

SLRP

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

DOCUMENTS

1. Document Overview

2. Prestudy Report

3. Project Review

4. Project Plan

5. Analysis Document

6. Design Document

7. Scrum Procedures

8. Scrum Rules

9. Product Backlog

10. Quality Assurance

11. High Level Activity Overview

12. Vision Document

13. GWT Technology Document

DOCUMENT OVERVIEW

HIBU STUDENT PROJECT 2011
CORENA S1000D PROCES S DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Document Overview v. 3
01-Jun-2011

2

TABLE OF CONTENTS

1 Introduction ... 4

1.1 Intention of This Document .. 4

1.2 Synonyms, Acronyms and Definitions ... 4

1.3 Author(s) .. 4

1.4 Assigned... 4

2 Documents Prior to the First Presentation ... 5

2.1 Vision Document ... 5

2.2 Prestudy Report ... 5

2.3 Product Backlog ... 6

2.4 Test Cases .. 6

2.5 Quality Assurance .. 7

2.6 Project plan ... 7

2.7 Technology Documents ... 8

2.7.1 GWT ... 8

2.7.2 Spring framework .. 8

2.7.3 XML .. 8

2.7.4 Test-Driven Development ... 8

2.8 Scrum ... 8

2.9 Budget ... 9

3 Documents Prior to the Second Presentation ... 10

3.1 Analysis Document .. 10

3.1.2 S1000D Documentation .. 10

3.2 Design Document .. 11

3.3 Implementation Document ... 12

3.3.2 Javadoc .. 12

4 Documents Prior to the Third Presentation .. 13

4.1 Project Review ... 13

4.2 Hand-Off Document .. 13

Document Overview v. 3
01-Jun-2011

3

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 05-Jan-2011 First version AOL

2 07-Mar-2011 Second Official Version MHA

3 01-Jun-2011 Third Official Version

- Updated documents with new chapters

and added documents prior to third

presentation.

MHA

Document Overview v. 3
01-Jun-2011

4

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

This document overview will provide a listing of the documents we have produced for this

project, together with a short description of each of them.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

1.3 AUTHOR(S)

Olav Brandt (OBR)

 Marius Haraldseth (MHA)

1.4 ASSIGNED

Olav Brandt (OBR)

Document Overview v. 3
01-Jun-2011

5

2 DOCUMENTS PRIOR TO THE FIRST PRESENTATION

2.1 VISION DOCUMENT

The Vision Document defines the basis of the project, and was the first piece of

documentation produced. It provides an introduction to our assignment, the company behind

it - CORENA, and some initial requirements. Additionally, the document answers the question

of why we want to do this assignment, and our vision for the project.

Content (chapters):

1. Introduction

2. Participants

3. The Assignment

4. Expected Results

5. Why CORENA need this

6. Why we want to do this assignment

7. Our vision for this project

(File name: Vision Document.pdf)

2.2 PRESTUDY REPORT

The Prestudy Report builds on the vision document, and goes further into detail on the

subjects described there. The report goes into depth regarding the assignment, the system it

is a part of, some problems and limitations, as well as containing a list of high level project

activities. It also looks at some of the project’s surroundings; the environment it will be

developed in, our project development model and required resources. Finally, it examines

some related projects, alternative solutions to the project’s requirements, and a discussion of

the consequences should we choose to start or not start this assignment.

Content (chapters):

1. Introduction

2. Project Environment

3. Related Projects

4. The System

Document Overview v. 3
01-Jun-2011

6

5. The Assignment

6. Alternative Solutions

7. Consequences for Each Participant of the Project, if We Start or Don’t

8. Problems and Limitations

9. High Level Activity Overview

10. Project Development Model

11. Resources Required in the Project Split on Activities

12. Activities and Resources Until the Project Plan is Ready

(File name: Prestudy Report.pdf)

2.3 PRODUCT BACKLOG

The Product Backlog contains requirements in the form of User Stories. The User Stories are

prioritised by the Product Owner, and each has a dimensionless and comparative time/effort

estimate. Linked to the User Stories are test cases, one or more per User Story.

Content (sheets):

 Product Backlog

 Explanation

 Removed User Stories

(File name: Product Backlog.pdf)

2.4 TEST CASES

The Test Cases document contains all of our tests for the User Stories. The tests are linked to

specific User Stories. The test cases describe the testing procedure, with the action(s) to be

taken by the tester and the expected result.

Content:

 Test Cases

 Action(s)

 Expected Result(s)

Document Overview v. 3
01-Jun-2011

7

(File name: Test Cases.pdf)

2.5 QUALITY ASSURANCE

The Quality Assurance document describes what and how we will be conducting the

document reviews and software testing in our project. It starts off by introducing our

document review procedures, as well as various important concepts, such as verification and

validation, functional and non-functional tests, and test levels. It also examines specific

techniques and approaches to the testing process. In the latter parts of the document, it goes

into detail on each type of (functional) testing we will be performing; from unit testing to

system and acceptance testing.

Content (chapters):

1. Introduction

2. Document Review

3. Software Testing

(File name: Quality Assurance.pdf)

2.6 PROJECT PLAN

The project plan is a layout for the rest of the project, as well as a further continuation of the

documentation produced in the prestudy report. Subjects described here include, amongst

others, the goals, limitations, preconditions and organisation of the project. It is then

followed by a list of 3-week Sprints with start and end dates, an estimated amount work

hours available and an initial goal for the time period.

Content (chapters):

1. Introduction

2. The Task

3. Project Goals and Limitations

4. Preconditions for This Project

5. Project Organisation

6. Roles and Responsibilities

7. Project Control

8. References

Document Overview v. 3
01-Jun-2011

8

(File name: Project Plan.pdf)

2.7 TECHNOLOGY DOCUMENTS

Technology descriptions are separated into individual documents. They are meant to provide

a basis for the understanding and use of technologies we will be utilising, and are written

primarily for our own purpose.

2.7.1 GWT

GWT is, to quote its technology document, an open-source, Java-based framework for

creating AJAX applications. The document goes into more detail on what GWT is, why we’re

using it, some disadvantages, and suggests some further reading.

2.7.2 SPRING FRAMEWORK

Spring is a Java framework. The technology document explains further what that actually

means, what it consists of, and some advantages of using it.

2.7.3 XML

XML is a mark-up language and is among others used to write the process Data Modules. Our

technology document provides some background information, the format and elements of

the language, as well as an example.

2.7.4 TEST-DRIVEN DEVELOPMENT

Test-Driven Development is type of development process where tests are written before

business code. The document introduces some key aspects and terms, a couple of different

approaches, and pros/cons to adopting it.

2.8 SCRUM

We have produced documentation for the development methodology our group is using,

Scrum. The document is meant to give an insight into what using Scrum entails, why and how

we use Scrum, what having Scrum as a development methodology means for our project, and

more.

Content (chapters):

1. Introduction

Document Overview v. 3
01-Jun-2011

9

2. Why Scrum

3. Scrum Project Planning in General

4. More on Scrum Tools

5. The Pros and Cons of Scrum Project Planning

6. Calculations of Time Estimates in Scrum

(File name: Scrum Procedures.pdf)

2.9 BUDGET

The budget contains a list of incurred and expected expenses. The budget is approved by

CORENA and it is important for us to monitor our expenses using the Budget.

Document Overview v. 3
01-Jun-2011

10

3 DOCUMENTS PRIOR TO THE SECOND PRESENTATION

3.1 ANALYSIS DOCUMENT

The Analysis Document will contain documentation describing the background for the

decisions we make regarding the analysis, and descriptions of the decisions themselves.

Content (chapters):

1. Introduction

2. S1000D Specification

3. GWT and Client/Server

4. Application Stucture

5. Reference(s)

(File name: Analysis Document.pdf)

3.1.2 S1000D DOCUMENTATION

We’ve conducted an analysis into the S1000D specification. It defines a structure for the

process DMs, the elements it consists of, and requirements for software implementations.

The S1000D documentation is located in the S1000D pDM folder.

Contents (documents):

1. S1000D PDM - Data Module Sequences

2. S1000D PDM - External Application Interface

3. S1000D PDM - Logic Engine

4. S1000D PDM - Process Flow Construct - Collection of user information

5. S1000D PDM - Process Flow Construct - Preliminary requirements and Close

requirements

6. S1000D PDM - Process Flow Construct – Process

7. S1000D PDM - Process Flow Construct - Variable declarations

8. S1000D PDM – References

9. S1000D PDM - Variables

Document Overview v. 3
01-Jun-2011

11

3.2 DESIGN DOCUMENT

The Design Document will contain a closer, in depth overview of the application we are

creating, S1000D Logic Engine and Renderer for Process Data Modules (SLRP). It is important

to notice that this document only covers the main architecture and design of the parts that

has been developed so far.

Content (chapters):

1. Introduction

2. Layout / GUI / View

3. System Structure

4. Model-View-Presenter

5. Fetch Pdm

6. Client and Server

7. Document Object Model (DOM)

8. Database System

9. Saving and Loading Sessions

10. DisplayPackage Handling

11. Expressions

12. Reference(s)

(File name: Design Document.pdf)

Document Overview v. 3
01-Jun-2011

12

3.3 IMPLEMENTATION DOCUMENT

The Implementation Document will contain our implementation process, javadoc, code

standard and decisions on a lower level than design.

 Content (chapters):

1. Introduction

2. Code Standard

3. Test Driven Development

4. State Table Database

5. XML Handling and Data Binding

6. JavaDoc

7. Reference(s)

(File name: Implementation Document.pdf)

3.3.2 JAVADOC

The javadoc is the API documentation of the code in our application. This can be found under:

/javadoc/SLRP Javadoc

Document Overview v. 3
01-Jun-2011

13

4 DOCUMENTS PRIOR TO THE THIRD PRESENTATION

4.1 PROJECT REVIEW

The Project Review is a total review of our project, how it has worked out, things we could

have done better etc.

Content (chapters):

1. Introduction

2. The Project

3. Scrum Development Methodology

4. What We Could Have Done Better

5. Technical

6. Goal Achievement

7. Self-Evaluation

8. Conclusion

9. References

(File name: Project Review.pdf)

4.2 HAND-OFF DOCUMENT

The Hand-Off Document is a document intended for CORENA when they will take over the

development of the application. It is a document which will tell where we are in the

development, what the state of our application is and other important information.

Content (chapters):

1. Introduction

2. Server Components

3. Client Components

4. What We Support From The Specification

5. The Build

6. References

Document Overview v. 3
01-Jun-2011

14

(File name: Hand-Off Document.pdf)

PRESTUDY REPORT

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Prestudy Report v. 2
05-Jan-2011

2

TABLE OF CONTENTS

1 Introduction ... 4

1.1 Intention of this Document ... 4

1.2 Synonyms, Acronyms and Definitions ... 4

1.3 Author(s) .. 5

1.4 Assigned... 5

2 Project Environment .. 6

2.1 Scrum Project Management Tool .. 6

2.2 Time Tracking Tool .. 6

2.3 Document Sharing ... 6

2.4 Communication ... 7

2.5 Source Code Sharing .. 7

2.6 Document Editing Software .. 7

2.7 JAVA IDE .. 7

3 Related Projects ... 8

3.1 Related Internal Projects at Høgskolen i Buskerud ... 8

3.2 Related External Projects .. 8

4 The System .. 9

4.1 Employer ... 9

4.2 S1000D Process DM ... 9

4.3 Benefits to the S1000D Process DM .. 11

5 The Assignment ... 12

5.1 Our Project .. 12

5.2 Requirements for the Logic Engine ... 12

5.3 Other Requirements .. 13

6 Alternative Solutions ... 14

6.1 Google Web Toolkit Alternatives .. 14

6.1.1 Adobe Flex/Flash ... 14

6.1.2 HTML5 ... 14

6.2 Apache ... 14

7 Consequences for Each Participant of the Project, if We Start or Don’t....................................... 15

7.1 Pros and Cons for CORENA .. 15

Prestudy Report v. 2
05-Jan-2011

3

7.2 Pros and Cons for Us ... 15

8 Problems and Limitations .. 16

8.1 Main Milestones .. 16

9 High Level Activity Overview ... 17

10 Project Development Model ... 19

10.1 Roles .. 19

10.2 Sprints .. 20

10.3 Lists/Artefacts .. 20

11 Resources Required in the Project Split on Activites .. 21

12 Activities and Resources Until the Project Plan is Ready .. 23

13 Reference(s) .. 24

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 19-Oct-2010 First Official version of document MHA

2 05-Jan-2011 - Minor changes to activity diagram.

- Smaller changes in text.

- Added introduction for the project.

- Moved references.

- Corrected references to standard.

- Syntax error correction.

- Document Review by all team members.

- Edited introduction.

MHA

Prestudy Report v. 2
05-Jan-2011

4

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

This document is a report on the result of our prestudy for the project assignment. It will

describe the task in more detail, and the basic strategy for how we will complete the

assignment. This will be more detailed in the Project Plan document.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

IETP Interactive Electronic Technical Publication
- Technical manual prepared in digital form on a suitable

medium.

XML Extensible Markup Language
- Set of rules for encoding documents in a machine language.

Process DM Process Data Module

HiBu Høgskolen I Buskerud

KDA Kongsberg Defence and Aerospace

XP Extreme Programming

TDD Test Driven Development

Prestudy Report v. 2
05-Jan-2011

5

1.3 AUTHOR(S)

Arild Oldervoll (AOL)

Marius Haraldseth (MHA)

Eirik André Eidså (EAE)

Olav Brandt (OBR)

1.4 ASSIGNED

Marius Haraldseth (MHA)

Prestudy Report v. 2
05-Jan-2011

6

2 PROJECT ENVIRONMENT

2.1 SCRUM PROJECT MANAGEMENT TOOL

For this project we have decided to use Scrum as our development methodology. Therefore it

is important for us to find a project management tool that fulfils the following three criteria:

- Scrum support, including

o User Stories

o Product Backlog

o Burn-down charts

- Free to use for the entire team and for the entire project period

- Online interface and hosting

To our surprise, there are very few project management tools that provide these three things

- the two last requirements are especially hard to find support for. We decided to use Pivotal

Tracker. This is an online project planning tool based on agile development methods. It does

not completely fulfil all the points in the first requirement, but it comes very close and is

satisfactory for our use. For example; it lacks true burn-down charts, which are an important

artefact in Scrum, but it has visual reports that represents the same information that a burn-

down chart does. It is also free for an unlimited number of users and projects. It includes bug-

tracking and it is possible to include attachments to User Stories and bugs.

After testing Pivotal Tracker for some time, we decided that it did not support our needs in a

satisfactory manner. Instead, we are using a set of physical aids and tools in true Scrum-form;

whiteboards and Post-it notes. We also came up with an Excel spreadsheet for the Sprint

Backlog and Burndown Chart, adjusted for our requirements.

2.2 TIME TRACKING TOOL

We have found a good time tracking tool named Toggl. This is an online tool with the

possibility to download an application for Android and iPhone. It makes it very intuitive to

track time online and makes good reports so we can see how much time is used on each task.

2.3 DOCUMENT SHARING

To share documents between project team members, we use Dropbox. Dropbox synchronises

all files in a selected folder on the computer with the other team members’ files, so that

everybody will see each other’s files as soon as they are saved in the folder. Since a local copy

is located on each team member’s machine, backup of all the documents are ensured almost

instantly when a file is saved. Dropbox also provides a change history for each file and the

Prestudy Report v. 2
05-Jan-2011

7

possibility of reverting to any earlier version within the last 30 days. It is also possible to

restore deleted files.

Dropbox is also a secure service; all files are password protected and encrypted, and all

transmissions are made through SSL.

2.4 COMMUNICATION

Our main tool for online communication is Skype. Skype is a free program that offers free

communication with text, voice and video, either one-to-one or for group conversations. This

is the main communication tool used by CORENA, and therefore it is also easier to

communicate with anyone in CORENA directly if needed.

2.5 SOURCE CODE SHARING

For sharing and collaborating on source code we will use a version control system in the

project. We have decided on using the Apache Subversion (SVN) system to share and commit

source code. This is a very feature rich and free, version control system. Together with SVN

we will also use TortoiseSVN to check files in and out from SVN. Both SVN and TortoiseSVN

are also used by CORENA.

2.6 DOCUMENT EDITING SOFTWARE

Høgskolen i Buskerud (HiBu) requires the project team to provide documents in open file

formats, like PDF or DOCX. We will be using Microsoft Word to create these documents. It is a

very common office tool with a lot of features and the possibility to save the documents in

several different open formats. We will go with the open format PDF for our official

documents.

2.7 JAVA IDE

We will use Eclipse IDE for our development. This is a free and very feature rich IDE also used

by CORENA and has support for SVN.

Prestudy Report v. 2
05-Jan-2011

8

3 RELATED PROJECTS

3.1 RELATED INTERNAL PROJECTS AT HØGSKOLEN I BUSKERUD

To our knowledge and as far as our research has shown, there have not been any projects

directly relating to the task we have been given by CORENA. However, there have been

several computer science projects done at HiBu, and in our prestudy we have looked at these

projects.

We have decided to focus on two previous projects; Rivet and Scrat. They are both project

groups that finished in June 2010, both with a very nice end result and good grading from

their sensors. These are also projects we are already familiar with since we have attended

their project presentations and have been talking a lot to the team members. Because of the

time proximity, they are also the two computer science projects that have been working

under conditions most similar to ours, in regards to the development environment and

requirements from HiBu.

Rivet’s assignment was provided by Kongsberg Defence & Aerospace (KDA), where they

updated a simulator of a Remote Weapon System developed by KDA. Scrat did an assignment

for Luminext where they created a client/server solution for easy configuration of the

Luminext Segment Controllers, as well as backup and restoration abilities for configuration

and firmware updates.

Neither of these teams used the same development tools and methodologies that we are

using, but the documentation they produced followed the same requirements ours do, and is

thus still of interest to us. It is also interesting to read their end reports to see what they have

learned during their project and what they would do differently for another project. These

are things we as well should strongly take into consideration for our project.

3.2 RELATED EXTERNAL PROJECTS

Inmedius S1000D is a competitor to CORENA S1000D. Inmedius has developed an

implementation of the logic engine to S1000D, called Inmedius S1000D Publishing Suite. It is

the same kind of software as CORENA S1000D, but their implementation also provides an

editor for the process DMs, which is not a part of our assignment. Our assignment is to

develop a standalone version of the logic engine, which will then be implemented by CORENA

in both CORENA IETP and in CORENA S1000D.

Prestudy Report v. 2
05-Jan-2011

9

4 THE SYSTEM

4.1 EMPLOYER

CORENA Norge AS

Industritunet

Dyrmyrgt. 35

N-3611 Kongsberg

Norway

Phn: +47 3271 7200

CORENA S1000D is a product for configuration control, maintenance, viewing and production

of technical documentation for large vessels and equipment. Customers using it are e.g. Pratt

& Whitney for their aircraft engines in the F-35 combat aircraft, Boeing, Bombardier’s C-

series and new regional jets, Goodrich, Eurocopter (Norwegian defence’s new NH-90

Helicopters), etc. Previously this was software only available for the military, but lately it has

also become available for the civil market.

CORENA is one of the three leading software companies in the world in their area, and their

goal and ambition is to become number one.

4.2 S1000D PROCESS DM

A S1000D process Data Module (DM) is an XML schema which describes different steps in an

information process. Based on interactive user dialogs, sensors, applications and external

services communicating through an interface, the logic engine decides the next DM and/or

step in the sequence. Decision points (branching), looping and selective filtering are

supported in the S1000D process DM. The process DM can be seen as a process flow script,

where the return values define the next action. The S1000D process DM represents a

procedural flow consisting of several DMs and/or steps that are sequenced.

The process DM is input which is processed in a logic engine. The logic engine is an

interpreter for the process DMs, and throughout the process it defines states. Our

assignment is to develop this logic engine for the execution of a process DM’s components.

Based on the components in the DM, an interaction between the user and the IETP should

occur (see figure 4.1).

The process DM is especially well suited to represent procedural data, fault data and

descriptive data. The process DM is not well suited to represent wiring data, parts data and

schedule data.

Prestudy Report v. 2
05-Jan-2011

10

To control branching, looping and context filtering, S1000D process DMs declare variables.

The logic engine maintains these variables in state tables, containing them for decision points

and filtering. Variables can be declared from users, external applications, presets or post-sets.

FIGURE 4.1 PROCESS DATA MODULE CONCEPTUAL

DIAGRAM

Prestudy Report v. 2
05-Jan-2011

11

4.3 BENEFITS TO THE S1000D PROCESS DM

The S1000D process Data Module adds advanced capability which you will not find in other

DMs. The downside to this is complexity. Because of this it is necessary to define whether or

not you need this advanced capability, or if it will just cause unnecessary effort.

The S1000D process DM is more interactive than other DMs. It can ask the user questions and

interact with external applications, the logic engine stores the input data and uses it to direct

the users in the procedural flow. The data in the process DM is also used to customise the

output for the user’s display.

Conditional looping, if-then-else, is supported in the S1000D process DM. This to simplify the

maintainer’s navigation so he/she will only get what is relevant at the current time.

Prestudy Report v. 2
05-Jan-2011

12

5 THE ASSIGNMENT

5.1 OUR PROJECT

CORENA is expecting us to develop a logic engine which should be integrated in an

independent web-based solution based on Jetty/Tomcat. The user should be able to choose a

process DM, and step through this module step by step with the logic engine. Through user

input, and communication with integrated sensors, the next step in the process DM is

determined. The user should be presented with the choices ‘previous’ and ‘next’, so they can

navigate back and forth through their choices, and/or change some of their previous answers.

The user should have the option of continuing from a previously saved session.

We need to develop a method for recognising the S1000D process DMs from other DMs in

our logic engine. Our logic engine should support S1000D v 4.0, and it should be possible to

add support for other versions of the S1000D process DMs. In other words, we should not

hard code specification support.

CORENA has a vision that our end product will be of such a high quality that they can

implement it into CORENA IETP and CORENA S1000D.

5.2 REQUIREMENTS FOR THE LOGIC ENGINE

- Previous function

- Next function

- Log the states

- Save current position with history before exit

- The support execution of the logic engine should be according to the international

S1000D specification issue 4.0 which can be integrated with CORENA’s products.

- The implementation should be based on technology which is base for CORENA S1000D

Web Client and CORENA IETP products.

- The interpreter is supposed to execute in an independent web based IETP application

running on Jetty/Tomcat.

S1000D resources: http://www.s1000d.org

Relevant chapters:

- 4.11 – Information management – Process Data Module

- 7.7.1 – Guidance and examples – Logic Engine

http://www.s1000d.org/

Prestudy Report v. 2
05-Jan-2011

13

- 7.7.2 – Guidance and examples – Process Data Module Nodes

Common technology platform for the CORENA S1000D Web Client and CORENA IETP

products is:

- Java

- XML / XSL

- Spring Framework

- POJO

- Web services

- GWT / GXT (Google Web Toolkit)

- Ajax

The implementation we are going to develop should be stable, well tested and secured

against failures, even if the process DMs contain faults, or are made for another version of

the S1000D standard.

5.3 OTHER REQUIREMENTS

- All technical documentation which will be used later in CORENA should be in English.

- CORENA wants us to use the Scrum development methodology.

Prestudy Report v. 2
05-Jan-2011

14

6 ALTERNATIVE SOLUTIONS

In this project, several parts are locked into the technology requirements from CORENA. The

largest one is the S1000D standard, which is the core of the project. Therefore we only look

at alternative solutions for the web user interface and web server alternatives.

6.1 GOOGLE WEB TOOLKIT ALTERNATIVES

CORENA wants us to use Google Web Toolkit. GWT is a development toolkit for building and

optimising complex JavaScript-based applications. They do so by translating Java to JavaScript

that runs in the web clients. There are other similar technologies, like Adobe Flex/Flash,

Microsoft Silverlight and Java FX. They do much of the same, so here we will discuss just one

of these alternative solutions: Adobe Flex/Flash.

6.1.1 ADOBE FLEX/FLASH

Adobe’s technology is a highly productive, free, open source framework for building

expressive web applications that deploy consistent on all major browsers, desktops, and

operating systems by leveraging the Adobe Flash Player and Adobe AIR runtimes. While Flex

applications can be built using the Flex SDK in Eclipse, Adobe Flash Builder software can

accelerate development through features like intelligent coding, interactive step-through

debugging, and visual design of the user interface layout. For the backend logic it is possible

to use PHP, Java, etc.

Flex and GWT provides many of the same features. Flex is better at creating a nicer looking

application faster, but GWT is also a very good tool. Most likely Java and GWT will be a faster

working solution for our application, and because this will be integrated with CORENAs’

systems it should support their technologies.

6.1.2 HTML5

It would be nice to use HTML5, but HTML5 is still under development and is not finished.

6.2 APACHE

Apache web server is one of the most used and safest web server applications. To get an

even more light weight solution, it is possible to strip Apache down, or use another

alternative completely. However, Apache is the standard and we feel it is the best choice.

Prestudy Report v. 2
05-Jan-2011

15

7 CONSEQUENCES FOR EACH PARTICIPANT OF THE PROJECT, IF

WE START OR DON’T

7.1 PROS AND CONS FOR CORENA

If we start this project it means that CORENA might take some load off of their shoulders, not

having to develop this implementation of the logic engine for the S1000D process DMs

themselves. CORENA also gets an opportunity to see if we are capable, and if we can be

worth to hire. CORENA will save a lot of money if we can develop a good implementation for

them.

If we don’t start the project, CORENA will have to do the work themselves, and they already

have a lot to do. They will not get to see us work, and will therefore not know more about us

in consideration of a future cooperation.

7.2 PROS AND CONS FOR US

If we start this project it means that we get the chance to develop a process Data Module

solution for CORENA, which has been requested by one of their customers. This is a complex

task, and will give us a lot of understanding on how to work in a larger software project. We

get the chance to work on a project which will be delivered to this customer, if we manage to

successfully develop an implementation that is acceptable. We get the opportunity to work in

a professional environment, and we have been offered to use the CORENA facilities during

our project. CORENA will give us good support, and this gives us excellent opportunities to

improve our skills, both in scripting- and programming languages, project management

working with the Scrum development methodology, and maybe end up in a job offer at the

end of the project. When doing this for CORENA we will also see a little bit of how it is to

work for them. This will give us a picture of what the place is like to work at.

If we don’t start this project, we will probably get in trouble finding another project in such a

short time. We will also send out a message saying we are not in control, and should have

done better research beforehand, or that we have not done what we should have. This will

make a bad impression, and probably lower our grade for this project. It will also be a mental

factor of strain for us at the end of this semester.

Prestudy Report v. 2
05-Jan-2011

16

8 PROBLEMS AND LIMITATIONS

The biggest problem, or more accurately - limitation, is time. Originally, the application also

contained an process Data Module editor. However, our group consists of only four people,

so the scope of the project has been adjusted down. This is done in order for us to be able to

produce a complete and high quality product within the given timeframe.

The team is fairly inexperienced with several of the technologies we will use in this project

(XML/XSL, Spring Framework, POJO, Web services, Google Web Toolkit and Ajax). However,

we have experience with web-programming in general, and also with Java. Many of the

technologies are also based on Java, so after all; the chance of finishing the project in a

satisfying manner is high.

8.1 MAIN MILESTONES

The milestones in this project are the three presentations.

- Presentation 1: 2. Week of 2011

- Presentation 2: Between 14. March and 15. April 2011

- Presentation 3: Beginning of June 2011

Prestudy Report v. 2
05-Jan-2011

17

9 HIGH LEVEL ACTIVITY OVERVIEW

Activity Number Activity Name

100 PROJECT MANAGEMENT

101 PLANNING

102 ECONOMY

104 PROGRESS REPORTS

105 TIME TRACKING

200 DOCUMENTATION

201 TEMPLATES

202 VISION DOCUMENT

203 PRESTUDY REPORT

204 REQUIREMENTS SPECIFICATION

205 TEST SPECIFICATION

206 TECHNOLOGY DOCUMENTATION

207 USER MANUAL

208 PROJECT PLAN

209 SCRUM DOCUMENTATION

299 OTHER DOCUMENTATION

300 MEETINGS

301 MEETING PREPARATION

302 SCRUM MEETINGS

303 STATUS MEETINGS

304 MEETING MINUTES

305 PLANNING MEETINGS

399 OTHER MEETINGS

400 RESEARCH

401 TECHNOLOGY

402 TOOLS

499 OTHER RESEARCH

500 ANALYSIS AND DESIGN

501 ANALYSIS

502 DESIGN

600 IMPLEMENTATION

601 PROTOTYPING

602 PROGRAMMING

700 QUALITY ASSURANCE

701 TESTING

Prestudy Report v. 2
05-Jan-2011

18

702 DOCUMENT REVIEW

800 GENERAL

801 WEBSITE

802 PRESENTATIONS

803 STANDARDS

804 LECTURES

899 OTHER

Prestudy Report v. 2
05-Jan-2011

19

10 PROJECT DEVELOPMENT MODEL

We have chosen Scrum as our project development methodology.

Our choice was made on the basis of some key characteristics:

- It is an iterative and incremental approach, as opposed to being linear and sequential,

like the waterfall model. This means that the project will be divided into several

iterations (Sprints), where modules of the product (beginning with the highest prioritised

part) will go through an entire development process from inception to implementation

and testing.

- One important property of this is the minimisation of the consequences by unforeseen

and project-ending events. If we are unable to fully complete the project, the end result

will be a product where, for instance, the most important 70% of the requirements will

be 100% finished and functional, instead of a product where 100% of the requirements

will be 70% finished.

- It is a lightweight and agile model fit for small development teams. Our primary

alternative is the Rational Unified Process (RUP), which is also an iterative and

incremental model - and thus shares several of the positive attributes with Scrum.

However, RUP is a heavier and more comprehensive model, features that are not

particularly desired by our small team.

- Another possibility is the so called Extreme Programming model (XP). Like Scrum, XP

belongs to the Agile family of development methods, but is too lightweight to be the

ideal model for our project and the documentation it requires.

- Our project provider, CORENA, uses Scrum as their development model, and they have

expressed a wish for us to do so as well.

Following are some central features of Scrum.

10.1 ROLES

- Scrum defines a number of roles, all of which are divided into two main categories of

stakeholders; pigs and chickens. The pigs are the people who are committed to the

product and its development, while the chickens are the customers and non-team

managers.

- The “Pig” roles are: the ScrumMaster (the project manager in traditional methodologies),

the Product Owner (the voice of the customer – responsible for prioritising

requirements) and the Team (the actual developers).

Prestudy Report v. 2
05-Jan-2011

20

10.2 SPRINTS

The development work in Scrum is done in iterations called Sprints. This is where the

“iterative and incremental” part really shows itself. A Sprint typically lasts 2-4 weeks and

should usually deliver at least one fully completed feature of the product, potentially ready

for release. We will use Sprints lasting 3 weeks.

It is not allowed to alter the product backlog the Team has committed to during a Sprint.

Sprints are time boxed; they cannot last longer than planned. If some of the work were not

completed, the requirement it belonged to would have to be completed in another Sprint.

Every day during a Sprint, a 15-minute meeting is held, the Daily Scrum Meeting, where each

team member explains what was done since the last meeting, what will be done until the

next meeting, and if there are/were any problems.

There are other meetings as well, including a planning meeting at the beginning of a Sprint,

and a retrospective meeting when a Sprint has been completed.

10.3 LISTS/ARTEFACTS

There are three main types of documents, or artefacts, in the Scrum model.

- The Product Backlog is a list of requirements sorted by priority. This list describes what

the product should do, written in a non-technical “User Story” form. Each requirement

has an accompanying priority, set by the Product Owner, and a development effort, set

by the Team.

- The Sprint Backlog contains tasks to be performed during the Sprint.

- The Burn Down chart shows what work has yet to be completed in the Sprint Backlog.

Prestudy Report v. 2
05-Jan-2011

21

11 RESOURCES REQUIRED IN THE PROJECT SPLIT ON ACTIVITES

Resource ID Name

R100 Tools

R101 Project Planning Tools

R102 Excel

R103 Word

R104 Toggl

R105 Eclipse

R106 SVN Tool

R107 PowerPoint

R108 Visual Paradigm

R200 Human Resources

R201 Team

R202 Internal Sensor

R203 External Sensor

R204 Internal Mentor

R205 External Mentor

R206 Product Owner

R207 Other CORENA Resources

R300 Hardware

R301 Webserver

R302 Apache server

R400 Documentation

R401 Documentation from CORENA

R402 Documentation from HiBU

R403 Previous Project’s Documentation

R404 Other Technical Publications

R405 International S1000D Specification Issue 4.0, 2008-08-01

R500 Facilities

R501 Meeting Room

R502 Presentation Room

R503 Office at HiBu

R504 Office at CORENA

Prestudy Report v. 2
05-Jan-2011

22

Activity Resource(s) Required

101 – Planning R101, R402, R403

102 – Project Plan R101, R401, R402

103 – Economy R102

104 – Progress Reports R102, R103

105 – Time Tracking R102, R104

201 – Templates R103

202 – Vision Document R103, R401, R402, R403, R405

203 – Prestudy Report R103, R401, R402, R403, R405

204 – Requirement Specification R103, R201, R206, R207, R401, R403, R405

205 – Test Specification R103, R201, R401, R403,R405

206 – Technology Documentation R103, R401, R405

207 – User Manual R103

299 – Other Documentation R103

301 – Meeting Preparation R103

302 – Scrum Meetings R201, R206, R501

303 – Status Meetings R201, R204, R501

304 – Meeting Minutes R103

399 – Other Meetings R201, R501

400 – Research R103, R205, R401, R402, R403, R404, R405

501 – Analysis R103, R108

502 – Design R103, R108

601 – Prototyping R105, R106, R302, R404, R405

602 – Programming R105, R106, R302, R404, R405

701 – Testing R105, R302

702 – Document Review R103

801 – Website R301

802 – Presentations R110, R502, R201-R205

803 – Standards R103, R401, R402, R403

804 – Lectures R402

Prestudy Report v. 2
05-Jan-2011

23

12 ACTIVITIES AND RESOURCES UNTIL THE PROJECT PLAN IS

READY

Activities Resources

101: Planning
- Create a project plan.

R101

103: Economy
- A budget containing estimated project expenses and

economic resources.

R102

201: Templates
- Template for the requirement specification.

- Template for the test specification.

R103

204: Requirement specification
- Defining and prioritising all requirements in collaboration

with CORENA.

R103, R201,
R206, R207,
R401, R403,
R405

205: Test specification
- Create test strategy.

- Create the test specification.

R103, R201,
R401, R403,
R405

399: Other Meetings
- Requirement meeting(s) with CORENA.

- Meeting with internal mentor.

R201, R204,
R206, R207,
R501

402: Tools
- Determine a project tracking tool to use.

R106

Prestudy Report v. 2
05-Jan-2011

24

13 REFERENCE(S)

1. Assignment description, CORENA Norge AS, 2010

2. International Specification for technical publications utilizing a common source database

S1000D, Technical Publications Specification Maintenance Group (TPSMG), 01-Aug-2008

(Issue 4.0)

3. Agile Project Management with Scrum, Ken Schwaber, Microsoft Press, 1-Feb-2004

(1.edition), ISBN-13: 978-0735619937

4. Agile Software Development with SCRUM, Ken Schwaber and Mike Beedle, Pearson

Education, 21-Mar-2008 (1.edition), ISBN-13: 978-0132074896

5. Scrum (development), Wikipedia,

http://en.wikipedia.org/wiki/Scrum_%28development%29 (last visited 12-Oct-2010)

http://en.wikipedia.org/wiki/Scrum_%28development%29

PROJECT REVIEW

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Project Review v 1
01-Jun-2011

2

TABLE OF CONTENTS

1 Introduction ... 4

1.1 Intention of this Document ... 4

1.2 Synonyms, Acronyms and Definitions ... 4

1.3 Author(s) .. 5

1.4 Assigned... 5

2 The Project .. 6

2.1 CORENA Norge AS – Our Employer ... 6

3 Scrum Development Methodology and Accomplishment .. 8

4 What Could We Have Done Better? .. 10

4.1 Decide on Standards .. 10

4.2 Underestimates ... 10

4.3 Breakdown of User Stories Into Tasks ... 11

4.4 Earlier Prototyping .. 11

5 Technical .. 11

5.1 Analysis and Design ... 11

5.2 Client – Server ... 12

5.3 Techniques .. 12

5.3.1 Main Programming Language ... 12

5.3.2 Database .. 12

5.3.3 Data Binding .. 13

5.3.4 Patterns ... 13

5.3.5 RPC Service – Client to Server ... 13

5.3.6 HTML, JavaScript and CSS .. 13

5.4 Testing ... 13

5.5 Exception Handling .. 14

6 Goal Achievement ... 14

7 Self-Evaluation ... 14

7.1 Arild Oldervoll .. 14

7.2 Marius Haraldseth ... 15

7.3 Eirik André Eidså .. 15

7.4 Olav Brandt .. 16

8 Conclusion ... 16

Project Review v 1
01-Jun-2011

3

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 01-Jun-2011 First official version AOL

Project Review v 1
01-Jun-2011

4

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

This document is meant to give a report of our project all the way through. It will give an

overview on how our project has been accomplished, how our development model Scrum

has been working out for us, challenges and our thoughts of the project from a retrospective

point of view.

This document will explain what we did well, and what we could have done in a different

way.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

process DM Process Data Module

HiBu Høgskolen i Buskerud

XML eXtensible Markup Language

GWT Google Web Toolkit
- Development toolkit framework for building complex browser

based applications for Java.

GXT Ext GWT (Extension for GWT)

SQL Structured Query Language

UML Unified Modelling Language

MVP Model-View-Presenter
- Architecture Pattern

RPC Remote Procedure Calls

TDD Test Drive Development

GUI Graphical User Interface

CSS Cascading Style Sheets

HTML HyperText Markup Language

Project Review v 1
01-Jun-2011

5

1.3 AUTHOR(S)

Marius Haraldseth (MHA)

Arild Oldervoll (AOL)

Eirik André Eidså (EAE)

Olav Brandt (OBR)

1.4 ASSIGNED

Marius Haraldseth (MHA)

Project Review v 1
01-Jun-2011

6

2 THE PROJECT

The idea of this project started when Arild and Marius worked at CORENA Norge AS from

January 2010 and through the summer. During that time they were presented with a project

proposal for the bachelor thesis at Høgskolen i Buskerud. They thought the project sounded

interesting and challenging, so they presented it for other students at HiBu. The group

gathered quickly, and we ended up with a group of four people. Because of the projects size,

we had actually wanted to be a full group of six people, but we also wanted to only have

group members that we knew were hard-working and dedicated as we realised that it was a

big project.

The project would have its basic in Java, but it included several unfamiliar technologies and

techniques like Google Web Toolkit (GWT) with the GXT extension, Spring Framework, XML,

Ajax in addition to the comprehensive S1000D specification.

When we started the project it was a discussion if we should implement our application in

their existing software, CORENA IETP, but after some meetings and discussions we decided

on that we should make it a standalone application with communication against CORENA

IETP for loading process Data Modules and other data.

Since CORENA uses Scrum as their development method they wished for us to do the same,

we considered this against other methodologies and agreed on that Scrum would probably be

a good choice for us. Now we can look back at ten meaningful, challenging and demanding

months.

CORENA required that all documentation which they would use should be in English. We

therefore decided to write all of our documentation in English.

The name of our group, “Ameo” comes from the first letter of the group members first

names:

- Arild – Marius – Eirik – Olav

The name of our application, “SLRP”, is made from:

- S1000D Logic Engine and Renderer for Process Data Modules

It is pronounced: [sl3:p]

2.1 CORENA NORGE AS – OUR EMPLOYER

CORENA is a company with offices at several locations around the globe. One of their offices

is located in Kongsberg with approximately 30 employees.

CORENA is one of the three leading companies regarding software for viewing, configuration

management, maintenance and production of bigger maintenance documentation in the

Project Review v 1
01-Jun-2011

7

world. They hold resources which might the world’s strongest collection of S1000D domain

experts.

CORENA is working with customers like Pratt & Whitney, Bombardier, Goodrich, Eurocopter,

BAE and KDA.

“Complex reality made easy”

Project Review v 1
01-Jun-2011

8

3 SCRUM DEVELOPMENT METHODOLOGY AND ACCOMPLISHMENT

Throughout our project we have used Scrum as our development methodology. The first

reason we thought of Scrum was because CORENA use it as their methodology. CORENA

suggested that we used it, and we took a deeper look into it and thought it looked

interesting, and we wanted to try something new and got the school’s approval.

In the beginning we used much time gathering information about Scrum and trying it out.

During the first semester we got pretty much into it, and by the first presentation we had

gotten rid of most of the initial problems.

Because we are the first group at HiBu to use pure Scrum, this has been a challenge both for

us and for the school, because Scrum doesn’t produce a lot of documentation and without

documentation the foundation for our grades would be very limited. This required some

more documentation from us than what’s traditionally produced by our development

methodology. So a real challenge has been to find a balance between Scrum’s documentation

requirements and the school’s documentation requirements, the solution to this has been to

include the documentation as part of the product we are developing. Arild and Olav have

more experience regarding documentation than Marius and Eirik since they had the subject

“Basic Game Programming”.

In a real Scrum project, we would have started developing almost immediately. We would

probably have used less than one Sprint to map the most basic User Stories for what we

would develop before the real development started.

We had our own project room at HiBu, room C171. This has been a perfect room for our

project, just big enough.

In January, we got the horrible message that Eirik had got cancer, of type osteosarcoma. This

is a very aggressive type of cancer, and Eirik started an intensive treatment which would last

for approximately six months. This would of course affect our project as well. Since we used

Scrum which is a very agile development method we have solved this better than we could

have done with any other project model. We had not used a lot of time planning for things

who would now have been a waste. Instead we have adjusted our work from that point and

onward. None of the work we have done was a waste; the only thing that was influenced is

how far down the Product Backlog we will reach. When that is said, Eirik has done a fantastic

work even though he has been ill and absent for treatments a lot. He has met up with us as

often as he has been able, and besides of that we had a continuous communication through

e-mail and Skype. Because of the agility of Scrum we have been able to include Eirik as much

as he has been able to. There has always been a task for him when he has had energy to do it.

At this point in time all tests indicate that Eirik will recover from the cancer. Except from Eirik,

the rest of us have kept healthy through the whole project, without any absence from the

project.

Because of the size of our assignment we really could have used more people in our project

group, at least one more would have been very helpful. Our selection of people for the group

Project Review v 1
01-Jun-2011

9

was not random either, which makes it even harder to get enough people. We got together

four people which all knew what to expect from each other; skilled and hardworking

students.

Another big advantage Scrum has given us is that we have been agile regarding new

requirements which have come up while working with the S1000D specification. The

specification is very big (almost 2800 pages) and complex. This has been a challenge, but

adjustment along the way has not been a problem. Scrum development methodology makes

this fully legal.

Every morning we have started with our daily Scrum meetings, which have been very good in

order to keep up with each other’s work, especially when Eirik has been gone, we could still

meet over Skype and keep up to date. Other than this we have mostly been sitting next to

each other and had a good cooperation so we have mostly been quite aware were the rest of

the team have been in their work.

In the beginning of each Sprint we had a Sprint planning meeting doing the planning for the

upcoming Sprint. This meeting was time-boxed to four hours. In these meetings we took User

Stories from the Product Backlog after how much velocity we had calculated for that Sprint,

and we split these User Stories up into several tasks. The velocity for each User Story is

calculated using poker planning.

In the end of each Sprint we had a Sprint demo for CORENA. This has also been a good place

for us to discuss solutions with them during the project. Since each Sprint has been

approximately three weeks, this has been each three week period. We had some meetings

besides this as well, especially in the start of the process to secure that we were developing

the right product. Our external mentor Tommy Sivertsen has also taken part in some of our

daily Scrum meetings, either by Skype, or he has showed up at HiBu. CORENA has been very

easy to ask in situations outside of these meetings when we have been needing assistance or

their opinion in some matters. We also had a Sprint Retrospective by the end of each Sprint.

Up to and including Sprint 7 we produced a “Sprint Retrospective” report for the Sprints, but

after this we changed the way we held the retrospective to be more verbally, which did not

produce a report.

Scrum has also been new to our internal mentor Karoline Moholth, but she has been reading

up on Scrum and we have kept a continuous dialog in our weekly status meetings regarding

Scrum. This has solved some of the uncertainties in the best way, and it has worked out very

well. In our opinion we have really succeeded with Scrum, and with everything that has

happened during our project we got to explore some of the real advantages of Scrum and

agility. We’re in the opinion of that we have delivered a good project with this methodology.

Our internal communication and cooperation within our group has worked splendidly. When

Eirik got cancer we got to test this more than we could have wanted, but we’re in the opinion

that we have got through that situation the best way we could. This situation has not lead to

any bad motions between any of us. We have supported each other in a good way through it

all.

Project Review v 1
01-Jun-2011

10

For our project management we have the Product Backlog which we have in an Excel spread

sheet. In this we have a prioritised list of User Stories, or requirements which we work our

way from top to bottom. As we have worked with the specification and requirements for the

User Stories, we have discovered new requirements. It has led to splitting of some User

Stories into smaller ones. The Product Backlog has been our main requirements list, and

within each Sprint we have developed tasks for each User Story, gathered in a Sprint Backlog.

In this Sprint backlog we also had in an Excel spread sheet showing the sprint burndown, and

in addition we used a whiteboard in our project room as our main task board. Our main

background for project management comes from the introduction lessons in this subject,

“Bachelor Thesis with Project Management”. In these lessons we had lectures where we

learned a lot about project management, documentation, test strategies and other

requirements for us in such a project. This was good information to bring into the start of the

project.

Other than this we have used a web based time logging tool for logging time on different

activities, Toggl. This tool has worked out very well, we have the opportunity to get reports

from it, and split up into several “projects” and “activities”. We have also logged on task level

in our Sprint Backlogs.

Together with Scrum we have used test driven development (TDD) for as much as it were

appropriate for. We discussed this with CORENA, and they also had the vision that it

sometimes did not fit, especially for some of the GUI programming. But for all parts not a part

of the GUI, we have used TDD.

Pair-programming is common in Scrum, but because of our small group this was difficult to

do in bigger parts of the time, but we did some of it in more complex challenges.

4 WHAT COULD WE HAVE DONE BETTER?

4.1 DECIDE ON STANDARDS

Something we have experience through this project is that before we start working on

something, we should have decided a standard for what we do. There were several times in

the start of the project were we all started working on something, e.g. writing a type of

document etc. were we pretty soon noticed that the one of us did it in a different way than

one of the others. This was something we could have clarified better at an even earlier stage

than we did. It did lead to some editing after hand.

4.2 UNDERESTIMATES

Estimation of correct work effort for the different tasks is new to all of us. When we in the

start were producing mostly documentation it went very well, and we thought we had the

Project Review v 1
01-Jun-2011

11

hang of it. But, when the development started, we came out for the typical programmer’s

error; in the estimate of developing tasks we thought most of the things were less complex

than what they actually were. Very soon we got the taste of this, and adjusted our estimates.

Even then we often underestimated development tasks.

So what would we done different? We would add even more time to our estimates regarding

development.

4.3 BREAKDOWN OF USER STORIES INTO TASKS

We would have broken down the User Stories to tasks in a slightly different way, now with

our new experience in estimating and planning.

4.4 EARLIER PROTOTYPING

We would have started even earlier prototyping of some parts of the functionality for the

application. Sometimes we discussed a little too much before we started developing and

prototyping, and in this phase we often came up with either other challenges we hadn’t

thought of, or smart solutions. This was something we later in the project changed, and used

more prototyping in parallel with analysis and design. This is the way it should be in Scrum as

well.

5 TECHNICAL

The technical was, in addition to our development methodology, the absolutely biggest

challenges of our assignment. The logic engine and renderer we should develop is based on a

specification which is very big and complex. It is almost 2800 pages, and to retrieve all of our

requirements (in our project User Stories) from this specification has been a real challenge.

We used one Sprint just to analyse the most important parts of this application and

document this, but it turned out that one Sprint was not sufficient to achieve accurate

estimates, and combined with our lack of experience in estimating this led to too low

estimates.

Therefore, to develop the logic engine and support for elements in this specification is a vast

task which we have been noticing.

5.1 ANALYSIS AND DESIGN

When it comes to analysing and designing our tasks, the knowledge from our subject

“Analysis and Design” came in handy. In this subject we learned a lot about the different

Project Review v 1
01-Jun-2011

12

forms of diagrams which we have used to explain our application structure and configuration.

We have used UML for this, and this was the main aspect of this subject.

We have developed a lot of analysis documents from the specification, because of the size

and complexity of the specification we used a whole Sprint for doing this. Even though we

used so much time on the specification, there were hidden complexity which we at later

stages discovered which also made our application even more complex and made us re-

analyse the design.

Most of the architecture analysis we did together as a group. This gave us a good and stable

architecture with input from all of us. We worked a lot on a common whiteboard.

5.2 CLIENT – SERVER

To develop an application with a client – server relationship has been a bigger challenge than

just to develop a desktop application without this relationship. We had to make RPC services

between these two components, and for this we used the command pattern which

implements an asynchronous call from the client to the server with a following callback.

5.3 TECHNIQUES

5.3.1 MAIN PROGRAMMING LANGUAGE

In this project we have used Java as our main programming language in addition to some XML

scripting. We have used frameworks like Google Web Toolkit (GWT) with the Ext GWT (GXT)

extension. We tried out Spring in the start of the project, but after some research later on we

discovered that for what we were going to develop we didn’t have to use it. We used regular

Java objects instead.

Most of our basic Java knowledge comes from our Java courses in the first two semesters in

this three year bachelor education. But parts of it also come from programming in subjects

like “Analysis and Design”, “Network”, “Operating Systems” and “Real Time Systems”. We

have also used the knowledge from “C++ Programming” regarding templates, as we have

used generics in Java.

Since we used Java, this was an advantage to us because this was probably the programming

language which we knew best.

5.3.2 DATABASE

For our database system we have used a lightweight Java, JDBC and SQL based database from

Apache, Derby. Together with this we have used Hibernate as an object-relational mapping

system. This mapping system has given us some challenges with difficult error messages and

a mapping and configuration system which were new to us.

Project Review v 1
01-Jun-2011

13

When working with, and developing the database aka the state table in the application we

got to use a lot of our knowledge from the “Database” subject at HiBu. Especially when it

comes to modelling, and knowing how the database should work.

5.3.3 DATA BINDING

For data-binding between XML and Java classes we have used the XStream library which

serializes objects back and forth from XML to Java. We use a lot of XML since the process

Data Modules are written in XML.

5.3.4 PATTERNS

We have used several patterns in our application, patterns like singleton pattern, command

pattern, the event-driven messaging design pattern and the model-view-presenter (MVP)

architecture pattern.

We have some general knowledge of patterns from the “Analysis and Design” subject, but

most of this we had to learn through the project.

5.3.5 RPC SERVICE – CLIENT TO SERVER

To communicate between the client and the server we use the command pattern. This

pattern uses asynchronous RPC services. RPC’s is something we all have a little knowledge

from the subjects “Operating Systems” and “Network”, but the use of it we had to learn.

5.3.6 HTML, JAVASCRIPT AND CSS

We gathered some useful knowledge through the subject “Programming for internet”,

because we are developing a web application. We have used a little JavaScript, CSS and html.

5.4 TESTING

Testing was something we had no experience with from the past at all. In our classes at

school we are told that testing is a good thing, but nothing about how to do it. We learned

some test strategies in the “Project Management” course, but the actual use was brand new

to all of us. This follows therefore that we have learned a lot about testing. We have written a

lot of automatic JUnit4 unit tests. We have also used EasyMock3 library to mock objects in

the tests.

On the client side we had to extend GwtTestCase in some tests to test classes which generate

dynamic GUI (Widgets). It was something we did not desire, as testing with GwtTestCase is

extremely slow.

Project Review v 1
01-Jun-2011

14

5.5 EXCEPTION HANDLING

This was also something which was pretty new to us, we have been told to use it, but the

actual use itself we had little knowledge of. So we have gathered some knowledge about this

as well throughout the project.

6 GOAL ACHIEVEMENT

We have reached nearly as far as we had planned in the Product Backlog, something we are

very proud of. We have developed a partly functional logic engine with support for the most

regular operations, elements and functions from the S1000D specification. We have

developed an application that is solid, extensible and of good construction so it is ready to be

used and developed further on by CORENA.

We have also done a lot of analysis and research regarding the specification of the process

Data Modules, which CORENA has indicated is of great value for them in further development

of the application and in one of their other projects which is to generate an editor for these

process Data Modules.

7 SELF-EVALUATION

7.1 ARILD OLDERVOLL

For me, as the project leader and Scrum master, it was really exciting from the beginning of

the project to see how Scrum would work out. None in the group had any previous

experience with it, neither did our internal mentor, and pure Scrum has never been used in a

HiBu bachelor project before us. Therefore I’m relieved that I’m able to say that Scrum was a

great benefit and success for our project. Since my role as a Scrum master isn’t a team leader

as in a traditional project methodology, but a “facilitator” for an effective team, the success

of the project was dependent on a committing and self-organising team, which we definitely

had.

I have really appreciated this chance to be part of the complete development cycle from

initial assignment and vision discussions to the hand-off of the project. The project has taught

me a lot about everything from planning, talking to customers and creating requirements, to

the analysis, design and implementation of a larger application, and I have had the chance to

utilise a broad span of knowledge and skills acquired during this course in this project.

Eirik’s sudden cancer diagnosis got us all startled. But I’m glad we’ve had the team we had,

which has supported him and each other and has been willing to put in an extra effort in

order to best accommodate for Eirik’s participation and to limit the impact on the project,

and I believe that it’s thanks to good friends and team members, and the use of Scrum, that

Project Review v 1
01-Jun-2011

15

we have been able to adjust well to this situation. I also want to add that Eirik’s effort has

been nothing but impressive, and very motivating for the rest of us.

This project has had a handful of challenges, but together we have been able to handle them.

I would say that some of the biggest challenges have been the use of Scrum, use of a lot of

new technologies like GWT, Hibernate, etc. and the comprehensive S1000D specification,

which easily can hide a small detail that has a big impact on our project. This has led to a

strong focus on creating a solid architecture and underlying functionality, which I am sure

CORENA will have a great benefit from when they overtake our product.

7.2 MARIUS HARALDSETH

This project has been a real challenge and a new experience for me. I’m very glad to be in

such a positive and skilled group, to work with these people has made it all much simpler.

Even Eirik with cancer has been in a better mood and more positive than I could have

imagined. The composition of these points has been of great value for our success through

this project.

During this project I have gained a lot of knowledge when it comes to working in a project,

and I have learned a lot about testing and working with the test driven development way.

This was something I wanted to be more familiarised with before and I know got a perfect

opportunity to learn. To think this way is totally different than what I’ve been used to, and I

can now see why they say that it generates more stable and fault free code. Our project was

a pure software project, and this was exactly what I wanted the most.

My responsibilities in the project have been analysis and documentation. The analysis of this

assignment has been a real challenge because we had a very massive and complex

specification to proceed to. The documentation have been a little difficult to determine how

far we should go in this Scrum project, where the balance should be, but now in the end I am

very happy and proud of what we have both developed of the application and the

documentation we have produced.

I think Scrum has been a very good development methodology, and that we have kept to it as

much as we possibly could do. This way of doing a project is also a new way in concern to

everything I have learned here at HiBu.

7.3 EIRIK ANDRÉ EIDSÅ

In this project I have especially learnt that things do not always go as one believe, plan or

hope. I also see how privileged you are when you’re in a group that is so incredibly nice and

good at adapting itself when you are so unfortunate to end up in a hospital in the middle of

the project. This has made me able to do what I could and been capable of.

Project Review v 1
01-Jun-2011

16

The project methodology we chose has made it relatively easy to adapt to this situation, and I

feel we’ve all learned a lot from it! I got sick pretty much exactly at the time the development

was about to start. Because my presence got pretty unstable, I was not calculated for the

planning of the Sprints, but rather considered a bonus if I managed to get anything done on a

User Story I was assigned. Which I did!

A lot of my responsibilities for this entire project have been the graphical parts of basically,

everything. Logos, presentations, documentation, GUI, etc. This is work I enjoy a lot and I

think we succeeded pretty well with it!

7.4 OLAV BRANDT

The work on SLRP has been a terrific opportunity to utilise the skills and knowledge I have

accumulated during my three years as a student at HiBu. As a soon-to-be computer

engineering graduate, the pure software nature of our project assignment was an ideal

match. As someone interested in the entire process of software development, getting to

follow an entire life cycle of such a large project as a key participant has been an excellent

experience.

The technical challenges have been of multiple varieties and not far between. I’m especially

partial to those existing in the higher levels of abstraction, of which there have been plenty

during this project. Making sure the solutions we choose are well thought out and properly

designed has been an area I’ve spent a lot of time and energy.

Of course, in a team of our size, and especially with a team using Scrum, the work doesn’t

stop there. Implementing the design also makes up a large part of the time I’ve spent on

development, and in reality the process is more organic and intertwined than it might appear

on paper. Going back and forth between analysis & design on the one side, and prototyping

and implementation on the other, has been the MO for the majority of the time.

The ability to bounce ideas between team members - getting and providing input amongst

the team, is something I value highly, and something I feel we’ve accomplished in the project.

Every member is a highly capable developer and valuable resource, and the cooperation

between us has been a high point.

The challenges have not been all-technical, with Eirik’s situation standing out from miles

away. Losing much-needed project hours has been a real loss, but his excellent attitude and

continued effort has boosted the group’s morale and allowed us to push that much harder.

Given his situation, he has performed well above all expectations, and in the end, all of us as

a group have gotten further as a result.

8 CONCLUSION

Project Review v 1
01-Jun-2011

17

All in all, this project has been a real challenge, and a really good experience. Our team has

managed to stay focused through some stressful and more difficult times. We have all

learned a lot about management, teamwork, planning and work estimation. We are satisfied

and proud of the final result we have achieved and the way we have run the project.

PROJECT PLAN

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Project Plan v 3
01-Jun-2011

2

TABLE OF CONTENTS

1 Introduction ... 4

1.1 Intention of This Document .. 4

1.2 Synonyms, Acronyms and Definitions ... 4

1.3 Author(s) .. 4

1.4 Assigned... 4

2 The Task ... 5

2.1 What Are the Requirements For the Logic Engine .. 6

2.2 Documentation .. 6

3 Project Goals and Limitations .. 8

3.1 Product Goals and Limitations .. 8

3.1.1 A stable Product .. 8

3.1.2 Fully Support S1000D 4.0 Standard ... 8

3.1.3 A Releasable Product ... 8

3.1.4 All Core Functionality Implemented .. 8

3.1.5 The Project Should Be Well Documented ... 9

3.2 Educational Goals and Limitations .. 9

3.2.1 Scrum Methodology .. 9

3.2.2 Developing Larger Projects in Teams .. 9

3.2.3 Working on A Project for a Customer ... 9

4 Preconditions for This Project ... 11

4.1 Knowledge and Skills Required ... 11

4.2 Software .. 11

4.3 Documentation Required by Development Start .. 11

4.4 Facilities ... 11

4.5 External Resources .. 11

5 Project Organisation .. 12

5.1 The Project Group ... 12

5.1.1 Description of Group Members ... 12

5.2 External Resources and Contacts .. 14

6 Roles and Responsibilities ... 15

6.1 Introduction to Roles And Responsibilities ... 15

6.2 Administrative Responsibilities ... 15

Project Plan v 3
01-Jun-2011

3

6.2.1 Project Leader.. 15

6.2.2 Documentation .. 15

6.2.3 Web ... 15

6.2.4 Economy .. 15

6.3 Technical Responsibilities .. 16

6.3.1 Analysis .. 16

6.3.2 Design .. 16

6.3.3 Code ... 16

6.3.4 Test .. 16

7 Project Control .. 17

7.1 Sprints .. 17

7.2 Sprint Overview ... 17

7.2.1 Unexpected Events .. 17

7.2.2 Updated Timetable .. 17

7.3 Important Dates .. 18

7.4 Activities .. 19

7.5 Weekly Reports ... 19

7.6 Other Control Documents ... 19

7.6.1 Document Standard .. 19

7.6.2 Budget ... 19

7.6.3 Code Standard Document ... 19

7.6.4 Test Reports ... 19

8 Reference(s) .. 21

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 05-Jan-2011 First Official Version of Document AOL

2 07-Mar-2011 Second official version.

- Adjusted estimates for hours and Sprints.
- Added section 7.2.2

AOL

3 01-Jun-2011 Updated estimates for hours and Sprints. Set new
delivery date and added third presentation date

MHA

Project Plan v 3
01-Jun-2011

4

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

This project plan contains all of the information on how we are planning on executing the

project. It describes the assignment, goals, limitations, and the plan and strategy from our

first presentation in the beginning of January and until delivery of the finished product in mid-

May.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Data Module Container of data/information.

Process Data
Module

One of the module types specified in the S1000D standard.
Contains logic rules and statements combined with data modules

PDM Process Data Module

HiBu Høgskolen i Buskerud

IETP Interactive Electronic Technical Publication

XML eXtensible Markup Language

1.3 AUTHOR(S)

Arild Oldervoll (AOL)

Marius Haraldseth (MHA)

1.4

ASSIGNED

Arild Oldervoll (AOL)

Project Plan v 3
01-Jun-2011

5

2 THE TASK

A process Data Module (process DM) is an XML schema that describes different steps in an

information process. Based on input from interactive user dialogs, sensors, applications,

external services and states saved from previous steps, the logic engine decides the next DM

and/or step in the sequence. Decision points (branching), looping and selective filtering are

supported in the S1000D process DM. The process DM can be seen as a process flow script,

where the return values define the next action. The S1000D process DM represents a

procedural flow consisting of several DMs and/or steps that are sequenced.

The process DM is input data that is processed in a logic engine. The logic engine is an

interpreter for the process DMs, and throughout the process it defines states. Our

assignment is to develop this logic engine for the execution of a process DM’s components.

Based on the components in the DM, an interaction between the user and the IETP should

occur (see Figure 2.1).

The process DM is especially well suited to represent procedural data, fault data and

descriptive data.

FIGURE 2.1 PROCESS DATA MODULE CONCEPTUAL

DIAGRAM

Project Plan v 3
01-Jun-2011

6

2.1 WHAT ARE THE REQUIREMENTS FOR THE LOGIC ENGINE

- Previous function.

- Next function.

- Log the states defined through the process.

- Save current position with history before exit.

- The support execution of the logical document should be according to the international

S1000D specification issue 4.0 that can be integrated with CORENA’s products.

- The implementation should be based on the same technology that the CORENA S1000D

Web Client and CORENA IETP products are based on.

- The interpreter is supposed to execute in an independent web based IETP application

based on Jetty/Tomcat.

S1000D specification resources [8]:

Relevant chapters:

- 4.11 – Information management – Process Data Module.

- 7.7.1 – Guidance and examples – Logic Engine.

- 7.7.2 – Guidance and examples – Process Data Module Nodes.

Common technology platform for the CORENA S1000D Web Client and CORENA IETP

products is:

- Java

- XML / XSL

- Spring Framework

- Web services

- Ajax, GWT / GXT (Google Web Toolkit)

2.2 DOCUMENTATION

HiBu and CORENA require some documentation from us to be delivered before each

presentation. A full description of the documents can be found in Document Overview [5].

Table 2.1 shows a list of the documentation that will be delivered:

Project Plan v 3
01-Jun-2011

7

Document Delivered by presentation #

Vision Document 1

Prestudy Report 1

Project Plan 1,2,3

Product Backlog 1,2,3

Test Specification 1,2,3

Sprint Reports 1,2,3

Document Standard 1,3

Quality Assurance 1,3

Analysis Document 2,3

Design Document 2,3

Technology Documents 1,2,3

Scrum Procedures Documentation 1,2,3

Meeting Notifications 1,2,3

Meeting Minutes 1,2,3

Budget 1,3

Contract 1

Time Reports 1,2,3

Code Standard 1

Weekly Status Reports 1,2,3

Post Project Report 3

TABLE 2.1 DOCUMENT OVERVIEW

Project Plan v 3
01-Jun-2011

8

3 PROJECT GOALS AND LIMITATIONS

The goals and limitations of this project can be divided into two categories: Product goals and

limitations which are the main objectives concerning the product we are developing (the

scope of the project), and Educational goals and limitations which are our expected learning

outcome from the project when we are finished.

3.1 PRODUCT GOALS AND LIMITATIONS

We want to deliver a product we can be proud of to our customer, CORENA. If we achieve the

following goals it is accomplished:

3.1.1 A STABLE PRODUCT

The product should be stable and not crash or encounter any other major failures under

normal circumstances. There should also be allowance for common abnormal situations and

errors in the input data being processed.

3.1.2 FULLY SUPPORT S1000D 4.0 STANDARD

We want to support all features in the S1000D 4.0 process Data Module specification. We

want to do this in a modular way with little or no hard-coding of data and values to allow for

support of other versions of the S1000D standard to be added later. The support for other

versions will not be a part of this project.

3.1.3 A RELEASABLE PRODUCT

The Code Coverage, or Test Coverage, is a measure of to which degree the source code has

been tested. To be a releasable product, CORENA requires a code coverage of at least 30-

40%, and this is something we want to achieve for our product. The goal is to have a product

that is ready for implementation into CORENA’s existing products when we hand over our

project to them.

3.1.4 ALL CORE FUNCTIONALITY IMPLEMENTED

In Scrum, the development methodology Ameo is using for this project, the Product Backlog

will not show exactly what will be done during the project timeframe, since the Product

Backlog is subject to several major and minor updates during the project’s lifespan. In most

cases it is also “never ending”, meaning that it’s not possible to complete a Product Backlog

as new features and requirements are continuously added by the Product Owner as the

market change and the customers’ demands are developing. But since we are doing this

project as part of our program at HiBu we have to limit the scope of the project. Therefore

we are aiming on completing all the User Stories that are in the Product Backlog when this

project plan was made (see [4], Product Backlog). The Product Owner can add and modify our

Project Plan v 3
01-Jun-2011

9

Product Backlog during the project, but he should discuss these changes with the project

group first. It is important to notice that in a true Scrum project this would not be the case;

the Product Owner changes the Product Backlog freely based on input from the customers,

and only needs to discuss this at the Sprint planning meetings. He can discuss User Stories

with team members to get a better estimate of the effort required.

3.1.5 THE PROJECT SHOULD BE WELL DOCUMENTED

The product and project in general should be well documented, with three focus areas:

 Allow the examiners to determine the progress and success of the project by studying

the documentation.

 The product should be documented in a way so that it can easily be implemented by

CORENA after delivery of the project.

 Add business value to CORENA; the documentation is part of the product, and by

documenting everything we learn about the technologies, methods and tools we use

that can be of interest for CORENA, this will add additional value to the company.

3.2 EDUCATIONAL GOALS AND LIMITATIONS

Maybe more important than the product we deliver is what we learn from this project, as we

are doing this project in a learning environment with higher acceptance for partially failing

with the product if we can learn and improve from our unfortunate experiences. Therefore

we also want these educational goals to be achieved if we are to say that the project was

successful:

3.2.1 SCRUM METHODOLOGY

We have decided on using Scrum as our development methodology, and we want to learn

how to use it, and to get familiar with the strengths and weaknesses of this methodology. We

believe we have achieved this goal if we succeed with our project using Scrum to the extent

possible. We also want to evaluate how Scrum is works as the methodology used in a HiBu

student project.

3.2.2 DEVELOPING LARGER PROJECTS IN TEAMS

All our work at HiBu so far has been smaller projects and teams than the scale of this project.

With this project we want to learn how to tackle a larger assignment and use the bigger team

to our advantage.

3.2.3 WORKING ON A PROJECT FOR A CUSTOMER

Project Plan v 3
01-Jun-2011

10

This is the first time we are developing a project for a customer, with all the new challenges

and considerations this implies. We want to learn good and practical procedures for

communicating with customers so they get what they want instead of what we think they

want, and we want our customer to spend a minimum amount of resources on this

communication.

Project Plan v 3
01-Jun-2011

11

4 PRECONDITIONS FOR THIS PROJECT

4.1 KNOWLEDGE AND SKILLS REQUIRED

To start this project we need to familiarise ourselves with the technologies it will require, and

we need to understand the assignment. The project requires some technologies which we

haven’t used before, like Spring Framework and Google Web Toolkit. Since our product will

be a stand-alone web based application, it will be an advantage that we have experience with

web development in some way or another in the past. We also need knowledge acquired

from our study at HiBu so far, including, but not limited to, programming, software analysis

and design, project control and planning and networks.

4.2 SOFTWARE

We need to make sure we have access to all the software we are going to use, including the

IDE, text editing software, software for source version control, XML editing tools, time

tracking tools, a spreadsheet program and so on. We also need a server up and running for

the source version control, our website and to run our application on.

4.3 DOCUMENTATION REQUIRED BY DEVELOPMENT START

We will begin development in January after our first presentation. Before this, we must have

a Product Backlog, which will be our requirements since we are working with Scrum. We need

to have developed test cases, we need technology documents and we need this project plan

document. For our Product Backlog to be finished we need to have developed all of the high-

level user stories, this will be done in cooperation with our employer CORENA. A vision

document which functions as an application for our project is already written and approved

by both HiBu and CORENA. See Table 2.1 for a complete overview of all the documentation to

be delivered.

4.4 FACILITIES

We need a project room where we can meet to work on the project, have our Scrum

meetings, internal mentor meetings and a place for us to have Scrum utilities like the task

board.

4.5 EXTERNAL RESOURCES

We need support from, and rapid contact with, our assignee CORENA for this project to

succeed. Tommy Sivertsen from CORENA is the Product Owner and our external mentor, and

Project Plan v 3
01-Jun-2011

12

we need to cooperate closely with him to prioritise the Product Backlog (see [4]), and to get

the technical and domain expertise we need to be able to develop this product successfully.

5 PROJECT ORGANISATION

5.1 THE PROJECT GROUP

The project group consists of four members, all studying computer engineering at HiBu. Two

of the group members study embedded systems, while the other two study simulation and

game development. The name of the project group, Ameo, is the first initial from each group

member.

Name Initials Mail Phone

Arild Oldervoll AOL arild@oldervoll.com 414 52 960

Marius Haraldseth MHA marius@haraldseth.net 415 20 610

Eirik André Eidså EAE eirik@eidsa.no 458 59 244

Olav Brandt OBR olav@brafa.net 984 48 717

5.1.1 DESCRIPTION OF GROUP MEMBERS

Arild Oldervoll (AOL)

Arild is the project leader. He’s from Os, not far from Bergen. Arild

has an education as a pilot from the USA, and in his spare time he

tries to fly as much as possible, when he can afford it. He also

uses a lot of his time on the Red Cross, where he is a member. He

is in the Search and Rescue (SAR) team. Arild also does workouts

in the gym. In his past he has played instruments for about 11

years, mostly the tuba, and he has run a lot of orienteering, he

has actually won the Norwegian Championship in his class.

Other than being the project leader, Arild has responsibility for

the code we are going to develop during this project.

mailto:arild@oldervoll.com
mailto:marius@haraldseth.net
mailto:eirik@eidsa.no
mailto:olav@brafa.net

Project Plan v 3
01-Jun-2011

13

Marius Haraldseth (MHA)

Marius comes from a farm located in Nes in Hallingdal. He now

lives in Drammen with his girlfriend where they moved two and a

half years ago when he started his bachelor degree in computer

engineering. Marius and his girlfriend have just bought their own

apartment in Drammen, and are moving there this December

2010. In his spare time Marius plays a little guitar, tries to learn

some video and photo editing, does training work out and

sometimes he takes a ride to the track with his Subaru Impreza.

Marius has a sparkle for nice cars. In his past he has done a lot of

track and field, and he has been doing shooting, both shotgun and

saloon rifle.

Marius did his compulsory military service in the army as a motor

pool responsible at Terningmoen, Elverum.

Marius is responsible for documentation and analysis.

Eirik André Eidså (EAE)

Eirik is from a farm in Eidså, almost as far west as you can get in

Norway. He moved to Kongsberg when he started his bachelor

degree in computer engineering. Eirik has a background in media

and communication. In his spare time he plays the piano, cello

and his Nikon camera is almost never more than an arm’s length

away on mountain trips all year around.

The areas of responsibility for Eirik during this project are web

page and design.

Olav Brandt (OBR)

Olav is the only one in this group who actually is from Kongsberg.

He has already finished a degree in political science, and is now

soon done with the bachelor degree in computer engineering like

the rest of us. In his spare time Olav likes to read books, listen to

music, watch movies and play the computer game Super Meat

Boy.

Olav’s areas of responsibilities are economy and test.

Project Plan v 3
01-Jun-2011

14

5.2 EXTERNAL RESOURCES AND CONTACTS

This project has four resources and contacts external to the project. All communication from

the project group to any of these resources and contacts should be initiated by the project

leader. Since the project group is using Scrum, any communication with the team from any of

these contact and resources should be directed to the project leader/ScrumMaster to avoid

the introduction of impediments directly on the team:

Name Role Mail Phone

Olaf Hallan Graven Internal Sensor olaf.hallan.graven@hibu.no 473 21 012

Øivind Ottersen External Sensor Oivind.Ottersen@corena.com 32 71 72 26

Tommy Sivertsen External Mentor Tommy.Sivertsen@corena.com 32 71 72 33

Karoline Moholth Internal Mentor karoline@moholth.com 920 81 428

mailto:olaf.hallan.graven@hibu.no
mailto:Oivind.Ottersen@corena.com
mailto:Tommy.Sivertsen@corena.com
mailto:karoline@moholth.com

Project Plan v 3
01-Jun-2011

15

6 ROLES AND RESPONSIBILITIES

6.1 INTRODUCTION TO ROLES AND RESPONSIBILITIES

When working in Scrum, we are trying to avoid dividing the work into roles, as the entire

team is committed to completing all tasks and all team members can work on any task.

Instead, we are dividing the work into responsibilities. That means that there is one person in

the team that oversees that a general task is completed in time and according to our defined

standards. Each team member will have at least one administrative responsibility and one

technical responsibility.

6.2 ADMINISTRATIVE RESPONSIBILITIES

6.2.1 PROJECT LEADER

The project leader is the contact person for all contacts not part of the team. The project

leader will also have the overall responsibility for delivering a product meeting all the

requirements within the given timeframe. The project leader will also be the ScrumMaster,

ensuring that the Scrum process is followed correctly.

Responsible: Arild Oldervoll

6.2.2 DOCUMENTATION

The person responsible for the documentation has the overall responsibility for making sure

that all documentation being delivered follows all standards, that all documentation is

consistent and that the documentation is delivered on time, to all eligible receivers and in the

format requested by the receiver.

Responsible: Marius Haraldseth

6.2.3 WEB

The web responsible, or web master, must ensure that a website for the project group is

developed and to keep it up to date with relevant information.

Responsible: Eirik André Eidså

6.2.4 ECONOMY

The person responsible for economy has to make sure that a budget is created and to

monitor our expenses. The economy responsible must ensure that the project follows the

budget and is within the economical frames set.

Responsible: Olav Brandt

Project Plan v 3
01-Jun-2011

16

6.3 TECHNICAL RESPONSIBILITIES

6.3.1 ANALYSIS

The analysis responsible is responsible for that all use cases and classes are analysed, that a

functional architecture is developed, and that an analysis document is created and

maintained.

Responsible: Marius Haraldseth

6.3.2 DESIGN

The design responsible must ensure that the system is described through classes, objects,

state diagrams and activity diagrams, that a GUI is designed, as well as ensuring that a design

document is created and maintained.

Responsible: Eirik André Eidså

6.3.3 CODE

The code responsible must ensure that a code standard is developed and adhered to. He will

also have a general overview of all technologies and be able to help the team members using

them.

Responsible: Arild Oldervoll

6.3.4 TEST

The test responsible has to make sure that a test strategy and specifications are developed

and adhered to, and that all tests are performed as specified.

Responsible: Olav Brandt

Project Plan v 3
01-Jun-2011

17

7 PROJECT CONTROL

7.1 SPRINTS

In Scrum, the iterations are called Sprints, and by standard a Sprint has a duration of 4 weeks,

but anything from 1-4 weeks is considered normal. In our project, we have been using Sprints

of 4 weeks for the pre-study phase, but after the first presentation, when development

starts, we will reduce the sprint duration to three weeks. In Scrum, the Sprints are time-

boxed, meaning that if there are remaining tasks in a Sprint, the Sprint will not be extended,

but the tasks not done will be dropped and usually moved to the next Sprint. Any features

not completed during the Sprint will not be demonstrated during the Sprint review.

7.2 SPRINT OVERVIEW

The amount of hours available in each Sprint is possible to estimate, but at this time it is not

possible to estimate accurately what will be done in each Sprint (see the document Scrum

Planning And Product Backlog [1]).

7.2.1 UNEXPECTED EVENTS

In Scrum we do not take into account the possibility of unexpected problems and delays to

occur, and there is no risk analysis of such events before the project starts. Instead of

planning on what to do if something unexpected would happen, the plan is adjusted only

when something happens.

In our project, such an unexpected event has occurred. One of our team members has

become seriously ill and will spend a lot of time in the hospital and receiving treatment.

Scrum handles such unexpected events pretty well. We have not lost any time on creating

plans that we now have to change. When we lose most of the velocity produced by a team

member, it will only affect the number of tasks we are able to complete in the Sprint we are

in when it happens, and it will of course affect the number of User Stories we will be able to

complete within a given timeframe. Further on, since we don’t know how much he will be

able to participate in the project, we have decided to assign him a User Story with a lower

priority that is not scheduled for the current Sprint. This is so that he can do as much as he is

capable of, without us being dependent on a certain velocity from him.

7.2.2 UPDATED TIMETABLE

Due to this event, we’ve updated the estimated hours available each Sprint, and our Sprint

goals for these Sprints. When estimating hours we have for now estimated 0 hours for our

sick team member and a slight increase in hours from the other team members to

compensate for some of this. If the ill team member is able to do some work we will only

count it as a bonus which will lead to more of the Product Backlog being completed. Table

Project Plan v 3
01-Jun-2011

18

7.1: Sprint overview gives an overview of the remaining Sprints, the expected hours available

and expected Sprint goals for those Sprints.

Sprint # Start Date End Date Estimated

hours available

Estimated Sprint Goal

6 18-Jan-2011 08-Feb-2011 220 Analyse the S1000D structure

and elements

7 09-Feb-2011 01-Mar-2011 160 Display the data modules in

the application

8 02-Mar-2011 23-Mar-2011 180 Define architecture

9 24-Mar-2011 13-Apr-2011 240 Create most important

features of the logic engine

10 15-Apr-2011 11-May-2011 230 Create remaining logic engine

features

11 11-May-2011 31-May-2011 360 Implement support for

external applications

12 01-Jun-2011 09-Jun-2011 200 Final Reports and Presentation

TABLE 7.1: SPRINT OVERVIEW

The development is expected to be finished in the middle of Sprint 11 (around May 17th).

The original estimate of 1760 hours of development is downsized to a total of 1390 hours. A

total of 489 hours were used during the 5 first Sprints, so the total for the project is expected

to be 2079 hours. This equals 520 hours per group member (with four group members), but

since the estimate is based on three persons from middle of Sprint 6, the actual estimate

for these three group members is 650 hours.

7.3 IMPORTANT DATES

During the project there will be four important dates:

 January 12th: The first presentation.

 March 11th: Second presentation sometime during this Sprint.

 June 1st: Delivery of the product.

o The delivery date is postponed from May 30th because of Eirik’s cancer

treatment. We will probably not see Eirik again until the presentation day,

and therefore the delivery was postponed so we could work with him on the

presentation before he had a new round of chemo therapy.

Project Plan v 3
01-Jun-2011

19

 June 9th: Third and final presentation.

7.4 ACTIVITIES

For project tracking and control, all work done in the project is categorised in the high-level

activities listed in, High-Level Activity Overview [6]. For a more detailed time tracking, the

Sprint Backlog is used to track time on task-level.

7.5 WEEKLY REPORTS

Weekly reports are made for each week in the project. They are sent weekly to our internal

mentor, and all the weekly reports will be gathered in the documentation delivered for the

presentations. These reports will give an overview of what the group and each group member

has been working on for the previous week, what is planned to be done for the next week

and the general status of the project.

7.6 OTHER CONTROL DOCUMENTS

7.6.1 DOCUMENT STANDARD

The document standard contains all the rules and practices for Ameo’s documentation, such

as fonts, styles, use of paragraphs, use of colours, naming of files and more. The document

responsible must ensure that all documents that are produced by Ameo follow this standard.

7.6.2 BUDGET

A budget of our expected expenses are documented in, Budget [7]. These expenses are to be

covered by CORENA, and therefore it is important that we keep track of our expenses and

make sure that we stay on budget.

7.6.3 CODE STANDARD DOCUMENT

The Code Standard sets the standard for code writing in Ameo, regarding such things as

formatting, naming of variables and functions and so on. The code responsible must ensure

that all the code produced by Ameo follow this standard.

7.6.4 TEST REPORTS

Project Plan v 3
01-Jun-2011

20

The test reports will document that the tasks are completed, but it is also where the tasks are

described in detail. The Sprint Backlog only contains a short description/title of the task.

Project Plan v 3
01-Jun-2011

21

8 REFERENCE(S)

1. Scrum Planning and Product Backlog, Ameo, 2010 HiBu.

2. Prosjektplan, Bjørnar Lintvedt, Thomas Fiskum Bembridge, Kjetil Skaret, Mads Haugsmoen,

Tahreem Butt & Robert Grande (Scrat), 2010 HiBu.

3. Prosjektplan, Lone Knutsen, Arne Kristian Åmellem, Zoran Vukobratovic, Ole-Marting

Grøtterud, Thomas Transeth (KDA Rivet), 2010 HiBu.

4. Product Backlog, Ameo, 2010 HiBu

5. Document Overview, Ameo, 2010 HiBu.

6. High level Activity Overview, Ameo, 2010 HiBu.

7. Budget, Ameo, 2010 HiBu.

8. S1000D Issue 4.0, S1000D,

http://public.s1000d.org/Downloads/Documents/Issue4.0/s1000d_Issue_4_0_final.zip (last

visited 05-Jan-2011).

http://public.s1000d.org/Downloads/Documents/Issue4.0/s1000d_Issue_4_0_final.zip

ANALYSIS DOCUMENT

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Analysis Document v 2
01-Jun-2011

2

TABLE OF CONTENTS

1 Introduction ... 4

1.1 Intention of this Document ... 4

1.2 Synonyms, Acronyms and Definitions ... 4

1.3 Author(s) .. 4

1.4 Assigned... 4

2 S1000D Specification ... 5

3 GWT and Client/Server .. 7

4 Application Structure... 9

4.1 Separation of Concerns, MVP .. 10

4.2 Packages .. 11

4.3 High Level Architecture (HLA) ... 12

4.3.1 Rendering of Visual COntent ... 12

4.4 Functionality .. 13

4.4.1 Show PDM ... 13

4.4.2 Save and Load Sessions ... 14

4.4.3 Expressions .. 15

4.5 XML Handling .. 16

4.6 Display Package ... 17

4.7 Dialogue Handling ... 18

4.8 State Table ... 20

4.8.1 Hibernate Object Life Cycle ... 21

4.8.2 Application’s State Table Structure ... 22

5 Reference(s) .. 25

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 25-Mar-2011 First Official Version OBR

2 01-Jun-2011 Updated chapter on Dialogue Handling

Added chapter for State Table

Added package description

Added chapter on Display Package

AOL

Analysis Document v 2
01-Jun-2011

3

Update of chapter for State Table

Updated chapter on Display Package

Added subchapter for saving and loading sessions

Added subchapter 4.5 XML Handling

Added subchapter on Expressions

Analysis Document v 2
01-Jun-2011

4

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

The analysis document will contain documentation describing the background for the

decisions we make regarding the analysis, and descriptions of the decisions themselves.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

process DM Process Data Module

GWT Google Web Toolkit

RPC Remote Procedure Call

MVP Model-view-presenter

MVC Model-view-controller

1.3 AUTHOR(S)

Olav Brandt (OBR)

Marius Haraldseth (MHA)

Arild Oldervoll (AOL)

1.4 ASSIGNED

Olav Brandt (OBR)

Analysis Document v 2
01-Jun-2011

5

2 S1000D SPECIFICATION

Our program will be developed according to the S1000D specification. This sets a number of

requirements in terms of the features, functionality and structure of our program.

The S1000D specification requires that our application contains a logic engine, which utilises a

state table. The primary job of the logic engine is to determine what to display next. It

interprets and executes process Data Modules. The state table is a collection of variables and

their values. The logic engine must be able to populate, store, retrieve, update and delete

state information in the state table. The logic engine must use values from this table in

branches, loops and to evaluate expressions used in applicability.

The logic engine should be able traverse process Data Module elements, maintain state

variables, present dialogues and evaluate expressions. It must traverse the process Data

Modules sequentially. It should also be able to communicate with external applications

through an interface. Our application will also need to communicate with the CORENA IETP.

FIGURE 2.2.1 PROCESS DATA MODULE

CONCEPTUAL DIAGRAM

Analysis Document v 2
01-Jun-2011

6

The specification also sets requirements for the features of the application’s graphical user

interface. Additional specification guidelines for the GUI’s presentation and looks, together

with the design of the existing CORENA IETP, are another set of signals we must take into

account.

Our program need some form of version management to recognise different versions of the

S1000D process DMs, and what to do with them. Different versions may include different

elements, require other ways of handling certain elements or actions, or have a different

structure.

The logic engine needs to have error detection, record detailed information about the error

so it is possible to pinpoint the problem.

We’ve produced a separate set of S1000D documentation with additional analysis and

mapping of a process DM’s structure and elements. They can be found under the folder

S1000D pdM.

Analysis Document v 2
01-Jun-2011

7

3 GWT AND CLIENT/SERVER

We are developing a program that is accessed through a browser; a web application. It is

developed using Google Web Toolkit, a set of tools and technologies where the core

functionality is the ability to write Java code that is automatically translated to JavaScript to

be run in a browser.

The nature of a web application is the two-part structure, consisting of a client and a server.

The client is the part that is accessed through a browser by the user of the program and is

typically made up by, primarily, a graphical user interface. The server is the backend of the

program, and is where the domain/business logic resides.

Because the client and the server are, in essence, two separate entities, communication

between them is not as simple as in a standard desktop application. Instead, it must take

place through some intermediary protocol or message-handler of some sort.

FIGURE 3.1: BASIC STRUCTURE OF A WEB APPLICATION

In our case, GWT provides both the client parts of the application and the means of

communication between the client and the server. Our application’s client and server will be

sending and receiving data through so called RPCs, or Remote Procedure Calls.

The functionality on our server will be usable to our client via services. These are defined

through a set of interfaces which are situated on the client and implemented by the server.

The client can then make an asynchronous call to the server, requesting an operation to be

performed and/or a piece of data to be returned.

Analysis Document v 2
01-Jun-2011

8

As noted in figure 3.2, both the client and server are written with Java code, but while the

client code is translated to JavaScript, the server code is run as standard Java. The client thus

only supports code that is translatable, while the server has no such limitations.

FIGURE 3.2: GWT’S RPC FRAMEWORK, SHOWING CLIENT/SERVER AND THE SERVICES THAT CONNECT

THEM

Analysis Document v 2
01-Jun-2011

9

4 APPLICATION STRUCTURE

During analysis, we’ve attempted to identify the main components our program is made up

by. These components will be broken down into sub-components through a more detailed

design process.

Figure 4.1 shows the components we’ve identified in the first development-oriented Sprint.

- Internal: These components are contained within our actual application.

o Logic Engine: The functionality related to the logic engine as specified by the

S1000D specifications.

o State Table: Representation of the state of a process DM.

o Renderer: The component that decides how information is to be displayed in the

GUI.

o GUI: Used to interact with the user.

o XML Handler: Process Data Modules are represented through XML files. This

component handles these files.

o Communication: For communicating with the CORENA IETP, and possibly external

applications.

- External

o IETP: Interactive Electronic Technical Publication. The IETP our application is

interacting with is developed by CORENA. It is used by our application to fetch

process DM files and possibly for certain rendering responsibilities.

o S1000D Version Handler: Some external format, protocol or method used by our

program to handle different process DM versions.

Analysis Document v 2
01-Jun-2011

10

FIGURE 4.1: MAIN COMPONENTS

4.1 SEPARATION OF CONCERNS, MVP

Separation of concerns is a core principle in software development. Separating our program

into different parts, each with a distinct role and corresponding responsibilities, allows us to

more easily change, refactor or replace software code without affecting the rest of the

application.

Separation of concerns is applicable throughout the entire software development process.

For the analysis part, we’ve made a decision on a software architecture that divides a

program into three main parts; Model-view-presenter. According to [4], MVP is a “derivative

of the model-view-controller software pattern”, an architectural pattern that separates the

domain/business (model), the user interface presentation (view) and the input handling

(controller).

MVP shares the same idea and roles, but some responsibilities are moved around compared

to MVC. Most notable, the task of updating the view is moved from the model to the

controller, now called a presenter.

Figure 4.2 shows a graphical representation of the difference in associations between the

software parts of MVC and MVP.

Analysis Document v 2
01-Jun-2011

11

FIGURE 4.2: MVC AND MVP

4.2 PACKAGES

We have identified the main packages that the application will be divided into. Each package

has one main task, usually representing a component of the SLRP. All the packages we create

belong to the com.corena.ietp.slrp domain. The packages are divided so that the content of

one package should have minimal effect on any other packages, and for easier testing.

FigurE 4.1 provides an overview of the packages

FIGURE 4.3 PACKAGE OVERVIEW

Analysis Document v 2
01-Jun-2011

12

4.3 HIGH LEVEL ARCHITECTURE (HLA)

4.3.1 RENDERING OF VISUAL CONTENT

In accordance with the S1000D specification, the logic engine renders a display package for

the screen to be displayed. The display software, in this case the client, will handle the display

package and display the correct elements on screen. The specification also says that until a

screen is processed and any expressions are evaluating to true, the variables for that dmNode

should be stored in a separate State Table. This lead to the general HLA shown in FIGURE 4.4

High Level Architecture:

The red elements are part of the client, and the green elements are part of the

server/backend. The ClientController is an addition to the MVP, and is the one that requests

the next Display Package from the server when ready. The logic engine will then process the

variables in the temporary State Table and evaluate the expressions to calculate a new

FIGURE 4.4 HIGH LEVEL ARCHITECTURE

Analysis Document v 2
01-Jun-2011

13

Display Package in the renderer, and then sending this back to the ClientController through

the Service Callback. In order to keep it dynamic, the ViewGenerator will then generate the

view, and the PresenterGenerator will register listeners for the widgets generated on the

ViewGenerator. This will ensure that it’s flexible and dynamic, follows the S1000D

specifications and that MVP is conserved.

4.4 FUNCTIONALITY

4.4.1 SHOW PDM

A core functionality of our application is to show process DMs in a GUI. The process DM file is

located on the CORENA IETP, and needs to be transferred to our program before it is shown.

The file is fetched as a result of the process DM being selected by a user in the GUI.

The call originates from the user clicking the Open button and selecting the process DM in a

dialogue. The call then travels from the client to the server via a service. The server queries

the IETP for the file, which is returned to the client and shown in a content panel.

FigurE 4.5: class diagram for “show pdm”5 shows the functionality’s class diagram.

FigurE 4.6 shows the sequence diagram for the functionality.

FIGURE 4.5: CLASS DIAGRAM FOR “SHOW PDM”

Analysis Document v 2
01-Jun-2011

14

FIGURE 4.6: SEQUENCE DIAGRAM FOR “SHOW PDM”

4.4.2 SAVE AND LOAD SESSIONS

It should be possible to save and load sessions in the application. These features will be

implemented in the state table (see chapter 4.7).

When saving the session, a value will be set, and the session info will not be deleted when

closing the application. See figure 4.7 for a sequence diagram of the server part.

FIGURE 4.7 SERVER - LOAD A SESSION

When loading a session, a session list will be loaded from the state table and shown to the

user for selection. The user will select a session, and the application will load this session

from the state table. See figure 4.8 for an activity diagram.

Analysis Document v 2
01-Jun-2011

15

FIGURE 4.8 SAVE SESSION

4.4.3 EXPRESSIONS

Expressions are what truly separate process Data Modules from other Data Modules. They

contain logical operations and functions that need to be evaluated by the Logic Engine

according to the spec. Expressions are used for applicability, branching, validating user entry

and more.

The functionality of a single <expression> is decided by the state of its child elements. An

<expression> element may contain one of the following:

 Four types of “operator” (Boolean, number, set, string)

 Five types of “function” (Boolean, number, set string, substring)

 Six types of “value” (Boolean, string, real, integer, set, no value)

 A variable reference

The operators and functions are further represented by several dozen “operations” and

“actions”, several of which have multiple parameter and return types.

When the Logic Engine encounters an <expression> element while traversing the process

Data Module, it is sent to an Expression Evaluator for evaluation. The Expression Evaluator

checks the type of data the expression contains, and performs the appropriate action. The

result is returned to the Logic Engine, which then executes the next step based on the result.

Figures 4.9 and 4.10 show a class diagram and sequence diagram for evaluating expressions.

Analysis Document v 2
01-Jun-2011

16

FIGURE 4.9 CLASS DIAGRAM FOR EVALUATING EXPRESSIONS

FIGURE 4.10 SEQUENCE DIAGRAM FOR EVALUATING EXPRESSIONS

4.5 XML HANDLING

The process DM is represented in an XML format when received from the IETP. To use the

data in this file further in our application it must be parsed into a format that the application

can handle in a simpler manner than reading the file from start to finish every time it needs

new data from the process DM. The XML handler should separate the concern of the pDM

format so that the rest of the application will have a unified representation of the data even

though the S1000D specification might change with new versions.

Analysis Document v 2
01-Jun-2011

17

4.6 DISPLAY PACKAGE

When encountering elements in the process DM that is displayable, the Logic Engine will use

the Renderer to generate a display package to be sent to the client. The display package

contains the relevant data found in the element - that is, only the data that will be displayed

to the user. Other, server-side data is evaluated in the Logic Engine and is not something the

client needs or should have access to.

There are two main categories of displayable data/elements; dialogues and collections of

figures, tables and multimedia objects, either directly in a dmNode or as a number of

procedural steps. Dialogues are standard pop-up dialogues whose content is decided “on the

fly” by the Logic Engine, i.e. the content is completely dynamic. A procedural step can contain

a number of displayable data, including text, figures and tables. A list of procedural steps can

be followed by an optional embedded dialogue.

Figure 4.11 shows a class diagram for display package handling

Figure 4.12 shows a sequence diagram for display package handling

FIGURE 4.11 CLASS DIAGRAM FOR DISPLAY PACKAGE HANDLING

Analysis Document v 2
01-Jun-2011

18

FIGURE 4.12 SEQUENCE DIAGRAM FOR DISPLAY PACKAGE HANDLING

4.7 DIALOGUE HANDLING

When the Logic Engine encounters a dialogue type element (<dialog>, <message>), it will 1)

create a temporary state table for the dialogue, and 2) pass the contents of the element and

its child elements to the Renderer. The Renderer will interpret the elements and create a

display package that is sent to the client. When a user submits input from the dialogue, the

event and the input data are sent via a service call to the server.

The server will fill the dialogue state table with the data and the Logic Engine will attempt to

validate it. If the data validates, the Logic Engine moves on to the next step in the process

DM. If not, an error message is generated, sent to the client and displayed.

Figure 4.13 shows an activity diagram for the dialogue handling.

Figure 4.14 shows a component diagram for the dialogue handling.

Analysis Document v 2
01-Jun-2011

19

FIGURE 4.13 ACTIVITY DIAGRAM FOR DIALOGUE HANDLING

FIGURE 4.14 COMPONENT DIAGRAM FOR DIALOGUE HANDLING

Analysis Document v 2
01-Jun-2011

20

4.8 STATE TABLE

We need a state table for this application. It is a requirement that this should be persistent.

Persistency means that it should be stored outside of the application, so if the program

should crash for example, the state table will still be extant.

To fulfil this requirement we will use a database for the state table.

In this state table it should be possibilities to:

- Store a new session.

- Store a new variable.

o Temporary and not temporary

o A variable can have several values

- Update variables.

- Store a new state.

- Retrieve sessions, variables and states.

- Delete state table sessions and states.

For communication with our database we will use the object-relational mapping tool

Hibernate. Hibernate is a free open source tool. This tool makes it possible for us to work

with objects and not tables.

 We will refer to two types of session.

- State table session, this will always be referred to as the state table session. It is a

run/session in the application

- Hibernate Session object; this will be referred to as Session object. This is an object which

the Java objects gets an association with when they are persisted (see chapter 4.7.1). This

object is created every time we have an interaction with the database.

Analysis Document v 2
01-Jun-2011

21

4.8.1 HIBERNATE OBJECT LIFE CYCLE

The Hibernate object has a lifecycle as shown in figure 4.15 below:

Transient objects are not yet saved to a row in the database. They have no association with

the database, they act as normal Java objects. There is no connection between the

transaction and these objects. These objects can be turned into persistent objects with the

save method call of the Session object. This is the Hibernate Session. It can also be persisted

by adding a reference from another persistent object to this object.

Persistent objects have an association with the database and are always associated with a

persistence manager, i.e. a Session object. The object does not have to be saved to the

database yet, but it will have a primary key value set anyway. When the delete method of the

Session is called on a persistent object, the object will be removed from the database, but it

will still be available as a regular Java object.

Detached objects are objects that were persistent, but no longer have a connection to a

Session object. The object is now stale. This object can be persisted again.

FIGURE 4.15 THE HIBERNATE OBJECT LIFECYCLE

Analysis Document v 2
01-Jun-2011

22

4.8.2 APPLICATION’S STATE TABLE STRUCTURE

The class diagram for the state table is shown in figure 4.16 below:

This class diagram represents the state table as a persistent database, and that we use a

controller to control every query to the database. The queries are done automatically by

Hibernate. We treat the tables as objects in the application. The session generator is just a

class which contains everything that needs to be done when starting a new session.

The start-up of a new session will work as shown in figure 4.17 below. This sequence diagram

shows that it will store a session, a state and the pre-set variables from the pDM:

To delete a state table session will work as shown in the sequence diagram in figure 4.18

below:

FIGURE 4.16 ANALYSIS OF STATE TABLE CONTROL AND CONNECTION

FIGURE 4.17 CREATING A NEW SESSION IN THE STATE TABLE

Analysis Document v 2
01-Jun-2011

23

When a state table session is deleted, its states and variables also have to be deleted. This

will happen automatically when we delete the state table session.

The next two figures show how to delete a state and a variable, figure 4.19 and 4.20.

 The methods for fetching states, fetching variables and updating variables are almost

identical.

FIGURE 4.18 DELETE A STATE TABLE SESSION

FIGURE 4.19 DELETE STATE FROM THE STATE TABLE

FIGURE 4.20 DELETE VARIABLE FROM THE STATE TABLE

Analysis Document v 2
01-Jun-2011

24

FIGURE 4.21 FETCH VARIABLE FROM THE STATE TABLE

FIGURE 4.22 FETCH STATE FROM THE STATE TABLE

FIGURE 4.23 UPDATE A VARIABLE IN THE STATE TABLE

Analysis Document v 2
01-Jun-2011

25

5 REFERENCE(S)

1. International Specification for technical publications utilizing a common source database

S1000D, Technical Publications Specification Maintenance Group (TPSMG), 01-Aug-2008

(Issue 4.0)

2. Communicate with a Server, Google code,

http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication.html

(last visited 06-Mar-2011)

3. What is Model View Presenter, WeAsk, http://www.weask.us/entry/model-view-

presenter (last visited 06-Mar-2011)

4. Model-view-presenter, Wikipedia, http://en.wikipedia.org/wiki/Model_View_Presenter

(last visited 06-Mar-2011)

5. Hibernate, JBoss Community Hibernate, http://www.hibernate.org (last visited 27-Apr-

2011)

6. Hibernate (Java), Wikipedia, http://en.wikipedia.org/wiki/Hibernate_%28Java%29 (last

visited 27-Apri-2011)

7. Getting Started with Hibernate (revision 1.4), Alan P. Sexton (Published 23-Jan-2006),

cs.bham.ac.uk,

http://www.cs.bham.ac.uk/~aps/syllabi/2005_2006/issws/h03/hibernate.html (last

visited 09-May-2011)

http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication.html
http://www.weask.us/entry/model-view-presenter
http://www.weask.us/entry/model-view-presenter
http://en.wikipedia.org/wiki/Model_View_Presenter
http://www.hibernate.org/
http://en.wikipedia.org/wiki/Hibernate_%28Java%29
http://www.cs.bham.ac.uk/~aps/syllabi/2005_2006/issws/h03/hibernate.html

DESIGN DOCUMENT

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Design Document v. 2
01-Jun-2011

2

TABLE OF CONTENTS

1 Introduction ... 5

1.1 Intention of this Document ... 5

1.2 Synonyms, Acronyms and Definitions ... 5

1.3 Author(s) .. 5

1.4 Assigned... 6

2 Layout / GUI / View ... 7

3 System Structure ... 8

4 Model-View-Presenter .. 9

4.1 Model .. 10

4.2 View ... 10

4.3 Presenter ... 10

4.4 Extension ... 10

5 Fetch Pdm .. 11

5.1 PDM Parsing .. 12

5.1.1 SAX ... 12

5.1.2 DOM .. 12

5.1.3 Data Binding .. 12

6 Client and Server ... 13

6.1 Client .. 13

6.2 Server... 14

6.3 Client / Server / Service ... 15

6.3.1 Command Pattern ... 15

7 Data Object Model (DOM) .. 15

8 Database System ... 16

8.1 Hibernate ... 16

8.1.1 Definintions ... 17

8.2 Apache Derby .. 17

8.3 State Table Database Model ... 18

8.3.1 State Table ... 18

8.4 State Table Application Structure ... 19

8.4.1 Open and Close Hibernate Session.. 20

8.4.2 Start a New State Table Session and Saving to State Table .. 20

Design Document v. 2
01-Jun-2011

3

8.4.3 Delete State Table Session .. 23

8.4.4 Delete States and Variables ... 24

8.4.5 Fetch States From the State Table .. 25

8.4.6 Fetch Variables From the State Table ... 26

9 Saving and Loading Sessions ... 27

9.1 Save Session .. 27

9.2 Load Session .. 29

10 Display Package Handling .. 31

10.1 Widget Building And <Type, Builder> Mapping .. 31

10.2 Dialogues ... 31

10.3 Dialogue Children .. 33

10.3.1 <dialogGroup> ... 33

10.3.2 <menu> .. 34

10.3.3 <userEntry> ... 35

10.3.4 <pushButton> .. 36

10.4 Prompts and Messages ... 37

10.5 Submitting Input .. 38

10.6 Warnings and Cautions.. 39

11 Expressions .. 41

11.1 Background .. 41

11.2 Solution.. 41

12 Reference(s) .. 43

Design Document v. 2
01-Jun-2011

4

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 07-Mar-2011 First final version MHA

2 01-Jun-2011 Second Official Verision

- Added chapters for:

o Caution and Warnings

o Saving and Loading sessions

o Data Binding subchapter

o State Table Database

o MVP subchapter

- Updated diagrams

MHA

Design Document v. 2
01-Jun-2011

5

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

The Design Document will contain a closer, in depth overview of the application we are

creating, S1000D Logic Engine and Renderer for Process Data Modules (SLRP). It is important

to notice that this document only covers the main architecture and design of the parts that

has been developed so far.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

process DM Process Data Module

MVC Model-View-Controller

MVP Model-View-Presenter

GUI Graphical User Interface

DB Database

ORM Object-Relational Mapping

RPC Remote Procedure Call

SAX Simple API for XML

DOM Data Object Model

XML Extensible Markup Language

1.3 AUTHOR(S)

Marius Haraldseth (MHA)

Arild Oldervoll (AOL)

Olav Brandt (OBR)

Design Document v. 2
01-Jun-2011

6

1.4 ASSIGNED

Arild Oldervoll (AOL)

Design Document v. 2
01-Jun-2011

7

2 LAYOUT / GUI / VIEW

We have made a decision for the user interface in our application. It is an easy and intuitive

layout. In the guidelines from the S1000D specification it is said that Next and Previous

buttons should be on top of the content panel, but we have made a decision to put them in

the bottom, as we see this as a more logical solution. Our content panel will be a scrollable

panel, so the Next and Previous buttons will always be visible.

FIGURE 2.1 THE VIEW FOR OUR APPLICATION - SLRP

Design Document v. 2
01-Jun-2011

8

3 SYSTEM STRUCTURE

Our application is a part of a larger system. It is accessed through a web browser on a user’s

computer, and needs to communicate with the CORENA IETP for certain functionalities, such

as a document service.

Figure 3.1.1 shows a deployment diagram for the system our application is a part of.

FIGURE 3.1 DEPLOYMENT DIAGRAM FOR THE SYSTEM

Design Document v. 2
01-Jun-2011

9

4 MODEL-VIEW-PRESENTER

This is the main design pattern for our application SLRP. We will use the model-view-

presenter (MVP) pattern. One of the reasons we will use MVP is that it will make testing of

the system a lot easier as we split most of the functionality away from GWT. This gives us the

opportunity to test all functionality without having to use hosted mode in GWT.

FigurE 4.1 Model-View-Presenter and client/server for

SLRP

Design Document v. 2
01-Jun-2011

10

4.1 MODEL

Our model will be located at the server component. The model will contain the logic engine,

the state-table, an XML handler etc. The model is the part which will process and interpret

the in the application. The model will be the part which implements our business logic and

objects.

4.2 VIEW

An application can have several views. Our application will contain one primary view, which

will contain the content panel of our application, the upper button panel with Open, Load

and Save buttons and the button panel at the bottom with Previous and Next buttons. The

view contains all of the UI components to make up the application.

The view will implement an interface defined in the presenter. It will not fire any events of its

own.

4.3 PRESENTER

The presenter part of our application will control what will be displayed in the view, and

create the content with the help of functionality in the model. The presenter will prepare and

render everything that will be shown in the view.

The presenter will handle, and register all buttons located in the views, and it will present

data to our content panel view. It will listen for DOM events, such as ClickHandlers, it will

listen on an event bus which we will develop and it will call services.

Our presenter will use an event bus to communicate with services. We will define application

events which will be extending GwtEvent. The presenter will then add handlers to listen for

events. To do this we will move the ClickHandler away from the view, and handle them in the

presenter. An example on how to do this:

display.getOpenButton().addClickHandler()…

4.4 EXTENSION

MVP is a broad and general architecture. For our specific use of it, we will be following the

structure described in [5]. In addition to the primary three components of MVP, a fourth is

added. This component is responsible for client-side logic that is not limited to one Presenter.

It is represented by a class, AppController.

Tasks for the new component include the handling of an Event Bus for application-wide

events and generating Presenter & View objects.

Design Document v. 2
01-Jun-2011

11

5 FETCH PDM

The Show PDM functionality described in the analysis document has been split into two

separate and distinct functionalities. One of these is dubbed “Fetch PDM”, and describes the

way our program fetches a process DM file from the CORENA IETP.

Figure 5.1 shows the functionality’s class diagram.

Figure 5.2 shows the sequence diagram for the functionality.

FIGURE 5.1 CLASS DIAGRAM FOR “FETCH PDM”

FIGURE 5.2 SEQUENCE DIAGRAM FOR “FETCH PDM”

Design Document v. 2
01-Jun-2011

12

5.1 PDM PARSING

The data received from the IETP is in an XML format, and to be usable by the rest of the

application it must be transferred to a different format that is easier for the application to

work with. There are three main options commonly used for parsing and representation of

XML data that we have considered to use, these are SAX, DOM and data binding.

5.1.1 SAX

SAX, Simple API for XML, is probably the least suitable parser for our application. It parses the

XML from start to end with no possibilities to navigate back and forth through the file.

5.1.2 DOM

DOM, Data Object Model, is a more appropriate choice than SAX for our application, it

creates an object for each node or element and a navigable object tree. Each node object

knows about its parents, children and siblings and its attributes.

5.1.3 DATA BINDING

XML data binding provides the same features as DOM, but instead of generic node objects,

each XML element is mapped to custom Java objects. The advantage is that these objects also

can contain business logic and methods related to that exact object, which is useful for our

application. Therefore this is the method we have decided on using, and we are using the

library XStream for data binding. With XStream, most of the mapping is done automatically

and only requires manual mapping in special cases. It also creates a full object graph as in

DOM.

Data binding requires that a class is created for each element that is supposed to be mapped.

The classes contain the legal attributes and child elements stored as variables, as well as

getter and setter methods for each of these. These classes can be found in the package

com.corena.ietp.slrp.server.pdm.elements as sub-packages. These classes are mostly a

representation of elements specified in the S1000D specification, as documented by AMEO in

the “S1000D PDM” documents. The class PdmElementGenerator is where the actual data

binding takes place as shown in Figure 5.3.

Design Document v. 2
01-Jun-2011

13

FIGURE 5.3 PDM FETCHING AND DATA BINDING

6 CLIENT AND SERVER

6.1 CLIENT

Our client component is the application frontend and will hold the view and presenter parts

of the application. This is the mainly where GWT will be used in our application and the

source code will be compiled into JavaScript. The main client components are shown in

Figure 6.1

FIGURE 6.1 Client components of SLRP

Design Document v. 2
01-Jun-2011

14

6.2 SERVER

Our server component will be the component containing the model. Most of the functionality

will be contained here. The model, or server if you’d like contains the logic engine, which is

our main and most important functionality of the application. Other parts of the model are

the state table, the XML handler and the communication component.

FigurE 6.2 Server Component of SLRP

Design Document v. 2
01-Jun-2011

15

6.3 CLIENT / SERVER / SERVICE

The client will have two service interfaces, a normal interface, and an asynchronous interface

which it will use to call the service implementation located in the model at the server

component. The server implements the normal interface located in the client, and the client

will use this interface. The client will receive a callback from the server with the result from

the service call.

6.3.1 COMMAND PATTERN

We will use RPC calls to the server services. These services will need three classes each (xxx =

name for the service):

Located at the client:

- Service Interface (xxxService)

o Annotate with: @RemoteServiceRelativePath(“name”)

- Async version of the interface (xxxServiceAsync)

Located at the server:

- Server implementation (xxxServiceImpl)

This pattern is called the Command Pattern. Since the call is asynchronous, you will receive a

callback from the service implementation with the result.

7 DATA OBJECT MODEL (DOM)

Java offers mainly two different ways of parsing XML documents and storing them in

memory; DOM (Data Object Model) or SAX (Simple API for XML). We have chosen DOM for

our application. SAX is faster in use than DOM, but it does not organise or model the data

parsed, so we would have to create our own data structure. With DOM the data is organised

in a tree structure organised by the elements in the XML file, a Document Object Model. This

is slower than SAX and takes more memory, but it allows traversing of the XML document

forward and backwards.

If DOM turns out to be too slow for our application when we start working on large data files,

it is always possible to change to SAX later on, but this will be more time consuming than

using DOM, as we would have to create our own data structure.

Design Document v. 2
01-Jun-2011

16

8 DATABASE SYSTEM

For the state table in SLRP we must use a persistent database system. We have decided to

use the Hibernate library for Java with the Apache Derby Database.

8.1 HIBERNATE

We will use Hibernate so we can treat our database in an object-oriented way. Hibernate is

an object-relational mapping (ORM) library for the Java programming language. It provides a

framework for mapping an object-oriented domain model to a traditional relational database.

We use Hibernate together with the Apache Derby database to gain persistence in our

system.

There are several ways to map Java classes to database tables, either by using annotations or

an XML mapping file. We will use the XML mapping file. These mapping files’ extension is

.hbm.xml, and they are stored together with the classes that represent the mapping files’

tables.

Other than the mapping files, we have a configuration file, which is known by its .cfg.xml

extension. This file is placed in the root of the src folder of the project. The configuration file

contains mappings for the drivers and connection for the database as well as a lot of other

options, both mandatory and optional.

Hibernate3 require these libraries in the build path (the versions we have used):

- Hibernate3.jar

- antlr-2.7.6.jar

- commons-collections-3.1.jar

- dom4j-1.6.1.jar

- javaassist-3.12.0.GA.jar

- jta-1.1.jar

- slf4j-api-1.6.1.jar

- slf4j-simple-1.6.1.jar

- hibernate-jpa-2.0-api-1.0.0.Final.jar

- hibernate-validator-4.0.0.Beta2.jar

- validation-api-1.0.CR3.jar

We have used Hibernate version 3.6.3 Final Distribution.

Design Document v. 2
01-Jun-2011

17

To use Hibernate we have created a standard HibernateUtil class which generates a

SessionFactory for communicating with the database. The SessionFactory shall only be

created once and later on utilized in the communication with the database. For each time we

then communicate with the database we create a Session which we have to close at the end

of the communication.

What happens when we perform a save query to the database is that we first create a

transient object, which we makes persistent with:

- session.save(object);

Now the object is persistent, but it is not saved until the query is committed. To commit we

use this statement:

- session.getTransaction().commit();

The object(s) is/are now saved as row(s) in the database, and persistence is obtained.

Diagrams which present this are shown in figure 8.3 and 8.4 in chapter 8.4.1.

Be aware that we in this chapter are talking about two different kinds of sessions. The first

one, which is mentioned above is a Hibernate session, which is created every time we

interact with the database. The second is one run or session in the state table, which

represents one run with the program when a user opens a new manual. It can be saved, and

continued by another user at a later time.

8.1.1 DEFININTIONS

Transient object – The object is not represented in the database.

Persistent object – The object is represented in the database.

Detached object – The object has been persistent, but is not anymore. It is in a stale state.

8.2 APACHE DERBY

We will use Apache Derby as our database system since we only need a small embedded

database in our application. Derby is a small and easy-to-use full featured relational SQL

database. It is also free under the Apache license. Derby is portable and 100% Java and it is

only 2,5 MB.

We use a Derby client database. To use this we need one library in the build path:

- derbyclient.jar

Design Document v. 2
01-Jun-2011

18

8.3 STATE TABLE DATABASE MODEL

SLRP’s state table database model:

8.3.1 STATE TABLE

These are the State Table tables for the SLRP application which holds the data for each

session.

The session’s table is the table containing the identification number of a session, and its start

date. The session_id is the primary key for this table.

The states table is the table holding the history and reference to each state, or <dmNode> in

a session. The state_id is this table’s key.

The variables table is the table containing all the variables, with connection to their values.

The variables are global in our program, but the variable name will be used for several

sessions, and therefore we have a variable_id as a unique and primary key.

The values table is where the values for the variables will be stored. The connection to the

variable is in the variable_id. The primary key is the value_id.

The tmp_variables table is where the temporary variables which dialogues will use are saved

until they are done and validated. When they are validated, the values will be stored in the

State Table tables. Connection to the session is through the session_id. The primary key is the

tmp_id.

The tmp_values table is the table which stores the values for the temporary variables.

Figure 8.1 State Table Database Model

Design Document v. 2
01-Jun-2011

19

8.4 STATE TABLE APPLICATION STRUCTURE

In SLRP our database and Hibernate system will be represented as figure 8.2.

 The upper package in this diagram is our application. The lower package is the org.Hibernate

 package which we use for our mapping with the database. This is the complete system for

our state table. We have a StateTableController which is the core which controls everything,

and the HibernateUtil which is the standard static singleton pattern that generates the

SessionFactory. The rest of the classes are object-relational mapping (ORM) tables,

represented as objects/classes in Java.

FIGURE 8.2 STATE TABLE SYSTEM IN SLRP

Design Document v. 2
01-Jun-2011

20

8.4.1 OPEN AND CLOSE HIBERNATE SESSION

This is the method to start a new session with Hibernate against the database. This method

will be used every time we communicate with the database, and returns a session object. See

the diagram below:

We need to save (persist) and commit the session before we close it each time, as shown in

figure 8.4.

FIGURE 8.4 CLOSE HIBERNATE SESSION

8.4.2 START A NEW STATE TABLE SESSION AND SAVING TO STATE TABLE

 When a new session is started in the database, we first insert a row into the run table, then

we insert the first state, and finally we insert pre-set variables, if there are any. See the

diagram in figure 8.5.

FIGURE 8.3 START HIBERNATE SESSION

Design Document v. 2
01-Jun-2011

21

FIGUR 8.5 STARTING A NEW STATE TABLE SESSION

The methods used to store variables and states are the same methods as is being used to

perform these operations as single instructions when the program is running. There is one

exception, and that is when we want to store several variables, we have added another

method, see figures 8.6 and 8.7.

The methods for saving variables and values to the state table contain one parameter;

isTmpVariable or isTmpValue. This is a Boolean parameter which tells the methods if they

should store to the temporary tables or the regular state table tables. A value of true saves to

the temporary, and false to the other.

Design Document v. 2
01-Jun-2011

22

FIGURE 8.6 STORE VARIABLES TO STATE TABLE

The only real difference is that the method storeVariables() receives a linked list with

variables objects which is being inserted into state table one by one with the storeVariable()

method. The storeVariable() method uses the storeValue() method to store the values of the

variable to state table.

Design Document v. 2
01-Jun-2011

23

FIGUR 8.7 STORE VARIABLES TO THE STATE TABLE

8.4.3 DELETE STATE TABLE SESSION

To delete a state table session, every state and variable belonging to that specific session also

have to be deleted. The variables and states are take care of by Hibernate. We just have to

delete the session object/row. The sequence diagram for deleting a state table session is

shown in figure 8.8.

Design Document v. 2
01-Jun-2011

24

FIGURE 8.8 DELETE A STATE TABLE SESSION

8.4.4 DELETE STATES AND VARIABLES

To delete states and variables we need to enter the state table session and iterate through

them to find the one we are looking for. Then we delete this object from the Hibernate

Session object. See activity diagrams 8.9 and 8.10.

FIGURE 8.9 DELETE A STATE FROM THE STATE TABLE

Design Document v. 2
01-Jun-2011

25

FIGURE 8.10 DELETE A VARIABLE FROM THE STATE TABLE

8.4.5 FETCH STATES FROM THE STATE TABLE

To fetch a state from the state table there are two options.

- Fetch the previous state.

- Fetch a state by a number.

Both of these methods use the fetchState() method, which fetches a state by using the

number of the state. The difference is that to fetch the previous state we use a method

fetchPreviousState() before the fetchState() method. What this extra method does, is to first

delete the current state, and then decrement the stateNr for the StateTableController. Then

it sends a call to fetchState() with the new stateNr as parameter. See figure 8.11. The activity

diagram in this figure shows both of these methods.

Design Document v. 2
01-Jun-2011

26

FIGURE 8.11 FETCH THE PREVIOUS STATE FROM THE STATE TABLE

8.4.6 FETCH VARIABLES FROM THE STATE TABLE

To fetch variables from the state table we must load the current state table session object

and iterate though it’s variables in the Set. When we find the variable we are looking for, we

save its values to a LinkedList and store a new Variable object in the application with these

values, the variable name and type. See figure 8.12.

FIGURE 8.12 FETCH A VARIABLE FROM THE STATE TABLE

Design Document v. 2
01-Jun-2011

27

9 SAVING AND LOADING SESSIONS

SLRP will have functionality for saving a session, and continuing where you left off.

9.1 SAVE SESSION

Once the session is saved, all the work you do afterwards is also automatically saved. When

we save a session, a Boolean value isSaved in the StateTableController is set to true, and a

name for the session is saved in the state table. The process is showed in figure 9.1 below.

FIGURE 9.1 SAVE SESSION

The client side of this feature is developed as shown in the class diagram in figure 9.2 below:

Design Document v. 2
01-Jun-2011

28

FIGURE 9.213 CLIENT - SAVE SESSION

The client consists of an EventBus where events are fired when a user pushes a button in the

application. In this diagram the events and event handlers for saving is shown, but it is exactly

the same principles for loading a session and opening a new session. In this diagram the

views and presenters required for saving a session are displayed, and as with the event and

event handlers, it is the same principle for the other functionality. They all follow the MVP

architecture design with an additional AppController as the client’s controller (see chapter 4).

The Service package contains the classes which send the asynchronous remote procedure

calls (RPC) to the server. GWT handles this automatically, and sends a callback with the

response.

The SLRP class is the entry point of this application.

Design Document v. 2
01-Jun-2011

29

9.2 LOAD SESSION

If you want to continue a previously saved session you can load it by clicking the load button

in the application. An event is then fired on the EventBus, calling the remote procedure call

(RPC) service’s getSessionList() method. An asynchronous call is now sent to the server’s

service implementation. From CoreController, a list is fetched from the state table, and

returned with the callback to the client.

In the client, a dialogue is created with a presenter and a view, showing the list returned with

the callback. The user is prompted to select one and press the “Open” button. A new event is

now fired on the EventBus to the RPC service’s loadSession() with the selected session name

as an argument. This method sends an asynchronous callback to the server.

In the server’s service implementation the call is received in the loadSession() method. This

method forwards the call with sessionName and stateTableController as arguments through

CoreController which saves the stateTableController object and next through

LogicEngineController and LogicEngine. LogicEngine creates a SessionGenerator object which

only lives in the scope of this method. Here the loadSession() method is run, and the session

info is loaded from the state table and the process Data Module is loaded from CORENA IETP.

Back in the LogicEngine the process Data Module is sent to the Renderer for getting the next

DisplayPackage. When this package is fetched, it is returned with the callback to the client,

where view and presenter are being generated. The current step of the session is then

displayed. In figure 9.2, the process is described.

Design Document v. 2
01-Jun-2011

30

FIGURE 9.3 LOAD SESSION

Design Document v. 2
01-Jun-2011

31

10 DISPLAY PACKAGE HANDLING

10.1 WIDGET BUILDING AND <TYPE, BUILDER> MAPPING

For the transition between the display package data and the client-side widgets generated

from it, we had a goal to avoid a constant “check type and then act” design (and code)

mentality. However, because the widgets are client-specific and not something the model

(which generates the display package) should know or care about, we weren’t able to

implement a direct interface where you could say displayPackageElement.buildWidget().

Some type checking was required.

The answer we came up with was to “automate” the type checking by using a Map that maps

between a Type and a Builder. The Type is an enumeration describing data elements

implementing a specific interface (like DisplayPackageElement). The Builder is an interface

(like WidgetBuilder) implemented by classes building a Widget or some other object used by

the client. The mapping is handled by an abstract convenience wrapper class using generics;

TypeController, which is extended by specific implementations (like WidgetController).

This allows us to directly build the client representation of a server data object, without

having to check its type and call the correct method in the correct class.

10.2 DIALOGUES

Dialogues are one of the kinds of display package data, and are built using the

TypeController<Type, Builder> structure/framework. The dialogue building implementation

of this structure/framework consists of:

 The DisplayPackageElement interface and the type of its implementers (e.g.,

DialogGroup or Menu).

 The WidgetBuilder interface with method buildWidget(DisplayPackageElement

element)

 The TypeController extension; WidgetController. WidgetController also implements

the WidgetBuilder interface and uses the buildWidget-method to send the

DisplayPackageElement to the correct WidgetBuilder.

The <dialog>-element itself is a DisplayPackageElement with a WidgetBuilder

implementation, DialogBuilder. However, in order to keep the client as simple as possible,

dialogues are never children, only top-level elements. This means they won’t be

automatically built by other WidgetBuilder implementations, instead they’ll always be built

directly by the display package handling software.

Design Document v. 2
01-Jun-2011

32

The TypeController<Type, Builder> structure/framework is especially useful for building

dialogues, as the <dialog>-element consists of complex children that themselves may consist

of complex children (and so on). By having these implement the DisplayPackageElement

interface, a parent class may simply iterate over them, calling WidgetController’s

buildWidget-method on each of them, without having to do any manual type checking –and-

treatment. This way, when a new DisplayPackageElement and its builder are implemented,

the elements that can contain them do not need to be changed.

Figure 10.1 shows a class diagram of the dialogue building framework/structure, without the

child elements.

Figure 10.2 shows an activity diagram that explains the process of building dialogues.

FIGURE 10.1 CLASS DIAGRAM SHOWING THE DIALOGUE-BUILDING FRAMEWORK/STRUCTURE

Design Document v. 2
01-Jun-2011

33

FIGURE 10.2 ACTIVITY DIAGRAM FOR DIALOGUE BUILDING

10.3 DIALOGUE CHILDREN

10.3.1 <dialogGroup>

A Dialogue Group is a layout element, used to toggle the direction its children are laid out in.

If the parent of the dialogue group is vertically oriented, the dialogue group’s layout is

horizontal, and vice versa. It may contain the same child-elements as the <dialog>-element.

Figure 10.3 shows a class diagram for the building of a dialog group widget.

Design Document v. 2
01-Jun-2011

34

FIGURE 10.3 CLASS DIAGRAM FOR THE BUILDING OF DIALOG GROUPS

10.3.2 <menu>

A menu is one of the two elements used to obtain input from a user. It may be of three types;

a radiobutton menu, a checkbox menu or a list menu. A list menu may be single- or multiple-

choice. A menu is made up of one or more <menuChoice>-elements, which make up the

entries in the menu.

The TypeController<Type, Builder> structure/framework is used to build menu widgets, with

MenuType as the key and WidgetBuilder as the value. The common builder functionality of

the menu types is located in an abstract superclass, MenuBuilder, which implements the

WidgetBuilder interface. This class is extended by each of the builders, which implement an

abstract method addMenuChoices.

 Radiobutton- and checkbox-menus are made up of separate menu choice widgets which do

not share a common parent. The builders for these menus use an additional class to build the

menu choice widgets, MenuChoiceBuilder. The list menu, on the other hand, is one single

“parent widget”, whose children are simply list-entries with labels and values.

Figure 10.4 shows a class diagram for the building of menus.

Design Document v. 2
01-Jun-2011

35

FIGURE 10.4 CLASS DIAGRAM FOR THE BUILDING OF MENUS

10.3.3 <userEntry>

A user entry is the other element used to obtain input from a user and is represented by a

text input field. The user entry has a reference to a variable value where the data in the text

field is saved. The variable value is sent to the server via a SubmitEvent when it is updated.

Figure 10.5 shows a class diagram for the building of user entries.

Design Document v. 2
01-Jun-2011

36

FIGURE 10.5 CLASS DIAGRAM FOR THE BUILDING OF USER ENTRIES

10.3.4 <pushButton>

A push button is used to launch a so-called associated action; a new dialogue or an external

application. This is something that occurs on the server, so the display package / client

version is of limited complexity.

The buttons used for submitting/cancelling/resetting a dialogue are not <pushButton>-

elements.

Figure 10.6 shows a class diagram for the building of push buttons.

Design Document v. 2
01-Jun-2011

37

FIGURE 10.6 CLASS DIAGRAM FOR BUILDING PUSH BUTTONS

10.4 PROMPTS AND MESSAGES

The S1000D specification uses the <prompt>-element to present text information to the user.

A prompt is made up of several different text elements, and can be positioned relative to its

parent (which is always another display package element). The ability to position the prompt

affects the layout of the parent and the order of its children. This means the builders of

certain parent elements also has to treat the <prompt> element when building their widgets.

The text elements in a prompt are built individually using the TypeController<Type, Builder>

structure/framework. An interface, TextElement is implemented by all text element data

classes and their type is used as the key in the map. An HtmlTextBuilder interface is

implemented by the text element builders and the value in the map.

A <message>-element is a (relatively) simple element used to display messages to the user. It

may be in the form of a pop-up dialogue, or embedded in some other element.

Figure 10.7 shows the class diagram for building prompts, including text elements.

Figure 10.8 shows the class diagram for building messages.

Design Document v. 2
01-Jun-2011

38

FIGURE 10.7 CLASS DIAGRAM SHOWING THE BUILDING OF PROMPTS

FIGURE 10.8 CLASS DIAGRAM FOR BUILDING MESSAGES

10.5 SUBMITTING INPUT

The way we submit user input (which originates in the client) to the model/server for

evaluation is an important part in our quest to keep the client simple and free of model logic.

The client should know as little as possible about what it is sending, but it must know

something in order to send it.

Design Document v. 2
01-Jun-2011

39

We have defined three submission scenarios in addition to the one defined in the

specification.

 Associated action. Clicking a widget whose display package element has an associated

action attached to it submits the element id to the model, which executes the action.

The associated action may be the only response to a submission, or one of several.

 Menu. Clicking a menu entry submits the element id(s) to the model which,

depending on the menu type, overwrites, adds or removes the element id(s) from the

menu state.

 User Entry. A user entry sets a variable value which, together with the element id, is

submitted when the user entry text field is updated and stored in the model/server.

 Dialogues. Clicking the “Submit” button in a dialogue (or a message) submits the

element id to the model/server, where all the assertions, validations and other

expressions defined by its child elements are evaluated.

10.6 WARNINGS AND CAUTIONS

Warnings and Cautions, with the elements <warning>, <caution> and

<warningAndCautionPara> are supported as display package- and text elements. Building

them on the client was complicated by the <warningAndCautionPara> element differing from

other text elements. Instead of separating pure text into its own element, like <paraBasic> in

<prompt>, <warningAndCautionPara> puts its pure text directly in the element (as a value) –

similar to HTML.

To make this work with the framework already in place, <warningAndCautionPara> is

represented as both a text element containing pure text, and a Display Package element

holding the list of child elements (including the text element version of itself).

Furthermore, a lot of functionality was shared between <warning> and <caution>, and has

been abstracted into superclasses. Both the data classes for <warning> and <caution>, as well

as their builders, are extending a class containing common functionality and/or data.

Figure 10.9 shows a class diagram for warnings and cautions, minus the text elements.

Design Document v. 2
01-Jun-2011

40

FIGURE 10.9 CLASS DIAGRAM FOR WARNINGS AND CAUTIONS

Design Document v. 2
01-Jun-2011

41

11 EXPRESSIONS

11.1 BACKGROUND

As mentioned in the Analysis document, expressions contain a variety of operations,

functions and values. Supporting all of these out of the box was deemed unneeded and

impractical. Instead, we’ve focused on coming up with a design of the surrounding

framework that allowed for a dynamic approach to adding support for new operations,

functions, or values.

The primary source of challenge when designing and developing support for expressions has

been the dilemma of type safety versus a goal of keeping everything dynamic and generic. Or

more directly, we wanted to do things as generic as possible, but we didn’t want the

application to get blown up by a run time exception because of some mistaken assumption or

spelling error.

Type safety could easily be obtained by checking the content of the expression compared to

the possible child elements (operator, function, value, variable reference), then, if applicable,

checking the operator for all possible operations, or the function for every type of action –

and finally, checking for the specified values’ types before passing them to the correct

method. This, however, would lead to several dozen if-else sentences in at least three layers

of nested statements, which is the very opposite of dynamic.

The amount of checking required to “easily” obtain type safety is also why finding a dynamic

and generic solution has been such a challenge. The specification defines operators with

different operations and functions with different actions – which in turn have different return

types, different parameter types and different amounts of parameters. Several of the

operations and actions also have multiple signatures, and in one case, more than one return

type within the same signature. A one size fits all solution was hardly apparent.

11.2 SOLUTION

The solution came through Java’s generics, which is not something we’ve had any kind of

significant experience with prior to this project. Thankfully, we have had some lectures on the

C++ equivalent; templates, which helped with our basic approach and understanding.

Through several rounds of experimentation and prototyping with generics, we believe we’ve

found a solution that allows us to avoid type checking whenever we use a value, and at the

same time maintain an acceptable level of type safety.

Because an expression only contains one operation/function/value/variable-reference, we

can compress the values of these elements into one single field in the Expression-class during

the data binding process. This field is named evaluation. It contains the name of the

operation or action as a String, and has an interface counter-part to which it is mapped.

Design Document v. 2
01-Jun-2011

42

Using a Map, we map between this field plus the corresponding method’s signature (that is,

the types of its parameter(s), and the number of parameter(s)) – and an implementation of

the generic Evaluation<R, P> interface which defines the return and parameter types, and a

getResult-method. The map is wrapped in an EvaluationController for convenience and to

separate the implementation from the class’ clients.

In effect, this gives us a kind of function pointer, where the Expression class which is being

evaluated simply calls the EvaluationController’s getResult-method with its evaluation-

signature (after first checking that it is supported), which is then passed on to the correct

Evaluation-implementation. These implementations are only called from

EvaluationController, and only if they are registered with the current signature. Thus, unless

the mapping itself is erroneous, no wrongful casting should occur, and type safety is

maintained.

Adding support for new operations or functions is done by creating a class implementing the

Evaluation-interface, and registering it, together with its signature, in EvaluationController.

As a side note, the EvaluationController is currently a static class (or, it has all-static fields and

methods). This is because of some data binding limitations, and not a design necessity

beyond this limitation.

Figure 11.1 shows a class diagram for the expression evaluation, without any Evaluation-

implementations.

Figure 11.2 shows an activity diagram that describes the expression evaluation process.

FIGURE 11.1 CLASS DIAGRAM FOR EXPRESSION EVALUATION

Design Document v. 2
01-Jun-2011

43

FIGURE 11.2 ACTIVITY DIAGRAM FOR EVALUATING EXPRESSIONS

12 REFERENCE(S)

1. International Specification for technical publications utilizing a common source database

S1000D, Technical Publications Specification Maintenance Group (TPSMG), 01-Aug-2008

(Issue 4.0)

2. Product Backlog, Ameo (last updated 07-Mar-2011), 2010 HiBu

3. GWT with MVP: A Case Study, David Chandler (published Mar-2010), DevNexus,

http://www.slideshare.net/turbomanage/gwt-mvp-case-study (last visited 07-Mar-2011)

4. Should I Use SAX or DOM, Nazmul Idris, (published May 23rd 1999),

http://developerlife.com/tutorials/?p=28 (last visited 08-Mar-2011)

5. Large scale application development and MVP, Chris Ramsdale,

http://code.google.com/webtoolkit/articles/mvp-architecture.html (last visited 16-Mar-

2011)

http://www.slideshare.net/turbomanage/gwt-mvp-case-study
http://developerlife.com/tutorials/?p=28
http://code.google.com/webtoolkit/articles/mvp-architecture.html

Design Document v. 2
01-Jun-2011

44

6. Java DB, Oracle and Sun,

http://www.oracle.com/technetwork/java/javadb/overview/index.html (last visited 25-

Mar-2011)

7. Relational Persistence for Java and .NET, JBoss Community HiberNate,

http://www.hibernate.org/ (last visited 27-Apr-2011)

8. Hibernate (Java), Wikipedia (En), http://en.wikipedia.org/wiki/Hibernate_%28Java%29

(last visited 27-Apr-2011)

http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.hibernate.org/
http://en.wikipedia.org/wiki/Hibernate_%28Java%29

SCRUM PROCEDURES

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Scrum Procedures v. 1
04-Jan-2011

2

TABLE OF CONTENTS

1 Introduction ... 3

1.1 Intention of this Document ... 3

1.2 Author(s) .. 3

1.3 Assigned... 3

2 Why Scrum .. 4

2.1 The Team is the Project Leader ... 4

2.2 The Most Important Tasks are Done First ... 4

2.3 Scrum is Truly Agile ... 4

2.4 Roles are Not Defined ... 4

3 Scrum Project Planning in General .. 5

3.1 Scrum Planning During the Prestudy ... 5

3.2 Sprint Planning .. 5

3.3 Day to Day Planning and Control... 5

4 More on Scrum Tools .. 7

4.1 Product Backlog ... 7

4.2 User Stories ... 7

5 The Pros and Cons of Scrum Project Planning ... 8

6 Calculation of Time Estimates in Scrum .. 9

6.1 Story Points ... 9

6.2 Poker Planning ... 9

6.3 Velocity .. 9

7 Reference(s) .. 11

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 04-Jan-2011 First version AOL

Scrum Procedures v. 1
04-Jan-2011

3

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

This document will elaborate on what Scrum is and how we use it in our project. Scrum is an

agile software development methodology that was introduced in the 90’s and has become

very popular. Scrum has a strong focus on the customers and developers, and the customers

will be strongly involved in the project throughout its lifecycle. The team of developers are

also the “project manager” and they are doing most of the planning of the project. The

project is divided into iterations called Sprints.

1.2 AUTHOR(S)

Arild Oldervoll (AOL)

1.3 ASSIGNED

Arild Oldervoll (AOL)

Scrum Procedures v. 1
04-Jan-2011

4

2 WHY SCRUM

Scrum has several advantages. Following is a description of some of the advantages that are

most important to us in Ameo.

2.1 THE TEAM IS THE PROJECT LEADER

The amount of work to be done in a Sprint and what work to do is discussed between the

team and the Product Owner. The team then commits itself to the Sprint goal and is equally

responsible for achieving this goal before the end of the Sprint. The team can use any means

necessary to achieve the desired outcome. The ScrumMaster will remove any impediments

on the team and make sure that they can work uninterrupted during the Sprint. This works

well because it is the team that is working on the problem and thus has the best knowledge

about the complexity. Therefore they are the best resource for Sprint planning. In addition,

overhead time on planning is reduced.

2.2 THE MOST IMPORTANT TASKS ARE DONE FIRST

Many project development methodologies will either attack the most complex problems first,

or the easiest problems first. In contrast, Scrum starts with the User Stories that are most

important for the customers, represented by the Product Owner. Even within a Sprint the

most important work is done first, as opposed to analysing and designing everything for an

iteration at the beginning of the iteration.

2.3 SCRUM IS TRULY AGILE

Scrum is a very agile process. It is only the current and maybe the next Sprint that is planned

to any detail. The priority and requested features from the customers are expected to and

will change during the project, so no time spent on project planning is lost when the

requirements are changed. The team can also add and remove tasks during the Sprint as they

see it necessary, as long as the main goal of the Sprint is unchanged. The assigned tasks can

change on a day-to-day basis without planning effort being lost.

2.4 ROLES ARE NOT DEFINED

With Scrum there are only three active roles in a project: Product Owner, ScrumMaster and

the Team. This implies that everyone on the team are considered equal, and it is up to the

team to assign the available resources to different tasks to reach the Sprint goals. This means

that for example a tester can be used on analysis if required.

Scrum Procedures v. 1
04-Jan-2011

5

3 SCRUM PROJECT PLANNING IN GENERAL

Compared to many traditional project methodologies like waterfall and RUP, Scrum has some

differences, but is also similar in some aspects. The biggest difference is in which phase of the

project the detailed planning is done, although the plans should contain much of the same

level of detail at the completion of the project.

3.1 SCRUM PLANNING DURING THE PRESTUDY

What resembles a traditional project plan and requirements specification is in Scrum called

the Product Backlog. The Product Backlog is a list containing all the User Stories known at the

current time (see User Stories, section 3.2). Each User Story has a priority that the Product

Owner has determined and an effort estimate (see Calculation of Time Estimates in Scrum,

chapter 5) that the team has determined. The Product Backlog is normally ordered with the

highest priority item on the top. When development starts, the team will pick User Stories

from the top of the Product Backlog. Therefore the User Stories on the top of the Product

Backlog are more detailed and have a more accurate estimate.

3.2 SPRINT PLANNING

A Sprint starts with a Sprint Planning Meeting. This is actually divided into two meetings, each

timeboxed to 4 hours. The first meeting is a meeting between the team and the Product

Owner, where they discuss the next Sprint and the User Story or Stories that the team will be

working on during this Sprint. The Product Owner explains the User Stories in detail. They

then agree on how much and what work the team will commit to complete during the next

Sprint and an overall goal for that Sprint is determined.

For the second part of the meeting (the last 4 hours), the team is left alone to plan the Sprint

and how to achieve the Sprint goal. They do this by determining all the tasks required to

complete the Sprint. They then enter these into a Sprint Backlog with a time estimate for

each task. Even though the team is doing this on their own, they are allowed to invite

consultants and experts on areas they will be working on if they need a better insight into

certain areas of the Sprint, to determine tasks required and time estimation for these tasks.

These consultants and experts will leave the meeting when their expertise is not required

anymore.

3.3 DAY TO DAY PLANNING AND CONTROL

As already seen for the Sprint planning, the team is the “project leader”. Therefore they are

self-organising, which means that there is no-one who will tell them what to do or how to do

it. The working day starts with a daily stand-up meeting. During this meeting, each team

member answers 3 questions: What has the team member done since the last daily stand-up

Scrum Procedures v. 1
04-Jan-2011

6

meeting, what is the team member planning on doing until the next stand-up meeting, and

has the team member any impediments that restricts him/her from doing the planned work,

or slows him/her down. This can be anything from an algorithm that the team member is

struggling with to a management member who has asked him/her to do some additional

work not related to the task. Solutions to these impediments are not discussed during the

daily stand-up meeting, but they are noted by the ScrumMaster and can be discussed after

the meeting. In general it is the ScrumMaster’s responsibility to remove these impediments.

The purpose of this meeting is to let everyone get an insight into what everybody else is

working on, the general progress of the project and if they can help or get help from some of

the other team members. It’s also during this meeting that tasks are assigned by the team

members themselves.

At the end of a working day, the hours actually used on tasks worked on and a new estimate

of the remaining hours are both entered into the Sprint Backlog. From this, a burn-down

chart can be produced, which shows the progress of the project and the “burn-down” of tasks

visually. This gives a good overview of the actual progression, and the team can use this to

easily see if they have to increase their effort or by other means increase the Sprint burn-

down velocity.

Scrum Procedures v. 1
04-Jan-2011

7

4 MORE ON SCRUM TOOLS

4.1 PRODUCT BACKLOG

It is important to notice that the Product Backlog is subject to change at any time. It is

available to every stakeholder, and is maintained by the Product Owner. The Product Owner

represents all the customers and creates and manages the Product Backlog based on the

needs and wishes from all the customers. It is his job to prioritise the User Stories in a way

that is satisfactory to the customers. The priority can be changed for a User Story at any time

as long as it is not started on by the team if the customer requirements changes or other User

Stories that are considered more important are added to the Product Backlog. The customers

can use the Product Backlog to see which features they will get and in which release they will

get them. The team will not use the Product Backlog to any extent, as they should not plan

for anything not in the current Sprint since everything that is not in that Sprint is subject to

change.

4.2 USER STORIES

A User Story is written from a customer’s perspective. In fact, it is often the customer that

writes the User Stories. If there are many customers that write a similar User Story, the

Product Owner can write a common one. The stories are written from a non-technical

perspective and use a common language to describe something that the customer can see

directly in the program. E.g. it does not explain a fast search algorithm that a search function

will implement, just that the search result is displayed quickly after the button is pushed. A

common format for the User Story is:

 As a User I want to do something so that I learn something.

Here, the user can be changed with any other role, like administrator, manager, editor etc.

The “I want to” is a description of the actual feature described from a user perspective, and

the “so that” part explains the reason for why the feature is wanted. The “so that” is not

mandatory and can be left out if it is obvious why you want the feature, but it is important for

the developers to understand the motivation for that User Story.

Scrum Procedures v. 1
04-Jan-2011

8

5 THE PROS AND CONS OF SCRUM PROJECT PLANNING

As was said in the introduction, the main difference in the planning is apparent in when the

project plan is detailed. For those supporting Scrum this is often highlighted as one of the

strong features, while those who are arguing against Scrum would often highlight it as a

weakness. So it is safe to say that it is both a strength and a weakness.

It is a strength because in Scrum there is almost no overhead time lost on planning a feature

or part of an iteration that later needs to be changed or removed because of the

circumstances. The team will only spend time on planning the tasks that they are certain they

will complete.

It is a weakness because the team does not take into consideration features and User Stories

further down the Product Backlog, and therefore these can be harder to implement at a later

time without redoing the work already done.

Another strength is that it is the team itself that does the planning and time estimation, and

not a project leader. This is because it is the team that works on the project every day and

therefore has the best knowledge about the complexity of a new task, and when and how it

should be done.

A complex problem can often be almost impossible to plan on a detailed level because there

are too many unknown factors, and the time required to plan such a complex problem

increases almost exponentially with the increase in complexity. But with Scrum, there would

normally not be spent much more time on planning than the time spent on the Scrum

meetings. The team finds a small part of the complex problem that they can start on to

deliver a potential shippable product at the end of the first Sprint, and has probably acquired

more knowledge on how to proceed and what to do next at the end of that Sprint.

Scrum Procedures v. 1
04-Jan-2011

9

6 CALCULATION OF TIME ESTIMATES IN SCRUM

6.1 STORY POINTS

In the Product Backlog the time and resource estimate for the User Stories are given in story

points. This is a dimensionless number, meaning it does not reflect a number of hours, days

or weeks to complete a User Story. Rather, it illustrates the complexity of a User Story

compared to the other User Stories in the Product Backlog. This means that, if a User Story is

given an estimate of 2 story points, it’s about half as complex as a User Story that is

estimated to 4 story points.

6.2 POKER PLANNING

To determine the estimates for the User Stories, we use a meeting called poker planning, or

just playing poker. At a poker meeting all the team members are present, and are dealt a

hand of cards. The cards we use are special poker planning cards, each card with a valid story

point value, and each member will have a full hand, i.e. all the different values.

The valid story point values for our poker meetings are 0, 0.5, 1, 2, 3, 5, 8, 13, 20, 40, 100 and

∞. The reason why only these values are valid is that it’s not possible to give a really accurate

estimate of whether it will take 5, 6, 7 or 8 points, but it should be possible to say if it’s about

twice as big. The higher the value is, the harder it gets to give an accurate estimate of the

complexity. The fact that it is considered a big and complex User Story implies that it might be

several unknown factors and therefore hard to give an accurate estimate.

When the cards are dealt, the team starts to discuss one of the User Stories in the Product

Backlog. They discuss what the User Story involves and the complexity of it, but they do not

discuss actual story points. When they are done discussing, each player puts one of the cards

down on the table with the value facing down. When everybody has decided on a card, the

cards are turned. If the players disagree on the estimate, the cards are pulled back and the

discussion continues. If some team members have picked a high value, this might indicate

that they know or realise something about the User Story that the other team members

don’t. They continue the discussion and then play cards until they agree on one value. When

everybody agrees, they have the estimate for that User Story, and can continue with the next

story until all the stories are done.

6.3 VELOCITY

The velocity is the number of story points a team can complete during a Sprint scaled by a

suitable factor. This number is based on the team member’s availability and number of hours

they can work on that Sprint. The planned velocity can be used to determine in which Sprint a

User Story will be completed. Of course, this will change as the Product Backlog changes. At

Scrum Procedures v. 1
04-Jan-2011

10

the end of a Sprint, the actual Sprint velocity for that Sprint can be used to calculate a more

accurate velocity for the following Sprints. Normally, an average of the last 2-3 Sprints are

used to calculate the estimated velocity if the team availability stays the same. The velocity

may also be adjusted up or down as necessary.

Scrum Procedures v. 1
04-Jan-2011

11

7 REFERENCE(S)

1. Agile Software Development with Scrum, Ken Scwhaber and Mike Beedle, Pearson

International Edition (ISBN-13: 978-0-13-207489-6).

2. Agile Project Management with Scrum, Ken Schwaber, Microsoft Press, (ISBN-13:

9780735619937).

SCRUM RULES

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Scrum Rules v. 1
06-Jan-2011

2

TABLE OF CONTENTS

1 Introduction ... 3

1.1 Intention of this Document ... 3

1.2 Synonyms, Acronyms and Definitions ... 3

1.3 Author(s) .. 4

1.4 Assigned... 4

2 Overview .. 5

2.1 Commitment ... 5

2.2 Changes to the Rules ... 5

2.3 Sprint Planning Meeting .. 5

2.3.1 General .. 5

2.3.2 First Segment ... 5

2.3.3 Second Segment .. 6

2.4 Daily Scrum Meeting ... 6

3 Sprint ... 8

4 Sprint Review Meeting .. 9

5 Sprint Retrospective Meeting.. 10

6 Reference(s) .. 11

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 06-Jan-2011 First version AOL,

OBR

Scrum Rules v. 1
06-Jan-2011

3

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

The purpose of this document is to define Scrum rules the project group agrees to follow

during the project.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Term Explanation

Time-box A period of time that cannot be exceeded.

Sprint A defined time-box of 14 to 30 calendar days,

often called an iteration in other models

Team The group members committed to a Sprint.

ScrumMaster The person responsible for the Scrum process.

Stakeholder Someone with an interest in the outcome of the

project.

Product Backlog Requirements listed in prioritised

order with time estimates.

Sprint Backlog List of tasks for the current Sprint, defined by

the team

Product Owner Represents all stakeholders in the project and is

responsible for the Product Backlog.

Chicken Someone interested in the project but does not

have a formal Scrum responsibility.

Pig Someone committed to the project, occupying

one of the formal Scrum roles.

Scrum Rules v. 1
06-Jan-2011

4

1.3 AUTHOR(S)

Arild Oldervoll (AOL)

1.4 ASSIGNED

Arild Oldervoll (AOL)

Scrum Rules v. 1
06-Jan-2011

5

2 OVERVIEW

The rules defined here are mostly a copy of the rules that Ken Schwaber has listed in his book

Agile Project Management With Scrum [1]. Schwaber is one of the two main creators of

Scrum, and he claims that these rules have worked in thousands of projects. It is important to

have defined rules for the Scrum process that everyone involved in the process has agreed to

follow. This is both to hold the Scrum process together and to avoid confusion.

2.1 COMMITMENT

All those who have a pig-role in the project, i.e. those who have made a commitment to the

project, also commit to follow these rules

2.2 CHANGES TO THE RULES

At the end of every Sprint there is the Sprint retrospective meeting. Rule changes should be

suggested and discussed at this meeting. It is important that these changes originate from the

team, and not the management. Before a rule change is approved, the ScrumMaster should

be convinced that this rule change will enhance the process and that the team understands

the full meaning of the rule change.

2.3 SPRINT PLANNING MEETING

The Sprint planning meeting is time-boxed to 8 hours and consists of two segments that are

time-boxed to 4 hours each. The first segment is for selecting Product Backlog and the second

segment is for preparing a Sprint Backlog.

2.3.1 GENERAL

- The attendees for the Sprint planning meeting are the ScrumMaster, the Product

Owner and the team. Additional parties can be invited by any of these people to

provide additional business domain or technology domain information and advice,

but they are dismissed after this information is provided. There are no chickens as

observers present.

- The Product Owner must prepare the Product Backlog prior to the meeting. In

absence of either the Product Owner or the Product Backlog, the ScrumMaster is

required to construct an adequate Product Backlog prior to the meeting and to stand

in for the Product Owner.

2.3.2 FIRST SEGMENT

Scrum Rules v. 1
06-Jan-2011

6

- The goal of the first segment, or first 4 hours, is for the team to select those Product

Backlog items that it believes it can commit to turn into an increment of potentially

shippable product functionality. The team will demonstrate this functionality to the

Product Owner and stakeholders at the Sprint review meeting at the end of the

Sprint.

- The team can make suggestions, but the decision of what Product Backlog can

constitute the Sprint is the responsibility of the Product Owner.

- The team is responsible for determining how much of the Product Backlog that the

Product Owner wants worked on that the team will attempt to do during the Sprint.

- Time-boxing the first segment to 4 hours means that this is all of the time that is

available for analysing the Product Backlog. Further analysis must be performed

during the Sprint. Large-grained, high-priority Product Backlog with imprecise

estimates might not be thoroughly understood during this part of the Sprint planning

meeting and might result in the team not being able to complete all of the Product

Backlog it selects.

2.3.3 SECOND SEGMENT

- The second segment of the Sprint planning meeting occurs immediately after the first

segment and is also time-boxed to 4 hours.

- The Product Owner must be available to the team during the second segment to

answer questions that the team might have about the Product Backlog.

- It is up to the team, acting solely on its own and without any direction from outside

the team, to figure out during the second segment how it will turn the selected

Product Backlog into an increment of potentially shippable product functionality. No

one else is allowed to do anything but observe or answer questions that the team

may have in order to obtain further information.

- The output of the second segment of the Sprint planning meeting is a list, called the

Sprint Backlog, of tasks, task estimates and assignments that will start the team on

the work of developing the functionality. The task list might not be complete, but it

must be completed enough to reflect mutual commitment on the part of all team

members and to carry them through the first part of the Sprint, while the team

devises more tasks in the Sprint Backlog.

2.4 DAILY SCRUM MEETING

- The Daily Scrum meeting is time-boxed to 15 minutes.

- The Daily Scrum will be held at the same place and the same time every work day.

Scrum Rules v. 1
06-Jan-2011

7

- All team members are required to attend. If for some reason a team member cannot

attend in person, the absent member must attend either by telephone/Skype or by

having another team member report on the absent member’s status.

- Team members must be prompt. The ScrumMaster starts the meeting at the

appointed time, regardless of who is present.

- The ScrumMaster begins the meeting by starting with the person immediately to his

or her left and proceeding clockwise around the room until everyone has reported

- Each team member should respond to three questions only:

o What have you done since the last Daily Scrum regarding this project?

o What will you do between now and the next Daily Scrum meeting regarding

this project?

o What impedes you from performing your work as effectively as possible?

- Team members should limit themselves to answering these three questions, not

digressing into issues, designs, discussion of problems, or gossip. The ScrumMaster is

responsible for moving the reporting along briskly, from person to person.

- During the Daily Scrum, only one person talks at a time. That person is the one who is

reporting his or her status. Everyone else listens. There are no side conversations.

- When a team member reports something that is of interest to other team members

or needs assistance of other team members, any team member can immediately

arrange for all interested parties to get together after the Daily Scrum to set up a

meeting.

- Chickens are not allowed to talk, make observations, make faces, or otherwise make

their presence in the Daily Scrum meeting obtrusive.

- Chickens stand on the periphery of the team so as not to interfere with the meeting.

- If too many chickens attend the meeting, the ScrumMaster can limit attendance so

that the meeting can remain orderly and focused.

- Chickens are not allowed to talk with team members after the meeting for

clarification or to provide advice or instructions.

- Pigs or chickens who cannot or will not conform to the above rules can be excluded

from the meeting (chickens) or removed from the team (pigs).

Scrum Rules v. 1
06-Jan-2011

8

3 SPRINT

- We have decided to have the Sprints time-boxed to 21-30 consecutive calendar days.

- The team can seek outside advice, help, information and support during the Sprint.

- No one can provide advice, instructions, commentary, or direction to the team during

the Sprint unless asked by the team. The team is utterly self-managing.

- The team commits to Product Backlog during the Sprint planning meeting. No one is

allowed to change this Product Backlog during the Sprint. The Product Backlog is

frozen until the end of the Sprint.

- If the Sprint proves to be not viable, the ScrumMaster can abnormally terminate the

Sprint and call a new Sprint planning meeting to initiate the next Sprint. The

ScrumMaster can make this change of his or her own accord or as requested by the

team or the Product Owner. The Sprint can prove not to be viable if the technology

proves unworkable, if the business conditions change so that the Sprint will not be of

value to the business, or if the team is interfered with during the Sprint by anyone

outside the team.

- If the team feels itself unable to complete all of the committed Product Backlog

during the Sprint, it can consult with the Product Owner on which items to remove

from the current Sprint. If so many items require removal that the Sprint has lost its

value and meaning, the ScrumMaster can abnormally terminate the Sprint, as

previously stated.

- If the team determines that it can address more Product Backlog during the Sprint

than it selects during the Sprint planning meeting, it can consult with the Product

Owner on which additional Product Backlog items can be added to the Sprint.

- The team members have two administrative responsibilities during the Sprint:

o They are to attend the Daily Scrum meeting,

o They are to keep the Sprint Backlog up-to-date and available in a public folder

on a public server, visible to all. New tasks must be added to the Sprint

Backlog as they are conceived, and the running, day-to-day estimated hours

remaining for each task must be kept up-to-date.

Scrum Rules v. 1
06-Jan-2011

9

4 SPRINT REVIEW MEETING

- The Sprint review meeting is time-boxed to 4 hours.

- The team should not spend more than 1 hour preparing for the Sprint review.

- The purpose of the Sprint review is for the team to present to the Product Owner and

stakeholders functionality that is done. Done means here that the functionality is

completely engineered with documentation and could be potentially shipped or

implemented.

- Functionality that has not achieved done status cannot be presented.

- Artefacts that aren’t functionality cannot be presented except when used in support

of understanding the demonstrated functionality. Artefacts cannot be shown as work

products, and their use must be minimised to avoid confusing stakeholders or

requiring them to understand how system development works.

- Functionality should be presented on the team members’ workstations and executed

from the server closest to production.

- The team Sprint review starts with a team member presenting the Sprint goal, the

Product Backlog committed to, and the Product Backlog completed. Different team

members can then discuss what went well and what did not go well in the Sprint.

- The majority of the Sprint review is spent with team members presenting

functionality, answering stakeholder’s questions regarding the presentation, and

noting changes that are desired.

- At the end of the presentations, the stakeholders are polled, one by one, to get their

impressions, any desired changes, and the priority of these changes.

- The Product Owner discusses with the stakeholders and the team potential

rearrangement of the Product Backlog based on the feedback.

- Stakeholders are free to voice any comments, observations, or criticisms regarding

the increment of potentially shippable product functionality between presentations.

- Stakeholders can identify functionality that occurs to them as they view the

presentation and request that the functionality is added to the Product Backlog for

prioritisation.

- The ScrumMaster should attempt to determine the number of people who expect to

attend the Sprint review meeting and set up the meeting to accommodate them.

- At the end of the Sprint review, the ScrumMaster announces the place and date of

the next Sprint review to the Product Owner and all stakeholders.

Scrum Rules v. 1
06-Jan-2011

10

5 SPRINT RETROSPECTIVE MEETING

- The Sprint retrospective meeting is time-boxed to 3 hours.

- It is attended only by the team, the ScrumMaster and the Product Owner. The

Product Owner is optional.

- The meeting starts with all team members answering two questions:

o What went well during the last Sprint?

o What could be improved in the next Sprint?

- The ScrumMaster writes down the team’s answers in summary form.

- The team prioritises in which order it wants to talk about the potential

improvements.

- The ScrumMaster is not at this meeting to provide answers, but to facilitate the

team’s search for better ways for the Scrum process to work for it.

- Actionable items that can be added to the next Sprint should be devised as high-

priority non-functional Product Backlog. Retrospectives that don’t result in change

are sterile and frustrating.

Scrum Rules v. 1
06-Jan-2011

11

6 REFERENCE(S)

1. Agile Project Management With Scrum, Ken Schwaber, Microsoft Press, 2003. (ISBN-13:

978-0-7356-1993-7)

Product Backlog Page 1 Ameo Product Backlog

Product Backlog - CORENA S1000D 4.0 Process Data Module Renderer
Priority Id Estimate Sprint User Type Story Story Type

1 38 5 11 User

As a User I want all booleanAction attribute values listed on the S1000D pDM specification to be

supported by the logic engine. Story

2 40 5 11 User

As a User I want all the setAction attribute values listed on the S1000D pDM specification to be

supported by the logic engine. Story

3 41 13 11 User

As a User I want all StringAction and SubStringAction attribute values listed on the S1000D pDM

specification to be supported by the logic engine. Story

4 22 8 11 User

As a User I want the logic engine to evaluate an <expression> to determine if the <dmThenSeq>

or the <dmElseSeq> is valid so that the correct next <dmNode> is displayed when the next

button is pressed. Story

5 24 20 11 User

As a User I want all the <proceduralStep> and <proceduralStepAlt> elements in a <dmNode> to

be displayed correctly on the screen so that the logic engine processes all <proceduralStep> and

<proceduralStepAlt> elements before displaying them to calculate the correct display according

to the S1000D specification. Story

6 17 13 11 User As a User I want a 'previous' button so that I can go back to previous steps. Story

7 25 5 12 User

As a User I want the next and previous buttons to be disabled if a <proceduralStep> contains a

<dialog> or <dialogAlt> so that the buttons are yeilding for the OK and Cancel buttons defined in

the dialog elements. Story

8 26 13 12 User

As a User I want the correct element from an element group such as <dmNodeAlt>,

<proceduralStepAlt>, <dialogAlt> or <messageAlt> to be displayed based on the evaluation of

the <expression> element. Story

9 39 13 12 User

As a User I want all numberAction attribute values listed on the S1000D pDM specification to be

supported by the logic engine. Story

10 6 20 12 User

As a User I want to communicate with external applications so that the next appropriate step is

automatically displayed. Story

11 27 8 12 User

As a User I want the <dmRef> element to be processed correctly by the logic engine so that if

the reference is another process data module the logic engine will execute it or so that if the

reference is not to another process data module the referenced data module is sent to the IETP. Story

12 30 20 12 User

As a User I want the logic engine to handle failed evaluations and error conditions occuring

while evaluating expressions as defined in the specification. Story

Product Backlog Page 2 Ameo Product Backlog

Product Backlog - CORENA S1000D 4.0 Process Data Module Renderer
Priority Id Estimate Sprint User Type Story Story Type

13 45 13 12 User As a User I want <table> elements to be displayed when specified in a dmNode Story

14 46 8 12 User As a User I want <message> elements to be displayed when specified in a dmNode Story

15 32 20 12 User

As a User I want <figure> elements to be displayed in the main screen with the actual content of

the element displayed. Story

16 33 20 12 User As a User I want <multimedia> elements to be displayed in the main screen. Story

17 23 13 12 User

As a User I want the logic engine to enter a loop where it is specified by a <dmLoop> element

until the <expression> evaluates to false. Story

18 8 13 12 User

As a User I want a warning message to be displayed if the process Data Module contains

unsupported elements so that I will be aware of the problem. Story

19 43 8 13 User

As a User I want information about runtime errors to be recorded in detail so that it is possible

to reconstruct the errors in order to pinpoint the problem. Story

20 42 40 13 User As a User I want all runtime errors to be detected and handled by the logic engine Story

21 42 40 13 User As a User I want all runtime errors to be detected and handled by the logic engine Story

99 9 0 13 User As a User I want a web based user interface. Story

99 9 0 13 User As a User I want a web based user interface. Story

QUALITY ASSURANCE

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Quality Assurance v. 1
04-Jan-2011

2

TABLE OF CONTENTS

1 Introduction ... 3

1.1 Intention of this Document ... 3

1.2 Synonyms, Acronyms and Definitions ... 3

1.3 Author(s) .. 3

1.4 Assigned... 3

2 Documentation Review ... 4

3 Software Testing .. 5

3.1 What Do We Test? ... 5

3.1.1 Verification and Validation .. 5

3.1.2 Levels of Testing .. 5

3.1.3 Functional and Non-Functional Testing... 5

3.2 How Do We Test? .. 6

3.2.1 Techniques... 6

3.2.2 Approaches .. 6

3.3 Functional Tests ... 7

3.3.1 Unit Testing ... 7

3.3.2 Integration/Subsystem Testing ... 7

3.3.3 System/Scenario Testing ... 8

3.3.4 Acceptance Testing .. 8

4 References ... 9

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 04-Jan-2011 First version OBR

Quality Assurance v. 1
04-Jan-2011

3

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

This document describes the strategies, methods and procedures we will follow in regards to

quality assurance for our product.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

IETP Interactive Electronic Technical Publication
- Technical manual prepared in digital form on a suitable

medium.

Process DM Process Data Module

HiBu Høgskolen i Buskerud

1.3 AUTHOR(S)

Olav Brandt (OBR)

1.4 ASSIGNED

Olav Brandt (OBR)

Quality Assurance v. 1
04-Jan-2011

4

2 DOCUMENTATION REVIEW

All of the documentation we produce during this project will be thoroughly reviewed. After a

document has initially been written, two non-authoring group members review it, before

sending it back to the original author. Prior to delivery, the documents undergo another

round. Each group member reviews the document, and the assigned person must confirm the

changes before marking it Official.

Quality Assurance v. 1
04-Jan-2011

5

3 SOFTWARE TESTING

3.1 WHAT DO WE TEST?

Before defining how we are going to perform our tests, it could be interesting to take a look
at what we are going to test.

3.1.1 VERIFICATION AND VALIDATION

When we are testing, we are basically attempting to do two things in relation to our product;
verifying and validating its correctness.

Verification is the process of determining whether or not you have built the product
correctly. In question form; “Does the software fulfil the requirements?” and/or “Does the
software work correctly according to the requirements?”

Validation is about checking if you have built the correct product. “Are the requirements
correct in view of the needs and demands of the customer?” and/or “Does the software do
what the customer wants it to do?”

Naturally, both of these activities are fundamental to any kind of product development. If the
software you have built fails verification, it means it’s in a broken state and not usable by the
customer. If it on the other hand passes verification, but fails validation, it means you might
have built a working, high quality piece of software – but not the correct kind of software.

3.1.2 LEVELS OF TESTING

A software development process is usually divided into levels; at the “top” we find
requirement gathering and specification, then analysis, system design, and at the “bottom”,
code/class design. Each of these levels of development should have a corresponding level of
testing.

Acceptance testing is at the highest level. Here, both requirements and completed (pieces
of) software are tested in order to validate them in view of the customer’s wishes.
System/scenario testing accompanies the analysis level, and tests the correctness of the
entire system.
Integration/subsystem testing targets the integration of individual units into subsystem
collections.
Unit testing is the testing of the smallest part of the software, the unit. In object-oriented
software testing, the units are classes.

3.1.3 FUNCTIONAL AND NON-FUNCTIONAL TESTING

Additionally, testing is divided into two primary categories; functional and non-functional
tests. A functional test is necessarily the result of one or more functional requirements. “Can
the software perform the action described in this requirement?” A non-functional test is

Quality Assurance v. 1
04-Jan-2011

6

likewise connected to non-functional requirements, including aspects like stability, usability,
and performance.

3.2 HOW DO WE TEST?

In a testing process, all of these areas must be covered. However, as opposed to a normal
industry project where developers and testers are separate people with separate roles, we
need to fill both pairs of shoes. Of course, that doesn’t mean we don’t have to perform all of
the necessary tests, but our testing strategy is influenced by this reality.

3.2.1 TECHNIQUES

There are two main types of testing techniques, correlating to the tester’s point of view when
looking at the software.

White box testing refers to tests done “from the inside”. In this technique, the tester has a
full view of the inside of the software, i.e. the source code, and is testing the inner workings
of it.

Black box is the opposite, where the testing occurs “from the outside”. Here, the tester
cannot see the insides of the software, but is testing functionality described in the
requirements.

White box testing requires technical knowledge of programming and of the inner workings of
the software, and is commonly performed by a developer. Black box testing requires no such
knowledge, and often follows pre-written test cases with some chosen input, and expected
output. In a typical industry environment, this is performed by a dedicated tester.

Since we will be doing both, we need to be extra careful and make sure everything is tested
properly according to the specifications – not just simply satisfying our preconceived
expectations. As far as possible, we will try having different people developing and black box
testing a piece of software.

3.2.2 APPROACHES

Testing can be approached either with dynamic or static methods.

Dynamic testing is where you test by running the parts of the software to be tested.
Meaning, the tests examine the program behaviour, watching how it responds to given
specific input.

Static testing on the other hand, does not involve actually using the software. Instead, work
produced during development is read, reviewed and checked. For instance, reading through
the requirements and making sure they fit the user’s wishes, or testing that an algorithm is
valid by manually inspecting and analysing it.

Quality Assurance v. 1
04-Jan-2011

7

Although our testing will be largely dynamic, we’ll also perform some static testing by doing
code reviews. After the initial completion of a programming task, the developer will send his
code to another team member for review. This other team member will pass this reviewed
(and revised) code along to a third person, who, once finished, will send it back to the original
developer for his final review.

3.3 FUNCTIONAL TESTS

For our (dynamic) testing of functionality and functionality derived areas, we will follow a
bottom-up strategy. Meaning, we will begin at the “bottom”, testing small software units,
and then work ourselves up, testing subsystems and larger pieces of software made up from
the smaller units. This of course corresponds to the standard way of doing software
development in object-oriented programming. Some modifications and/or additional steps
will be necessary as we’re not following a linear development model.

3.3.1 UNIT TESTING

The basis of our testing will be the unit testing of classes (including their methods). In short,
the point of a unit test is the testing of a unit (class) on its own; in isolation. By specifying
different input and the output that should be the result, you are able to test if your unit
performs as expected. It also makes refactoring code much less scary, as you can constantly
test to see if your changes broke the class. As a side note; because the unit should be
completely isolated (you only want to find errors in the unit you’re testing), any
dependencies will need to be faked/mocked by the use of interfaces and dummy objects – a
demand that places certain requirements on the way your classes are designed.

By verifying that all our units are working correctly, the testing of the next level should be
limited in complexity, because the problem area is reduced to the interaction between
(tested) units. This again should help in the same way with the testing of the next level after
that, which is the interaction between (tested) subsystems. Additionally, having a full suite of
unit tests will certainly be helpful when doing regression testing (checking to see if anything
was broken because of a code change/fix)

Unit tests are white box tests, and will be done via an automated unit testing framework, and
various other tools (mocking, coverage, etc.) where appropriate.

3.3.2 INTEGRATION/SUBSYSTEM TESTING

As already mentioned; because we have unit tested all necessary classes, the next level of
testing should be limited in both complexity and scope. For our integration/subsystem tests,
we will be testing the communication/cooperation of a collection/subsystem made up by the
units we tested at the previous level.

Additionally, another bonus of having done unit tests is the natural extension these have into
the integration/subsystem testing; while you in unit testing wanted to avoid dependencies
and used dummy objects, the opposite is a central part of what you want to test at this level.

Quality Assurance v. 1
04-Jan-2011

8

This means that you can reuse large parts of the unit tests, only changing the dummy objects
with the real ones. When this is not enough, additional automated tests will be written where
possible, otherwise manual testing must be done.

These mentioned tests are considered white box tests. Black box testing will be done as well,
and because we are using Scrum, we are essentially testing the integration of a new feature
into our pre-existing, and already tested, program. This testing will vary depending on what is
being integrated, like the user interface, file handling, or other logic, and is assumed to be
mostly done manually, according to test cases. Automated testing might be implemented for
some features where this is applicable and beneficial.

3.3.3 SYSTEM/SCENARIO TESTING

If the proper unit and integration testing has been performed, system testing should be a
matter of checking that the subsystems play nice together, and that everything is “hooked
up” correctly. At this level, our automated white box tests will probably be too difficult to use
due to the increased complexity. Black box testing done manually will thus be the preferred
approach. Since system testing is mainly about test case-driven functionality testing, this kind
of hands on testing is something that needs to be done extensively either way.

3.3.4 ACCEPTANCE TESTING

The final level of testing is customer acceptance testing. This is where a selected group of the
actual customers validates that the product performs as they expect. In conventional testing,
acceptance tests are usually run once the requirements are finished, and again once the
entire program is completed. In Scrum, however, additional User Story acceptance tests are
done after a Sprint, on each completed User Story. That way, every feature will go through
validation while the project is still in development, and potential changes are identified at a
much earlier stage than in conventional testing.

Quality Assurance v. 1
04-Jan-2011

9

4 REFERENCES

1. Prosjekthåndbok 2010, Torbjørn Strøm and Olaf Hallan Graven, Høgskolen i Buskerud,

2010

2. Unit testing, Wikipedia, http://en.wikipedia.org/wiki/Unit_testing (last visited 14-

Dec-2010)

3. Integration testing, Wikipedia, http://en.wikipedia.org/wiki/Integration_testing (last

visited 14-Dec-2010)

4. System testing, Wikipedia, http://en.wikipedia.org/wiki/System_testing (last visited

14-Dec-2010)

5. Acceptance testing, Wikipedia, http://en.wikipedia.org/wiki/Acceptance_testing (last

visited 14-Dec-2010)

6. Test automation, Wikipedia, http://en.wikipedia.org/wiki/Test_automation (last

visited 14-Dec-2010)

7. Manual testing, Wikipedia, http://en.wikipedia.org/wiki/Manual_testing (last visited

14-Dec-2010)

8. Software testing, Wikipedia, http://en.wikipedia.org/wiki/Software_testing (last

visited 14-Dec-2010)

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Acceptance_testing
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Manual_testing
http://en.wikipedia.org/wiki/Software_testing

HIGH LEVEL ACTIVITY
OVERVIEW

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

High Level Activity Overview v. 3

2

Activity Number Activity Name

100 PROJECT MANAGEMENT

101 PLANNING

102 ECONOMY

104 PROGRESS REPORTS

105 TIME TRACKING

199 OTHER PROJECT MANAGEMENT

200 DOCUMENTATION

201 TEMPLATES

202 VISION DOCUMENT

203 PRESTUDY REPORT

204 REQUIREMENTS SPECIFICATION

205 TEST SPECIFICATION

206 TECHNOLOGY DOCUMENTATION

207 USER MANUAL

208 PROJECT PLAN

209 SCRUM DOCUMENTATION

210 CODE STANDARD DOCUMENT

211 S1000D PDM DOCUMENTATION

212 ANALYSIS DOCUMENT

213 DESIGN DOCUMENT

214 IMPLEMENTATION DOCUMENT

215 PROJECT REVIEW

216 HAND-OFF DOCUMENT

299 OTHER DOCUMENTATION

300 MEETINGS

301 MEETING PREPARATION

302 SCRUM MEETINGS

303 STATUS MEETINGS

304 MEETING MINUTES

305 PLANNING MEETINGS

399 OTHER MEETINGS

400 RESEARCH

401 TECHNOLOGY

402 TOOLS

499 OTHER RESEARCH

500 ANALYSIS AND DESIGN

501 ANALYSIS

502 DESIGN

600 IMPLEMENTATION

High Level Activity Overview v. 3

3

601 PROTOTYPING

602 PROGRAMMING

700 QUALITY ASSURANCE

701 TESTING

702 DOCUMENT REVIEW

800 GENERAL

801 WEBSITE

802 PRESENTATIONS

803 STANDARDS

804 LECTURES

805 SETUP ENVIRONMENT

899 OTHER

VISION DOCUMENT

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Vision Document v. 2
06-Jan-2011

2

TABLE OF CONTENTS

1 Introduction ... 3

1.1 Intention of this Document ... 3

1.1.1 Objective 1: .. 3

1.1.2 Objective 2 ... 3

1.2 Synonyms, Acronyms and Definitions ... 3

1.3 Author(s) .. 3

1.4 Assigned... 3

2 Participants .. 4

2.1 Students ... 4

2.2 CORENA ... 4

3 The Assignment ... 5

3.1 Employer ... 5

3.2 The Task ... 5

3.3 What are the Requirements for the Logic Engine ... 7

3.4 Other Requirements .. 7

4 Expected Results .. 8

5 Why CORENA Needs this ... 8

6 Why We Want to Do this Assignment ... 8

7 Our Vision for this Project ... 8

8 Reference(s) .. 9

REVISION HISTORY

Version Number

Date

Changes

Assigned

2 06-Jan-2011 Second Official Document

- Added front page, and standard

introduction.

- Added description to group name, edited

title.

- Several smaller changes.

- Changed logo pictures.

- Added references.

- Document Review by all team members.

MHA

Vision Document v. 2
06-Jan-2011

3

1 INTRODUCTION

Our assignment to develop a logic engine for support execution of S1000D process Data

Modules version 4.0, is given by CORENA Norge A/S. This logic engine can take input from

users and/or external applications, such as sensors, to decide its next step in a flow of process

Data Modules. It can branch and loop through the selected process Data Module. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in a web based application running on Jetty/Tomcat. The user of the application

should be able to move back and forth through the steps using previous and next buttons.

The user should be able to save the session to continue at a later time. The logic engine

should support the International S1000D Specification Issue 4.0.

1.1 INTENTION OF THIS DOCUMENT

It is two main objectives for the vision document.

1.1.1 OBJECTIVE 1:

To clarify the assignment, scope and terms with the employer, i.e. CORENA NORGE AS.

1.1.2 OBJECTIVE 2

To get the assignment and project group approved by HiBu Kongsberg.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

Process Set of instructions and conditions being executed

Data Module Container of data/information.

IETP Interactive Electronic Technical Publication
- Technical manual prepared in digital form on a suitable

medium.

Process DM Process Data Module

HiBu Høgskolen I Buskerud

1.3 AUTHOR(S)

Marius Haraldseth (MHA)

1.4 ASSIGNED

Marius Haraldseth (MHA)

Vision Document v. 2
06-Jan-2011

4

2 PARTICIPANTS

2.1 STUDENTS

The group name Ameo comes from the first letter in our names.

- Arild Oldervoll (AOL) – Project Manager

o arild@oldervoll.com – phn: 41 45 29 60

- Marius Haraldseth (MHA)

o marius@haraldseth.net – phn: 41 52 06 10

- Eirik André Eidså (EAE)

o eirik@eidsa.no – phn: 45 85 92 44

- Olav Brandt (OBR)

o olav@brafa.net – phn: 98 44 87 17

2.2 CORENA

- Øyvind Ottersen – External Examiner

- Roger Werner Laug – CORENA S1000D Product Owner

- Tommy Sivertsen – CORENA IETP Product Owner and our External Mentor

- Jarle Hjortland – Responsible Architect

- Per Jøran Lund – System building and install

- Øystein Hansen – Web Client / GWT responsible in the project

mailto:arild@oldervoll.com
mailto:marius@haraldseth
mailto:eirik@eidsa.no
mailto:olav@brafa.net

Vision Document v. 2
06-Jan-2011

5

3 THE ASSIGNMENT

3.1 EMPLOYER

CORENA S1000D is a product for configuration control, maintenance, viewing and production

of maintenance documentation for larger machines and vessels. Customers using it are e.g.

Pratt & Whitney for their aircraft engines in the F-35 combat aircraft, Boeing, Bombardier’s C-

series and new regional jets, Goodrich, Eurocopter (Norwegian defense’s new NH-90

Helicopters) etc. Previously this was software only available for the military market, but lately

it has also become available for the civil market.

CORENA is one of the three leading software companies in the world in their area, and their

goal and ambition is to become number one.

3.2 THE TASK

A process Data Module (DM) is an XML schema which describes different steps in an

information process. Based on interactive user dialogs, sensors, applications and external

services through an interface the logic engine decides the next Data Module and/or step in

the sequence. Decision points (branching), looping and selective filtering are supported in the

S1000D process DM. The process DM can be seen as a process flow script, where the return

values define the next action. The S1000D process DM represents a procedural flow

consisting of several DM’s and/or steps that are sequenced.

The process DM is input data which is processed in a logic engine. The logic engine is an

interpreter for the process DM’s, and throughout the process it defines states. Our

assignment is to develop this logic engine for the execution of a process DM’s components.

Based on the components in the DM, an interaction between the user and the IETP should

occur (see figure 3.1).

The process DM is especially well suited to represent procedural data, fault data and

descriptive data.

Vision Document v. 2
06-Jan-2011

6

FIGURE 3.1 PROCESS DATA MODULE CONCEPTUAL

DIAGRAM

Vision Document v. 2
06-Jan-2011

7

3.3 WHAT ARE THE REQUIREMENTS FOR THE LOGIC ENGINE

- Previous function.

- Next function.

- Log the states in a state table.

- Save current position with history before exit.

- The support execution of the logical document should be according to the international

S1000D issue 4.0 specification which can be integrated with CORENA’s products.

- The implementation should be based on technology which is base for CORENA S1000D

Web Client and CORENA IETP products.

- The interpreter is supposed to execute in an independent web based IETP application

based on Jetty/Tomcat.

S1000D specification resources: http://www.s1000d.org

Relevant chapters:

- 4.11 – Information management – Process Data Module

- 7.7.1 – Guidance and examples – Logic Engine

- 7.7.2 – Guidance and examples – Process Data Module Nodes

Common technology platform for the CORENA S1000D Web Client and CORENA IETP

products is:

- Java

- XML / XSL

- Spring Framework

- POJO

- Web services

- Ajax, GWT / GXT (Google Web Toolkit)

3.4 OTHER REQUIREMENTS

- All technical documentation which will be used later in CORENA should be in English.

- CORENA wants us to use the Scrum development methodology.

http://www.s1000d.org/

Vision Document v. 2
06-Jan-2011

8

4 EXPECTED RESULTS

CORENA is expecting a logic engine which should be integrated in an independent web-based

solution running on Jetty/Tomcat. The user can choose a process DM, and step through this

module, with the logic engine. Steps in this process will be decided by user dialogs and input

from sensors. The user should be presented with the choices ‘previous’ and ‘next’, so they

can navigate back and forth through their choices, and/or change some of their answers. The

user should have the option of continuing from a previously saved session.

5 WHY CORENA NEEDS THIS

This assignment is made because CORENA has a customer who has requested this

functionality for their previously delivered CORENA program. We are supposed to make a

solution, which CORENA after hand will implement in their existing S1000D solution.

6 WHY WE WANT TO DO THIS ASSIGNMENT

We think this is a challenging assignment in which we can learn a lot of new programming

and scripting techniques and technologies. We also think this is an exciting assignment, with a

lot of complexity which we need to understand in order to get this working.

CORENA would also like to offer an office for our disposal at CORENA. This gives us a good

opportunity to see how they are working, and it will give us good support during this

assignment.

7 OUR VISION FOR THIS PROJECT

We hope, and think that we can go through and finish this assignment and get a good result

that CORENA can make use of in their products, as their intention of this assignment also is.

We hope to learn a lot of new ways to program/script, and get a good understanding on how

it is to work with an agile development method like Scrum.

Vision Document v. 2
06-Jan-2011

9

8 REFERENCE(S)

1. Assignment Description, CORENA Norge AS, 2010

2. International Specification for technical publications utilizing a common source database

S1000D, Technical Publications Specification Maintenance Group (TPSMG), 01-Aug-2008

(Issue 4.0)

GOOGLE WEB TOOLKIT
TECHNOLOGY DOCUMENT

HIBU STUDENT PROJECT 2011
CORENA S1000D 4.0 PROCESS DATA MODULE RENDERER

Arild Oldervoll

Marius Haraldseth

Eirik André Eidså

Olav Brandt

Google Web Toolkit v. 1
07-Jan-2011

2

TABLE OF CONTENTS

1 Introduction ... 3

1.1 Intention of this Document ... 3

1.2 Synonyms, Acronyms and Definitions ... 3

1.3 Author(s) .. 3

1.4 Assigned... 4

2 AJAX ... 4

3 What is GWT? .. 4

3.1 Workflow ... 4

3.2 What is Included in GWT? [2] .. 4

4 Why use GWT? .. 5

4.1 Java and Eclipse ... 5

4.2 Testing ... 5

4.2.1 Developer Mode .. 6

4.3 User Experience ... 6

4.4 Performance .. 6

4.5 Server Side ... 6

5 Ext GWT (GXT) ... 6

6 Disadvantages.. 7

7 Further Reading ... 7

7.1 Installation ... 7

7.2 Getting Started .. 7

7.3 Documentation .. 7

8 Reference(s) .. 8

REVISION HISTORY

Version Number

Date

Changes

Assigned

1 07-Jan-2011 First Official Version EAE, AOL

Google Web Toolkit v. 1
07-Jan-2011

3

1 INTRODUCTION

Our assignment is coming from CORENA Norge A/S. We are going to make a logic engine for

support execution of S1000D process Data Modules. This logic engine can take input from

users, and/or external applications, such as sensors to decide its next step in a flow of process

Data Modules. This logic engine can branch and loop through the selected modules. The logic

engine will be an interpreter for process Data Modules. We will make it a stand-alone logic

engine in an IETP based web application. The user of the application should be presented

with the ability to move back and forth through the steps using two buttons. The user should

be able to save the session for future continuation. The logic engine should be according to

the International S1000D Specification v 4.0.

1.1 INTENTION OF THIS DOCUMENT

This document is written to give an introduction to the Google Web Toolkit. It will just scratch

the surface and give an overview, but it also provides sources of information for a more in

depth study.

1.2 SYNONYMS, ACRONYMS AND DEFINITIONS

Synonym Description

GWT Google Web Toolkit, framework from Google to write AJAX
applications.

GXT Ext GWT, Java library for building RIA with GWT

RIA Rich Internet Application, a web application with many similar
characteristics as a desktop application.

AJAX Asynchronous JavaScript and XML, se chapter 2

JavaScript Very much used scripting language for the web. Not to be
confused with Java (programming language)

XML eXtensible Markup Language – a set of rules for encoding data in a
machine-readable format.

CSS Cascading Style Sheets, used for design of web pages

HTML HyperText Markup Language, used to sew the webpage together
with content. Then use CSS to design it.

IDE Integrated Development Environment

JSP Java Server Pages

1.3 AUTHOR(S)

Eirik André Eidså (EAE)

Google Web Toolkit v. 1
07-Jan-2011

4

1.4 ASSIGNED

Eirik André Eidså (EAE)

2 AJAX

Before we say too much about GWT, we should take a look at AJAX. The idea behind AJAX is

to retrieve data from the server asynchronously in the background without interfering with

the display or behaviour of the existing page [5]. In reality, it is a group of interrelated web

development techniques used on the client side of interactive web applications. Normally we

would use HttpRequest, which would refresh the whole page. AJAX on the other hand uses

XMLHttpRequest, which is an object that is used for communication between the server and

the browser. It should also be mentioned that IE6 and earlier versions don´t support this

object.

With only one little AJAX application on a webpage, it would work very well with just a few

simple JavaScript lines of code. The problem comes with large projects like Google Docs,

Wave or Gmail, which could be very difficult to write in JavaScript. This is where GWT comes

into play.

3 WHAT IS GWT?

GWT is an open-source, Java-based framework for creating AJAX applications. When

developing applications using this framework, you write Java similar to Swing applications,

and when compiled, the client-side code is converted to HTML, CSS and JavaScript. GWT also

includes many ways to communicate with the server, all asynchronous (which is the

definition of AJAX applications). We are going to use the Spring Framework at the server-side,

which is one of the main features in GWT 2.1. See reference [1] and chapter 4.5.

3.1 WORKFLOW

The workflow using GWT is very practical and would look something like this:

- Write Java code with use of GWT modules and CSS.

- Test with the help of JUnit and developer mode in Eclipse (No JavaScript yet).

- Compile the project to JavaScript.

- Finalise webpage working in any browser based on HTML, JavaScript and CSS.

3.2 WHAT IS INCLUDED IN GWT? [2]

Google Web Toolkit v. 1
07-Jan-2011

5

Hosted Web Browser: Allows you to preview your Java application the same way an end user

would see it.

Web Interface Library: Lets you create and use Web browser widgets, such as labels, text

boxes, and radio buttons. You program in Java using these widgets, and the compilation

process transforms them into HTML equivalents.

Java Emulation Library: Provides JavaScript-equivalent implementations of the most common

Java standard classes.

Java-to-JavaScript compiler: Produces the final Web code.

4 WHY USE GWT?

4.1 JAVA AND ECLIPSE

One of the biggest advantages of using GWT is that you develop in Java and in an object

oriented world. Google has made a very good Eclipse-plugin that makes it easy to start

developing. GWT supports most of the core Java language syntax and semantics, but there

are a few differences that you should be aware of, more about that in reference [7]. In

addition, GWT brings many new libraries into the project, called modules or widgets. For

example, buttons and tab panels that modify their colour and shape to fit an operating

system and/or browser.

One thing to remember is that JavaScript is just single threaded. GWT has something, which is

not real multithreading, but in most cases does what you need [8]. If true multithreading is

required, design the application in a way so that the server-side can handle it.

4.2 TESTING

One of the biggest issues in developing for the web is browser testing and adaption. When

creating web applications, support for each type and version of browsers must be developed

individually. To adopt all the different browsers often takes a lot more of the developer’s

time than to create the core application. With GWT this problem is gone. The GWT compiler

compiles one special piece of code to each browser automatically so that it has the same

appearance and behaviour in all browsers. Now we can talk about “WYSIWYG” (What you

see, is what you get)! The developer can spend the time on real development instead of

troubleshooting and hacking to get it to work everywhere.

With the use of a good IDE like Eclipse, there are very good possibilities for testing of code

with breakpoints and unit testing using JUnit like we are used to in Java.

Google Web Toolkit v. 1
07-Jan-2011

6

4.2.1 DEVELOPER MODE

One very nice feature of GWT is that you can test your code almost on the fly in the browser

with a GWT developer plugin in most modern browsers. This is called developer mode. At this

stage we are only using Java and HTML/CSS. The JavaScript is first made at compile time at

the end.

4.3 USER EXPERIENCE

The user experience is in general very good in GWT applications. First of all you get rid of

problems with back and forward buttons in browsers. Have you noticed that some places it

says something like “Do not press backwards – or your credit card will be charged twice!”? In

GWT you can control where it is possible to use these buttons, and where it is not. Put in

another way; you say when to put a bookmark in the browsing history that the browser uses

for this function.

4.4 PERFORMANCE

Performance is a very big key in user experience. GWT has done something that is quite

smart. Normally you have to do a lot of server calls to retrieve a webpage. It is all these calls

that take most of the time. The browser first calls for the HTML index page, then the browser

finds some scripts it has to call, one at the time, then images, style sheets and so on. GWT

makes this more efficient so the browser can use fewer calls. Normally you also have to

download all the specially made code for all of the browsers. In GWT you just get a package

that is made for your specific browser. These two key features help very much when it comes

to the performance.

You may also think that auto generated JavaScript code is slower than hand written, but that

is actually not true. The performance is usually better or on the same level, dependent on the

developer’s skills.

4.5 SERVER SIDE

GWT is very robust when regarding what servers it can work with; it can use many different

server solutions. It also works with the Spring Framework [1], JSP, and Jetty/Tomcat, which

we are going to use. GWT uses something called Servlets that is a part of JSP. A Servlet is used

to pass data dynamically between the server and clients. For more information see reference

[9] and [10].

5 EXT GWT (GXT)

Google Web Toolkit v. 1
07-Jan-2011

7

Ext GWT is an additional Java library that can be used to develop rich internet applications

(RIA) with the Google Web Toolkit. CORENA wants us to use this as it is used in their existing

technology, but Google does no longer develop the library and it has been superseded by

Smart GWT.

6 DISADVANTAGES

There are disadvantages with using GWT, but that is the case with most technologies. When

it comes to GWT, there are more advantages than disadvantages for our use. Some say that

the use of Java is its disadvantage just like it also is an advantage. That is because of the

development circle. When you have to compile, it may take a long time, but that time is

nothing compared to the time you save and the frustration you are relieved of regarding

getting it to work in all browsers. Besides, it is not healthy to sit for too long in front of a

computer, so the time can be used to get up and stretch. But still, you don’t have to compile

all the time to test the code when you develop in “hosted mode”.

7 FURTHER READING

7.1 INSTALLATION

You first have to have Eclipse installed for this guide. More detailed guide in reference [6].

7.2 GETTING STARTED

There are some in-depth tutorials from Google. This is good to get the feeling of how this

works. See reference [3].

7.3 DOCUMENTATION

This is one of the few open source projects that are well documented from the creator. The

documentation is really good. See reference [4].

Google Web Toolkit v. 1
07-Jan-2011

8

8 REFERENCE(S)

1. Technical document - Spring Framework, Ameo, 05-Jan-2010

2. http://www.linux.com/archive/feature/124163 (last visited 01-Dec-2010)

3. http://code.google.com/intl/no-NO/webtoolkit/doc/latest/tutorial/index.html (last

visited 01-Dec-2010)

4. http://code.google.com/intl/no-NO/webtoolkit/doc/latest/DevGuide.htm (last visited

01-Dec-2010)

5. http://www.wmps.com/blog/website-design/website-build/why-use-gwt-for-ajax-

applications/ (last visited 1-Dec-2010)

6. http://code.google.com/intl/no-NO/eclipse/docs/install-eclipse-3.6.html (last visited 01-

Dec-2010)

7. http://code.google.com/intl/no-

NO/webtoolkit/doc/latest/DevGuideCodingBasicsCompatibility.html (last visited 01-Dec-

2010)

8. http://stackoverflow.com/questions/2590850/threading-in-gwt-client (last visited 01-

Dec-2010)

9. http://en.wikipedia.org/wiki/Java_Servlet (last visited 01-Dec-2010)

10. http://en.wikipedia.org/wiki/JavaServer_Pages (last visited 01-Dec-2010)

11. http://code.google.com/p/gwt-ext/ (last visited 07-Jan-2010)

file:///C:/Users/Arild/Documents/My%20Dropbox/CORENA%20Hovedprosjekt%202011/Documents/Technology%20Documents/Tech_Spring%20Framework%20DRAFT.docx
http://www.linux.com/archive/feature/124163
http://code.google.com/intl/no-NO/webtoolkit/doc/latest/tutorial/index.html
http://code.google.com/intl/no-NO/webtoolkit/doc/latest/DevGuide.htm
http://www.wmps.com/blog/website-design/website-build/why-use-gwt-for-ajax-applications/
http://www.wmps.com/blog/website-design/website-build/why-use-gwt-for-ajax-applications/
http://code.google.com/intl/no-NO/eclipse/docs/install-eclipse-3.6.html
http://code.google.com/intl/no-NO/webtoolkit/doc/latest/DevGuideCodingBasicsCompatibility.html
http://code.google.com/intl/no-NO/webtoolkit/doc/latest/DevGuideCodingBasicsCompatibility.html
http://stackoverflow.com/questions/2590850/threading-in-gwt-client
http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/JavaServer_Pages
http://code.google.com/p/gwt-ext/

