flexible air supply tubes for the pressure chamber raised and lowered pressure according to
controls. A fan mounted on the back wall of the temperature chamber made the tempera-
ture change in the volume fast.

(a) Temperature chamber and control equipment. (b) Pressure chamber inside temperature cham-
ber.

Figure 7.1: Test equipment used.
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Chapter 8

Results

8.1 Simulation Results

8.1.1 ADC model

Verification of Random Normal Distribution Generator

The Excel function STDAV() was used to verify the spread on the generated series. The
generator was set up to give a mean value (µ=0) and a spread (σ=1) and the deviation from
it should not be too large to ensure a good approximation to the normal distribution. Fig.
8.1 shows the result for 2500 generated signals. Tab. 8.1 shows µ and σ verifications for five
successive series generated, with 1000, 2500 and 5000 signals. Tab. A.1 shows an extensive
table for generated ADC input signals (Three 2500 series and three 5000 series).

Figure 8.1: Example of signal distribution generated by the Random Normal Distribution
Generator (2500 signals).

It could be seen that the mean and spread values for the generated 1000, 2500 and 5000
sensor die series differed from each other. The mean and spread deviations were smallest
(and best) for the 5000 series and largest for the 1000 series.

As a measure for how far from perfect the generated series were it was taken a closer look at
the values. A chosen measure in this relation was to consider the average value of deviation
for mean and spread values. This was a measure for the variations regardless of direction of
deviation. The absolute values of deviation from target values are summed and divided by
the number of series (5), as shown in Tab. 8.2.
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Table 8.1: Verification of mean and spread values from Random Normal Distribution Gen-
erator.

(a) Mean and spread
for 1000 samples.

µ σ

0,0192 0,9806
0,0281 0,9963
0,0404 1,0220
-0,0180 1,0199
0,0280 1,0169

(b) Mean and spread
for 2500 samples.

µ σ

-0,0166 1,0234
-0,0323 1,0091
-0,0197 1,0057
0,0129 1,0076
0,0013 0,9998

(c) Mean and spread
for 5000 samples.

µ σ

0,0019 0,9983
0,0331 1,0110
0,0058 0,9912
0,0210 1,0001
0,0148 0,9987

Table 8.2: Average deviation for mean and spread values of Random Normal Distribution
Generator.

Parameter / no of generated signals 1000 2500 5000
Average deviation from µ=0 0,027 0,017 0,015

Average deviation for σ=1 (%) 1,6 0,9 0,5

Error Contributions from ADC Quantization

The formula of Eq. 4.9 describes the error contribution from the ADC quantization. Calcu-
lations based on the different steps in the simulation model show that the contribution has
a non-linear relation to resolution, and a linear relation to quantization (Fig. 8.2).

(a) Contribution to spread as function of resolu-
tion.

(b) Contribution to spread as function of quanti-
zation.

Figure 8.2: Spread contribution from ADC quantization.

Comparing Simulated and Calculated Error Contributions from ADC Quanti-
zation

The ADC simulation model verifies the theory for quantization and its contribution to
spread. Fig. 8.3 shows 4 different σ values as a function of resolution and as a function of
inverse quantization, where:

• σ0 is the calculated standard deviation of the ADC input signal

• σdig - with dig for digitizing - is the spread contribution from ADC quantization
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• σtrunc - with trunc for truncation (actually round off) - is the result of the traditional
way of calculating standard deviation for normal distribution errors

• σtot is the result of calculating standard deviation according to formulas for combining
sources of normal distribution errors and quantization errors

(a) Sigma as function of quantization. (b) Sigma as function of inverse quantization.

Figure 8.3: Spread in ADC output in terms of standard deviations.

8.1.2 Sensor Model

Sensor model simulations showed ADC quantization errors at different ADC resolutions and
LNA gains, and coefficient round off errors at different LNA gains.

Choosing ADC IDEAL confirmed no error contribution from ADC quantization, and choos-
ing all coefficients IDEAL confirmed no error contributions from coefficient round offs.

Tab. 8.3 shows simulated ADC quantization errors for resolutions down to 10.

Table 8.3: Result of simulated ADC quatization errors. LNA gain 16 to 10. Values in kPa.
Only highest values shown. (2500 sensors simulated)

ADCres LNA 16 LNA 10 Error relation Comment
12 ±0.50 ±0.88 1.8x worse @ Tin= 125 ◦C
11 ±1.1 ±1.7 1.5x worse @ Tin= 125 ◦C
10 ±2.1 ±3.4 1.6x worse @ Tin= 125 ◦C

Since ps1, ps2 and pz2 was kept fixed and thus gave no variation in the corresponding
PROM coefficients (PS1PROM , PS2PROM , and PS1PROM ), it was most interesting to
consider round off errors for PS0PROM , PZ0PROM , and PZ1PROM . The round off errors
from PS0PROM , PZ0PROM , and PZ1PROM are listed in Tab. 8.4 for LNA gain 16 and 10.
Values are as they contribute in error in the calculated pressure, Pcalc, in kPa.
More simulation results of ADC quantizations and coefficient round offs are found in A.2.3.

8.1.3 Process Model

It was seen that the sensors were not possible to calibrate if all sensor parameters were
considered un-correlated and sensor die parameter specification reflect 6 sigma values. This
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Table 8.4: Result of simulated PROM coefficients round off errors. LNA gain 16 to 10.
Values in kPa. Only highest values shown. (2500 sensors simulated)

PROM coefficients LNA 16 LNA 10 Error relation Comment
PS0PROM ±0.94 ±0.63 1.5x better @ Pin=1600 kPa
PZ0PROM ±0.13 ±0.19 1.5x worse @ All P & T
PZ1PROM ±1.38 ±2.19 1.6x worse @ Tin= 125 ◦C

Table 8.5: Perror contribution from CALCPROM process. LNA gains 16 and 10. ADCres
from 12 down to 10. Largest error only. (2500 simulation series)

LNA gain ADCres Perror [kPA] LNA gain ADCres Perror [kPA]
16 12 ±4 10 12 ±6
16 11 ±6 10 11 ±9
16 10 ±11 10 10 ±20

simply gave very large deviation on pressure measure accuracy when attempted.

Setting PS1CALCPROM , PS2CALCPROM and PZ2CALCPROM values fixed, however made
the method work well.

Different ADC resolutions were set and simulations run to calculate CALCPROMs. Cal-
culated values were rounded to integers as is inevitable, and characterization runs were
performed to verify the calibration process. The characterization pressure and temperature
was set at the same values as used in the sensor model, described in 6.2. Error from ADC
quantization at different LNA gains and ADC resolutions are shown in Fig. 8.4, 8.5 and
8.6.

(a) LNA 16. (b) LNA 10.

Figure 8.4: Perror @ LNA gain 16 and 10 for PROM CALC process. ADCres=12

8.2 Measurement Results

8.2.1 Test to investigate the effect of LNA gain change

Sensor measurements were done to investigate the effect of LNA gain change. They can be
summarized as:

• A total amount of 48 components were selected for tests. These were calibrated and
verified with Gp=10, Gp=16 and Gp=25.6
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(a) LNA 16 (b) LNA 10.

Figure 8.5: Perror @ LNA gain 16 and 10 for PROM CALC process. ADCres=11

(a) LNA 16. (b) LNA 10.

Figure 8.6: Perror @ LNA gain 16 and 10 for PROM CALC process. ADCres=10

• 7 components showed freak, outlier tendencies, or missed certain measurement results,
and was thus taken out before analysis

• This left 41 components for analyzing and confirming the effect of going from Gp=16
to Gp=10

Tab. 3.5 indicate that most of the coefficients are expected to change when Gp changes (as
Gp contributes in the scaling of 4 of the 6 PROM coefficients).

Changing Gp gave 4 new PROM coefficient each time as 4 PROM coefficient scalings are
dependent of Gp.
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Chapter 9

Discussions

9.1 Simulation Results

9.1.1 ADC Model

The Random Normal Distribution Generator was made first time for the ADC model and
therefore its results are discussed here.

There was seen a significant difference for the Random Normal Distribution Generator in
terms of average deviation from target for mean and spread values when changing the num-
ber of signals generated (Tab. 8.2). The improvement from 1k to 2.5k sensor die signals
generated was much larger than the improvement from 2.5k to 5k. The improvement from
1k to 2.5k was from 2.7 to 1.7 % for average deviation of µ, and from 1.6 to 0.9 % for av-
erage deviation of σ. From 2.5 to 5k the same improvements was only from 1.7 to 1.5 %
and 0.9 to 0.5 % respectively. Based on these findings it was decided to proceed making the
sensor, process and final model with 2.5k sensor simulations.

Simulation results for σ0, σdig, σtrunc, σtot are shown in Fig. 8.2. σ0 (pink line) verifies
that the spread of the ADC input signals is at σ=1, being independent of resolution/inverse
quantization. σdig (blue line) is making its appearance only at lower resolutions or lower
values of inverse quantizations (as expected). Its contribution is given by the formula in Eq.
4.9, and it has an inverse, non-linear dependency to resolution/inverse quantization. σtot

(orange line) is the calculated spread according to the formula given in Eq. 4.7, with σ0 and
σdig inserted (as shown in Calc. 9.1).

σtot =
√
σ2

0 + σ2
dig (9.1)

σtrunc (cyan line) is the calculated spread directly performed on the quantized ADC output
signal by usage of the formula for normal distributions (Eq. 4.5). For the higher resolu-
tions/higher inverse quantizations this line follows the σ0 the same way as σtot does. For
lower resolutions/lower inverse quantizations it raises before it again is reduced when the
coarse quantizations in the ADC output signal gives less and less variation in the output
signal. σtrunc crosses the σ=1 line at ≈ 0,3 on the x-axis of the inverse quantization chart,
corresponding to a resolution < 1. At lower resolutions/inverse quantizations the coarse
quantizations makes the σtrunc go in direction of 0, naturally, because there is not spread
left in the signal.

The results shown on the plots of σ0, σdig, σtrunc, σtot confirms:
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• That the contribution to spread from quantization becomes more and more significant
with reduced resolution/increased quantization. This is as expected. To see any sig-
nificant effect of the quantization, however, the resolution must come down to ≈ 4-5
bits when looking at the contribution isolated, and down to 2 bits or less to see it
when combined with the normal distribution already in the quantized output signal.

• The plots confirms also that the difference between the methods of calculating spread
on quantized ADC outputs is just minor. The cyan line for the traditional way of
calculating standard deviation, σtrunc, of normal distributions follows the orange line,
σtot, for how to add several independent contributions of spread.

9.1.2 Sensor Model

Simulation results confirm ADC quantization to increase with decreased resolution.

The quantization was largest in value at the highest temperatures because the pressure sen-
sitivity is slightly decreasing with temperature, and since the quantization is larger on a
reduced ADC input signal.

As expected, and shown from simulation results of Tab. 8.3, it was confirmed that the
relation between ADC quantization error and LNA gain was directly dependent. Reducing
the LNA gain from 16 to 10 increased the quantization errors by the same factor, i.e. ≈ 1.6.
The larger the PROM values, the smaller the round off errors, and vica versa. This means
if the LNA gain reduction effects the scaling of a coefficient and making it smaller - it will
result in larger round of errors in the calculated pressure. Scaling of each PROM coefficients
is according to Tab. 3.5. The reduction in LNA gain gave a simulated round off error which
were 1.5x smaller for PS0PROM .

The calculation for PS0PROM and its scaling is shown in Eq. 9.2. The equation shows that
the reduced Gp give a larger PSOPROM , and thus confirms the reduced round off of 1.5x
for this PROM coefficient. 1.5x is close to the expected 1.6x error reduction dictated by the
theory, and thus it is an acceptable confirmation.
PS0PROM results in the largest round off error at the highest pressures since it is multiplied
with the raw data and the rest of the expression for compensated pressure according to Eq.
3.9.

PZ0PROM is neither temperature or pressure dependent since it is not multiplied with any
temperature or pressure.
PZ1PROM is first degree temperature dependency of zero point and multiplied with tem-
perature, and therefore give the largest round off error at the highest temperatures. (125
◦C is longer away from 25 ◦C than -40 ◦C, and therefore the error was smaller at -40 ◦C.)
The fact that the scaling of PZ1PROM were already not optimized to use a large part of the
availble 8 bit signed, made round off errors for this PROM coefficient the most significant.
At LNA gain 16 PZ1PROM operates between -24 and 24 of the available -128 to 127 (signed
8 bit), while with LNA gain 10 only from -15 to 15.
PZ1PROM round off error could be reduced by a factor of 8 by scaling it optimal. This
corresponds to a reduction in error contribution from maximum ± 2.19 to maximum ± 0.27
kPa for 2.5k simulation results. Comparing 2.19 kPa with the pressure measurement speci-
fication limits for the heavy vehicle TPM sensor in the temperature range 50 to 125 ◦C, ±
30 kPa tells that today’s PZ1PROM round off error is ≈ 7 % of the specification alone in
the worst corner.
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PSOPROM =
1212

ps0 ·Gp ·G12 ·Rp
(9.2)

The scalings of PZ0PROM and PZ0PROM are linearly dependent of Gp, also according to
Tab. 3.5. These PROM coefficient calculations are also shown in Eq. 9.3 and Eq. 9.4,
showing that the reduced LNA give reduced values for both PZ0PROM and PZ0PROM .
This confirms the simulation results showing increased error by 1.5x and 1.6x for the two
PROM coefficients respectively. This is close to (and directly at for PZ0PROM ) the expected
increase of 1.6x given by the formulas, and thus an acceptable confirmation.

PZOPROM = pz0 ·Gp ·G12 (9.3)

PZ1PROM = pz1 ·Gp ·G12 (9.4)

9.1.3 Process Model

Results of ADC quantization showed increased quantization with decreased ADC resolution
as expected. ADC quantization at LNA gain 10, and ADC resolution 12 was confirmed
comparable with ADC quantization at LNA gain 16, ADC resolution 11. This indicate that
one should consider increasing the resolution one step for the heavy vehicle TPM sensor
with LNA gain 10 to obtain about the same quantization error as when calibrating the
TPM heavy vehicle sensor at LNA gain 16 (before the LNA gain reduction).

9.2 Measurement Results

Herein come the discussion of the measurement results.
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Chapter 10

Conclusion and
Recommendations

It was confirmed that a reduction of Gp from 16 to 10 results gives a larger accuracy spread
for the pressure sensor. This was confirmed in simulations, and also in measurements. At
this point both simulation and measurement results are very consistent. In measurements
the exact same 41 sensors were run with the exact same test recipe, except for programming
the sensors with different Gps (10, 16 and 25.6). The results showed reduced capability, and
this is basically because:

• Reduced Gp gives larger ADC quantization errors. The smaller the ADC input signals,
with the same number of quantization steps, the larger the quantization errors.

• Reduced Gp gives larger quantization errors in pressure compensation, caused by larger
round offs errors in PROM coefficients. Four of six coefficients, PS0PROM , PZ0PROM ,
PZ1PROM , and PZ2PROM , are scaled mathematically directly by Gp, and thus a re-
duction of Gp increase round off errors for all of these.

PZ1PROM is giving the largest contribution to round off errors in pressure measure-
ment results.

When decreasing the LNA gain from 16 to 10 for the heavy vehicle TPM sensor the
PZ1PROM operating range was decreased by the factor 1.6, from -24 to 24 for LNA
gain 16, down to -15 to 15 for LNA gain 10. PZ1PROM is a 8 bit signed value,
with an available range from -128 to 127, meaning that the round off error from it
could be reduced by a factor of 8 by scaling it optimal. This corresponds to a reduc-
tion in error contribution from maximum ± 2.19 to maximum ± 0.27 kPa for 2.5k
simulation results. Comparing 2.19 kPa with the pressure measurement specification
limits for the heavy vehicle TPM sensor in the temperature range 50 to 125 ◦C, ±
30 kPa tells that today’s PZ1PROM round off error is ≈ 7 % alone in the worst corner.

Scaling the PZ1PROM range 8x from todays range would make it from -120 to 120,
reflecting 6 sigma values for sensor parameter variations, and still leave a guard band
out to min and max values of -128 to 127. The pressure capability is not likely much
effected of the non-optimized PZ1PROM , however is recommended to consider optimal
PROM coefficient scalings for future product to ensure minimal round off errors and
optimized measurement performance.
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Results of ADC quantization showed increased quantization with decreased ADC resolution
as expected. ADC quantization at LNA gain 10, and ADC resolution 12 was confirmed
comparable with ADC quantization at LNA gain 16, ADC resolution 11. This indicate that
one should consider increasing the resolution one step for the heavy vehicle TPM sensor
with LNA gain 10 to obtain about the same quantization error as when calibrating the
TPM heavy vehicle sensor at LNA gain 16 (before the LNA gain reduction).

It was confirmed by simulations and theoretical calculations that traditional ways of consid-
ering pressure accuracy is sufficiently accurate for evaluating the heavy vehicle TPM sensor
capability. The regime where errors from ADC quantization become significant are not be-
fore reaching resolutions as low as 5-6 bits.
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Appendix A

Simulation Details and
Extensive Results

A.1 ADC Model

A.1.1 Formulas Used and Excel Printscreens

List of functions used in ADC model. Printscreens from excel simulation model pages (Fig.
A.1 below).

• RAND(), NORMSINV()

• STDEV(), AVERAGE()

• COUNT(), FREQUENCY()

• ADCCALCNORM () (As described in Eq. 6.1)

(a) Generation of ADC input signal (b) Variables, terms and formulas

Figure A.1: Printscreens from ADC simulation model spread sheet.
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A.1.2 Listed Results from Random Normal Distribution Generator

Random Normal Distribution Generator was first established and verified for the ADC
model. The result table (Tab. A.1) is therefore listed in this section of the appendix.

Table A.1: Example of signal series generated by Random Normal Distribution Generator.
(a) 2500 signal series

Bin (σ) #1 #2 #3
< -3.4 0 1 1

-3.4 to -3.2 0 4 2
-3.2 to -3.0 3 2 1
-3.0 to -2.8 1 5 2
-2.8 to -2.6 11 3 5
-2.6 to -2.4 5 11 11
-2.4 to -2.2 9 16 14
-2.2 to -2.0 25 20 21
-2.0 to -1.8 37 26 35
-1.8 to -1.6 47 38 49
-1.6 to -1.4 70 76 53
-1.4 to -1.2 88 65 89
-1.2 to -1.0 94 116 97
-1.0 to -0.8 134 134 140
-0.8 to -0.6 173 136 130
-0.6 to -0.4 179 195 188
-0.4 to -0.2 205 189 195

-0.2 to 0 219 198 186
0.0 to 0.2 183 209 201
0.2 to 0.4 195 200 189
0.4 to 0.6 167 177 192
0.6 to 0.8 172 154 155
0.8 to 1.0 118 138 135
1.0 to 1.2 95 110 111
1.2 to 1.4 77 92 80
1.4 to 1.6 53 52 68
1.6 to 1.8 50 43 43
1.8 to 2.0 29 32 35
2.0 to 2.2 22 21 31
2.2 to 2.4 16 21 18
2.4 to 2.6 13 8 9
2.6 to 2.8 5 5 6
2.8 to 3.0 3 2 3
3.0 to 3.2 1 1 4
3.2 to 3.4 1 1 1

> 3.4 0 0 0

(b) 5000 signal series

Bin (σ) #1 #2 #3
< -3.4 4 1 2

-3.4 to -3.2 1 0 2
-3.2 to -3.0 3 2 2
-3.0 to -2.8 9 3 7
-2.8 to -2.6 13 2 13
-2.6 to -2.4 16 6 16
-2.4 to -2.2 25 16 36
-2.2 to -2.0 46 24 49
-2.0 to -1.8 53 35 74
-1.8 to -1.6 86 69 105
-1.6 to -1.4 130 105 141
-1.4 to -1.2 153 121 198
-1.2 to -1.0 242 189 205
-1.0 to -0.8 277 205 268
-0.8 to -0.6 314 260 301
-0.6 to -0.4 354 295 324
-0.4 to -0.2 388 360 356

-0.2 to 0 362 411 378
0.0 to 0.2 419 442 398
0.2 to 0.4 387 381 350
0.4 to 0.6 342 405 350
0.6 to 0.8 323 349 317
0.8 to 1.0 250 318 272
1.0 to 1.2 240 251 229
1.2 to 1.4 153 220 186
1.4 to 1.6 134 151 122
1.6 to 1.8 86 116 95
1.8 to 2.0 71 74 63
2.0 to 2.2 52 70 62
2.2 to 2.4 22 43 26
2.4 to 2.6 18 28 23
2.6 to 2.8 11 24 17
2.8 to 3.0 5 12 8
3.0 to 3.2 7 5 1
3.2 to 3.4 2 5 3

> 3.4 2 3 0

A.2 Sensor Model

A.2.1 Formulas Used and Excel Printscreens

List of functions used in sensor model, in addition to what already used in the ADC model.
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• ROUND()

• IF()

Figure A.2: Sensor simulation model: Control sheet for adjusting ADC resolution, for turn-
ing ADC quantization ON/OFF, and for turning PROM coefficient round offs ON/OFF.

Figure A.3: Sensor simulation model: Valid ranges for digitized sensor coefficients and valid
ranges for PROM coefficients.

Figure A.4: Sensor simulation model: Simulated measurement points (pressures and tem-
peratures.

A.2.2 Excel Code

Generating Sensor Die Parameters

For generating sensor die parameters the following code was used (example for ps0):
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=’Sensor model’ !$C$3 + (NORMSINV(RAND())/’Sensor model’ !$E$11)
*(’Sensor model’ !$D$3-’Sensor model’ !$B$3)/2

Where:

C3 contains nominal ps0 value from sensor die documentation ([9])
E11 contains number of sigma values reflected for ps0 (set to 6)
D3 and B3 contains max and min values for ps0 respectively ([9])

The same method as used for generating ps0 was used for generating pz0 and pz1. ps1, ps2
and pz2, however, was set to constant typical values due to their low variations.

Generating Sensor Die Output

For generating pressure sensor die output signals the following code was used (example for
vp 100 -40)):

=($B2*’Sensor model’ !$B$43+$E2*1000+$F2*(’Sensor model’ !$D$43-25)+$G2
*(’Sensor model’ !$D$43-25)2)/(1+$C2*(’Sensor model’ !$D$43-25)+$D2
*(’Sensor model’ !$D$43-25)2)

Where:

B2, C2, D2, E2, F2 and G2 contains generated sensor die parameters
B43 contains simulated input pressure in kPa (100)
D43 contains simulated input temperature in ◦C (-40)

Units and scalings were used so that sensor die output signals were given in µV/V.

Generating Ideal ADC Raw Data Output

For generating ideal ADC raw data output the following code was used (example for Praw 100 -
40):

=($BA2*’Sensor model’ !$B$43+$BD2+$BE2*(’Sensor model’ !$D$43-25)+$BF2
*(’Sensor model’ !$D$43-25)2)/(1+$BB2*(’Sensor model’ !$D$43-25)+$BC2
*(’Sensor model’ !$D$43-25)2)

Where:

BA2, BB2, BC2, BD2, BE2 and BF2 contains digitized sensor die coefficients
B43 contains simulated input pressure in kPa (100)
D43 contains simulated input temperature in ◦C (-40)

Generating Quantized ADC Raw Data Output

For generating real, quantized, ADC raw data output the following code was used (example
for Praw 100 -40)):

=ROUND(H2*’Sensor model’ !$B$17*(2
′Sensormodel′!$B$22/1,76)/1000000;0)

*2(12−′Sensormodel′!$B$22)
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Where:

H2 contains sensor die output signal
B17 contains LNA gain
B22 contains ADC resolution

Generating Digitized Sensor Coefficients

For generating digitized sensor coefficients the following code was used (example for PSO):

=$B2*0,000001*’Sensor model’ !B$17*’Sensor model’ !B$20

Where:

B2 contains sensor die parameter, ps0
B17 contains LNA gain
B20 contains G12

The other digitized sensor coefficients are calculated in a similar way, with other scaling
factors, according to Tab. 3.5.

Generating ideal PROM Coefficients

For generating ideal PROM coefficients the following code was used (example for PSOPROM i):

=212/(BA2*’Sensor model’ !$B$21)

Where:

BA2 contains digitized sensor coefficient, PSO
B21 contains pressure resolution, Rp

The other ideal PROM coefficients are calculated in a similar way, with other scaling factors,
according to Tab. 3.5.

Generating Truncated PROM Coefficients

For generating real,truncated, PROM coefficients the following code was used (example for
PSOPROM ):

=ROUND(BG2;0)

Where:

BG2 contains the ideal PROM coefficient, PSOPROMi

The other PROM coefficients are truncated in the same way.

Calculating Ideally Compensated Pressure

For calculating ideally compensated pressure the following code was used (example for
Pcomp 100 -40 i):
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=$BG2*(2−6)*(W2*(1+$BH2*(2−16)*(’Sensor model’ !$D$43-25)+$BI2*(2−23)
*(’Sensor model’ !$D$43-25)2)-($BJ2*(2−2)+$BK2*(2−5)*(’Sensor model’ !$D$43-25)+
$BL2*(2−13)*(′Sensormodel′!$D$43− 25)2))

Where:

BG2, BH2, BI2, BJ2, BK2 and BL2 contains the ideal PROM coefficients, PSOPROM i,
PS1PROM i, PS2PROM i, PZOPROM i, PZ1PROM i and PZ2PROM i

W2 contains the ideal raw data, Praw 100 − 40 i
D43 is the input pressure, Pin

Since all inputs are ideal for the ideally compensated pressure, with no ADC quantiza-
tion, and no coefficient round off, the result is always exactly equal to the input pressure.

Calculating Truncated Compensated Pressure

For calculating truncated compensated pressure the following code was used (example for
Pcomp 100 -40):

=ROUND(IF(’Sensor model’ !$K$6=”R”;$BM2;$BG2)*(2−6)
*(IF(’Sensor model’ !$K$14=”R”;AL2;W2)*(1+IF(’Sensor model’ !$K$7=”R”;$BN2;$BH2)
*(2−16)*(’Sensor model’ !$D$43-25)+IF(’Sensor model’ !$K$8=”R”;$BO2;$BI2)*(2−23)
*(’Sensor model’ !$D$43-25)2)-(IF(’Sensor model’ !$K$9=”R”;$BP2;$BJ2)*(2−2)
+IF(’Sensor model’ !$K$10=”R”;$BQ2;$BK2)*(2−5)*(’Sensor model’ !$D$43-25)
+IF(’Sensor model’ !$K$11=”R”;$BR2;$BL2)*(2−13)*(’Sensor model’ !$D$43-25)2));0)

Where:

K6, K7, K8, K9, K10, K11 are control cells for PS0PROM , PS1PROM , PS2PROM ,
PZOPROM , PZ1PROM and PZ2PROM selections. (By checking K6... K11 cells with

”R” for
”REAL”, it is chosen to truncate the corresponding PROM coefficients, while leaving

the cells
open provides ideal coefficients)
BM2, BN2, BO2, BP2, BQ2, BR2 are truncated or REAL PROM coefficients
BG2, BH2, BI2, BJ2, BK2, BL2 are ideal coefficients
K14 is a control cell for turning ADC quantization ON/OFF. (R for ”REAL” turns it

on)
AL2 provides quantized ADC raw data results, W2 provides ideal ADC raw data results
without any quantization)
D43 contains input temperature

These above described selections make it possible to look at error contributions isolated or
in combination with each other. (E.g. it is possible to look at spread caused by PZ1PROM

round offs isolated by setting all other coefficient control cells and the ADC control cell open
(blank), giving no round off error from any other PROM coefficient and ADC quantization
error.)

Calculating Ideal Measured Pressure

For calculating measured pressure the following code was used (example for Pout 100 -40 i):
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=CE2*2−6*’Sensor model’ !B21

Where:

CE2 contains the ideal compensated pressure
B21 contains the pressure resolution (equal to 4.0 the heavy vehicle TPM sensor)

Calculating Measured Pressure

For calculating measured pressure the following code was used (example for Pout 100 -40):

=CT2*2−6*’Sensor model’ !B21

Where:

CE2 contains the truncated compensated pressure
B21 contains the pressure resolution (equal to 4.0 for the heavy vehicle TPM sensor)

A.2.3 Extensive Collection of Sensor Simulation Results

When changing LNA gain the largest difference in results were seen when going from 25.6
to 10. Therefore these results are listed herein.

2500 sensors were simulated. Perror vs T for 250 of them, and max and min values (in bold
red) for all of them, are graphically represented in each plot.

ADC Round off errors from Fig. A.5 to A.12, and coefficient Round off errors from Fig.
A.13 to A.28

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.5: Perror vs T plots. Ideal ADC behaviour (Round off = OFF). Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.6: Perror vs T plots. Ideal ADC behaviour (Round off = OFF). Gp=10.
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(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.7: Perror vs T plots. Real ADC behaviour (Round off = ON, ADCres=12).
Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.8: Perror vs T plots. Ideal ADC behaviour (Round off = ON, ADCres=12).
Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.9: Perror vs T plots. Real ADC behaviour (Round off = ON, ADCres=11).
Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.10: Perror vs T plots. Ideal ADC behaviour (Round off = ON, ADCres=11).
Gp=10.
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(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.11: Perror vs T plots. Real ADC behaviour (Round off = ON, ADCres=10).
Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.12: Perror vs T plots. Ideal ADC behaviour (Round off = ON, ADCres=10).
Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.13: Perror vs T plots. Ideal coefficients (Round off = OFF). Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.14: Perror vs T plots. Ideal coefficients (Round off = OFF). Gp=10.
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(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.15: Perror vs T plots. Real coefficients (Round off = ON for PSOPROM ).
Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.16: Perror vs T plots. Real coefficients (Round off = ON for PSOPROM ). Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.17: Perror vs T plots. Real coefficients (Round off = ON for PS1PROM ). Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.18: Perror vs T plots. Real coefficients (Round off = ON for PS1PROM ). Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.19: Perror vs T plots. Real coefficients (Round off = ON for PS2PROM ). Gp=25.6.
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(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.20: Perror vs T plots. Real coefficients (Round off = ON for PS2PROM ). Gp=10.
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(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.21: Perror vs T plots. Real coefficients (Round off = ON for PZ0PROM ). Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.22: Perror vs T plots. Real coefficients (Round off = ON for PZ0PROM ). Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.23: Perror vs T plots. Real coefficients (Round off = ON for PZ1PROM ). Gp=25.6.

48



(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.24: Perror vs T plots. Real coefficients (Round off = ON for PZ1PROM ). Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.25: Perror vs T plots. Real coefficients (Round off = ON for PZ2PROM ). Gp=25.6.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.26: Perror vs T plots. Real coefficients (Round off = ON for PZ2PROM ). Gp=10.

(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.27: Perror vs T plots. Real coefficients (Round off = ON for ALL coefficients).
Gp=25.6.
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(a) Pin=100 kPa (b) Pin=657.5 kPa. (c) Pin=1600 kPa.

Figure A.28: Perror vs T plots. Real coefficients (Round off = ON for ALL coefficients).
Gp=10.
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