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Abstract

Film Bulk Acoustic wave Resonators (FBAR’s) are a promising new technology for high perfor-
mance resonators in the GHz-range. FBAR’s can provide higher Q-factors and higher coupling
efficency than the typical high performance resonators, such as SAW-resonators and similar tech-
nologies.

To achieve the highest possible performance for these devices, the losses needs to be minimal-
ized. At such high frequencies, the loss effects can have a huge influence on the total perfor-
mance, and it is very useful to gain better knowledge about these loss effects.

This thesis’ main goal is to investigate the thermoelastic loss effects in the metal contacts on
the FBAR structure. Due to this metallization of the FBAR’s, thermal losses can occur in the
metal layer which can cause a degrading of the performance. An analytical model will be de-
veloped for both thermal and non-thermal influence. The model will then be realized in Matlab,
in order to quantify the performance of the FBAR with the different contact materials. The Q-
factor and effective coupling factor are important parameters which will be used to compare the
performance.

Due to finding an important error in the Matlab code, most of the results has proven to be wrong.
Unfortunately, the lack of time at the end of the project didn’t give me any chance to reproduce
all the plots. Nevertheless I’ve done calculations on Aluminium at 5 GHz, aluminium is widely
used as a contact material in RF-Mems. The correct results will be shown at the presentation of
the thesis.
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CHAPTER 1

Introduction

1.1 Motivation

The demand for higher frequencies and higher reliability in telecommunication devices, poses
huge challenges to the research being done within this field. The main goal is to design devices
with higher Q-factor (Quality factor) and effective coupling, to obtain higher performance in the
GHz frequency range.

A lot of research is done on Film Bulk Acoustic wave Resonators (FBAR), and it is a promis-
ing technology for integrating resonators on a silicon chip and thus providing more integrated
functionality in Integrated Circuits (IC’s).

To my knowledge, there hasn’t been any published research on the thermoelastic losses on
FBAR’s. Lifshitz and Roukes [4] investigated thermoelastic damping in micro- and nanome-
chanical systems, with main focus on small flexural vibrations in thin beams. Prabhakar and
Vengallatore [8] investigated the frequency dependence of thermoelastic damping in asymmet-
ric, bilayered, micromechanical Euler–Bernoulli beam resonators.

The influence of the contact materials on FBAR’s has gained some attention. Ueda et al. [10] did
some research on finding an optimal contact material, but their results didn’t include the thermal
influence on the performance. Yokoyama et al. [14] did a similar study, and investigated an FBAR
in FEM simulations and experiments. Both of these two studies concluded with Ruthenium being
a suitable contact material for the FBAR’s.
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The goal for this thesis is to develop an equation set for a simple FBAR structure with metal con-
tacts, by including the thermal effects and using the equations to establish a MATLAB model to
predict the performance of the device. By comparing the thermal model to a simpler model with
just the piezoelectric effects, the thermal influence can be used to see what effect this contributes
to the system.

1.2 Overview

This project investigates the thermal loss effects of a 3-layer FBAR resonator. The choice of
different electrode materials, may have a noticeable effect on the thermal losses in the contacts,
and this will be investigated.

A simplified model of the 3-layer structure is implemented in Matlab in three steps:

The resonant frequencies are calculated for a simple 3-layer structure, consisting of Aluminium
Nitride (AlN), sandwiched between 2 electrodes of Aluminium. These calculations will serve as
an estimate and a check to see whether the further investigations is within the ballpark.

The next step is to include the piezoelectrical effects into the 3-layer structure. The system will
now have a driving force, and the results will be more accurate by including the piezoelectric
effect. By including the electric field in the calculations, the impedance of the FBAR can be
calculated. From the impedance of the FBAR, the quality factor and effective coupling can be
calculated and we have quantitative results on the performance.

The main part of the calculations will be to include the thermal effects into the system. Both the
piezoelectrical and the thermal coupling will be implemented into the equations, and the results
will give us the possibility to see whether the thermal coupling will have any significant effect
on the performance of the FBAR’s. Several materials will be investigated, in order to see if the
thermal material properties gives noticeable effects on the performance in particular.

The report will conclude with a summary of the results obtained from the simulations for both
the piezoelectric and the thermopiezoelectric case.

1.3 What are Film Bulk Acoustic wave Resonators

Today wireless communication is an essential part in everyday life for most people. More and
more devices gets wireless and the demand for mobile applications has never been higher. Ev-
erything is made smaller and smaller, and this puts huge demands on not only the wireless com-
ponents, but on the whole systems being developed. This has led to the development of the
Integrated Circuits technology which now has the ability to integrate highly complex circuits on
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one single silicon chip. From the IC technology, the MEMS (Microelectromechanical Systems)
technology has been developed. This allows us now to integrate, not only complex electronic cir-
cuits, but entire systems including mechanical, biological, optical functionality and many others
on the same silicon chip.

With the huge growth of more and more wireless communication, the demand for the filters with
higher performance to shield the receivers from noise and interference from adjacent channels
is much higher. Traditionally, the high performance has been realized using SAW-technology
(Surface Acoustic Wave technology), which is not compatible with the standard IC-technology.

Recently the FBAR’s (Film Bulk Acoustic Resonator) has gained popularity within the research
field. These devices allows for even higher performance and are compatible with the IC-process
allowing for integrating a whole transmitter/receiver on one silicon chip.

FBAR’s are in principal a simple structure, consisting of a piezoelectric material sandwiched
between two metal layers. The performance of the FBAR is very sensitive to the physical dimen-
sions of the structure, which demands a high precision when creating the layered structure. The
FBAR’s utilize the resonance properties of the piezoelectrical material, and the contact layers are
just for creating contact and making it possible to apply an electric field to the FBAR in order
to drive it. The contacts are usually neglected in analyzing FBAR devices, but at such a small
scale the contacts can provide a loading to the system and thus providing losses and degrading
of performance.
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CHAPTER 2

Elastic waves in FBAR-structure

When investigating problems of this nature, it is important to make a qualified assumption of the
characteristic sizes involved. For this structure, the first problem is to find approximate structural
dimensions for getting resonance frequencies within the wanted range. The calculations must be
simple, on a relatively simple structure, to be able to perform quick calculations.

2.1 FBAR-structure

The structure which is going to be investigated is a threelayer FBAR structure, which consists of
a piezoelectric material, AlN, sandwiched between two identical metal layers. The dimensions
of the structure are given in Table 2.1.

Table 2.1: Dimensions of the FBAR-structure

tmetal 0.1 µm
tpiezo 0.8 µm

4
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Figure 2.1: FBAR structure with the dimensions used in calculations

The piezoelectric layer is treated as a pure elastic layer with no electric effects involved. This
simplifies the calculations, and gives us a quick estimate of the resonance frequencies. Timehar-
monic behaviour is assumed and a plane wave solution is used for describing the wave motion
within each layer. The boundary conditions connects these solutions throughout the whole struc-
ture and ensures a valid solution for the whole structure.

2.2 Mechanical equations

A cartesian coordinate system is used O(x1,x2,x3), and the problem is solved as a one dimen-
sional problem with movements only in the x3-direction.
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Figure 2.2: Force balance for a simple solid

To be able to describe the wave motion through the solid, we need to relate the acceleration of the
particles to the forces acting through the volume. In the one-dimensional case, we can consider
a slab with cross section dA = dx1 dx2, with a net force in the x3-direction. The net force is the
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difference between the two opposing forces in the x3-direction. Using Newton’s 2nd law, we get

∂T
∂x3

dx3 A︸ ︷︷ ︸
dF

= ρA dx3︸ ︷︷ ︸
m

∂ 2u
∂ t2︸︷︷︸

a

which is simplified to
∂T
∂x3

= ρ
∂ 2u
∂ t2 (2.2.1)

Hooke’s law in one dimension describes the relation between stress, T , and strain, S

Ti j = ci jklSkl (2.2.2)

where c is the elastic stiffness tensor. Strain is defined as S = ∂u
∂x3

, and when combining with
(2.2.2) into (2.2.1) we get the one-dimensional wave equation.

∂ 2u
∂x2

3
=

ρ

c
∂ 2u
∂ t2 (2.2.3)

For the threelayer structure, we will use a timeharmonic wave and use a plane wave solution to
solve the problem within each layer. The timeharmonic wave is given by the phasor

Un = Ane−iknx +Bneiknx where kn =
ω

cn
(2.2.4)

where ω is the angular frequency and vL is the longitudinal speed of sound which is given by

vL =
√

c
ρ

2.3 Boundary conditions

The FBAR-structure will be modelled as a free structure with continuity of displacement across
the internal boundaries. The free condition is fulfilled by requiring zero stress at the ends of the
structure.

The boundary conditions will be used to join the solutions in each layer and get a physical
solution for the whole structure.

Continuity of displacement across the internal boundaries The continuity of displacement
is fulfilled by requiring equal displacement across the internal boundaries.

U1|x=0− = U2|x=0+

U2|x=L− = U3|x=L+
(2.3.1)

This ensures that there is no relative movement between the layers.
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Continuity of stress across the internal boundaries The continuity of stress is fulfilled by
requiring equal stress across the internal boundaries.

E1U ′1|x3=0− = E1U ′2|x3=0+

E2U ′2|x3=L− = E3U ′3|x3=L+
(2.3.2)

where U ′n = ∂Un
∂x3

.

Free ends Free end boundary conditions are

U ′1|x3=−t = 0
U ′3|x3=L+t = 0

(2.3.3)

and by requiring free ends, no transmission of waves occurs at the ends and we have total reflec-
tion.

2.4 Applying the boundary conditions

The time-harmonic wave (2.2.4) is substituted into the boundary conditions, (2.3.1), (2.3.2) and
(2.3.3). This gives 6 equations, which must be solved simultaneously to find the exact values for
the An and Bn coefficients.

Continuity of displacement Applying (2.2.4) to (2.3.1) gives the following two equations:

A1 +B1−A2−B2 = 0 (2.4.1)

A2e−
i

c2
Lω +B2e

i
c2

Lω −A3e−
i

c3
Lω −B3e

i
c3

Lω = 0 (2.4.2)

Continuity of stress Applying (2.2.4) to (2.3.2) gives the following two equations:

−A1E1
i

c1
ω +B1E1

i
c1

ω +A2E2
i

c2
ω−B2E2

i
c2

ω = 0 (2.4.3)

−A2E2
i

c2
ωe−

i
c2

Lω +B2E2
i

c2
ωe

i
c2

Lω +A3E3
i

c3
ωe−

i
c3

Lω −B3E3
i

c3
ωe

i
c3

Lω = 0 (2.4.4)
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Free ends Applying (2.2.4) to (2.3.2) gives the following two equations:

−A1
i

c1
ωe

i
c1

tω +B1
i

c1
ωe−

i
c1

tω = 0 (2.4.5)

−A3
i

c3
ωe−

i
c3

(L+t)ω +B3
i

c3
ωe

i
c3

(L+t)ω = 0 (2.4.6)

2.5 Matrix equation

The equations (2.4.1-2.4.6) are collected in a matrix system, K(ω)A = 0, where A is a column-
vector with the unknown coefficient, An and Bn. To find the unknown coefficents, the nullspace
of the K-matrix must be found.

K(ω)=



1 1 −1 −1 0 0

0 0 e−
i

c2
Lω e

i
c2

Lω −e−
i

c3
Lω −e

i
c3

Lω

−E1
i

c1
ω E1

i
c1

ω E2
i

c2
ω −E2

i
c2

ω 0 0

0 0 −E2
i

c2
ωe−

i
c2

Lω E2
i

c2
ωe

i
c2

Lω E3
i

c3
ωe−

i
c3

Lω −E3
i

c3
ωe

i
c3

Lω

− i
c1

ωe
i

c1
tω i

c1
ωe−

i
c1

tω 0 0 0 0

0 0 0 0 − i
c3

ωe−
i

c3
(L+t)ω i

c3
ωe

i
c3

(L+t)ω


(2.5.1)

The matrix K is iterated over a range of ω . The inverse condition number is calculated for each
ω , and the result is plotted. The inverse condition number is defined as the ratio of the smallest
singular value to the largest singular value. When the inverse condition number is 0, the K-matrix
is singular.

The zero-points of the inverse condition number plot is the resonance frequencies, the frequencies
where K is singular, thus satisfying all the boundary conditions.
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Figure 2.3: Threelayer FBAR structure with AlN piezoelectric and Al-contacts

Figure 2.3 shows the inverse condition number plot. The zero values on the plot indicates the
resonance frequencies, and gives us a quick estimate of the resonance frequencies of the system.
The first resonance is ≈ 5 GHz which is one of the frequencies this project will investigate.

2.6 Finding exact resonance frequencies numerically

It is interesting to plot the field quantities throughout the structure, to see whether our model gives
a realistic result and the boundary conditions are fulfilled correctly. The stress field is sensible
to choose, since this is the effect which responds to the electric field when piezoelectric effects
are introduced. To be able to plot the stress at the resonance frequencies, the exact resonance
frequency must be found to make sure that the boundary conditions are fulfilled.

To find the exact resonance frequencies, we are interested in the singular case where K(ω)A = 0.
Assuming K(ω) is close to singular, we do a Taylor Series expansion around ωn, the resonance
frequency. For ω close to ωn

K(ω) = K(ωn +{ω−ωn})≈ K(ωn)+K′(ωn)(ω−ωn) (2.6.1)
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where the bracketed term is very small and K′(ωn) = ∂K(ωn)
∂ωn

. Approximately we shall find

K(ωn)A+(ω−ωn)K′(ωn)A = 0
K(ωn)A = µnK′(ωn)A

(2.6.2)

where µn =−(ω−ωn). (2.6.2) is on the same form as a generalized eigenvalue problem.

Generalized eigenvalue problem - Given A and B, find x and µ such that Ax = µBx

The algorithm for refining the guess can be stated as follows

−(ωn+1−ωn) = µn

ωn+1 = ωn−µn
(2.6.3)

where a new frequency is found until it is sufficiently close to the resonance frequency.

2.6.1 Implementing in Matlab

The Matlab script prompts for a frequency value which is close to singular. This can be seen
on the plot (Figure 2.3), and an approximate frequency is picked. The generalized eigenvalue
problem is computed and results in a vector containing the generalized eigenvalues. The position
and the smallest, absolute, real value of the eigenvalues is stored in a vector. This process is
iterated until the solution converges to a constant value.
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Figure 2.4: Stress through the structure at resonance frequencies

Figure 2.4 shows the stress for the three first resonance frequencies through the structure. We
can see that the stress is continuous across the internal boundaries, thus fulfilling the boundary
conditions.
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CHAPTER 3

Piezoelectric effects in FBAR structure

The previous model was a purely elastic structure. When introducing the pioezoelectric effects,
we will get the actual FBAR-structure. This model is highly idealized, considering only longitu-
dinal vibrations in a lossless situation. This will serve as a reference to the later calculations on
thermal effects which will include losses. By including the electric field in the calculations, the
impedance of the structure can be found which makes it possible to quantify the performance.

3.1 Piezoelectricity

In the theory of elastic waves in solids, there are two basic field equations relating the stress/strain
to the displacement. The strain-displacement relation

S = ∇su (3.1.1)

where ∇sui =
∂u j
∂xi

is the symmetric part of the displacement gradient, and the equation of motion

∇ ·T = ρ
∂ 2u
∂ t2 −F (3.1.2)

where F is external body force. The stress and strain are connected by the elastic constitutive
equation

T = c : S+ζ :
∂S
∂ t

(3.1.3)
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where ζ is the viscosity tensor and F is an external body force which will not be considered. The
viscosity term is usually neglected, and (3.1.3) is then usually called Hooke’s law and relates
the stress within a material to the applied strain. This is sufficient for most materials, but some
materials become electrically polarized under strain. This electric polarization causes bound
electrical charges on the surface of the material [3]. These materials are called piezoelectric
materials, and the phenomena is called direct piezoelectrical effect. This is usually linearized,
by neglecting higher order effects like the electrostrictive effect for example.The polarization
changes sign when the strain is reversed. There is also a reverse effect, which happens when a
piezoelectric material is placed within an electric field and becomes strained. This is called the
converse piezoelectric effect.

Piezo is derived form the greek word meaning to press and piezoelectricity thus means pressure
electricity[5]. The piezoelectric materials are insulating solids, which means that when having
electrodes on to adjacent surfaces, the device can act as a capacitor. When electricity is applied
to the electrodes, the piezoelectric material changes shape. By applying an AC voltage, the
piezoelectric crystal will start vibrating according to the frequency of the AC signal, and we
then have a motor. In order to describe this phenomenon, the properties must then include a
piezoelectric constant relating the electric field to the mechanical displacement in addition to the
dielectric and elastic constants.

For a crystal to have piezoelectric properties, it must possess no centre of symmetry. When
a crystal has no centre of symmetry, no uniform pressure can cause a separation of the center
of gravity of positive and negative charges and produce an induced dipole moment which is
necessary for the piezoelectric effect.

When a stress is induced on a crystal with no center of symmetry, an electric moment is developed
whose magnitude is proportional to the applied stress. The magnitude of the electric moment or
the polarization charge per unit area is

Pi = di jkσ jk (3.1.4)

where di jk is the piezoelectric strain constant[7]. di jk is a third rank tensor with 27 components.
Practically this means if the shape of the piezoelectric crystal is being changed, an electrical field
is developed within the crystal.

The piezoelectric strain constant is defined with stress as the independent variable, and measures
the strain in a free crystal for a given applied field. In this work, the strain is the independent
variable and hence the piezoelectric stress constant, ei jk will be used, which measures the stress
developed by a given field when the crystal is clamped [5]. They are related by

en j = dnicE
i j (3.1.5)

The choice of the piezoelectric constants depends on the choice of independent and dependent
variables, which relates to each other through the piezoelectric constitutive equations.
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3.2 Piezoelectric relations

The piezoelectric relations are coupled equations which relates the elastic and electric domain.
They are derived using a thermodynamic potential based on the choice of dependent and inde-
pendent variables.

We want to express the piezoelectric relations with Si j and Ei as the independent variables, and
and Ti j and Di as the dependent variables. The first law of thermodynamics for a piezoelectric
medium is given by [5].

dU = Ti j dSi j +Ei dDi (3.2.1)

The most suitable thermodynamic potential, for our choice of variables, will be the electric en-
thalpy [5]

H = U−EiDi (3.2.2)

By differentiating the electric enthalpy and substituting for dU we get

dH = Ti j dSi j−Di dEi (3.2.3)

which gives the following relations

Ti j =
∂H
∂Si j

Di =−∂H
∂Ei

(3.2.4)

We have the quadratic form of the electric enthalpy[9]

H =
1
2

cE
i jklSi jSkl− ei jkEiS jk−

1
2

ε
S
i jEiE j (3.2.5)

Using (3.2.4) on (3.2.5), we obtain the piezoelectric relations

Ti j = cE
i jklSkl− eki jEk (3.2.6)

Di = eiklSkl + ε
S
ikEk (3.2.7)

where

ci jkl = ci jlk = c jikl = ckli j

ei jk = eik j

εi j = ε ji

(3.2.8)

ci jkl is a fourth order tensor with 34 = 81 components, which is difficult to represent in equations.
Due to the symmetry in the first two and last two suffixes, it is possible to represent it as a matrix.
To do this, the first two and the last two suffixes are abbreviated into a single abbreviation running
from 1 to 6, as shown in Table 3.1.
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Table 3.1: Matrix notation

i j or kl p or q
11 1
22 2
33 3

23 or 32 4
31 or 13 5
12 or 21 6

Using the matrix notation, the governing equations for a piezoelectric material can now be written
as

Tp = cE
pqSq− ekpEk (3.2.9)

Di = eiqSq + ε
S
ikEk (3.2.10)

where

Si j = Sp when i = j, p = 1,2,3 (3.2.11)
2Si j = Sp when i 6= j, p = 4,5,6 (3.2.12)

Using this method, the elastic, piezoelectric and dielectric constants can be written as matrices.

cE
pq =


c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

 (3.2.13)

eip =

e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

 (3.2.14)

ε
S
i j =

ε11 ε12 ε13
ε12 ε22 ε23
ε31 ε32 ε33

 (3.2.15)

3.3 Aluminium Nitride, AlN

There are many material choices for the piezoelectric layer, but Aluminium Nitride, AlN, and
Zinc Oxide, ZnO, are commonly used for FBAR resonators [11]. AlN has several advantages
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over ZnO, with a higher acoustic velocity, higher Q value and a moderate electromechanical
coupling factor. AlN also has a higher flexibility for depositing on different kinds of materials
and substrates with excellent crystallinity [11].

The important material parameters for AlN are

Table 3.2: Material properties forAlN[2]

Property AlN Unit
ρ 3230 [kg m−3]
p3 6×10−6 [C m−2K−1]
εS

3 9.5×10−11 [F m−1]
cE

33 384.3 [GPa]
e33 1.55 [C m−2]
κ3 285 [W m−1K−1]
CV 425.387 [J kg−1K−1]
K 210 [GPa]
α 5.4×10−6 [K−1]
ν 0.245 [−]

The material symmetry of AlN is hexagonal in class C6v = 6mm. This crystal class has 5+3+2 =
10 independent material constants, and the material matrices are reduced to the following form
[9]

cE
pq =


c11 c12 c13
c12 c11 c13
c13 c13 c33

c44
c44

c66

 (3.3.1)

where c66 = 1
2(c11− c12). The piezoelectric stress constant is given by

eip =

 e15
e15

e31 e31 e33

 (3.3.2)

and the dielectric permittivity is given by

ε
S
i j =

εS
11

εS
11

εS
33

 (3.3.3)
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3.4 Three-layer structure

The constitutive equations has been developed, but they are still in tensor form and needs to be
reduced to a simpler form to suit the constraints of our problem.

3.4.1 Simplification of the piezoelectric relations

In this structure, we assume:

• Plane waves in x3-direction

• Infinite cross-section

• Displacement U only in x3-direction. This assumption holds for special symmetry direc-
tions.

• Translation invariance within the plane

The piezoelectric material used is Aluminium Nitride AlN, which has crystal symmetry class
6mm. The elastic stiffness tensor is given by:

cE =


cE

11 cE
12 cE

13
cE

12 cE
11 cE

13
cE

31 cE
31 cE

33
cE

44
cE

44
cE

11− cE
12

 (3.4.1)

Since we only consider strain in the x3-direction, the strain tensor becomes:

S =


0
0

S33
0
0
0

 (3.4.2)

Multiplying the stress-tensor with the stiffness tensor, we get:

cES =


C13S33
C13S33
C33S33

0
0
0

 (3.4.3)
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The piezoelectric stress tensor for AlN is given by: 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

 (3.4.4)

Multiplying the piezoelectric stress tensor with the electric field, results in:

eT E =


0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0
0 0 0

 ·
E1

E2
E3

=


e31E3
e31E3
e33E3
e15E2
e15E1

0

 (3.4.5)


T1
T2
T3
T4
T5
T6

=


C13S33
C13S33
C33S33

0
0
0

−


e31E3
e31E3
e33E3
e15E2
e15E1

0

 (3.4.6)

Newton’s 2. law states that

−ρω
2U =

∂T3(x)

∂x
+

∂T3(y)

∂y
+

∂T3(z)

∂ z

=
∂T3

∂ z

(3.4.7)

The dielectric permittivity tensor is ε11 ε12 ε13
0 ε11 ε23
0 0 ε33

 (3.4.8)

The S,E-relation reduces to:

T3 = cE
33S3− e33E3

D = e33S3 + ε
S
3 E3

(3.4.9)

3.5 Boundary conditions

We use the time-harmonic wave with complex amplitude

Un(x) = Ane−i ω

cn x +Bnei ω

cn x (3.5.1)

The boundaries constraining the problem are:
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Continuity of displacement across internal boundaries Continuity of displacement across
internal boundaries are fulfilled by requiring equal displacement across internal boundaries

UL
3 |x3=0− = UM

3 |x3=0+ (3.5.2)

UM
3 |x3=L− = UR

3 |x3=L+ (3.5.3)

This ensures no relative displacement between the layers.

Continuity of stress across internal boundaries We now have a piezoelectric layer to con-
sider, and the stress within the piezoelectric layer is given by (3.2.9). Since we only consider
strain in the x3-direction, the govering piezoelectric relations become

EL ∂UL
3

∂x3
|x3=0− = T3|x3=0+ (3.5.4)

T3|x3=L− = ER ∂UR
3

∂x3
|x3=L+ (3.5.5)

where En is the stiffness constant for the contact material and the superscript indicates the layer.

T3 = cE
33S3− e33E3 (3.5.6)

D = e33S3 + ε
S
3 E3 (3.5.7)

Free ends We require free ends, which means that the stress must equal zero at the ends

EL ∂UL
3

x3
|x3=−t = 0 (3.5.8)

ER ∂UR
3

x3
|x3=L+t = 0 (3.5.9)

3.6 Applying the boundary conditions

3.6.1 Mechanical boundary conditions

Continuity of displacement across the internal boundaries This boundary condition as ap-
plied in the same way as done in Section 2.4.

Continuity of stress across the internal boundaries The dependency on the electric field
removed by substituting the second equation in (3.5.7), into the first, to get

T3 = cD
33

∂U3

∂x3
− e33

εS
3

D3 (3.6.1)
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where cD
33 = cE

33 + e2
33

εS
3

. We have the condition D3 =−σ , which results in

T3 = cD
33

∂U3

∂x3
+

e33

εS
3

σ (3.6.2)

By inserting into (3.5.5) we get the equation for x3 = 0

−EL i
vL ωA1 +EL i

vL ωB1 + cD
33

i
vM ωA2− cD

33
i

vM ωB2 =
e33

εS
3

The term after the equals sign is zero at this boundary. For the interface at x3 = L we get

−cD
33

i
vM ωe−

i
vM LωA2 + cD

33
i

vM ωe
i

vM LωB2 +ER i
vR ωe−

i
vR LωA3−ER i

vR ωe
i

vR LωB3 =−e33

εS
3

Free ends For the free ends we get the following equations. For the location at x3 =−t

−EL i
vL ωe−

i
vL (−t)ωA1 +EL i

vL ωe
i

vL (−t)ωB1 =−e33

εS
3

σ (3.6.3)

and for the location at x3 = L+ t

−ER i
vR ωe−

i
vR (L+t)ωA3 +ER i

vR ωe
i

vL (L+t)ωB3 =−e33

εS
3

σ (3.6.4)

In both of these equations, the term after the equals sign is zero because the only location σ is
assigned is at x3 = L.

3.6.2 Electrical boundary conditions

In order to calculate the impedance, an expression for the voltage must be found. In the FBAR
structure, the charge density is defined as a constant at x3 = L

−D3 = σ (3.6.5)

From the relation in (3.4.9) we have

−D3 = ε
S
3

∂ϕ

∂x3
− e33

∂U2

∂x3
= σ (3.6.6)

Voltage is defined as the integral of the electric field through the structure

V =
∫ L

0

∂ϕ

∂x3
dz = ϕ(L)−ϕ(0) (3.6.7)
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Integrating eqref through the piezoelectric material from x3 = 0 to x3 = L

V =
∫ L

0

∂ϕ

∂x3
∂x3 =

e33

εS
3

∫ L

0

∂U2

∂x3
∂x3 +

1
εS

3

∫ L

0
σ∂x3 (3.6.8)

which leads to an expression for the voltage in the pizeoelectric layer

V =
e33

εS
3
{U2(L)−U2(0)}+ L

εS
3

σ (3.6.9)

Inserting the plane wave from (3.5.1) gives

V =
e33

εS
3

(
e−

i
c2

Lω −1
)

A2 +
e33

εS
3

(
e

i
c2

Lω −1
)

B2 +
L

εS
3 A

Q (3.6.10)

where Q = σA. Identifying εS
3 A
L as the capacitance Cp, (3.6.10) can be expressed as.

V = TA+
1

Cp
Q (3.6.11)

where T is
T =

[
0 0 e33

εS
3

(
e−

i
c2

Lω −1
)

e33
εS

3

(
e

i
c2

Lω −1
)

0 0
]

and A is a column vector with the unknown coefficients

A =
[
A1 B1 A2 B2 A3 B3

]T (3.6.12)
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CHAPTER 4

Thermal effects

In the previous chapter, the piezoelectric effects of a threelayer FBAR structure has been inves-
tigated.

In this chapter, thermal effects will be included to make a more realistic model of the FBAR
structure. This will be done to be able to see the effects caused by the interaction between heat
and the piezoelectric effects.

4.1 Loss effects

An ideal FBAR will have no energy loss and hence a very high Q value. In a realistic device
the performance will be lower due to different dissipation mechanisms within the structure. The
typical loss effects are shortly being introduced here, in order to understand the factors which
can influence the performance of an FBAR.

4.1.1 Thermal loss

The classical thermoelastic theory was developed by Zener [15]. When stress is applied to a
crystal, there will be a minor temperature change in the crystal. The temperature changes in
the different parts of the crystal will cause a heat flow which tries to equalize the temperature
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difference. These effects causes heat dissipation and anelastic behaviour of the crystal.

4.1.2 Structural loss

Structural losses, and especially anchor losses, are related to mechanical waves propagating into
the structure surrounding the FBAR. This could typically be the clamping of the resonating
structure, and the waves propagating through this and further into the substrate. Due to often
more complicated geometries, these losses are typically solved using Finite Element methods.

4.1.3 Contact loss

The metal contacts on the FBAR can be a source of loss, due to the resistivity of the metal. At
higher frequencies, this can lead to a substantial loss of effect in the FBAR.

4.1.4 Phonon loss

A phonon is a quantized mode of vibration in a crystal lattice, and is very important in describing
many physical properties of solids, especially electrical and thermal conductivity. The incident
elastic wave, which can be seen as a beam of phonons, interacts with the thermal phonons in
the crystal and disturbs the thermal equilibrium. The interaction of ultrasonic waves with the
lattice vibrations of a crystal, cause an irreversible process which attenuates the ultrasonic waves.
The relaxation time constant for the phonon distribution is much smaller than for the thermal
conduction, and this separates these two types of losses. Both thermoelastic damping and phonon
losses are due to anharmonic behaviour of the crystal lattice [6, Chap. 17].

4.1.5 Morphology, crystal quality

In an ideal situation, the surface of the piezoelectric layer and the contact layer is perfectly
smooth and has perfect contact. This is certainly not the case in a real device. Surface roughness
and crystalline quality are important factors for the piezoelectrical material, and the compatibility
with the contact material for achieving a smooth interface as possible must be considered. This
can give considerable losses in the performance of the FBAR. Ueda et al. [10] investigated an
Ru/AlN/Ru FBAR structure, and proved that smoothing the Ruthenium layer resulted in a higher
Q-value and coupling factor. They indicated that the crystalline quality of the AlN-films were
primarily related to the surface roughness of the underlayers, rather than the crystalline qualities
of the underlayer.
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The surface quality of the contact and piezoelectric layers will not be investigated in this thesis,
but can be a huge factor in the loss of FBAR’s.

4.2 Pyroelectricity

Pyroelectricity is an effect which can occur in a crystal possessing no centre of symmetry [7]. A
temperature change develops an electric polarization, and results in two pyroelectric effects. If
the crystal is clamped, the polarization measured is the primary pyroelectricity. If the crystal is
free to expand, both the primary and the secondary pyroelectric effect is measured. Pyroelectric-
ity is defined as

∆Pi = pi∆T (4.2.1)

where pi is the pyroelectric coefficient. Notice that this is a crystal property which is represented
by a vector. The pyroelectric effect is not a permanent effect, but fades out due to imperfect
insulation over time. The pyroelectric effect becomes neutralized due to surface migration of
charges to the surface of the crystal.

4.3 Thermal stress

When introducing the thermal effects into the piezoelectric relations, depending on the choice of
variables, the stress induced by temperature is called fi j [7]. Due to symmetry, fi j also relates
the entropy/heat produced by a strain. We have the relation

f E
i j =

∂η

∂Si j

E,θ

=−
∂Ti j

∂θ
(4.3.1)

fi j is the product of the linear thermal expansion coeffient α and the bulk modulus K

fi j = αK (4.3.2)

where the bulk modulus is defined as

K =
ci jkl

3(1−2ν)
(4.3.3)

where ν is the Poisson ratio.

4.4 Material properties for the contact materials

The material properties for the contact materials have been gathered in Table 4.1 The relative
dielectric permittivity of the metals are set to εr = 1 [16, p. 37].
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Table 4.1: Material properties for the contact materials[13]

Property Al Ru Mo Pt Unit
ρ 2700 12370 10280 21090 [kg m−3]
v 5100 5970 6190 2680 [m s−1]
c 70 447 329 168 [GPa]
K 76 220 230 230 [GPa]
ν 0.35 0.30 0.31 0.38 [−]
κ 235 120 139 72 [W m−1K−1]
α 23.1 6.4 4.8 8.8 [·10−6K−1]
CV 896.91 238.053 250.782 132.558 [J kg−1 K−1]

4.5 Constitutive equations

The relation between different measurable quantities of crystal defines the material properties.
The relation between stress and strain defines the stiffness or compliance, the relation between
the electric field and the electric displacement defines the electric permittivity and the relation
between entropy and temperature defines the heat capacities. In a piezoelectric material, these
relations exists between the different electrical and mechanical domains. When introducing the
thermal effects into the crystal, the thermal domain relates both to the electrical and mechanical
domain, and the material properties are not independent of each other. In this treatment we as-
sume that the quantities are quasistatic and thermodynamically reversible, thus can be described
by reference to an equilibrium state. The properties of the crystal are then in equilibrium with its
surroundings, which means that the state of the crystal or its surroundings doesn’t change with
time.

To establish the constitutive relations between the different measurable quantities of a crystal, a
set of independent and dependent variables must be chosen.

Dependent variables Ti j (stress), Di (electric displacement) and η (entropy)

Independent variables Si j (strain), Ei (electric field) and θ (temperature)

The energy of the system is consisting of a small flow of heat into the crystal and the work done
on the crystal, assuming unit volume. According to the first law of thermodynamics, the increase
of internal energy is a perfect differential

dU = dQ+dW (4.5.1)

where dQ is a small flow of heat into the crystal and dW is the work done on the crystal. The
work done by the different forces is a sum of the mechanical strain caused by stress within the
crystal and the piezoelectric polarization forces

dW = dWstrain +dWpolarization (4.5.2)
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The work done by a small stress on the unit volume is given by

dW = Ti j dSi j (4.5.3)

and the work done by polarization of the crystal, when the field is being entirely confined to the
crystal is, assuming unit volume,

dW = Ei dDi (4.5.4)

The second law of thermodynamics states that for a reversible change

dQ = θ dη (4.5.5)

where θ is the temperature and η is the entropy density. The total energy of the system then
becomes

dU = Ti j dSi j +Ei dDi +θ dη (4.5.6)

Based on the choice of dependent and independent variables, a proper thermodynamical potential
must be chosen. In this case, the electric Gibbs function is most suitable[5], since it contains E,
D, η and θ

G = U−EiDi−ηθ (4.5.7)

By differentiating the electric Gibbs function (4.5.7), and substituting for dU with (4.5.6)

dG = dU−E dD−D dE−η dθ −θ dη (4.5.8)

we get the differential relations between the dependent and independent variables for the system

dG = Ti j dSi j−Di dEi−η dθ (4.5.9)

The dependent variables can be identified from (4.5.9)

Ti j =
∂G
∂Si j

Di =− ∂G
∂Ei

η =−∂G
∂θ

(4.5.10)

The quartic form of the thermodynamic potential is given by [1]

G =
1
2

cE,θ
i jkl Si jSkl− eθ

i jkEiS jk−
1
2

ε
S,θ
i j EiE j−

ρCE
V

θ0
θ

2− pS
i θEi− f E

i j Si jθ (4.5.11)

where ρCE
V is the specific heat per unit volume at constant electric field, θ0 is the stress/strain

free temperature, pS
i are components of the pyroelectric coefficient vector at constant strain, f E

i j
are components of the thermal stress constant tensor at constant electric field. Using (4.5.10) on
the quartic form of the thermodynamic potential (4.5.11) we get the final constitutive equations
for the thermopiezoelectric solid

Ti j = cE,θ
i jkl Skl− eθ

ki jEk− f E
i j θ (4.5.12)

Di = eθ
i jkS jk + ε

S,θ
i j E j + pS

i θ (4.5.13)

η = f E
i j Si j + pS

i Ei +
ρCE

V
θ0

θ (4.5.14)
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The material constants satisfy the following symmetrical conditions

ci jkl = ckli j = c jikl = ci jlk fi j = f ji

κi j = κ ji εi j = ε ji eikl = eilk
(4.5.15)

4.5.1 Isothermal and adiabatic material constants

The properties of a material are usually measured statically at constant temperature. The material
properties are then isothermal, which means that the variations in temperature are happening so
slowly that the temperature is constant throughout the whole material and across the boundaries.
For a material vibrating at a high frequency there is no chance for the temperature to equalize
throughout the material, and we can say that the heat is confined within the boundaries allowing
no heat to escape or enter the material. The adiabatic constants are determined at constant entropy
in the system.

For gases there is a noticeable difference between the adiabatic and isothermal situation. For
piezoelectric materials, this difference is smaller, and it is common to ignore this difference. Al-
though the difference between the isothermal and adiabatic material constants will be developed
in this section, in order to see whether or not they have any effect..

First the differentials are written out for the chosen variables, with respect to each component,
keeping all other components constant. The superscripts indicates the components held constant.

dTi j =
(

∂Ti j

∂Skl

)E,θ

dSkl +
(

∂Ti j

∂Ek

)S,θ

dEk +
(

∂Ti j

∂θ

)S,E

dθ (4.5.16)

dDi =
(

∂Di

∂S jk

)E,θ

dS jk +
(

∂Di

∂E j

)S,θ

dE j +
(

∂Di

∂θ

)S,E

dθ (4.5.17)

dη =
(

∂η

∂Si j

)E,θ

dSi j +
(

∂η

∂Ei

)S,θ

dEi +
(

∂η

∂θ

)S,E

dθ (4.5.18)

The Einstein summation conventions is used, giving 13 equations with each equation having 13
components on the right hand side. Each of the differential coefficients are material parameters
“measured” under different conditions. By comparing (4.5.18) with (4.5.12)-(4.5.14), we can
see the relations between the differentials and the material parameters.

cE,θ
i jkl =

(
∂Ti j

∂Skl

)E,θ

eθ
ki j =−

(
∂Ti j

∂Ek

)S,θ

ε
S,θ
i j =

(
∂Di

∂E j

)S,θ

(4.5.19)

The second equation in (4.5.19) makes no sense to be measured at constant strain, so the piezo-
electric stress constant is only measured at constant temperature. According to the second law of
thermodynamics, for a reversible change

dQ = θ0dη (4.5.20)
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and substituting (4.5.14) into (4.5.20)

dQ = θ0dη = θ0 f E
i j dSi j +θ0 pS

i dEi +ρCE
V dθ (4.5.21)

To find the adiabatic constants, the heat flow must be dQ = 0, and by setting (4.5.21) equal to
zero and solving for dθ , we can use it to eliminate the temperature change.

dθ =−
f E
i j θ0

ρCE
V

dSi j−
pS

i θ0

ρCE
V

dEi (4.5.22)

Adiabatic stiffness constant

cη

i jkl is defined as
(

dTi j
dSkl

)η

, and the reasonable choice for finding this constant would be to use
(4.5.18), using the material coefficients from (4.5.12), and setting dEk = 0 since this constant
is in the thermomechanical domain. First (4.5.22) is substituted into (4.5.18) to eliminate the
temperature dependence, and we have constant entropy

dTi j = cE,θ
i jkl dSkl− eθ

ki j dEk− f E
i j

(
−

f E
kl θ0

ρCE
V

dSkl−
pS

kθ0

ρCE
V

dEk

)
(4.5.23)

Setting dEk = 0 eliminates the influence of the electric field

dTi j = cE,θ
i jkl dSkl +

f E
i j f E

kl θ0

ρCE
V

dSkl (4.5.24)

Identifying cη

i jkl =
(

dTi j
dSkl

)η

gives us the following relation between isothermal and adiabatic
stiffness

cη

i jkl = cE,θ
i jkl +

f E
i j f E

kl θ0

ρCE
V

(4.5.25)

Adiabatic piezoelectric stress constant, eη

i jk

eη

i jk is defined as −
(

∂Ti j
∂Ek

)
η

and (4.5.12) will be used together with setting dSkl = 0 to obtain the

clamped piezoelectric stress constant. In the same way, (4.5.22) is substituted into (4.5.12) to
fulfill the constant entropy condition.

dTi j = cE,θ
i jkl dSkl− eθ

ki j dEk− f E
i j

(
−

f E
kl θ0

ρCE
V

dSkl−
pS

kθ0

ρCE
V

dEk

)
(4.5.26)
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Setting dSkl = 0 gives

dTi j =−eθ
ki j dEk +

f E
i j pS

kθ0

ρCE
V

dEk (4.5.27)

Identifying eη

ki j = −
(

∂Ti j
∂Ek

)η

gives us the following relation between isothermal and adiabatic
piezoelectric stress constant

eη

ki j = eθ
ki j−

f E
i j pS

kθ0

ρCE
V

(4.5.28)

Adiabatic dielectric constant

ε
η

ik is defined as
(

∂Di
∂E j

)η

and (4.5.13) will be used together with dS jk = 0 to obtain the clamped
adiabatic dielectric constant. (4.5.22) is substituted into (4.5.13) to fulfill the constant entropy
condition

dDi = eθ
i jk dS jk + ε

S,θ
i j dE j + pS

i

(
−

f E
jkθ0

ρCE
V

dS jk−
pS

jθ0

ρCE
V

dE j

)
(4.5.29)

Setting dS jk = 0 gives

dDi = ε
S,θ
i j dE j−

pS
i pS

jθ0

ρCE
V

dE j (4.5.30)

Identifying ε
η

i j =
(

∂Di
∂E j

)
η

gives us the following relation between isothermal and adiabatic di-

electric constant

ε
η

i j = ε
θ
i j−

pS
i pS

jθ0

ρCE
V

(4.5.31)

Influence of the adiabatic constants

Usually for solid materials, the difference between the isothermal and adiabatic material con-
stants are neglected. The difference is small, but can still have an noticeable influence for the
higher frequencies. The relative difference between the isothermal and adiabatic constants has
been calculated for AlN

cη

i jkl

cθ
i jkl
≈ 1.001

eη

i jk

eθ
i jk
≈ 0.999

ε
η

i j

εθ
i j
≈ 0.999 (4.5.32)

For the simulations, the adiabatic material constants will be used.
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Table 4.2: Isothermal and adiabatic material constants

Parameter Isothermal Adiabatic
cE

33 384.3 GPa 384.7 GPa
eS

33 1.55 N
V ·m 1.5482 N

V ·m
εS

3 9.5×10−11 F m−1 9.499×10−11 F m−1

4.6 Developing the field equations

The following constitutive equations include thermal effects

Ti j = cE,θ
i jkl Skl− eθ

ki jEk− f E
i j θ

Di = eθ
i jkS jk + ε

S,θ
i j E j + pS

i θ

η = f E
i j Si j + pS

i Ei +
ρCE

V
θ0

θ

We will use the constitutive equations including the thermal effects, to develop the field equations
which will be used in the MATLAB model. To ease the notation, the upper indices will be
neglected in developing the field equations.

4.6.1 Linearized mechanical equation of motion

As shown in (2.2.1), the linearized mechanical equation of motion in one dimension is given by

∂

∂xi
(Ti j) = ρ

∂ 2U j

∂ t2 (4.6.1)

Substituting (4.5.12) into (4.6.1) gives

ρ
∂ 2Ui

∂ t2 =
∂

∂xi
(ci jkl Skl− eki j Ek− fi j θ) (4.6.2)

4.6.2 Linearized heat conduction equation

The entropy constitutive equation is used to derive the heat equation for the thermopiezoelectric
case. Rearranging (4.5.14) and multiplying by the mass density, ρ

Cv

θ0
θ =

η

ρ
−

fi j

ρ
Si j−

pi

ρ
Ei

ρCvθ = θ0η−θ0 fi jSi j−θ0 piEi
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Taking the time derivative gives

ρCv
∂θ

∂ t
= θ0

∂η

∂ t
−θ0 fi j

∂Si j

∂ t
−θ0 pi

∂Ei

∂ t
(4.6.3)

The balance equation for entropy can be expressed as [16]

d
dt

∫
V

η dV =−
∫

∂V
Ω·n dS +

∫
S

ρσs dV (4.6.4)

where σs is the rate of internal entropy production per unit mass and Ω is the entropy flux. When
(4.6.4) is valid for any part of the body, we obtain the local production of entropy [16]

ρσs =
∂η

∂ t
+∇ ·Ω≥ 0 Clausius-Duhem inequality (4.6.5)

For a simple thermodynamic process, in which there are no chemical reactions and matter trans-
fers, the entropy flux can be expressed simply by [16]

Ω =
qi

θ0
(4.6.6)

where qi is a component of the heat flux vector. In the absence of heat sources, the local balance
of entropy now reads

θ0
∂η

∂ t
=−∂qi

∂xi
(4.6.7)

which is the equation of heat conduction in dielectrics in the absence of heat sources. Substituting
(4.6.7) into (4.6.3) gives

ρCv
∂θ

∂ t
=−∂qi

∂xi
−θ0 fi j

∂Si j

∂ t
−θ0 pi

∂Ei

∂ t
(4.6.8)

Fourier’s law states that
qi = κi jθ0Q j (4.6.9)

where Q j are components of the heat strain vector, Q j = − 1
θ0

∂θ

∂xi
By inserting this into (4.6.8),

we get the linearized heat conduction equation

ρCv
∂θ

∂ t
=

∂

∂xi

(
κi j

∂θ

∂x j

)
−θ0 fi j

∂ 2Ui

∂ t∂x j
−θ0 pi

∂Ei

∂ t
(4.6.10)

4.6.3 Electro-quasistatic approximation

The charge equation of electrostatics at the electro-quasistatic approximation given by

∇ ·D = ρe (4.6.11)
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The electric displacement for the thermopiezoelectric system is given by (4.5.13). In the qua-
sistatic approximation, we consider polarizable (but not magnetizable) dielectrics only, with no
free surface or volume charges. We can set ρe = 0, and (4.6.11) becomes (in tensor notation)

∂Di

∂xi
= 0 (4.6.12)

Substituting (4.5.13) into (4.6.12) gives the last field equation.

∂

∂xi

(
eθ

i jkS jk + ε
S,θ
i j E j + pS

i θ

)
= 0 (4.6.13)

Since we assume ∂Di
∂xi

= 0, the expression within the paranthesis must be a constant. This constant
is set to −σ , which is the charge specified at x3 = L.

eθ
i jkS jk + ε

S,θ
i j E j + pS

i θ =−σ (4.6.14)

4.7 Deriving the equation set for the thermopiezoelectric solid

We assume timeharmonic behaviour and define

Ui = R{Ûieiωt}
σ = R{σ̂eiωt}
θ = R{θ̂eiωt}
Ei = R{Êieiωt}

(4.7.1)

where Ûi, σ̂ , θ̂ and Êi are complex amplitudes. From section 4.6 we have the governing field
equations.

ρ
∂ 2Ui

∂ t2 =
∂

∂xi
(ci jkl Skl− eki j Ek− fi j θ) (4.7.2a)

ρCv
∂θ

∂ t
=

∂

∂xi

(
κi j

∂θ

∂x j

)
−θ0 fi j

∂ 2Ui

∂ t∂x j
−θ0 pi

∂Ei

∂ t
(4.7.2b)

ei jkS jk + εi jE j + pS
i θ =−σ (4.7.2c)

4.7.1 Removing the time dependency

The timeharmonic behaviour is introduced into (4.7.2c) by applying (4.7.1), and differentiating
wrt. time.

R
{

ei jk
∂Û j

∂xk
eiωt + εi jÊ jeiωt + piθ̂eiωt

}
= R

{
−σ̂eiωt} (4.7.3)
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R{eiωt} is a common factor which can be factorized out to obtain a simpler expression

− σ̂ = ei jk
∂Û j

∂xk
+ εi jÊ j + piθ̂ (4.7.4)

We are interested in removing the dependency on the electric field from the resulting field equa-
tions, and it is then suitable to rearrange (4.7.4) wrt. Ê3

Ê j =−
ei jk

εi j

∂Û j

∂xk
− pi

εi j
θ̂ − 1

εi j
σ̂ (4.7.5)

Equation of motion

The same procedure is applied to the equation of motion (4.7.2a)

R{−ω
2
ρÛieiωt}= R

{
ci jkl

∂ 2Ûk

∂x j∂xl
eiωt− eki j

∂ Êk

∂x j
eiωt− fi j

∂ θ̂

∂x j
eiωt

}
(4.7.6)

and the R{eiωt} is factored out

−ω
2
ρÛi = ci jkl

∂ 2Ûk

∂x j∂xl
− eki j

∂ Êk

∂x j
− fi j

∂ θ̂

∂x j
(4.7.7)

Heat equation

The same procedure is applied to the heat equation (4.7.2b)

R
{

iωρCvθ̂eiωt}= R

{
κi j

∂ 2θ̂

∂x2
j

eiωt− iωθ0 fi j
∂Ûi

∂x j
eiωt− iωθ0 piÊieiωt

}
(4.7.8)

and the R{eiωt} is factored out

iωρCvθ̂ = κi j
∂ 2θ̂

∂x2
j
− iωθ0

(
fi j

∂Ûi

∂x j
+ piÊi

)
(4.7.9)
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4.7.2 Simplify the field equations

The field equations are now timeharmonic. The matrix notation is introduced, where i j = p and
kl = q.

Ê j =−
epk

εp

∂Û j

∂xk
− pi

εp
θ̂ − 1

εp
σ̂ (4.7.10)

−ω
2
ρÛi = cpq

∂ 2Ûk

∂x j∂xl
− ekp

∂ Êk

∂x j
− fp

∂ θ̂

∂x j
(4.7.11)

iωρCvθ̂ i = κp
∂ 2θ̂

∂x2
j
− iωθ0

(
fp

∂Ûi

∂x j
+ piÊi

)
(4.7.12)

In these calculations, displacement and electric field are only allowed in the x3-direction. The
following restrictions apply

∂

∂x1
=

∂

∂x2
= 0

U1 = U2 = 0
E1 = E2 = 0

(4.7.13)

This results in the following equation set

Ê3 =−e33

ε3

∂Û3

∂x3
− p3

ε3
θ̂ − 1

ε3
σ̂ (4.7.14)

−ω
2
ρÛ3 = c33

∂ 2Û3

∂x3∂x3
− e33

∂ Ê3

∂x3
− f3

∂ θ̂

∂x3
(4.7.15)

iωρCvθ̂ = κ3
∂ 2θ̂

∂x2
3
− iωθ0

(
f3

∂Û3

∂x3
+ p3Ê3

)
(4.7.16)

4.7.3 Removing the dependency on the electric field

The dependency on the electric field will be removed, so we will have two resulting field equa-
tions with displacement U3 and θ as independent variables.

(4.7.14) is substitued into (4.7.15) to remove the Ê3 dependency. The superscripts for the material
coefficients are reintroduced.

−ω
2
ρÛ3 = cE,θ

33
∂ 2Û3

∂x2
3
− f E

3
∂ θ̂

∂x3
− eθ

33
∂

∂x3

(
−

eθ
33

εS
3

∂Û3

∂x3
−

pS
3

εS
3

θ̂ − 1
εS

3
σ̂

)
(4.7.17)

which is rearranged into

−ω
2
ρÛ3 = cD,θ

33
∂ 2Û3

∂x2
3
− f D

3
∂ θ̂

∂x3
+

(
eθ

33

εS
3

)
∂ σ̂

∂x3
(4.7.18)
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where cD,θ
33 = cE,θ

33 + (eθ
33)

2

εS
3

and f D
3 = f E

3 −
eθ

33 pS
3

εS
3

. The last term in (4.7.18) takes account of the
charge density through the structure. Since we have defined this to be a constant at a specific
location (x3 = L), this term is neglected in the further calculations.

For the heat equation, the same procedure is applied

iωρCE
v θ̂ = κ3

∂ 2θ̂

∂x2
3
− iωθ0 f E

3
∂Û3

∂x3
− iωθ0 pS

3

(
− 1

εS
3

σ̂ −
eθ

33

εS
33

∂Û3

∂x3
−

pS
3

εS
3

θ̂

)
(4.7.19)

and the equation is simplified to

iωρCD
v θ̂ = κ3

∂ 2θ̂

∂x2
3
− iωθ0 f D

3
∂Û3

∂x3
+ iω

θ0 pS
3

εS
3

σ̂ (4.7.20)

where CD
V = CE

V −
θ0(pS

3)
2

ρεS
3

.

The complete equation set for the structure is

−ω
2
ρÛ3 = cD,θ

33
∂ 2Û3

∂x2
3
− f D

3
∂ θ̂

∂x3
+

(
eθ

33

εS
3

)
∂ σ̂

∂x3
(4.7.21a)

iωρCD
v θ̂ = κ3

∂ 2θ̂

∂x2
3
− iωθ0 f D

3
∂Û3

∂x3
+ iω

θ0 pS
3

εS
3

σ̂ (4.7.21b)

This equation set will consist of a homogenous and a particular solution. The homogenous
solutions will be found through the eigenvalue computatios. The particular solutions are found
easily by considering the equation set; For the mechanical equation, the particular solution is
Ûp = 0, since the charge gradient is neglected. For the heat equation, the last term is a constant.
By dividing the last term by the constant terms on the left side of the equation, this results in

θ̂p =
iω θ0 pS

3
εS

3

iωρCD
V

σ̂ =
θ0 pS

3

ρCD
V εS

3
σ̂ (4.7.22)

4.8 Plane-wave solution

A plane-wave solution will be used to formulate the homogenous equation system

Û3 = Û3e−ikx3

θ̂ = θ̂e−ikx3
(4.8.1)

(4.8.1) is inserted into (4.7.21) and the appropriate terms are differentiated, to obtain an equation
system on the form[

−ρω2 0
0 iωρCD

V

]{
Û3
θ̂

}
= k2

[
−cD,θ

33 0
0 −κ3

]{
Û3
θ̂

}
+ k
[

0 i f D
3

−ωθ0 f D
3 0

]{
Û3
θ̂

}
(4.8.2)
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The matrix system is on the form
Ax = k2Bx+ kCx (4.8.3)

By choosing y = kBx we can reduce the problem to a generalized eigenvalue problem (4.8.5)

Y = kBx
Ax = kY+ kCx

(4.8.4)

A generalized eigenvalue problem is on the form

Ax = λBx (4.8.5)

Setting (4.8.4) up as a matrix system[
A 0
0 I

]{
x
y

}
= k
[

C I
B 0

]{
x
y

}
where x =

{
Û3
θ̂

}
(4.8.6)

This is implemented in Matlab. Using the eig()-function, we get a 4× 4-matrix with eigen-
vectors on the columns, and a 4×4 diagonal matrix with the eigenvalues, kn. We have a general
solution on the form{

Û
θ̂

}
= A1

[
Ûg1
θ̂g1

]
e−ik1x +A2

[
Ûg2
θ̂g2

]
e−ik2x +A3

[
Ûg3
θ̂g3

]
e−ik3x +A4

[
Ûg4
θ̂g4

]
e−ik4x (4.8.7)

(4.8.7) can be set up as a matrix equation

{
Û
θ̂

}
=
[
Ûg1 Ûg2 Ûg3 Ûg4
θ̂g1 θ̂g2 θ̂g4 θ̂g4

]
e−ik1x

e−ik2x

e−ik3x

e−ik4x




A1
A2
A3
A4

 (4.8.8)

Only the top two rows in the eigenvector matrix is used, see (4.8.6)

4.8.1 Dimensionless form

To avoid numerically unstable eigenvalues and eigenvectors, it is preferred to formulate the prob-
lem in dimensionless form. This problem has a wide range of dimensions, from sub-nanometer
displacements to several Gigahertz, which causes an unbalanced equation set. We have the equa-
tion set from (4.8.2)

−ρω
2Û3 = k2

(
−cD,θ

33

)
Û3 + k(i f D

3 )θ̂ (4.8.9a)

iωρCD
V θ̂ = k2(−κ3)θ̂ + k(−iωθ0 f D

3 )Û3 (4.8.9b)
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Dividing (4.8.9a) by
(
−cD,θ

33

)
gives

k2
mÛ3 = k2Û3 + k

(
−i

f D
3

cD,θ
33

)
θ̂ (4.8.10)

where k2
m = ρω2

cD,θ
33

. Dividing (4.8.9b) by (−κ3) gives

− ik2
t θ̂ = k2

θ̂ + k
(

ωθ0 f D
3

κ3

)
Û3 (4.8.11)

where k2
t = ωρCD

V
κ3

. Now we have a matrix system of the form

[
k2

m
−ik2

t

]{
Û3
θ̂

}
= k2

{
Û3
θ̂

}
+ k

 −i f D
3

cD,θ
33

ωθ0 f D
3

κ3

{Û3
θ̂

}
(4.8.12)

Choosing the dimensionless variables, γ and τ , to replace Û3 and θ̂

γ = λÛ3

τ = µθ̂
(4.8.13)

where λ and µ are variables connecting the normal and dimensionless form. Substuting (4.8.13)
into (4.8.10) and (4.8.11) gives

k2
mγ = k2

γ− ik f D
3

(
λ

cD,θ
33 µ

)
τ

−ik2
t τ = k2

τ + k f D
3

(
ωθ0µ

κ3λ

)
γ

(4.8.14)

Setting the expressions enclosed in parantheses equal will give a relationship between the non-
dimensionless variables.

λ

cD,θ
33 µ

=
ωθ0µ

κ3λ
=⇒ λ

µ
=

√
ωθ0cD,θ

33
κ3

(4.8.15)

A sensible choice for µ would be µ = 1
θ0

, since this would give no dimension on the temperature.
Substituting into (4.8.15) gives

λ =

√
ωcD,θ

33
κ3θ0

(4.8.16)

Inserting for µ and λ into (4.8.14) gives

k2
mγ = k2

γ− ik f D
3 ζ τ

−ik2
t τ = k2

τ + k f D
3 ζ γ

(4.8.17)
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where ζ =
√

ωθ0

κ3cD,θ
33

. Now we have a dimensionless equation system, and is shown here in matrix

form. [
k2

m
−ik2

t

]{
γ

τ

}
= k2

{
γ

τ

}
+ k
[

−i f D
3 ζ

f D
3 ζ

]{
γ

τ

}
(4.8.18)

The dimensionless form replaces the equation in (4.8.2), but it is important to remember that the
resulting general solution will not be U3 and θ , but γ and τ . This means that the solution with
the dimensionless variables needs to be scaled back to the original variables using

γ = λÛ3

τ = µθ̂
(4.8.19)

4.9 Boundary conditions

By including the thermal effects, we get a coupled system which needs to be treated differ-
ently than the pure piezoelectric problem. The general solution is now a matrix equation with
block matrices instead of scalars (See (4.9.1)), so both the temperature/displacement and heat
flux/stress are being accounted for in each of the boundary conditions.

Displacement and temperature across internal boundaries

As in the previous models, the continuity in displacement is required. The temperature also has
the same requirement, to be continuous throughout the structure.{

UL
3 |x3=0− = UM

3 |x3=0+

θ L
3 |x3=0− = θ M

3 |x3=0+

} {
UM

3 |x3=L− = UR
3 |x3=L+

θ M
3 |x3=L− = θ R

3 |x3=L+

}

Stress/heat flux continuity across internal boundaries The stress and the heat flux must be
continuous across the internal boundaries{

T L
3 |x3=0− = T M

3 |x3=0+

qL
3 |x3=0− = qM

3 |x3=0+

} {
T M

3 |x3=L− = T R
3 |x3=L+

qM
3 |x3=L− = qR

3 |x3=L+

}

Free ends There must be no stress at the ends in order for the structure to be freely vibrating.
The heat flux must also be zero, so we don’t have any heat dissipating out of the structure.{

T L
3 |x3=−t = 0

qL
3 |x3=−t = 0

} {
T R

3 |x3=L+t = 0
qR

3 |x3=L+t = 0

}
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4.9.1 Applying the boundary conditions

These boundary conditions are applied to the total solution

{
Û
θ̂

}
=
[
Ûg1 Ûg2 Ûg3 Ûg4
θ̂g1 θ̂g2 θ̂g4 θ̂g4

]
e−ik1x3

e−ik2x3

e−ik3x3

e−ik4x3




A1
A2
A3
A4

+
{

Ûp

θ̂p

}
(4.9.1)

To ease the notation, (4.9.1), is written in the following way

VnZn(x3)A+Pn (4.9.2)

where n is the layer and x3 is the position along the x3 axis.

Displacement and temperature across internal boundaries

(4.9.2) is inserted into the boundary conditions, and we get the following block matrix equation

VLZL(0)+PL = VMZM(0)+PM

Reordering the equation to have the particular solution on the right hand side.

VLZL(0)−VMZM(0) = PM−PL (4.9.3)

Similarly for the same boundary condition at x3 = L

VMZM(L)−VRZR(L) = PR−PM (4.9.4)

Stress/heat flux continuity across internal borders

Stress and heat flux are defined in the constitutive equations and utilizing Fourier’s law respec-
tively. Stress including thermal effects is given by (superscripts neglected)

Ti j = ci jklSkl− eki jEk− fi jθ (4.9.5)

From Fourier’s law, the heat flux is defined as

qi =−κi j
∂θ

∂xk
(4.9.6)

where qi is the heat flux and κi j are components of the heat conductivity tensor. We only consider
displacement in the x3-direction, which reduces (4.9.5) and (4.9.6) into (using matrix notation)

T3 = c33Skl− eki jEk− fi jθ (4.9.7a)

q3 =−κ3
∂θ

∂x3
(4.9.7b)
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We want to eliminate the electric field, so the stress becomes a function of U3 and θ . From 4.7.5,
removing the hats and superscripts, we have

E3 =−e33

ε3

∂U3

∂x3
− p3

ε3
θ − 1

ε3
σ (4.9.8)

Substituting (4.9.8) into (4.9.7a) reduces the stress equation to having two independent variables
in addition to the σ variable which will be the particular solution of the problem.

T3 = c33U3,3− f3θ − e33

(
−e33

ε3

∂U3

∂x3
− p3

ε3
θ − 1

ε3
σ

)
= cD

33
∂U3

∂x3
− f D

3 θ +
e33

εS
3

σ

(4.9.9)

In order to realize (4.9.9) and (4.9.6), we must introduce two material property matrices and a
differentiation matrix. The material property matrices are

Md =
[

cD
33
−κ3

]
Mod =

[
− fi j

]
(4.9.10)

and the differentiation matrix is

D =


−ik1

−ik2
−ik3

−ik4

 (4.9.11)

The boundary condition for stress/heat flux at x3 = 0 then becomes(
ML

dVLDL +ML
odVL)ZL(0) =

(
MM

d VMDM +MM
odVM)ZM(0) (4.9.12)

and for x3 = L (
MM

d VMDM +MM
odVM)ZM(L) =

(
MR

d VRDR +MR
odVR)ZR(L) (4.9.13)

No stress/heat flux at the ends

The same boundary condition for the piezoelectric model is used for the stress, but in addition
we have the condition for no heat flux at the end. This ensures that no heat flux radiates out of
the structure, but is confined within the structure.


∂T L

3
∂x3
|x3=−t = 0

∂qL
3

∂x3
|x3=−t = 0




∂T R
3

∂x3
|x3=L+t = 0

∂qR
3

∂x3
|x3=L+t = 0
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By applying the matrix form of the general solution and the material and differentiation matrices,
we get the following boundary conditions for x3 =−t(

ML
dVLDL +ML

odVL)ZL(−t) = 0 (4.9.14)

and for x3 = L+ t (
MR

d VRDR +MR
odVR)ZR(L+ t) = 0 (4.9.15)

All of the boundary condition, except for the particular solutions, are collected in a matrix

K =


VLZL(0) −VMZM(0) 0

0 VMZM(L) −VRZR(L)(
ML

dVLDL +ML
odVL)ZL(0) −

(
MM

d VMDM +MM
odVM)ZM(0) 0

0
(
MM

d VMDM +MM
odVM)ZM(L) −

(
MR

d VRDR +MR
odVR)ZR(L)(

ML
dVLDL +ML

odVL)ZL(−t) 0 0
0 0

(
MR

d VRDR +MR
odVR)ZR(L+ t)


which is a 12x12 matrix. The particular solutions are gathered in a matrix

P(6×1) =


−PL +PM

−PM +PR

−PL +PM

−PM +PR

−PL

−PR

 (4.9.16)

4.9.2 Electrical boundary conditions

The voltage is given by

V =− ∂φ

∂x3
(4.9.17)

Inserting this into (4.5.13) and integrating through the piezoelectric layer from x3 = 0 to x3 = L,
we get

− ε
S
3 (φ(L)−φ(0))︸ ︷︷ ︸

V

+e33
(
Û3(L)−Û3(0)

)
+ p3L

∫ L

0
θ̂dx3 = Lσ̂ (4.9.18)

Rearranging and we get an expression for the voltage

V =
e33

εS
3

(
Û3(L)−Û3(0)

)
+

π3L
εS

3

∫ L

0
θ̂dx3 +

L
εS

3
σ̂ (4.9.19)

Û3 and θ̂ can be represented as series

Û3(x3) =
4

∑
j=1

Am jÛm je−ik jx3 θ̂(x3) =
4

∑
j=1

Am jθ̂m je−ik jx3 (4.9.20)
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and by inserting this into (4.9.19) we get

V =
4

∑
j=1

{
e33

εS
3

Um j

(
e−ik jL−1

)
+ i

π3L
εS

3

θ̂m j

k j

(
e−ik jL−1

)}
Am j (4.9.21)

where the term enclosed within the curly brackets is called the Tm j-vector which has the form

T(1×12) =
[
0 Tm1 Tm2 Tm3 Tm4 0

]
(4.9.22)

where 0 is a (1×4) zero-matrix.

4.10 Implementing the calculations in Matlab

All the material properties are collected in a materialTable-matrix where each of the columns
represent the materials. It is structured in the following way

ρ

CV
p

εS
3

cE
33

κ33
K
θ0
α

ν


(4.10.1)

Due to large differences between the rows in the boundary conditions matrix, a linear scaling
of the rows are being done by a scaling vector to balance the matrix. The same scaling is also
applied to the P-matrix.

A vector which spans the frequency range of choice, is used for iterating through the proce-
dure. The frequencies are used as an argument in a for-loop which handles all the eigenvalue
calculations for the system.

All the calculations are solved for each layer, which are stored as structures instead of ordinary
variables. This gives the possibility to store the solutions as eigenValues.n, where n is the
layer name.

The impedance is calculated in the same way as for the non-thermal model, which is shown in
Section 3.6.2.
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CHAPTER 5

Results

5.1 Quality factor as a function of layer thickness

The quality factor (Q-factor) is a dimensionless, real, positive number which is used for quanti-
fying the performance of dynamical systems. It is defined as

Q =
ωs

ω+−ω−
(5.1.1)

where ω+ and ω− are the −3 dB frequencies above and below ωs, which defines the bandwidth.
The Q-factor quantifies the energy efficiency of the system, and thus can be used to estimate the
losses. In a high frequency resonator applications, a high as possible Q-factor is preferred.

In the calculations, the amplitude of the admittance is used for calculating the Q-factor. The Ymax
frequency is used as the center frequency, and the −3 dB frequencies are used for calculating
the bandwidth. To Ymax is normalized to the maximum value, making it easy do identify the
maximum frequency (Y = 1), and the 3 dB frequencies (0.45 ·Y < Y < 0.55 ·Y ). The range in
selecting the −3 dB frequenices are used to reduce computing time. Since the Q-factor is quite
high, the frequency change is neglectible between 0.45 ·Y < Y < 0.55 ·Y .

The Matlab algorithm for choosing the Q-factor is
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normYabs=abs(Y)./max(abs(Y));
fs_3db=f(normYabs>0.45 & normYabs<0.55);
fs_res=f(normYabs==1);
Qs=fs_res/(max(fs_3db)-min(fs_3db))

5.2 Coupling factor as a function of metal layer thickness

For a Mason model of a free piezoelectric element vibrating in the thickness mode, the total
impedance is given by[12]

ZT =
1

iωC0

1− k2
t

tan
(

kml
2

)
kml
2

= iXT RT = 0 (5.2.1)

where km is the wavenumber in the material, and kt is the electromechanical coupling constant.
The first resonance frequency for the system occurs when ZT = i0 and can only be achieved when

tanxs =
xs

k2
t

where xs =
kml
2

(5.2.2)

The wavenumber is given by km = 2π f1l
2cm

, where cm is the speed of sound in the material. For the
antiresonance, the condition is ZT = i∞ and requires tanxp = ∞, such that

xp =
2π f2l
2cm

=
π

2
(5.2.3)

Rearranging (5.2.3) we get f2 = cm
2l , which is the halfwave resonance of the piezoelectric element.

Using 5.2.2, inserting for xs and solving for k2
t we get

k2
t =

π f1l
cm

tan
(

π f1l
cm

) (5.2.4)

From (5.2.3) we have cm = 2l f2, which is inserted into (5.2.4), to get

k2
t =

π

2
f1
f2

tan
(

π

2
f1
f2

) (5.2.5)

Using the relation
1

tanx
= tan(

π

2
− x) (5.2.6)
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we get

k2
t =

π

2
f1

f2
tan
(

π

2
f2− f1

f2

)
(5.2.7)

k2
e f f is extracted from the calculations and plotted as a function of metal layer thickness. 5 GHz

and 10 GHz is chosen as the key frequencies to investigate, and the thickness of the piezoelectric
layer is changed accordingly to each metal layer thickness, to achieve each of the frequencies.
This gives us an indication of the influence of the metal layer on the energy efficiency of the
FBAR structure. The thickness with the highest k2

e f f then has an indicative, optimal thickness
ratio between the metal electrodes and the piezoelectric layer for the given frequency.

5.3 Performance for different contact materials

With a non-thermal and a thermal model for the FBAR, the comparison of the contact materials
can be done. The simulation has included the whole range of possible thicknesses for both
contact and piezoelectric layer, but the most sensible results will be in the midrange around
100−150 nm, which seems to be a more realistic thickness to use in FBAR’s. The results will be
compared to other references as far as it is possible, but most of the comparison will be between
the results obtained in this simulation.

5.3.1 Aluminium

Aluminium is the most abundant metal in the Earth’s crust, but due to its high reactivity with
other minerals it is rarely found as a free metal. It has very low density and very high resistance
to corrosion. It has a low bulk modulus, which means that it is a quite ductile material, and
the temperature coefficient of expansion is big. It has excellent thermal properties with a high
thermal conductivity and heat capacity. The device dimensions for the 5 GHz device is shown in
Table 5.1

Figure 5.1 shows quite high coupling over a relatively large range of contact thicknesses. With
the thermal effects, the coupling has a maximum at approximately 7%. The difference between
the thermal and non-thermal model is apparent, and is more pronounced at the thinner contact
thicknesses, where the piezoelectric layer is quite thick compared to the contacts. At the max-
imum contact thickness around ∼ 240 nm, the contact thickness is twice as thick as the piezo-
electric layer, and the coupling constant is quite similar in both models. This can be due to the
mass loading of the contacts compared to the very thin piezoelectric layer.
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Table 5.1: Device dimensions for Al-contacts

tc 5 GHz tc 5 GHz tc 10 GHz tp 10 GHz
10 1109 1 561
20 1091 3 558
30 1072 5 554
50 1035 10 545
70 995 20 527

100 927 40 487
120 874 50 463
150 776 60 437
200 518 80 367
220 363 100 259
240 170 120 84
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Figure 5.1: k2
e f f wrt. contact thickness for Aluminium at 5 GHz and 10 GHz

The Q-factor is shown in Figure 5.2, and the maximum is Q ≈ 28000. For contact thicknesses
larger than 150 nm, the Q-value is approximately 1000. This is a more realistic thickness in a
real device, and hence Aluminium is not as well suited as a contact material. Yokoyama et al.
[14] states that due to the low acoustic impedance, Za =

√
c×ρ , Aluminium has a disadvantage

with use in high frequency filters. This seems to fit well to the results from the Matlab model.
Figure 5.3 shows frequency difference between the non-thermal and thermal model. The antires-
onance/resonance of the thermal model is held approximately constant at 5 GHz, and the gap up
to the non-thermal model is shown in the plot. The biggest effect is seen at a contact thickness
of tcontact = 150 nm, which is where the biggest gap between the two models in terms of both
resonance and antiresonance frequency.
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Figure 5.2: Quality factor for Aluminium at 5 GHz

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Contact thickness [nm]

∆ 
f [

G
H

z]

 

 
Antiresonance f

a

Resonance f
s

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Contact thickness [nm]

∆ 
f [

G
H

z]

 

 
Antiresonance f

a

Resonance f
s

Figure 5.3: Difference between the resonant frequencies for thermal and non-thermal effects for Alu-
minium at 5 GHz

For the resonance frequency the frequency difference is as big as∼ 70 MHz which is a consider-
able amount. The cause of this difference has not been figured out, but can be due to the thermal
effects introducing a lowering of the stiffness of the structure. This effect seems to increase at
10 GHz, but that can also be an effect of the relative difference of the frequencies.

5.3.2 Ruthenium

Ruthenium has shown to be a promising material for FBAR structures. It is a very tough material,
used in applications where exceptional toughness is required. It is quite similar to Molybdenum
in properties, but has a higher stiffness.
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Figure 5.4: k2
e f f wrt. contact thickness for Ruthenium at 5 GHz and 10 GHz

Above 100 nm, the Q-factor is quite stable around ∼ 7000. Ruthenium has found to be very
suitable as an electrode material [14], which seems to fit well to our model.
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Figure 5.5: Quality factor for Ruthenium at 5 GHz and 10 GHz

Figure 5.6
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Figure 5.6: Difference between the resonant frequencies for thermal and non-thermal effects for Ruthe-
nium at 5 GHz and 10 GHz

5.3.3 Molybdenum

Molybdenum has been widely used as an electrode material due to its low resistivity and high
acoustic impedance[10]. It has a very high melting temperature and has generally high heat resis-
tance, which makes it ideal for high temperature applications. It is widely used in manufacturing
of aircraft parts, electronic components, filaments etc.

Compared to the other materials used in this thesis, it has a medium density at ρ0 = 10280 kg m−3

and high bulk modulus K = 230 GPa. The heat conductivity is quite high at κ = 139 Wm−1K−1,
and the temperature coefficient of expansion is quite low at 4.8× 10−6K−1. It has the second
highest heat capacity of the contact materials investigated.
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Figure 5.7: k2
e f f wrt. contact thickness for Molybdenum at 5 GHz and 10 GHz
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Figure 5.8: Quality factor for Molybdenum at 5 GHz and 10 GHz
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Figure 5.9: Difference between the resonant frequencies for thermal and non-thermal effects for Molyb-
denum at 5 GHz and 10 GHz

5.3.4 Platinum

Platinum is the most dense material with a density of 21090 kg m−3, and the lowest speed of
sound of 2680 m s−1.

Because of this high weight density, Platinum has disadvantages for use in high frequency FBAR
filters[14]. From 5.11 we can see at the mid-range contact thicknesses, that the Q-value is quite
lower than most of the other materials.
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Figure 5.10: k2
e f f wrt. contact thickness for Platinum at 5 GHz and 10 GHz
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Figure 5.11: Quality factor for Platinum at 5 GHz and 10 GHz
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Figure 5.12: Difference between the resonant frequencies for thermal and non-thermal effects for Plat-
inum at 5 GHz and 10 GHz
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5.4 Figure of merit

There are many ways to classify the performance of mechanical devices. For FBAR’s a common
way to measure it is using the k2

t Q-product as a figure of merit. The k2
t Q-product is shown for

the different materials in Figure 5.13
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Figure 5.13: k2
t Q-product for the different contact materials at 5 GHz and 10 GHz

5.5 Correction of results

Unfortunately, there was a small error in the Matlab model at a late time, which caused the
results to be wrong. The time to reproduce all the results from scratch is not feasible, but a small
example with the correct code is shown here.

Figure 5.14 shows that the coupling as close to identical for both the thermal and the non-thermal
model, and differ slightly at the largest contact thicknesses.
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Figure 5.14: Effective coupling constant for thermal and non-thermal model for aluminium at 5 GHz

The Q-factor seems to give a more reasonable result, with a maximum for Qs around 1500. This
gives the optimal thickness for Aluminium contacts at approximately t = 50 nm. We can see that
Qp, which is the Q-factor for the amplitude of the impedance, becomes quite high for the thicker
contact thicknesses. I have not been able to investigate this effect due to the lack of time, but it
seems to be a very interesting effect.
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Figure 5.15: Qs and Qp for aluminium at 5 GHz

We can see in Figure 5.16 that the figure of merit for the Aluminium contacts on the FBAR is
around 100, which seems to be a realistic result.
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Figure 5.16: Figure of merit for aluminium at 5 GHz

5.6 Future work

This thesis has considered a very simplified FBAR structure, using only longitudinal vibrations
and a freely vibrating structure. It would be interesting to expand this model to include more
vibration modes, especially the lateral vibration mode, which can contribute quite a bit to the
loss of performance in the FBAR. Even on this simple structure investigated here, the calculations
becomes quite large, and in order to perform even further analysis, the use of more sophisticated
methods needed.

A logical progression would be to investigate the device with Finite Element (FEM) software,
to compare the results to the Matlab model. With FEM software, both 2D and 3D models of
the same structure could provide more valuable knowledge in order to quantify the thermoelastic
losses in the contacts of the FBAR.

Further on, the other loss effects could be modeled in the FEM-model in order to approach
the performance of a real device, which has considerable lower performance than the device
investigated in this thesis.

5.7 Conclusion

An analytical model for an FBAR structure, including and not including thermal effects has been
modeled. Different materials has been tested in the model to see if the performance is affected
when the thermal effects are included.
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The models seems to fit well with earlier work being done to similar structures. Most of the
previous work has been done on real devices, which is not as idealized as this model. The real
devices will include more loss effects, giving lower performance than the idealized models in
this thesis. For the very thin layers, either contact layer og piezoelectric layer, the Q-factor
increases noticeably. The main focus has been to compare the midrange contact thicknesses,
100− 200 nm, which is probably a more realistic thickness to use in a real device. Compared
to other work done, the results seems to match pretty good regarding the relative performance
differences between the materials.

The exact influence of the thermal effects has been difficult to pinpoint. The most noticeable
effect has been the lowering of the resonance and antiresonance frequency for the thermal model
compared to the non-thermal model. This could be due to a lowering of the stiffness of the
system, when the thermal effects are introduced. It seems that the largest difference in resonance
and antiresonance frequencies has been around the midrange contact thicknesses.

Comparing the effective coupling for the two models, there hasn’t been any particular influence
by the thermal effects other than the coupling. It has been a little bit higher for most of the thick-
nesses for the thermal model, apart from the case where the contact thicknesses are extremely
large compared to the piezoelectric layer. This can be due to the piezoelectric layer having much
less influence on the performance on these small thicknesses.

Update Due to the unfortunate events of finding a small error in the code, which resulted in
large errors in the results, I haven’t been able to recalculate the results for the different materials.
An example for Aluminium has been done, and it shows much better results. The Q-factor has
a reasonable size for FBAR, and the effective coupling coefficient is practically identical to the
non-thermal model which shows confirms that the thermal model gives good results compared
to the much simpler non-thermal model.
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