

Funcom Hardware Statistics System

Final Project Documentation

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

 External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Table of documents
User Requrement Specification.. 3

Programming Language Document .. 7

Vision Document ... 16

Current System Description.. 26

Test Strategy ... 35

Requirements Specification ... 43

Test Specification .. 55

Project Plan ... 74

Risk Analysis Document .. 87

Project Model Document ... 101

IDE Document ... 107

Quality Assurance Document ... 112

Version Control Document ... 124

Design Document .. 131

Test summary.. 163

Project Reflection Document ... 183

Funcom Hardware Statistics System

User Requirement Specification

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

10.01.12 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Sondre Bjerkerud External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS User Requirement Specification 2011

Page 4 of 194

User Requirement Specification

1 General Document Information

Deliverable nr: D1.1.1

Deliverable type: Report

Release: Public

Workpackage: 1

Responsible: Sondre Bjerkerud

1.1 Declaration of intention

This document contains the functional and non-functional requirements captured during two
meetings with Funcom (e.g. September: at Funcom Oslo, 27.10.2011: Skype meeting).
This document gives a quick overview of what we are going to do/achieve in our project.

1.2 Definitions and Acronyms

DxDiag Diagnostics file containing hardware and software
information Interface

1.3 Document History

Version Description Date

1.0 First version created 28.10.2011

1.5 Template added 10.01.2011

1.6 Updates after document review 29.05.2012

Project FHaSS User Requirement Specification 2011

Page 5 of 194

2 Table of contents
1 General Document Information .. 4

1.1 Declaration of intention .. 4

1.2 Definitions and Acronyms ... 4

1.3 Document History ... 4

2 Table of contents ... 5

3 Functional requirements ... 6

4 Non-functional requirements .. 6

Project FHaSS User Requirement Specification 2011

Page 6 of 194

3 Functional requirements

1. As a user I want to be able to see information about the hardware of the client computers

that crashed, because I can then see which type of hardware there are most problems with.
2. As a user I want to be able to filter crash information based on time period,

region/geographical location (continent, countries, etc.) and hardware type, and all
combinations of these.

3. As a user I want to get more accurate information from the DxDiag file than the current
system, because there is currently a lot of unknown hardware.

4. As a user I want to add and remove hardware types to the database, because new types of
hardware is entering the market as technology evolves.

5. As a user I want the system to group almost identical hardware, because in a separate state
they would not give any extra relevant information.

6. As a user I want to see trends in what hardware the users are using as time passes.
7. As a user I want to be able to see a prediction of the hardware in the future based on the

trend from a specific time period, because this will give me information about what type of
hardware we will be developing games for.

8. As a user I want to be able to filter the information based on the game that was the source of
the crash.

4 Non-functional requirements

1. It is important that the new system will interface with external systems (for instance BugZilla)

in the same way as the current systems does.
2. The foundation of the system must be built general enough so that the same foundation can

be used for the eventual improvement/implementation of the Crash Statistics Systems.

Funcom Hardware Statistics System

Programming Language Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

10.01.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Kent Brian Dreyer External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Programming Language Document 2011

Page 8 of 194

Programming Language Document

5 General Document Information

Deliverable nr: D1.2.2

Deliverable type: Research

Release: Public

Workpackage: 1

Responsible: Kent B. Dreyer
Dag C. Hem
Kim R. Johansen

5.1 Declaration of intention

The purpose of this document is to clearly define the computer language(s) we will use for
the development of our given task.

5.2 Definitions and Acronyms

ASP Active Server Pages

Debugger Tool for locating errors in software

CLR Common Language Runtime

IDE Integrated development environment

5.3 Document History

Version Description Date

1 First version created 15.12.2011

2 Document template added
Information reviewed and

updated

10.01.2012

Project FHaSS Programming Language Document 2011

Page 9 of 194

6 Table of contents
5 General Document Information .. 8

5.1 Declaration of intention .. 8

5.2 Definitions and Acronyms ... 8

5.3 Document History ... 8

6 Table of contents ... 9

7 Introduction ... 10

8 Python ... 10

8.1 Is it possible to use this programming language to solve our bachelor task? 10

8.2 Does it work well with other planned programming languages? ... 10

9 C# ... 11

10 C# with ASP.net ... 12

10.1 Is it possible to use this programming language to solve our bachelor task? 12

10.2 Does it work well with other planned programming languages? ... 12

11 PHP: Hypertext Preprocessor .. 13

11.1 Is it possible to use this programming language to solve our bachelor task? 13

11.2 Does it work well with other planned programming languages? ... 13

12 Conclusion ... 14

12.1 Languages used for database retrieving and web development .. 14

12.2 Languages used for database-parsing ... 14

13 References ... 14

13.1 PHP .. 14

13.2 C# / ASP.NET .. 15

13.3 Python ... 15

Project FHaSS Programming Language Document 2011

Page 10 of 194

7 Introduction
Through this document we will review different computer languages for the development of our

project task. We need to find the technology that meets the necessary requirements needed. Our

client has already requested that we use C# with ASP.NET so that the system is easy maintainable

and accessible for future expansions.

8 Python
Python is a general-purpose, high-level programming language whose design philosophy emphasizes
code readability.

This object-orientated language is quite similar to PHP in its ability to create dynamic web pages and
various types of software web applications.
One of Pythons main strength’s is its simple syntax and easy to read code. That means, even though
this might be a new language for the team, we will be able to learn the language quite fast. Python is
a cross-platform scripting language, and can easily connect to different databases on multiple
platforms.

As mentioned earlier, Python is a general-purpose programming language; this means that we could
also use Python as our database parser as we would with C#. Python is an old language, this means
that it had time to grow, and developers has created a plethora of tools and frameworks for it to
make Python perform tasks that were otherwise lacking or hard to achieve.

8.1 Is it possible to use this programming language to solve our bachelor

task?

Yes, Python is versatile both when it comes to web development and database information retrieval,

as well as parsing text. It would also be simple enough for us to learn without setting us back in

productivity.

The current system was based on Python, but the client request was primarily to use C# with

ASP.NET framework.

8.2 Does it work well with other planned programming languages?

Yes, if we were to create our database parser in Python, it would have a minimal effect on either PHP

or ASP.NET which would be used as our web development tools. We could choose to use Python as

the main web development tool, and it would have no issues with a parser created from C#.

Benefits Drawback

 Very fast, little memory/CPU usage

 Open source

 Can be used as both our database
parser and our web development
language

 No compilation, no debugger

Project FHaSS Programming Language Document 2011

Page 11 of 194

9 C#
C# is a simple, modern, general-purpose, object-oriented programming language developed by

Microsoft, running on the .NET Framework.

C# is part of the Common Language Runtime and the most widely used one. The CLR is the virtual

machine component of Microsoft's .NET framework and is responsible for managing the execution of

.NET programs.

Figur 1: A graphical representation from the initial execution of C# code and down the .NET framework hierarchy

C# uses visual studio as its native IDE, also developed by Microsoft for easy development for

Windows operating systems. Very similar to other object oriented programming languages i.e. java

and C++.

C# is however not a cross-platform language, so in order to make this run on Linux, Mac etc. a 3rd

party framework called “Mono”is used.

The stated purpose of Mono is not only to be able to run Microsoft .NET applications cross-platform,

but also to bring better development tools to Linux developers. Mono can be run on Android, BSD,

iOS, Linux, Mac OS X, Windows, Solaris, and Unix operating systems as well as some game console

operating systems.

http://www.mono-project.com/Main_Page

Project FHaSS Programming Language Document 2011

Page 12 of 194

10 C# with ASP.net
ASP.NET is part of the .NET Framework, and when coding ASP.NET applications you have access to

classes in the .NET Framework. You can code your applications in any language compatible with the

CLR, including Microsoft Visual Basic and C#. These languages enable you to develop ASP.NET

applications that benefit from the common language runtime, type safety, inheritance, and so on.

By compiling C# you get compatible ASP.NET code. C# may also be compiled as a file that can be

executed from a website. This gives great flexibility and makes code modification easy.

10.1 Is it possible to use this programming language to solve our bachelor

task?

Yes, to build a parser, create threads and to make SQL queries it will prove very useful for this task,

including the .NET debugger it will be easier to build solid code than with Python. Including the fact

that we can generate the full web representation by calling ASP.NET from C# simplifies the

development process greatly. C# with ASP.NET was also highly recommended by our client (Funcom)

for possible future expansion.

10.2 Does it work well with other planned programming languages?

C# is interoperable with the rest of the .NET framework (ASP.NET) and by using this we can develop

everything we would need for the given task with C# only.

C# is something that that the team hasn’t worked with yet, but it merges with all of .NET. Paired with

mono and the .NET debugger it is extremely versatile, and a solid cross compatible language for us to

develop in.

Benefits Drawback

 language interoperability with .NET
framework

 Cross-platform compatible with
Mono.

 Easy accessible SQL-querying

 Great debugger through .NET

 IDE choice might be restricted

Project FHaSS Programming Language Document 2011

Page 13 of 194

11 PHP: Hypertext Preprocessor
PHP is a quick and easy language to learn and a sophisticated language to master. Most (if not all) of

our groups members have worked with PHP before in different degrees, this gives PHP a small

advantage over the “new” languages since its going to take a lot less time for us to start using it for

our purpose.

PHP is mostly run on a Linux environment connected to a MySQL database, and its mostly for this

reason that it usually uses less memory during runtime than ASP.NET running on IIS(Internet

Information Services). This may not, however, be an issue due to the fact that our system will only be

used by a small amount of developers at a time.

The fact that PHP does not have a debugger present makes it the main reason we will probably

choose C# with ASP.NET as our web development tool.

PHP can be developed in a handful of IDE’s, but NetBeans IDE would be the IDE of choice if we

decided to use PHP because of its wide range of functions and we already have extensive knowledge

of NetBeans IDE.

11.1 Is it possible to use this programming language to solve our bachelor

task?

Yes, but it would not be optional over C# with ASP.NET because of its inability to easily debug and its

bad error handling. Security is not much of an issue since our system will run on a closed intranet,

neither is the server-side preprocessing (There will never be enough users using this system at the

same time).

11.2 Does it work well with other planned programming languages?

As C# with ASP.NET would also be used as our web programming language, they would fulfill the

same role. Our PHP supported web page would also have no trouble communicating with a database

built up from either a C# or a Python developed parser.

Benefits Drawbacks

 Less (server)memory usage than ASP.NET

 Less learning curve

 Cross-platform capable

 Easy access to the database

 Lacks API Consistency

 Scripted language, not compiled (Hard to debug/ Bad
error handling)

 Not thread safe

 Does not have native support for Unicode or multibyte
strings

 No debugger

Project FHaSS Programming Language Document 2011

Page 14 of 194

12 Conclusion

12.1 Languages used for database retrieving and web development

The choice stands between ASP.NET, PHP and Python. They are all pretty similar in functionality and

all of them are capable of doing what is needed in our bachelor assignment, though ASP.NET is

dependent of C# to perform database calls.

What separates these languages is C#’s ability to do threading, something PHP cannot. C# with

ASP.NET is also a compiled language which makes it easier to debug and gives it a big advantage over

working with Python and PHP.

One of Python’s main benefits is the fact that it could be used as both a programming language for

our parser, and as a web development tool, this would eliminate the need to learn two languages.

The system our client is currently using was also created with Python.

So we could have used all the languages for web development, but since our client would prefer the

use of C# in combination with ASP.NET for further possible expansion, ASP.NET and C# is the logical

choice for us to use as our web development tool.

12.2 Languages used for database-parsing

We have the choice between C# and Python as they can both perform the job for parsing our

received data into the databases and thread creation which PHP cannot.

Python’s main benefit is the fact that we could use it for both database parsing and web

development, something our clients have done for their current system.

Since we have chosen to use ASP.NET as our web development tool (which is dependent on the C#

language) and our clients have already suggested that we use C# with ASP.NET, it is clear that C#

would be the best choice for us to write our database parser in.

13 References

13.1 PHP

 http://www.pretechno.com/i/oracle-comparison-of-php-asp.net.html(Last visited 15.12.2011)

 http://www.cio.com/article/197152/PHP_s_Enterprise_Strengths_and_Weaknesses_Take_2?pag

e=3&taxonomyId=3038(Last visited 15.12.2011)

 http://www.cio.com/article/176250/You_Used_PHP_to_Write_WHAT_(Last visited 12.12.2011)

 http://www.creativewebmall.com/cwm/php-strengths-and-weaknesses/444/

(Last visited 15.12.2011)

 http://coding.smashingmagazine.com/2009/02/11/the-big-php-ides-test-why-use-oneand-

which-to-choose/(Last visited 14.12.2011)

http://www.pretechno.com/i/oracle-comparison-of-php-asp.net.html
http://www.cio.com/article/197152/PHP_s_Enterprise_Strengths_and_Weaknesses_Take_2?page=3&taxonomyId=3038
http://www.cio.com/article/197152/PHP_s_Enterprise_Strengths_and_Weaknesses_Take_2?page=3&taxonomyId=3038
http://www.cio.com/article/176250/You_Used_PHP_to_Write_WHAT_
http://www.creativewebmall.com/cwm/php-strengths-and-weaknesses/444/
http://coding.smashingmagazine.com/2009/02/11/the-big-php-ides-test-why-use-oneand-which-to-choose/
http://coding.smashingmagazine.com/2009/02/11/the-big-php-ides-test-why-use-oneand-which-to-choose/

Project FHaSS Programming Language Document 2011

Page 15 of 194

13.2 C# / ASP.NET

 http://en.wikipedia.org/wiki/C_Sharp_(programming_language)(Last visited 14.12.2011)

 http://www.mono-project.com/Main_Page(Last visited 14.12.2011)

 http://msdn.microsoft.com/en-us/library/z1zx9t92(v=vs.80).aspx(Last visited 14.12.2011)

 http://en.wikipedia.org/wiki/Common_Language_Runtime(Last visited 15.12.2011)

 http://en.wikipedia.org/wiki/ASP.NET(Last visited 15.12.2011)

 http://en.wikipedia.org/wiki/List_of_CLI_languages(Last visited 15.12.2011)

 http://wiki.answers.com/Q/What_are_the_advantages_and_disadvantages_of_aspnet(Last

visited 15.12.2011)

 http://msdn.microsoft.com/en-us/library/k4cbh4dh.aspx#Y10154(Last visited 14.12.2011)

13.3 Python

 http://wiki.python.org/moin/PythonVsPhp(Last visited 11.12.2011)

 http://python.org/doc/(Last visited 11.12.2011)

 http://en.wikipedia.org/wiki/Python_(programming_language)(Last visited 11.12.2011)

http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://www.mono-project.com/Main_Page
http://msdn.microsoft.com/en-us/library/z1zx9t92(v=vs.80).aspx
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/ASP.NET
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://wiki.answers.com/Q/What_are_the_advantages_and_disadvantages_of_aspnet
http://msdn.microsoft.com/en-us/library/k4cbh4dh.aspx#Y10154
http://wiki.python.org/moin/PythonVsPhp
http://python.org/doc/
http://en.wikipedia.org/wiki/Python_(programming_language)

Funcom Hardware Statistics System

Vision Document

Project name Acronym

Funcom Hardware Statistics System FHaSS

Client Sensors & Supervisors

Funcom N.V. Internal sensor Olaf Hallan Graven

Date Internal supervisor Aurilla Aurelie Arntzen

10.01.2012 External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Vision Document 2012

Page 17 of 194

Vision Document

14 General Document Information

Deliverable nr D1.3.3.1

Deliverable type Research

Release Public

Work package 1

Responsible Sondre Bjerkerud

14.1 Declaration of intention

This document is intended to give the reader a fundamental insight into our project assignment by

giving an introduction to our client and their area of business. It will give a more in-depth explanation

of the context and background of the system to give the reader an understanding of the necessity of

the system. Last but not least this document will go through what to improve about the current

system, how to improve it, and the benefits our client will obtain by using the new system.

14.2 Definitions and Acronyms

MMORPG Massive Multiplayer Online Role Playing Game

Crash A crash is a term for when a software system fails. A crash
usually occur because of incompatibility between the
software code and the hardware.

Bug An issue with the software application causing it to crash or
behave in ways it isn’t supposed to.

Patch A minor software update that usually fix specific issues, do
small changes to or add minor functionality.

14.3 Document History

Version Description Date

1 First version created. General
outline/structure.

15.10.2011

1.5 Most text rewritten. 13.12.2011

2 Further detailing of text. 21.12.2011

2.5 Project document template
adopted.

10.01.2012

3 Updates after document review 29.05.2012

Project FHaSS Vision Document 2012

Page 18 of 194

15 Table of contents
14 General Document Information .. 17

14.1 Declaration of intention .. 17

14.2 Definitions and Acronyms ... 17

14.3 Document History ... 17

15 Table of contents ... 18

16 Our client ... 19

17 Context of the study .. 19

17.1 Computer technology evolution ... 19

17.2 Shortening of production time .. 20

17.3 Fault-tolerance .. 21

17.4 Hardware trends .. 21

17.5 Online .. 22

17.6 Usage of the system .. 22

18 What to improve ... 22

18.1 Crash report parsing .. 22

18.2 Graphical User Interface .. 23

18.3 Lack of functionality .. 23

19 How to improve it .. 23

20 Benefits .. 24

21 Sources .. 24

Project FHaSS Vision Document 2012

Page 19 of 194

16 Our client

Our client – Funcom – is Norway’s largest game development company, and was founded in

1993 in Oslo. When internet became public property around 1995 Funcom began to head their

game production more and more towards online games, especially so-called MMORPG’s. In the

year 2001 Funcom released their first game of this type, namely Anarchy Online, and the second

game, Age of Conan, was released in 2008. The new MMORPG project that Funcom is currently

working on is called The Secret World and is planned to be released in April 2012, that is in the

middle of our project period [1].

17 Context of the study

17.1 Computer technology evolution

The evolution in the field of computer technology has in the last decades been enormous, with lots

of new and improved hardware components entering the market every year. New manufacturers

entering the market also increase the different amount of components available.

Take for instance the evolution when it comes to graphics processors and graphics cards on the PC

market. There are two main producers of graphical processors today; nVidia and AMD [2], with their

graphics processor series GeForce and Radeon, respectively. These processors are then bought by

graphics cards manufacturers who build them into their own type of graphics card. There are far

more graphics cards manufacturers than the two graphics processor producers, and many of the

manufacturers are making graphics card versions based on both of the processor technologies. In

addition, some manufacturers are even making several graphics card types based on the same

processor. This all sums up in that there is a very large amount of different graphics cards being

distributed on the user market.

An almost similar explanation can be given for other types of computer hardware such as processors,

main boards, and memory, as well. Taking into account the evolution of the technology, this results

in a market that is full of different computer components for the end user to buy. Because a regular

PC consists of several different hardware types this again results in an enormous amount of different

combinations of hardware a user potentially can have in his computer.

Funcom as a software developer has to take this fact into account when developing their games.

Either specific hardware types or specific combinations of hardware may result in the game not

functioning as it is supposed to. For instance outdated hardware will not be able to run - or run fast

enough - software written with the capabilities of the state of the art hardware technology in mind.

This specific problem is especially important when it comes to the gaming industry, because newer

games are so dependent on the ability to display complex graphics on a computer screen. It is the job

of the graphics card to create the graphics to be displayed, and with the game developers constantly

pushing the limits of graphical complexity in their games, graphics cards have a very limited lifetime.

Several game developer companies have had to shut down their whole production, or at least having

to do significant cuts in their staff, after releasing a game that was not compatible with large parts of

the players hardware combinations. Funcom has themselves been the victim of such disasters when

releasing their first two MMORPG games Anarchy Online [3] and Age of Conan [4].

Project FHaSS Vision Document 2012

Page 20 of 194

17.2 Shortening of production time

The fact that the technology is evolving with the high velocity that it is, is resulting in shorter game

development periods per game [5]. If game development companies had not shortened their

development period their games would have been outdated when it entered the market, and

thereby no one would have bought the game. Shorter development periods can be solved in two

ways; by increasing the number of employees, or by using less time on less important parts of the

development. The first solution will result in larger wage expenses, and an increase in staff usually is

not proportional to the increase in development velocity – because of cooperation overhead.

Because of the usually unstable and unpredictable economy of game development companies, the

mentioned increase in staff size isn’t always a good or even a possible solution. Thus are the

companies forced the option of focusing less on some part of the development.

When choosing this solution, the companies are being met with the important decisions regarding

what or which parts to prioritize less. This brings us to a short explanation of the process of

developing a game. The source of a game is an idea. Based on the idea, a game designer is creating

documentation describing what the game is supposed to contain. This documentation is then used as

the foundation for the actual designing and implementation of the game. In the end the product has

to be tested to ensure that it contains what the design documentation says, that all functionality

works the way it is supposed to, and that it can be run on all the different hardware setups that it is

supposed to. This short introduction to game development gives an idea of which parts the game

development process the companies potentially can reduce focus on when shortening their

development periods.

Let’s take a look at each part and discuss which drawbacks can appear when reducing focus on them

specifically. The inception of an idea is a more or less instant process and can be neglected regarding

time consumption. The game design is a more or less time consuming activity, but requires just a

single or a few employees to be done. In addition, the idea inception and the game design are tasks

that can be done an unlimited time in advance to actual development of the game. So, to some

extent those two activities can be disregarded.

Further on regarding the game design, it is now more and more common that game development

companies work according to an agile project model which usually emphasizes the pre-development

design phase a lot less than the models mainly used in the past. This reduces the focus on the game

design part automatically without the administration having to actively reduce it.

Reducing the focus on the implementation phase will result in all or some of the functionality being

of lesser quality than originally intended, or some earlier designed functionality not being developed

at all. Consequently, the game title will not be as good as it was supposed to be, potentially resulting

in less games sold and thereby less income for the company. As a result, most game development

companies which are aiming for a large amount of sold games and having their existence depending

upon their games selling well (like Funcom does), will not reduce the focus on the design and

implementation phase. This phase is on the contrary the most important part of game production for

such companies. The more cool features, graphics, and gameplay the game contains, the more

games they sell.

The last part of the game production is the testing phase. Since none of the earlier phases have been

cut down on it is given that this is the phase that most game development companies are doing the

Project FHaSS Vision Document 2012

Page 21 of 194

largest cuts in. Less emphasis on the testing phase will result in less code specific testing and less

hardware compatibility testing, which in turn can result in software code errors – so-called bugs –

and hardware incompatibility. The word can is important in this relation because it leaves room for

the possibility of an untested game being released without problems at all, or at least with few

enough problems for the game to sell well. As mentioned above, if the companies were to cut down

in the implementation phase it would almost without exception result in fewer sold games. If they on

the contrary were to cut in the testing phase there is a possibility that it would not have the same

effect. So in essence, the decision is easy to make for game development companies that rely on a lot

of sold games; they do the cuts in the testing phase.

17.3 Fault-tolerance

For game development companies that develop ordinary standalone offline games, a released title

with lots of bugs and/or hardware incompatibilities would not result in a lower release sales number

than without (except if the game is so full of faults that the customers demand their money

returned), but it will worsen the game title’s and the game company’s reputation *6+. This in turn

could lead to less sold games for the next releases. This “game-fault-ignorance” is not possible for

game development companies that rely heavily on periodic subscription fees, like Funcom does.

Gameplay-ruining bugs or large hardware incompatibilities with a game title in this category will

result in the players abandoning the game rather quickly, potentially resulting in a lot less income for

the company than expected. Such companies therefore have to firstly release a game without major

faults, and secondly create frequent updates (patches) for the game after the release to remove

averagely and minor rated faults from the game. This will ensure that people don’t stop to play the

game, that is stop paying to play the game, because of insufficient testing and bug fixing.

So what is said above is actually that game development companies relying on periodic subscription

fees have to do more complete testing than companies selling games with a one-time-purchase

business model. This is not solely true. Companies that are producing online games, like for instance

Funcom, use the fact that their games are online as an advantage. By implementing a bug report

functionality in their games the players themselves can report back errors that has to be fixed. By

taking this advantage even further and opening up the game for one or several pre-release beta

testing periods, Funcom can get bug and crash information sent to them even before the official

release of the game. This results in Funcom having to spend less time on testing and quality

assurance for the games themselves, that is the costs of the testing phase is automatically reduced.

Such companies can then use more time actually fixing the bugs rather than finding them.

The fact that Funcom employees will have to spend a lot of time fixing bugs and hardware

incompatibilities has resulted in a demand of a system that effectively handles the information

gathered about the faults in their games. Funcom is currently using a system for this purpose that is

both not precise enough for their use nor hold the required functionality that Funcom needs.

17.4 Hardware trends

The evolution of the computer technology is as discussed earlier very fast paced. This is resulting in a

problem for game development companies that it can be hard to determine what type of, or more

precisely the capabilities of, the hardware that will be mainstream when their new game is planned

to be released. Without this knowledge the companies would have to base this solely on guessing,

which could result in a released game that is technically outdated, or on the contrary, a game that is

Project FHaSS Vision Document 2012

Page 22 of 194

putting too high demands on the hardware components of the players computers. Both scenarios

resulting in less sold games.

Funcom is of this reason in demand of a system that can capture the hardware evolution trend for a

time period and extend it a certain amount of time into the future. The future trends will of course

only be predictions, but they will undoubtedly limit, or even remove, the need for guesswork.

17.5 Online

The fact that Funcom is producing online games gives them a great opportunity of getting

information regarding bugs, hardware incompatibilities, and hardware information in general,

directly sent to them from the players over the internet. The only questions are how and when to

send such information. Funcom is currently using a system in their games that is identifying when a

crash has occurred. This system has the responsibility of informing the user that a crash has

happened and to ask the user whether or not he wants to report information back to Funcom.

17.6 Usage of the system

There are different groups of Funcom employees that experience benefits from all of the collected

crash-data. Quality Assurance and several managers watch the system for bugs and hardware

incompatibilities and creates tasks for the programmers to fix these issues. The programming team

use the system to test their patches, that is to find out whether the issue was actually fixed or not by

trying to force the same situation that created the issue in the first place. The game developers in

general use the collected information and read its hardware trends in order to be able to foresee

what type of hardware will be mainstream when the product they are working on at the moment will

be released. This will enhance hardware compatibility and make visible potential future problems.

A typical crash scenario
1. A player is playing one of Funcom’s games.
2. The game crashes. A report of the crash including hardware specification and the part of

the source code where the crash occurred is sent to a Funcom server.
3. The report is stored in a database. Employees access the database through a web

interface to get crash specific and hardware information.

18 What to improve

18.1 Crash report parsing

When a crash occurs at a players computer a crash report is produced. This report consists of several

parts:

 IP of the client, date, time, username, game server, etc.

 Where in, and the actual part of, the code where the crash was produced (the callstack).

 A so-called DxDiag file containing hardware information of the client computer in pure text

format.

This report is sent to one of Funcom’s web-servers where it is stored and extracted. A parser is then

starting to extract information from the components of the report. The information is stored in a

database for Funcom employees to later access.

Project FHaSS Vision Document 2012

Page 23 of 194

The parser that extracts information does not extract enough nor exact enough information from the

report. There are even somewhat many cases where the parser is not able to obtain any information

at all about specific hardware, leaving the database field(s) as unknown. This results in insufficient

and inaccurate information for the Funcom employees to view, which in turn can result in poor

estimates. This part of the system will have to be improved.

18.2 Graphical User Interface

The Graphical User Interface (GUI) is not user friendly and is not representing the stored data in an

easy-to-understand way. For instance is information regarding percentage usage of the different

Windows versions displayed in a unaltered boring standard HTML table. The overall layout of the

web-pages are not very good-looking.

Further on, all the information for the employees to see is squeezed into one page, making the web-

browser’s scroll functionality heavily used. This is usually seen on as negative, and leaves the users

with a feeling of lack of overview and control.

18.3 Lack of functionality

Some functionality that Funcom employees would like to have in the system is not present in the

current system.

There is no handling of almost identical hardware types. This results in large tables of statistics with

rows for each and every type of GPU units ever discovered by the system. Since many hardware

types are varying by only tiny factors it’s very hard to get out the exact wanted information. For

instance it is usually more informational for the employees to know the percentage difference in

amounts of players that are using nVidia or ATI GPU’s, rather than the amount that are using specific

graphics cards from specific manufacturers.

It all comes down to the ability for the employees to filter what type of information they would like

to see. Some information can be more informal to the user when they have been

structured/grouped/organized in a certain way.

The current system is also lacking the future hardware evolution trend prediction functionality

described in the “Context of the study” part of this document. This is the functionality that the

employees can use to get a prediction of what hardware will be mainstream at a time in the future,

for instance on the release date of a new game. By getting such information, employees can plan for

optimizing the game towards the future mainstream hardware.

Further on there is currently no functionality for filtering the statistical data. That is; the statistics are

based on absolutely all data stored in the database. This is an enormous amount of data and is

gathered from players all over the world for many years and from several games. Funcom is

therefore in need of functionality for filtering the statistical data based on certain criteria, such as

geographical location of the players, time period, game title and game server.

19 How to improve it
To address the problem of a lot of unknown hardware we will be adding a functionality for adding

hardware information manually by the users. When unknown hardware has been recognized by the

Project FHaSS Vision Document 2012

Page 24 of 194

system the users are given the possibility of entering the required information about the new

hardware type. This will then be reflected in the statistics with each entry of that specific hardware

no longer being unknown, but instead represented by the information the user entered. It must also

be possible to alter this information after the first time, in case of wrong input, input errors, etc.

The GUI can be enhanced a lot by generally giving the web-pages a good-looking and consistent

layout. Further on the statistical information can be given more life – and in fact be easier readable

and more containing – by displaying it as charts, as well as in tables.

For almost identical hardware types to be represented as one table row we will have to implement

some kind of grouping functionality. In some way a rule set of which hardware types are

corresponding to which table entry must be stored. This rule set must also either be automatically or

manually maintained, or a combination of the two approaches.

The filtering functionality can somewhat easily be implemented with the help of a bit more critical

and dynamic database queries than the current system is using. The actual filtering criteria can be

given as user input through the web-page interface. And the resulting filtered statistics returned and

shown through the same interface. For the users to be able to filter based on both geographical

location, time period, game title and game server, each of these criteria must have their own

possible input values.

20 Benefits
To both get rid of unknown hardware types and group almost identical hardware types as a single

type will make the statistics a lot more informative and complete, which in turn gives the employees

more and better hardware statistics of players of Funcom games. In other words the system is

enhanced with regard to what was the purpose of the system in the first place.

Improved GUI will in the first place of course give the users a more pleasant system to work with. The

statistics charts will put more information into less space, and graphs can also be read fast and

efficient without having to go into a very detailed level. The detailed level is what the tables are for.

With the new filtering functionality an employee can get more accurate and precise information, as

well as the more general information that the current system delivers. He/she can now for instance

get statistical information about the hardware of Korean players of Age of Conan in 2010 playing on a

specific server, as well as see the general statistics of all players ever reported a crash to the system.

This functionality gives the employees new possibilities of searching for trends and hardware

information based on their own criteria. For instance can geographically filtered information be very

valuable when it comes to porting a game to another country or region like Funcom did with Age of

Conan for the Asian market.

21 Sources
[1] http://en.wikipedia.org/wiki/Funcom (Last visited 13.12.2011)

[2] http://en.wikipedia.org/wiki/Graphics_processing_unit (Last visited 21.12.2011)

[3] http://www.vg.no/spill/artikkel.php?artid=182545 (Last visited 13.12.2011)

[4] http://www.idg.no/computerworld/article145027.ece (Last visited 13.12.2011)

http://en.wikipedia.org/wiki/Funcom
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://www.vg.no/spill/artikkel.php?artid=182545
http://www.idg.no/computerworld/article145027.ece

Project FHaSS Vision Document 2012

Page 25 of 194

[5] http://en.wikipedia.org/wiki/Video_game_development (Last visited 21.12.2011)

[6] http://www.shacknews.com/article/70451/rage-pc-players-report-bugs (Last visited 21.12.2011)

http://en.wikipedia.org/wiki/Video_game_development
http://www.shacknews.com/article/70451/rage-pc-players-report-bugs

Funcom Hardware Statistics System

Current System Description

Project name Acronym

Funcom Hardware Statistics System FHaSS

Client Sensors & Supervisors

Funcom N.V. Internal sensor Olaf Hallan Graven

Date Internal supervisor Aurilla Aurelie Arntzen

10.01.2012 External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Current System Description 2011

Page 27 of 194

Current System Description

22 General Document Information

Deliverable nr: D1.4.1.1

Deliverable type: Reference

Release: Public

Workpackage: 1

Responsible: Kent B. Dreyer
Sverre C. Thune

22.1 Declaration of intention

The purpose of this document is to help us understand how the current bug report system at Funcom
works. This will help us integrate our own system into the environment at Funcom.

22.2 Definitions and Acronyms

SFTP Secure File Transfer Protocol

GUI Graphical User Interface

TAR Tape Archive File

DxDiag DirectX Diagnostics

Batch A collection (of files)

22.3 Document History

Version Description Date

1 First version created 07.12.2011

1.5 Renamed document from
"Current System Research" to
"Current System Description",

Updated structure

10.01.2012

2 Updates after document review 29.05.2012

Project FHaSS Current System Description 2011

Page 28 of 194

23 Table of contents
22 General Document Information .. 27

22.1 Declaration of intention .. 27

22.2 Definitions and Acronyms ... 27

22.3 Document History ... 27

23 Table of contents ... 28

24 The current system .. 29

24.1 Introduction ... 29

24.2 The Batchserver ... 29

24.3 The Internal Server .. 29

24.3.1 General description of python files ... 29

24.3.2 Miscellaneous Python files .. 31

24.3.3 Short rundown on remaining python files .. 32

24.4 The GUI server ... 32

25 Summary.. 32

26 Sources & References .. 32

27 Attachments .. 32

Project FHaSS Current System Description 2011

Page 29 of 194

24 The current system

24.1 Introduction

Funcom’s current bug report system consists of three servers: the batchserver, the internal server
and the GUI server. The first two are important for us to understand, because we will need to
integrate our own system to co-exist with these. The third, we will completely replace.
This document contains descriptions of the current system which will be a good reference for
ourselves when we are designing and implementing our system. Therefore it is quite technical. We
describe the current code with and then take notice of some of the important things we will need to
take into account.

24.2 The Batchserver

The Batchserver is what we call the server which receives the bugs from the players. It is located

outside of the firewall of Funcom’s network. It is responsible for creating batches (a collection) of bug

files, which can then be downloaded to a server on the internal Funcom network.

A php file named ‘’bugsubmit’’ receives the bug report files (the XML files) from the the players.

These bug report files are then searched for keywords which define the category of the bug

(ldberrors, clientcrashes, clientasserts, scripterrors, bugreports, silentasserts). When the category is

detected the file is stored in a folder named ‘’batchtmp/subfolder’’ (where ‘’subfolder’’ are the

different categories).

WebRestarter.py starts processes of BatchMaker.py for each of the different categories.

Each process of BatchMaker.py creates a list of files in the subfolder it is assigned to within the

‘’batchtmp’’ folder. Then it creates a batch file (.tar) of all the files in that folder, and moves the

batch file to a subfolder of the same category within the ‘’batches’’ folder.

To sum up, the Batchserver receives bug reports, categorizes them and creates batches of the files to

be downloaded.

Initially we will not change anything on the Batchserver; it works good as it is.

24.3 The Internal Server

The internal server consists of several python processes that together perform the

downloading of files from the batchserver, and then the parsing and storing of bug reports

and player hardware information.

This section explains the code of some of the important files in the current system, which we

can use for future reference when implementing our system.

24.3.1 General description of python files

*see attachments for full flow of events on some of the files.

Restarter(Python):
Here all processes are started. Some even have multiple instances. (os.spawnvp())

Project FHaSS Current System Description 2011

Page 30 of 194

Batchdownloader (Python, attachment 1):

The process receives arguments which sets the folder directory it will traverse. At this point it will

start downloading batch files from this path and move the files in the folder to the batch server’s

“outgoing” folder, and download it to the “incoming” folder on the internal server.

It deletes original files after successful transfer.

The important thing to noticehere is the connection to the batch server with user name and

password over SFTP. If we are going to replace the current system completely, we need to download

the files from the batch server with a similar method. Initially however, we can develop our system

to co-exist with the old one.

Reportdownloader(Python, attachment 2):

This file does similar work as the batch downloader, but moves files from the “complete “folder to

the “outgoing” folder on the batch server, and then downloads from the “outgoing” folder to the

“complete” folder on the internal server.

It deletes original files after successful transfer.

Also here the connection over SFTP is an important thing to notice(see explanation in previous
section)

XMLBugReport (Python, attachment 3):

This file calls the processing of the XML files when they are downloaded (and extracted). It uses a

method to parse the XML file, including the DxDiag file. It also moves the files to an archive when it is

finished with them. See attachment 3 for a more detailed flow of events.

fcBugMain (Python):

The function “ProcessFile” runs the “bugParser” function which returns a parsed bug report object.

This object is processed further and certain properties are updated if some conditions are true. Our

client informs that this bug report system functions well, thus should initially not be changed.

After the bug report object has been processed, “fcBugDXDiag” function is called and the DxDiag file

which belongs to the bug report is parsed.

After the DxDiag file is parsed, the bug report object is sendt to Bugzilla, which is a third party bug

tracking server software. However if the object has the type “DxDiag”, it is not sent. The type of the

bug report object is the category of the bug (originally parsed from the XML file). Under certain

conditions extra emails are sent to specific developers so that they get an alert when a certain bug

occur.

When we are going to develop our own parser for the DxDiag file, changes will be needed here. We

will want to keep the bugParsing, but use our own DXDiag parser. We might even use the already

exsisting DxDiag parser, but then parse again to get better control on and more accurate

information.

Project FHaSS Current System Description 2011

Page 31 of 194

fcBugParser (Python, attachment 4):
Here we have the code responsible for parsing the XML files and creating bug report objects of them.
A bug report contains a lot of information parsed from the XML file (see attachment 4), which
includes the DxDiag file, the file we are initially interested in.

fcBugDXDiag.py
This file handles the parsing and storing of hardware information.

Some properties are taken from the bugReport:
● Username (player login name)
● Universe (game server)
● Bits (System architecture, 32bit / 64bit)

Then it collects text lines by parsing the DxDiag document for retrieving the following information:
● Operating system
● Processor
● Computer memory (RAM)
● Card name (Actual model name of graphic hardware)
● Video memory (Dedicated if exists, else display memory)
● Screen resolution

● Driver version (for the video card)

After the information is successfully retrieved from the document, it is inserted into the “hw_info”
table in the database:

● insert into hw_info (username, universe, os, cpu, ram, vcard, vram, driver, resolution, bits,

count)(Where count=count+1)

The insert sentence over displays the type of information that is currently being stored in the

“hw_info” table of the database. See attachment 5 for an example of the text lines extracted from

the DxDiag file. Because of the large file size we are not able to open the “hw_info” file in either

notepad++ or PhpMyAdmin for a complete analysis of the table.

24.3.2 Miscellaneous Python files

There are several other important files in the system that perform different tasks. However these

files are not essential to understand in detail for our first task (creating the new GUI), therefore we

will not go into the details regarding the source code of these files at this time. Below is a list of these

files with a general description of their responsibility.

fcBugEmail
Library designed for sending emails automatically regarding bugs or
crashes to specific developers.

fcBugzilla Library for communicating with Bugzilla

fcPreforce Contains functions for version control with Preforce

BugStats
This class retrieves and represents data from the database in HTML.
This works as the graphical representation of the system on the
internal server.

fcBugStats Library for manipulating the MySQL database.

fcBugSymbols Library for processing files (e.g. callstack) for debug symbols.

Project FHaSS Current System Description 2011

Page 32 of 194

24.3.3 Short rundown on remaining python files

DumpRevision Simply calls upon fcPerforce.dumpRevisionList(63101, 63102)()

createTables Simply calls upon the create_tables from the fcBugStats class

Reporter
Contionously prints the number of files in the category subfolders to
the console

mapFileImporter
Collects and manages map files and sends it to fcBugSymbols for
parsing

24.4 The GUI server

This is the server which runs the website GUI (in form of a website) for looking at the hardware

information extracted from the DxDiag files.

Hardware information is selected from the hardware database. The information is then put through
functions which results in the GUI website displaying some general statistics of the hardware
information (e.g. how many types of a certain processor). In its current state this GUI is very basic
and limited.

Our first task is to create a better and more useful GUI.

25 Summary

● The batch server creates batches of bug files and moves them to the appropriate

folder to be downloaded.

● The internal server downloads the files and extracts them.

● The files are parsed, bug reports and hardware information is extracted.

● The hardware information is stored in hw_info table.

26 Sources & References

 http://www.bugzilla.org/ (Last visited 14.12.2011)

 http://www.perforce.com/ (Last visited 14.12.2011)

 Funcom’s current bug System

27 Attachments

Attachment 1: batchdownloader.py

1. An argument sets the path of the folder the instance of this process looks through.
2. An infinite loop that handles downloading files from where this folder starts.
3. Connects to the batch server with user name and password over SFTP.
4. Opens the correct folder in ‘’batches’’ on the batchserver and creates a list of all the files in

the folder.
5. Moves the files in the list to the outgoing folder on the batchserver and then downloads

them into the incoming folder on the internal server.

http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.perforce.com/
http://www.perforce.com/
http://www.perforce.com/
http://www.perforce.com/
http://www.perforce.com/
http://www.perforce.com/
http://www.perforce.com/
http://www.perforce.com/

Project FHaSS Current System Description 2011

Page 33 of 194

6. Deletes the original file from the outgoing folder on the batchserver.
7. Opens TAR-files in the incoming folder on the internal server and extracts them to the same

folder.
8. Closes the TAR-file, writing to file and the folder paths.
9. Closes all contact with the SFTP and sockets.

Attachment 2: Reportdownloader.py

1. Sets the path to the complete folder.
2. An infinite loop that handles downloading files from this folder starts.
3. Connects to the batch server with user name and password over SFTP.
4. Opens the correct folder in ‘’batches’’ on the batch server and creates a list of all the files in

the folder.
5. Moves files from the complete folder to the outgoing folder on the batch server.
6. Downloads the files from the batch server and moves them to the complete folder on the

internal server.
7. Deletes the original files in the outgoing folder on the batch server
8. The downloaded files will later on be handled by XMLBugReport described later.

Attachment 3: XMLBugReport.py

1. Handles arguments if they exsist (up to three: set incomingDir, logfile and forceid).
2. Infinite loop starts.
3. Creates a list of the files in the complete folder (on the internal server).
4. Moves the file from the complete folder to the processing folder.
5. Start to process the file (calls fcBugMain.ProcessFile, which parses the XML file, including

dxdiag).
6. If the processing is successful, the file is moved to its own subfolder in the archive/old folder.
7. If the processing fails, the file is moved to a failed folder.

Attachment 4: List of contents of a ‘’bug report’’

● IPAddress
● Date
● Username
● Title
● Type
● Email
● Category
● Universe
● Body
● Attachments
● BodyElements
● BuzillaCCs
● ExtraCCs
● TeleportHistory

Attachment 5: mapfileimporter.py

● Runs the function importMapFiles continously
● makes a directory list of the files in the “mapfiles” folder.
● Traverses the directory looking for files to import.

Project FHaSS Current System Description 2011

Page 34 of 194

● Takes all files and calls parseFile function from fcBugSymbols
● Moves all files from “importMapFiles” folder to “archive” folder

Attachment 6: Example of extracted text lines from DxDiag

● Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 3

(2600.xpsp_sp3_gdr.080814-1236)

● Processor: Intel(R) Celeron(R) M processor 1.60GHz

● Memory: 1016MB RAM

● Card name: Mobile Intel(R) 915GM/GMS,910GML Express Chipset Family

● Current Mode: 1280 x 800 (32 bit) (60Hz)

● Display Memory: 96.0 MB

● Driver Version: 6.14.0010.4609 (English)

Funcom Hardware Statistics System

Test Strategy

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

29.05.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Kim Richard Johansen External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Test Strategy 2012

Page 36 of 194

Test Strategy

28 General Document Information

Deliverable nr D1.5.2

Deliverable type Report

Release Public

Work package 1

Responsible Kim Richard Johansen

28.1 Declaration of intention

The intention of this document is to give the reader insight into how the group is planning to test the
system they are to produce. It contains testing strategy, different testing methods and types we are
going to use and how we plan to document our performed tests.

28.2 Definitions and Acronyms

Bug An error in the programming code

API Application Programming Interface

28.3 Document History

Version Description Date

1 First version created 15.12.2011

2 Document template added.
Information reviewed and

updated.

04.01.2012

2.5 Updates after document review 29.05.2012

Project FHaSS Test Strategy 2012

Page 37 of 194

29 Table of contents
28 General Document Information .. 36

28.1 Declaration of intention .. 36

28.2 Definitions and Acronyms ... 36

28.3 Document History ... 36

29 Table of contents ... 37

30 Requirements for testing... 38

31 Test strategy .. 38

32 Testing categories .. 39

32.1 Verification and validation .. 39

32.2 Functional and non-functional testing .. 39

32.3 Static and dynamic testing .. 39

33 Testing methods .. 39

33.1 Strategy ... 39

33.1.1 Black-box testing ... 39

33.1.2 White-box testing .. 39

33.2 Methods .. 40

33.2.1 Function test .. 40

33.2.2 Code Compilation .. 40

33.2.3 Debugging .. 40

33.2.4 Code Review .. 40

33.2.5 User Interface .. 40

33.2.6 Ad Hoc test .. 40

33.2.7 Strain test .. 40

33.2.8 Regression test .. 40

33.2.9 Performance test ... 40

34 Test documentation .. 41

34.1 Test specification ... 41

34.2 Test log .. 41

34.3 Test reports ... 41

35 Responsibility .. 41

35.1 Test manager ... 42

35.2 Test analyst .. 42

35.3 Tester ... 42

Project FHaSS Test Strategy 2012

Page 38 of 194

36 Sources .. 42

30 Requirements for testing
The main purpose for testing is to ensure all specifications in the requirement specification are

implemented and approved.

The tester should distinguish between constructive and destructive approaches to the test. Think

about how the unit to be tested may fail, but do not be so critical that the unit never measure up and

is seen as unacceptable.

It is important when the testing is executed that the person doing the test is not the same person

who has written the code to be tested. This is because the person who has written the code often

gets blind on their own work and does not want to find any errors in the code. If the person who

executes the test has not written the code, the person goes deeper into the code and may think of

other ways to test the code that the developer may not have thought of.

31 Test strategy
This will be a system were the importance of stability and reliability is high at any time. The producer

of the game needs to get the information they want from the bug-system. The tests need to be

accurate and test the system in all ways possible.

Our main strategy of testing will be a gradual step by step approach, critical to less important. The

basic elements of the system will have the highest priority and will be tested first. Regression tests

will be done after code alteration of previous tested functions or when new functions have been

added to the system. This is to ensure that previously tested functions still work.

When we are getting closer to a full release and most of our grade A requirements have been

completed and tested we will run an ad hoc test. This is to find functionality that may or may not be

intended that can “break” the system. When this had been completed a strain test will be

performed. This test simulates different work load for the system and will ensure us that our system

may handle a high pressure of crash reports and that no data gets corrupted due to a high workload

for the system.

Project FHaSS Test Strategy 2012

Page 39 of 194

32 Testing categories
In the following are short descriptions of different testing categories our tests will be categorized

under.

32.1 Verification and validation

Verification tests of the system will answer if the system is built correctly based on the requirement

specification.

Validation tests will answer if the software created is what the customer wants.

32.2 Functional and non-functional testing

Functional testing is testing that verifies a specific functionality of the system. These are usually

directly related to the requirement specification.

Non-functional testing tests aspects of the system that may not be related to a specific functionality

of the system. This can for example be performance or security.

32.3 Static and dynamic testing

Reviewing/reading the code is considered static testing, while debugging or executing the code is

considered dynamic testing.

33 Testing methods
In the following are short descriptions of testing strategy and methods we will be using for testing

throughout this project.

33.1 Strategy

33.1.1 Black-box testing

The tests performed under this strategy are made directly from the requirements specification.

Black-box testing is a method of software testing for testing the functionality of the system without

knowing the structure of the system. Expected data on the output is a result of the known input data,

tests under this strategy are also called functional testing.

33.1.2 White-box testing

This strategy deals with the internal logic and structure of the code. It is possible to analyze the test

element and decide exactly how the test is built up and what to test. When making a test based on

white-box testing, knowledge about the structure for the element to be tested is needed.

Project FHaSS Test Strategy 2012

Page 40 of 194

33.2 Methods

33.2.1 Function test

A function test is written in order to check if a functional completed requirement behaves and works

as planned.

33.2.2 Code Compilation

A successful compile of the code is a basic form of testing.

33.2.3 Debugging

This is a testing method done with the API to find out what part of the code that fails when a code

compilation fails. When a verification test fails and a code compilation is successful, debugging can

be used to go through the code step by step to indentify the error by examining the values of

variables.

33.2.4 Code Review

A person just reading the code is a form of static testing. He should not be the same person that

wrote the code.

33.2.5 User Interface

This type of testing is about confirming that the user get the correct response based on his actions.

33.2.6 Ad Hoc test

It’s a test commonly done after large system implementations and late in the project where the

tester goal is to “break” the system by trying different system functionality. This test is done without

any formal test plan. This test can also include negative testing.

33.2.7 Strain test

The purpose of the strain test is to give the system variable amounts of data (e.g. bug reports) over a

lengthy time to see how the system handles it. While the variable data is given to the system, we will

use the website to load/show results from the database. The point behind this test is to see how the

system handles/operates during what is looked at as normal phase (e.g. after bugs is fixed and

software crashes has reduced) and a high pressure phase (e.g. after large software implementations/

game extensions) where they may be a high amount of crashes experienced. An even larger pressure

will also be tested to ensure that the system will manage larger work than intended. All data inserted

into the system is checked up against manually calculated results to ensure that no data has been

corrupted due to high system load.

33.2.8 Regression test

The regression test is meant to see if previously tested functions in our system still work after new

code has been implemented or after an update.

33.2.9 Performance test

This type of testing is to check if the systems performance is good enough (e.g. the time it takes for

the website to load/show results as charts or tables with information from the database).

Project FHaSS Test Strategy 2012

Page 41 of 194

34 Test documentation
Test documentation will help us to quality assure our project. The documents will also give us some

indication of the time used to quality assure our project in accordance to the requirements

specification.

34.1 Test specification

The test specification contains information about every test to be done with cross reference to other

documents that may be relevant.

34.2 Test log

The point behind a test log is to document every test that has been executed. It will contain:

 Name of tester

 When did the test occur

 What was the result

 Error list

 Evaluation

34.3 Test reports

Tests that constitute a module will be reported in a test report. The meaning for the report is that

many of the tests are a part of the same module. The reports therefore create a good overview over

all the tests and summarize them into modules.

Currently there is just one module, but as we work on the project, extensions (e.g. more

requirements) may be added and from there more modules can be added.

Modules:

 Web functionality

35 Responsibility
There are three roles to be filled when it comes to testing:

 Test manager

 Test analyst

 Tester

In smaller projects it’s most common for the roles Test manager and Test analyst to be filled by the

same person. The Tester role is common to be filled by the whole group.

This is the case in our project.

Project FHaSS Test Strategy 2012

Page 42 of 194

35.1 Test manager

A test manager has the main responsibility for testing:

 Ensure that tests are planned and the requirements are arranged.

 Ensure that all test reports are made

 Keep all test documentation up to date and organized

 Define what test strategies to be used

 Verify test results with the rest of the group and the employer

35.2 Test analyst

The main responsibility for a test analyst is:

 Identify test elements

 Describe test progression

 Evaluate the quality of a unit tested

35.3 Tester

The tester role is a role every project member can take. The tester’s tasks are:

 Follow the test procedure to execute the test

 Write a test log with results

 Separate errors to a separate list in the log

36 Sources

 http://en.wikipedia.org/wiki/Test_management(Last visited 15.12.2011)

 http://en.wikipedia.org/wiki/Test_plan(Last visited 15.12.2011)

 http://www.aptest.com/glossary.html(Last visited 15.12.2011)

 RIVET Test strategy document (HIBU Kongsberg library)

 Dragonfly Test strategy document (HIBU Kongsberg library)

http://en.wikipedia.org/wiki/Test_management
http://en.wikipedia.org/wiki/Test_plan
http://www.aptest.com/glossary.html

Funcom Hardware Statistics System

Requirements Specification

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

10.01.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Sondre Bjerkerud External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Requirements Specification 2012

Page 44 of 194

Requirements Specification

37 General Document Information

Deliverable nr 1.6.5

Deliverable type Research

Release Public

Work package 1

Responsible Sondre Bjerkerud

37.1 Declaration of intention

The intention of this document is to give the reader an understanding of the requirements of the
system we are to create. The requirements capturing methods we have been using will be explained
as well as the priority levels used to organize the requirements. The later sections will give both a list
of the requirements as well as a more in-depth description of each one. After having read this
document the reader shall know what features the product is to hold and how the features shall
work.

37.2 Definitions and Acronyms

BugZilla Bug handling software used by Funcom.

CPU Central Processing Unit

GPU Graphical Processing Unit

RAM Random Access Memory

DX
DirectX: A collection of application programming
interfaces (APIs) for handling tasks related to
multimedia, like for instance game programming.

URL Uniform Resource Locator

37.3 Document History

Version Description Date

1 Created the document. Created “Requirements list”
and “Requirements details” sections.

15.12.2011

2 Added priority explanation and requirement
capturing sources. Updated origin and date fields of
the requirement details tables.

19.12.2011

3 Rewrote the text about the requirement capturing
meeting. Project document template incorporated.

3.01.2012

4 Added “Courses with Lorenzo Aurea” as a
requirement capturing source. Added requirement
A-NF-5. Rewrote/redefined requirements A-F-1, A-
F-4, A-NF-2, and A-NF-3.

19.03.2012

5 Added paragraph under the “Meetings with 21.05.2012

Project FHaSS Requirements Specification 2012

Page 45 of 194

external supervisor” requirement capturing source.
Added requirements B-NF-1, C-F-2, C-F-3, C-F-4,
and C-NF-1. Rewrote/redefined requirement A-NF-
6.

38 Table of contents
37 General Document Information .. 44

37.1 Declaration of intention .. 44

37.2 Definitions and Acronyms ... 44

37.3 Document History ... 44

38 Table of contents ... 45

39 Requirements capturing .. 47

39.1 Meetings with the external supervisor ... 47

39.2 The Product Backlog .. 47

39.3 Technical Research .. 47

39.4 Courses with Lorenzo Aurea .. 47

40 Changes in requirements .. 47

41 Requirements list... 48

41.1 A Requirements ... 48

41.1.1 Functional .. 48

41.1.2 Non-Functional .. 48

41.2 B Requirements ... 48

41.2.1 Functional .. 48

41.2.2 Non-Functional .. 48

41.3 C Requirements ... 49

41.3.1 Functional .. 49

41.3.2 Non-Functional .. 49

42 Requirements details... 49

A-F-1: Display hardware/software statistics ... 49

A-F-2: Display hardware/software evolution charts ... 50

A-F-3: Filter statistics ... 50

A-F-4: Hardware type management .. 50

A-F-5: Hardware grouping ... 51

A-NF-1: Programming language .. 51

Project FHaSS Requirements Specification 2012

Page 46 of 194

A-NF-2: Model-View-Controller .. 51

A-NF-3: Database type... 51

A-NF-4: Database connection .. 51

A-NF-5: Database access ... 51

A-NF-6: Web-page loading time .. 52

A-NF-7: Wiki pages documentation .. 52

A-NF-8: BugZilla interfacing ... 52

B-F-1: Display hardware/network statistics .. 52

B-F-2: Display software statistics ... 52

B-NF-1: Windows service... 53

C-F-1: Future hardware prediction .. 53

C-F-2: Chart raw data .. 53

C-F-3: Textual help ... 53

C-F-4: Chart zoom .. 53

C-NF-1: Filter URLs ... 53

43 Attachments .. 54

Project FHaSS Requirements Specification 2012

Page 47 of 194

39 Requirements capturing
The requirements has been captured from the following four (4) sources.

39.1 Meetings with the external supervisor

There have been carried out two major meetings where the assignment has been discussed; the first

meeting at the Funcom office in Oslo in September, and a user requirements capturing meeting in

October. In the first meeting a brief explanation of the assignment was given for the group to be able

to consider accepting it, whereas a more in-depth requirements capturing interview was done in the

second. The second meeting was held via Skype and the interview part lasted for about half an hour.

The group asked a series of open questions regarding details about the assignment and eventual

extensions of it.

Throughout the project period there has before and after each Scrum Sprint been held a set of three

meetings with the external supervisor (Product Owner). In the latter of the three, the Sprint Planning

meeting, there has several times come up completely new requirements, or changes or extensions to

already existing requirements.

39.2 The Product Backlog

The Scrum project model is using a feature called the Product Backlog (PB) for the task of editing,

organizing and prioritizing requirements. It is the responsibility of the Product Owner (in our case this

is the external supervisor) to add so-called user stories to the PB. User stories are nothing more than

user requirements formulated in a specific way. We have converted the user stories from the PB into

ordinary requirements for this document. Most of the requirements in the PB are the same as those

captured in the meetings as described in the section above.

39.3 Technical Research

A Technical Research with a Technical Document as the result has been used to confirm that some of

the user requirements actually are the best possible choices for the given system.

39.4 Courses with Lorenzo Aurea

Lorenzo Aurea is an employee in Funcom and also one of the group’s unofficial supervisors in this

project. In the start of the development/implementation period of the project (after New Year)

Lorenzo organized two courses for the group to ease the many problems we most probably would

face with the technology we were to start using. In these courses some of the already defined

requirements in the PB were further explained in a bit more detail and on a more technical level, and

some new tweaks to them were introduced. Those tweaks has effected some of the requirements

defined in this document.

40 Changes in requirements
The Scrum project model handles the problem of fluid requirements by letting the Product Backlog

(PB) be fluid. It is up to the Product Owner to do changes, add, or delete user stories from the PB and

prioritize them. This means that the requirements described in this document are by no means final,

neither are the number, organization, nor the definition of them. The requirements are all fluid and

modifications can happen at all times throughout the project period. The current requirements will

act as a basis for the planning of, and the starting work with, the project, and in the case that no

Project FHaSS Requirements Specification 2012

Page 48 of 194

changes are done to the PB they are the requirements we will work towards

developing/implementing for the whole project period.

41 Requirements list
Following is a list of the requirements for the Hardware Statistics System. The requirements are

organized by priority as they are given in the Product Backlog by the external supervisor. The Product

Backlog is prioritized as a list without categories, but there are a couple of somewhat clear but not

displayed lines partitioning the user stories with regard to priority. Of this reason it felt natural to

separate the requirements into three priority categories; A requirements are major features

necessary for the new system to be able to outdistance the current system, B requirements are

feature extensions that will further extend the range of use of the system, and C requirements are

features that can even further extend the range of use of the system, but which are of lesser

importance.

The following is only sort of a list of the titles of the requirements organized in their respective

priority category. Supplementary details for each requirement are given in the section

“Requirements Details”.

41.1 A Requirements

41.1.1 Functional

A-F-1 Display hardware/software statistics table.

A-F-2 Display hardware/software evolution charts.

A-F-3 Filter statistics.

A-F-4 Hardware type management.

A-F-5 Hardware grouping.

41.1.2 Non-Functional

A-NF-1 Programming language.

A-NF-2 Model-View-Controller.

A-NF-3 Database type.

A-NF-4 Database connection.

A-NF-5 Database access.

A-NF-6 Web-page loading time.

A-NF-7 Wiki pages documentation.

A-NF-8 BugZilla interfacing.

41.2 B Requirements

41.2.1 Functional

B-F-1 Display hardware/network statistics.

B-F-2 Display software statistics.

41.2.2 Non-Functional

 B-NF-1 Windows service.

Project FHaSS Requirements Specification 2012

Page 49 of 194

41.3 C Requirements

41.3.1 Functional

C-F-1 Future hardware evolution prediction.

C-F-2 Chart raw data.

C-F-3 Chart zoom.

C-F-4 Textual help.

41.3.2 Non-Functional

 C-NF-1 Filter URLs.

42 Requirements details
The requirements from the requirement list will in this section be explained in detail. Each

requirement will be described using the following table:

Category ID

Date Origin

Description

An explanation of the fields in the table:

 Category: A, B or C requirement.

 ID: The requirement specific identification.

 Date: The date the requirement was captured. In case the requirement has been captured

several times the date of the first capture will be given.

 Origin: From what source was the requirement captured. The possibilities are the three

mentioned capturing sources described in the section above.

 Description: Self-explanatory.

A-F-1: Display hardware/software statistics

Category A ID A-F-1

Date 27.10.2011 Origin Meetings & Product Backlog

Description

Display hardware information for players of Funcom games, over time, in table
format in a web-page. The table shall contain the percentage distribution of the
different possible hardware/software that players are using. The different
hardware/software categories to be displayed statistics for are:

a. CPU
o Speed: In MHz
o Number of cores.
o Model.

b. Graphics card
o GPU model.
o VRAM size/amount.
o Primary Display Resolution.
o Multi-Monitor Resolution.

c. RAM size/amount.
d. Windows OS: In groups by version, with 32 and 64 bit versions being

separate groups.

Project FHaSS Requirements Specification 2012

Page 50 of 194

The grouping criteria, that is the boundary values that separate on group from
another, is to be defined/put in by the administrator(s) of the system.

The time period of hardware data for which the calculations are based upon shall
be put in by the user of the system.

A-F-2: Display hardware/software evolution charts

Category A ID A-F-2

Date 27.10.2011 Origin Meetings & Product Backlog

Description Some of the hardware/software information that are displayed in tables (A-F-1)
shall also be displayed as evolution charts. The horizontal axis of the charts shall
describe time, and the vertical axis shall describe the percentage of players using
the corresponding hardware/software at the given time. The different charts to
be displayed are:

a. CPU: Split between AMD and Intel.
b. GPU: Split between nVidia, Intel, AMD and others.
c. CPU cores: Split between 1, 2, 4, and other, number of cores.
d. Windows OS version and DirectX version: Split between DX11 GPU &

Windows 7, DX10 GPU & Windows 7, and DX10/DX11 and Windows XP.

The current percentage distribution shall also be displayed in proximity to the
chart. The time period that the charts are showing the evolution for is to be put
in by the user of the system.

A-F-3: Filter statistics

Category A ID A-F-2

Date 27.10.2011 Origin Meetings

Description Filter the hardware and software statistics. It must be possible to filter by a
combination of options from the different criteria. The criteria and their options
are:

a. Geographical location: All the different continents and countries that
are registered in the database. The countries shall be grouped by their
respective continent.

b. Time period: Date from and to.
c. Funcom game: The Secret World, Age of Conan, Pets Vs. Monsters.
d. Game server: The list of servers respective to the game selected (c). If

no game is selected it should not be possible to pick game server.

All the filter criteria are to be put in by the user of the system.

A-F-4: Hardware type management

Category A ID A-F-2

Date 27.10.2011 Origin Meetings

Description It must be possible for an administrator of the system to add, edit, and delete,
so-called general hardware types.

The system must be able to recognize if new types of hardware has been
registered. When this happens it must be possible for an administrator of the

Project FHaSS Requirements Specification 2012

Page 51 of 194

system to map the newly recognized hardware type onto a general hardware
type. The Hardware Statistics displayed in tables (A-F-1) and in charts (A-F-2)
will only be displaying information for the general hardware types.

The different categories of general hardware types that can be registered are:

 CPU Model.

 GPU Model.

A-F-5: Hardware grouping

Category A ID A-F-2

Date 27.10.2011 Origin Meetings

Description The system must be able to recognize almost identical hardware types and
group them to be shown as only one more general type in the statistics. The
general hardware types are those of requirement A-F-2. The user shall be given
information about currently registered but not recognized hardware types. The
user will then manually have to decide what hardware type the different
unrecognized hardware types is to be grouped under.

Ungrouped/Unrecognized registered hardware shall be grouped in an
“Unknown” group in the statistics.

A-NF-1: Programming language

Category A ID A-NF-1

Date 27.10.11 Origin
Meetings, Product Backlog &
Technology Document

Description The whole system is to be implemented using the programming language C# on
top of the ASP.NET framework.

A-NF-2: Model-View-Controller

Category A ID A-NF-2

Date 11.12.11 Origin Product Backlog

Description The code of the web-interface shall be designed and implemented following the
ASP.NET Model-View-Controller pattern.

A-NF-3: Database type

Category A ID A-NF-3

Date 11.12.11 Origin Product Backlog

Description The system must be compatible with a database of the type Oracle.

A-NF-4: Database connection

Category A ID A-NF-4

Date 11.12.11 Origin Product Backlog

Description The system, that is both the data collection from database and the parser, must
make use of nHibernate for connecting to and accessing the database.

A-NF-5: Database access

Category A ID A-NF-5

Date 11.12.11 Origin Lorenzo Aurea

Description The web-interface shall be given an interface to the database from a Windows

Project FHaSS Requirements Specification 2012

Page 52 of 194

Communication Foundation web-service. In other words, it shall not interface
with the database directly.

A-NF-6: Web-page loading time

Category A ID A-NF-5

Date 11.12.11 Origin Product Backlog

Description The web-page displaying the statistics defined in requirement A-F-1 must load
within 10 seconds when the time filter defined in requirement A-F-3 is set to
span over the last month.

A-NF-7: Wiki pages documentation

Category A ID A-NF-7

Date 11.12.11 Origin Product Backlog

Description The system must be documented using Wiki pages. Documentation shall consist
of:

 A user manual.

 A system overview/specification/description.

A-NF-8: BugZilla interfacing

Category A ID A-NF-8

Date 27.10.11 Origin Meetings

Description The new system has to interface with BugZilla in the same way the current
system does.

B-F-1: Display hardware/network statistics

Category B ID B-F-1

Date 11.12.11 Origin Product Backlog

Description This is an extension of requirement A-F-1. Two new types of information to be
displayed are added to the list. The two types of information to be displayed
statistics for and their specific grouping structure are as follows:

a. HDD (Hard Disk Drive)
a. Capacity: In the following groups: 10-99GB, 100-249GB, 250-

499GB, 500-749GB, 750-999GB, and above 1TB.
b. Type: In groups of SSD or Normal (Magnetic Disk).

b. Network download speed: In groups of all the different speeds
registered in the database.

All the filter types of requirement A-F-3 shall be compatible with the two new
types of information as well.

B-F-2: Display software statistics

Category B ID B-F-2

Date 11.12.11 Origin Product Backlog

Description Statistical information about specific software installed on the players
computers shall be displayed in a table. The table shall contain entries for the
different types of software and the corresponding percentage of players who
have that software installed on his/her computer. The types of software are:

a. Java
b. Unity
c. Flash

Project FHaSS Requirements Specification 2012

Page 53 of 194

d. Web browsers: Microsoft Internet Explorer, Mozilla Firefox, Google
Chrome, Opera.

B-NF-1: Windows service

Category B ID B-NF-1

Date 24.04.12 Origin Meetings

Description Eventual modules needed to be implemented to support the web-interface and
the windows communication foundations (WCF) application layers shall be
implemented as a Windows Service.

C-F-1: Future hardware prediction

Category C ID C-F-1

Date 27.10.11 Origin Meetings

Description Calculation of a prediction of the hardware evolution of the players of Funcom
games a set amount of time into the future based on the hardware evolution
from a set amount of time backwards in time. The length of the future time
period to be predicted and the backward time period to be the basis of the
prediction, is to be put in by the user of the system. The prediction shall be
displayed as extended chart lines in the charts of requirement A-F-2.

It must be possible to toggle whether or not the future prediction shall be
displayed or not.

C-F-2: Chart raw data

Category C ID C-F-2

Date 24.04.12 Origin Meetings

Description The system must be able to display the raw data that the charts defined in
requirement A-F-2.

C-F-3: Textual help

Category C ID C-F-3

Date 24.04.12 Origin Meetings

Description Functionalities in the web-page interface that is not self-explanatory to a
completely new user must be explained through some form of textual help in
the interface. It must be possible for the user to see the help text in the current
page he has loaded. In other words, he/she shall not have to enter another page
to view the help text.

C-F-4: Chart zoom

Category C ID C-F-4

Date 4.05.12 Origin Meetings

Description It must be possible for the user to choose to get displayed a zoomed/enlarged
version of one of the charts defined in requirement A-F-2.

C-NF-1: Filter URLs

Category C ID C-NF-1

Date 4.05.12 Origin Meetings

Description When the web-interface is displaying hardware statistics as defined in
requirement A-F-1 and B-F-1, based on the filters defined in requirement A-F-3,
the web browser must display an URL that when accessed at a later point in

Project FHaSS Requirements Specification 2012

Page 54 of 194

time will make the system reproduce the same statistics/filter selection.

43 Attachments

 Product Backlog

Funcom Hardware Statistics System

Test Specification

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

24.05.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Kim Richard Johansen External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Test Specification 2012

Page 56 of 194

Test Specification

44 General Document Information

Deliverable nr: D1.7.4

Deliverable type: Report

Release: Public

Workpackage: 1

Responsible: Kim Richard Johansen

44.1 Declaration of intention

This is a document containing information about all the tests that are to be done. All the
tests are made with basis upon the requirements specification that contains a list of all the
requirements.

44.2 Definitions and Acronyms

Bug An error in the programming code.

Parser Searches a data file for key words and copies the values it
finds.

CPU Central Processing Unit

GPU Graphical Processing Unit

RAM Random Access Memory

DX DirectX

HDD Hard Disk Drive

SSD Solid State Disk: A type of HDD.

OS Operating System

COS Condition of Satisfaction

44.3 Document History

Version Description Date

1 First version created 15.12.2011

2 Document template adopted.
Information reviewed and

updated.

05.01.2012

3 Updated with new small scale
tests to be used to test sprint

results.

16.03.2012
24.04.2012

4 Updated document to latest QA
standards. Updated

information on tests.

24.05.2012

4.5 Document reviewed 29.05.2012

Project FHaSS Test Specification 2012

Page 57 of 194

45 Table of contents
44 General Document Information .. 56

44.1 Declaration of intention .. 56

44.2 Definitions and Acronyms ... 56

44.3 Document History ... 56

45 Table of contents ... 57

46 Test layout ... 58

46.1 Test data set .. 58

46.2 Test types .. 59

46.3 Identifying different tests and requirements .. 59

Requirement ID ... 59

Test ID .. 59

47 Tests... 60

47.1 Test template .. 60

47.2 Validation tests .. 60

47.2.1 List of validation tests .. 60

47.2.2 Tests ... 61

47.3 Verification tests.. 72

47.3.1 Code Review .. 72

47.3.2 Code Compilation .. 72

47.3.3 Debugging .. 72

47.3.4 User Interface Testing ... 72

47.3.5 Ad Hoc test .. 72

47.3.6 Strain test .. 73

47.3.7 Regression test .. 73

47.3.8 Performance test ... 73

48 Sources .. 73

Project FHaSS Test Specification 2012

Page 58 of 194

46 Test layout

46.1 Test data set

To test the system we will be creating a test data set that will be used in most of the tests. The type

of tests is explained under test criteria for each of the tests. We will manually calculate values for the

different categories beforehand of the tests and compare them to the results the website produces.

The data set will consist of fictional bug reports that will be used to test each part of the system such

as testing the system web functionality (i.e. sorting and grouping algorithms + calculation algorithms)

and testing the result by sending complete bug reports that ventures through the different modules

of the system (i.e. parser, database and web functionality)i.

A complete fictional bug report will contain this information:

e. CPU

o Speed

o Number of cores

o Manufacturer

o Model

f. Graphics card

o VRAM size

o Primary Display Resolution

o Manufacturer

o Model

g. RAM size

h. Windows OS version

i. DirectX version

j. Geographical location (may be in the form of IP)

k. Date and time

l. Funcom game

o Game server

Our system will group most of this information (e.g. CPU: speed, cores, GPU: Model, Manufacturer)

and then show it in tables and charts. So to test the grouping functionality we need to put in some

smart values that are close to or exactly in the boundary range of the different grouping ranges.

Project FHaSS Test Specification 2012

Page 59 of 194

46.2 Test types

Tests types listed are explained in more detail in the “Test strategy document” and the procedure for

the tests is listed under Tests.

 Function test

 Code Compilation

 Debugging

 Code Review

 User Interface

 Ad Hoc test

 Strain test

 Regression test

 Performance test

46.3 Identifying different tests and requirements

Short explanation of the ID used for requirements and tests.

Requirement ID

A-F-1

Letter explaining the importance of the requirement where A is highest and C lowest

Letter explaining the requirement as Functional (F) or non-functional (FN)

Requirement number

Test ID

T-R-1-2

Letter T means test.

Letter R means requirement.

The first number equals test number.

If a second number is present the test is divided into more than one test and the number represents

the test number of that test.

file:///D:/Dropbox/HovedProsjekt/Deliverables/D1.5.2%20Test%20Strategy%20Document.docx

Project FHaSS Test Specification 2012

Page 60 of 194

47 Tests

47.1 Test template

Name {Test Name} Test ID {Test ID}

Requirement ID: {ID}

Test description: {Test description}

Test date: {dd.mm.yyyy} Tester: {Name of tester}

Testing method:

{Test type, black box/ white box}

Test approach:

1. {approach}

Test criteria

{what type of criteria}

Expected results

 {Expected errors and results}

Test creator: {name date, updated by: name date}

Errors: {Encountered errors}

Outcome {What happened?}

47.2 Validation tests

47.2.1 List of validation tests

 T-R-1 Display hardware / software statistics

 T-R-1-1 Display hardware / software statistics –CPU information

 T-R-1-2 Display hardware / software statistics –GPU information

 T-R-1-3 Display hardware / software statistics –RAM information

 T-R-1-4 Display hardware / software statistics –OS information

 T-R-1-5 Display hardware / software statistics –Direct X information

 T-R-2 Display hardware / software evolution charts

 T-R-3-1 Filter statistics

 T-R-3-2 Filter statistics – user interface test

 T-R-3-3 Filter statistics – game filter

 T-R-3-4 Filter statistics – server/universe filter

 T-R-3-5 Filter statistics – time period filter

 T-R-3-6 Filter statistics – geographical location filter

 T-R-4-1 Hardware type management and grouping

 T-R-4-2 Hardware type management and grouping –new hw type

 T-R-5 Display software statistics

 T-R-6 Future hardware prediction

Project FHaSS Test Specification 2012

Page 61 of 194

47.2.2 Tests

Name Display hardware / software statistics Test ID T-R-1

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different hardware/software stored in the database.

Test date: 09.02.2012
25.03.2012

Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for one of the
hardware/software categories; CPU, Graphics Card, RAM, Windows OS,
HDD, or Network download speed.

3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Name Display hardware / software statistics –CPU information Test ID T-R-1-1

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different CPUs stored in the database.

It should be possible to toggle between number of entries and %.
Data to be shown:

 CPU speed by brackets (like Steam).Starting at 0 - 1.0hgz, Inc. at 400mhz.

 Show split between AMD and Intel (and other)

 Show number of cores

Test date: 11.03.2012
27.04.2012

Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for CPU.
3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Project FHaSS Test Specification 2012

Page 62 of 194

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 23.12.2011
Errors: {Encountered errors}

Outcome {What happened?}

Name Display hardware / software statistics –GPU information Test ID T-R-1-2

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different GPUs stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show split between nVidia, Intel, AMD, and others.
Data to be shown:

 Show video card model like Steam.

 Show VRAM

 Show Primary and multi-monitor resolution.

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for GPU.
3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 23.12.2011
Errors: {Encountered errors}

Outcome {What happened?}

Name Display hardware / software statistics –RAM information Test ID T-R-1-3

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different RAM stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show the RAM from all systems in the DB and group them under different
range groups.

Project FHaSS Test Specification 2012

Page 63 of 194

Data to be shown:

 RAM grouped under:

Less than 513 MB

513 MB to 999 MB

1 GB

2 GB

3 GB

4 GB

5GB and higher

Unknown

Test date: 13.03.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for GPU.
3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 13.03.2011
Errors: {Encountered errors}

Outcome {What happened?}

Name Display hardware / software statistics –OS information Test ID T-R-1-4

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different OS information stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show the OS from all systems in the DB and group them under different
groups.
Data to be shown:

 OS grouped under:

Windows 7 64 bit

Windows 7 32 bit

Windows Vista 64 bit

Windows Vista 32 bit

Windows XP 64 bit

Windows XP 32 bit

Project FHaSS Test Specification 2012

Page 64 of 194

Unknown

Test date: 14.03.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for GPU.
3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 13.03.2011
Errors: {Encountered errors}

Outcome {What happened?}

Name Display hardware / software statistics –Direct X information Test ID T-R-1-5

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contain accurate information about the
different Direct X information stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show the Direct X from all systems in the DB and group them under
different groups.
Data to be shown:

 Direct X grouped under:

Direct X 11.1

Direct X 11.0

Direct X 10.1

Direct X 10.0

Direct X 9.0c

Unknown

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for GPU.
3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

Project FHaSS Test Specification 2012

Page 65 of 194

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 16.03.2011
Errors: {Encountered errors}

Outcome {What happened?}

Name Display hardware / software evolution charts Test ID T-R-2

Requirement ID: A-F-2

Test description: Test to see if evolution charts are created and to see if the contained
information is accurate against the test data set.

Test date: 02.05.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the evolution charts are to be produced
with basis upon.

2. Choose to get to see one of the possible evolution charts; CPU, GPU,
CPU cores, or Windows OS version and DirectX version.

3. Wait for the chart to load.
4. Do as exact a comparison between the manually calculated data and the

chart. The chart shall be compared to the manually calculated data at
five (5) times/points with equal distance between them. The first and
the last times/points are the same values that was put in at stage 1 of
this test, which will be the start and end of the chart lines.

5. The percentages displayed in proximity to the chart are compared to the
manually calculated percentages for the last time/point the chart is
describing.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the chart seems to display similar values to those who have been
calculated manually for each of the five points/times of the chart.

 That the percentages displayed in proximity to the chart based on the
test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Name Filter statistics Test ID T-R-3-1

Requirement ID: A-F-3

Test description: Test to see if the different filter combinations are working correctly.

 Test each filter by itself. That is for instance putting in values for the
time period filter only, leaving the other filters with null value/the

Project FHaSS Test Specification 2012

Page 66 of 194

standard value.

 Test with all filters set.

The filter values that will be beneficial to put in will depend on the data set. For
instance should both values that are represented in the data set and values that
are not represented in it (say for instance a specific Funcom game) be filtered
upon. For the time period filter both the whole period which the test data set is
describing, and only parts of it, and also with time periods where the to and
from limits are stretched further into time or farther back in time than the test
data set describes.

Test date: 23.05.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the filter combination to be tested.
2. Wait for the web-page containing the filtered statistics to load.
3. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for each of the tested
filter combinations.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Name Filter statistics user interface test Test ID T-R-3-2

Requirement ID: A-F-3

Test description: Test is run after T-R-3-1.
Test to see if the user interface for the filter statistics option is working correctly.

 Check if game server filter is available when a specific Funcom game is
selected and unavailable when a game isn’t selected.

Test date: 24.05.2012 Tester: Kent Brian Dreyer

Testing method: User interface test, Black box

Test approach: 1. Set all filter options blank/null.
2. Check if game server filter is unavailable.
3. Choose one of the available Funcom games as a filter.
4. Check if game server filter is available.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 Game server filter works as explained in the test description.

Project FHaSS Test Specification 2012

Page 67 of 194

Test creator: Kim Richard Johansen 09.01.2012
Errors: {Encountered errors}

Outcome {What happened?}

Name Filter statistics – game filter Test ID T-R-3-3

Requirement ID: A-F-3

Test description: Test to see if the game filter combinations are working correctly.

 Test if results after filtering show Funcom games and entries for each of
them.

Test date: 02.02.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Start the filter combination to be tested.
2. Wait for the web-page containing the filtered statistics to load.
3. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 31.01.2011
Errors: {Encountered errors}

Outcome {What happened?}

Name Filter statistics – server filter Test ID T-R-3-4

Requirement ID: A-F-3

Test description: Test to see if the server filter combinations are working correctly.

 Test if results after filtering show Funcom servers and entries for each of
them.

Test date: 26.02.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Start the filter combination to be tested.
2. Wait for the web-page containing the filtered statistics to load.
3. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter

Project FHaSS Test Specification 2012

Page 68 of 194

combination.

Test creator: Kim Richard Johansen 31.01.2012
Errors: {Encountered errors}

Outcome {What happened?}

Name Filter statistics – time period filter Test ID T-R-3-5

Requirement ID: A-F-3

Test description: Test to see if the time filter combinations are working correctly.

 Test if the data shown on the website corresponds to the manually
calculated results after setting a time filter.

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Set the filter combination to be tested.
2. Wait for the web-page containing the filtered statistics to load.
3. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 24.04.2012
Errors: {Encountered errors}

Outcome {What happened?}

Name Filter statistics – geographical location filter Test ID T-R-3-6

Requirement ID: A-F-3

Test description: Test to see if the geographical location filter combinations are working correctly.

It should be possible to choose between continent and country as a filtering
option.
COS: That the data shown after choosing a continent or country corresponds to
the manually calculated results.

Continents to be able to choose from:

North America

South America

Antarctica

Africa

Europe

Asia

Project FHaSS Test Specification 2012

Page 69 of 194

Australia

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Set the filter combination to be tested.
2. Wait for the web-page containing the filtered statistics to load.
3. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 24.04.2012
Errors: {Encountered errors}

Outcome {What happened?}

Name Hardware type management and grouping Test ID T-R-4-1

Requirement ID: A-F-5

Test description: Test to see if the hardware from the bug reports is grouped correctly under
general hardware types and that it shows the correct percentage for each of
them based on the total.

This test will also contain:

 Test if registered but unrecognized hardware is grouped in the
unrecognized category and shows the right percentage.

Test date: 22.05.2012 Tester: Sverre C. Thune

Testing method: Function test, black box

Test approach:

1. Get the statistics page. Print out, write down, etc., the groups and their
respective percentages.

2. Compare the group percentages to percentages manually calculated
from the test data set.

Test criteria

 Database and website is up and running.

 There has to be one or more currently registered but not recognized
hardware types.

 Test data set has been made and inserted into database

Expected results

 That the system produced percentages is the same as the manually
calculated ones.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Project FHaSS Test Specification 2012

Page 70 of 194

Name Hardware type management and grouping –new hw type Test ID T-R-4-2

Requirement ID: A-F-4 and A-F-5

Test description: Test is run after T-R-4-1
Create a new general hardware type and choose which type of hardware it
should contain from the unrecognized hardware group.

Test date: 22.05.2012 Tester: Sverre C. Thune

Testing method: Function test, black box

Test approach:

1. Get the statistics page. Print out, write down, etc., the groups and their
respective percentages.

2. Create a new general hardware type of one of the possible categories;
CPU, Graphics Card, or Windows OS.

3. Choose group one/some/all of the registered but not recognized
hardware types under the newly created general hardware type.

4. Get the updated statistics page. Print out, write down, etc., the groups
and their respective percentages.

5. Compare the new group percentages to percentages produced before
adding the hardware type(s) to the new general hardware type (step 1).

6. Compare results the group percentages whit percentages manually
calculated from the test data set.

Test criteria

 Database and website is up and running.

 There has to be one or more currently registered but not recognized
hardware types.

 Test data set has been made and inserted into database

Expected results

 That the system produced percentages is the same as the manually
calculated ones. That is, both the basis statistics page (step 1) and the
updated statistics page (step 4) contain the same percentages as the
manually calculated percentages for the two instances of the general
hardware type grouping.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Name Display software statistics Test ID T-R-5

Requirement ID: B-F-2

Test description: Test to see if the tables are created and contain the same percentage value as
manually calculated from the test data set about the different software stored in
the database.

Test date: 14.04.2012 Tester: Sverre C. Thune

Testing method: Function test, black box

Test approach:

1. Load the web-page containing the software statistics.
2. Compare the calculated percentages to the manually calculated

percentages.

Test criteria Database and website is up and running.

Project FHaSS Test Specification 2012

Page 71 of 194

 Test data set has been made and inserted into database

Expected results

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Name Future hardware prediction Test ID T-R-6

Requirement ID: C-F-1

Test description: Test to see if an extension of requirement A-F-2 works. The extension is to
predict the future trend of hardware usage for the players of Funcom games.
When the chart for requirement A-F-2 is shown it will be possible to toggle the
prediction on and off. The prediction will extend the current lines for hardware
evolution in the chart and predict the future evolution.

Test date: 22.05.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach:

1. Put in the amount of time into the future the system is to predict the
hardware evolution for.

2. Load the web-page containing one of the possible charts containing
future hardware prediction.

3. Toggle the chart to display the future hardware prediction chart lines if
toggled off.

4. Check that the hardware evolution prediction lines are proportional.
5. Compare the updated percentages in proximity to the chart to the

manually calculated percentages. This stage corresponds to testing the
last time/point on the chart to the manually calculated percentages for
the whole test data set for the whole time period put in (1).

Test criteria

 Database and website is up and running.

 Test data set has been made and inserted into database

Expected results

 That the hardware evolution prediction lines are proportional.

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: {Encountered errors}

Outcome {What happened?}

Project FHaSS Test Specification 2012

Page 72 of 194

47.3 Verification tests

47.3.1 Code Review

All developed code shall be reviewed by another person than the one who developed it. The

organization of code reviews will be as follows: The code developer notifies the Test Manager, Kim R.

Johansen, when the code development has been completed. It is then up to the Test Manager to

delegate the task of reviewing the code to another team member. The review shall result in a code

review feedback document for the code developer to examine. The feedback document shall consist

of comments and suggestions for improvements of the overall code or parts of the code. Code parts

shall be identified using line numbers. It is up to the code developer to consider whether or not the

comments and/or suggestions shall be taken into account/implemented. Both part can, and shall,

request a short meeting/discussion when disagreements arise about the developed code. A third

part can be brought into the meeting/discussion to further investigate the code.

47.3.2 Code Compilation

It is up to each code developer to ensure that the code he has produced compiles without errors or

warnings. It is natural that compilation will be attempted regularly throughout the code development

process and that the source of eventual errors/warnings is corrected before resuming the code

development. This is to ensure that faults in the code are fixed as early in the development process

as possible, which in turn will save development time because of the exponential growth of time

needed to fix errors as development continues.

47.3.3 Debugging

Debugging will be used in two ways:

1. To identify the problem area(s) of the code when compilation of the code fails. This will help

the developer to fix the error/warning to make the code compile without faults.

2. In the case that any of the verification tests fails there will be one or more logical errors in

the code that the corresponding test(s) are testing. Debugging can be used to identify these

errors by going through the code step by step and examining the values of the variables in

the code.

47.3.4 User Interface Testing

When the user interface for our system has been designed, user interface tests can be created to

ensure that the user interface behaves the way it is supposed to. These tests will be made and

carried through when the user interface corresponding to the specific test has been designed and

implemented.

47.3.5 Ad Hoc test

The Ad Hoc test is a test we will be done late in our project when most of our grade A requirements

are completed and tested. This test is done without any formal test plan and the purpose of this test

is to try and “break” the system by trying different system functionality. Since the purpose is to try

and “break” the system, negative testing is allowed. Negative testing means that the tester can try to

find not intended functionality that may “break” the system.

Project FHaSS Test Specification 2012

Page 73 of 194

47.3.6 Strain test

The Strain test is a test that will be done when all our A grade requirement are completed and

successfully tested. We will insert variable amounts of bug reports over a length time to ensure that

the system can handle the pressure and still be operational by our client under the two second load

time they wanted for their website. The bug reports will be created beforehand of the test and the

results will be manually calculated to check up against the data from the website after the test. This

is to ensure that the data from the bug reports did not get corrupted due to high work load the

system encounters.

47.3.7 Regression test

Regression tests will be done after code alteration of previous tested functions or when new

functions have been added to the system. This test is to ensure that previously successful tests still

give the same results.

47.3.8 Performance test

This test is about measuring the performance of the system (e.g. the time it takes for the website to

load/show results as charts or tables with information from the database).This test will be done

regularly to ensure that a new functionality or code alteration keeps the loading times under two

seconds as the client wants.

48 Sources

 http://en.wikipedia.org/wiki/Test_plan(Last visited 15.12.2011)

 http://en.wikipedia.org/wiki/Test_case(Last visited 15.12.2011)

 RIVET test specification (HIBU Kongsberg library)

 Dragonfly test specification (HIBU Kongsberg library)

http://en.wikipedia.org/wiki/Test_plan
http://en.wikipedia.org/wiki/Test_case

Funcom Hardware Statistics System

Project Plan

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

20.03.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor AurillaAurelieArntzen

SondreBjerkerud External supervisor Rui M. Monteiro Casais

Group members

............................
SondreBjerkerud

............................
SverreChristoffer Thune

............................
Kim Richard Johansen

............................
Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Project Plan 2012

Page 75 of 194

Project Plan

49 General Document Information

Deliverable nr D2.1.3

Deliverable type Research

Release Public

Work package WP2

Responsible SondreBjerkerud

49.1 Declaration of intention

The intention of this document is to give the reader insight into what the project group is supposed
to do at which times throughout the project period, at a reasonable abstraction level. The plan is
supposed to work as a guideline for the team in the project period and the project progress shall be
measured against it. The plan can eventually be updated if it becomes obvious that it won’t be
possible for the team to follow it. This document will also describe how responsibility areas are
distributed between the team members, as well as give some insight into how the time estimations
were done to produce the project plan. Lastly this document will summarize how the resource
distribution ended up to be per month and for the whole project period.

49.2 Definitions and Acronyms

Product Owner
The stakeholder’s representative when following the
Scrum project model.

JS JavaScript

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

49.3 Document History

Version Description Date

1 First version created. Time estimations done
and Gantt diagram made.

16.12.2011

2 Project document layout adopted.
Resources, responsibility areas, and

requirements breakdown sections added.

04.01.2012

3 Modified section Personnel under the main
section Resources. Added section “Remake
of the Requirement breakdown” under the
main section “Requirement breakdown”.

Added section “Remake of the Gantt
diagram” under the section “Gantt diagram”.

19.03.2012

4 Added “Activity description” and “Actual
resource usage” sections under the

28.05.2012

Project FHaSS Project Plan 2012

Page 76 of 194

“Resources” section. Also added “Milestones
accomplishment” section under “Milestones”

section.

50 Table of contents
49 General Document Information .. 75

49.1 Declaration of intention .. 75

49.2 Definitions and Acronyms ... 75

49.3 Document History ... 75

50 Table of contents ... 76

51 Resources .. 78

51.1 Personnel ... 78

51.2 Hardware ... 78

51.3 Software .. 78

51.4 Activity description .. 78

 Meetings & Planning ... 78

 Documentation .. 79

 Research & Set-up ... 79

 Implementation ... 79

 Design .. 79

 Test .. 79

 Presentation .. 79

 Other ... 79

51.5 Actual resource usage ... 80

51.5.1 Per month .. 80

51.5.1.1 September, October, and November .. 80

51.5.1.2 December .. 80

51.5.1.3 January... 80

51.5.1.4 February... 80

51.5.1.5 March... 81

51.5.1.6 April ... 81

51.5.1.7 May .. 81

51.5.1.8 June .. 81

51.5.2 For the whole project period ... 81

Project FHaSS Project Plan 2012

Page 77 of 194

52 Responsibility .. 82

52.1 Fields of responsibility ... 82

52.2 Scrum team responsibilities .. 82

53 Requirements breakdown ... 83

53.1 Remake of the Requirements breakdown .. 83

54 Milestones ... 83

54.1 Milestones accomplishment ... 84

55 Gantt diagram .. 84

55.1 Remake of the Gantt diagram ... 84

56 Conduction .. 85

56.1 Meetings .. 85

56.1.1 Meetings with internal supervisor .. 85

56.1.2 Meetings with external supervisor .. 85

56.1.2.1 Sprint planning meeting .. 85

56.1.2.2 Sprint review meeting ... 85

56.1.2.3 Sprint retrospective meeting ... 85

56.2 Updates to the project plan .. 85

56.3 File repository .. 86

57 Attachments .. 86

Project FHaSS Project Plan 2012

Page 78 of 194

51 Resources
In the following are the different resources that are needed to complete this project. As you will see

there are no resources needed for this project that aren’t available at all times, that is all times that

people are working on the project. Due to this fact there is no need for a resource plan defining

when certain time critical resources can be used by whom/what and so forth.

51.1 Personnel

The project team is the main resource needed to get any project work done at all. The team

members will be working eight (8) hours a day, three days a week until Easter, and five days a week

from the end of Easter until project end. The project team will be having one full week of Easter

vacation.

Take a look at the “Requirements breakdown” document attached to this document to get an

overview of how the amount of work for the project has been estimated.

51.2 Hardware

Each of the members of the project team owns their own portable computer. These will be used for

just about anything regarding the project work; development, project management, web-page

updates, etc. The portable computers are of course available at all times.

51.3 Software

The project team will be using several software applications for the project work:

 GanttProject: Project management

 Microsoft Excel/Google Docs Spreadsheet: Project management

 Visual Paradigm: UML Design

 Visual Studio: Coding

 Perforce: Version control

 Microsoft Word: Documentation

 MySQL: Database

We will also be using several pieces of software that cannot be considered to be applications. The

software are either necessary for the system to work or are required by our client to be used:

 ASP.NET with C#: Programming language& Compiler

 ASP.NET MVC: Web-page framework

 nHibernate: Database abstraction layer

51.4 Activity description

The following is a list of the different activities that the work hours has been categorized in, as well as

a more detailed list of what types of specific activities that belong to each activity.

 Meetings & Planning

o Meetings and preparation for meetings with supervisors and/or sensors as well as

internally in the project team.

o Completion of minutes.

Project FHaSS Project Plan 2012

Page 79 of 194

o Mailing and Skype chatting in conjunction with meetings and/or planning.

o Scrum task breakdown, estimation, and picking.

 Documentation

o Project documentation.

o Wikipages documentation.

o Project documentation research.

 Research & Set-up

o Learning

o Reading

o Lessons

o Installation of software.

o Server set-up.

o Fixing of software problems.

 Implementation

o Coding (C#, C++, JS, HTML, CSS), debugging, building, and test executing new code.

o Uploading files to file repository and resolving file merging issues.

o Code review.

o Bug fixing.

o Stylecop/ReSharper code standard maintenance.

 Design

o UML design.

o UI design.

o Design discussion (verbally and text chat).

 Test

o Conduction

o Preparation

o Logging

 Presentation

o Conduction

o Preparation

 Other

o Deployment to Funcom.

o Test deployment.

o Contracts

o Room ordering.

o Prepare documentation for delivery.

o Etc.

Project FHaSS Project Plan 2012

Page 80 of 194

51.5 Actual resource usage

51.5.1 Per month

51.5.1.1 September, October, and November

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 18,25 10 10 10 10

Documentation 11 8 6 6 10

Research & Set-up 4 2

Implementation

Design

Test

Presentation

Other 4

Total 33,25 18 20 18 20

51.5.1.2 December

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 8 4 2 2 2

Documentation 37,5 31 28 18,5 32

Research & Set-up 1 5 4 3 4,5

Implementation

Design

Test

Presentation

Other 1,5 2 2,5

Total 48 40,5 36 26 39,5

51.5.1.3 January

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 12,75 7,5 7 5 5

Documentation 14,75 8,5 12 38 8

Research & Set-up 49 37 39 25 42

Implementation 10,25 3 8,5

Design 12,5 1 3,5

Test 20

Presentation 20 27 24 19 24

Other 2,75 29 6

Total 109,5 92,5 115 107 97

51.5.1.4 February

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 15 8,75 5 3,5 4

Documentation 0,25 9,5 4 7,5

Research & Set-up 25,25 1 8 2,5 9,5

Implementation 54,75 49,5 61 20 48

Design 10,25 14,5 1 8

Test 30

Presentation

Other 2,75 4 3 2

Project FHaSS Project Plan 2012

Page 81 of 194

Total 108,25 83,25 79 63 79

51.5.1.5 March

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 5 7,5 3,5 3,5 3,5

Documentation 2,5 8 7 10 7

Research & Set-up 1,5 1 1 5

Implementation 88,75 53,5 42 33,5 49,5

Design 2,5 5 0,5 5

Test 12

Presentation 21,5 20 22 21 22

Other 1,5 1 2 0,5

Total 123,25 95 77.5 82 92

51.5.1.6 April

In the month of April the project team had one (1) whole week off from the project to load the

batteries with some Easter vacation.

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 4,75 2,5 1 2

Documentation 0,5 2 1,5

Research & Set-up 12,75 5 8,5

Implementation 44 34,5 51 21 42,5

Design 2 7 1 5

Test 24,5

Presentation

Other 10,25 1 2 1

Total 74,25 47 58 48,5 59,5

51.5.1.7 May

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 8,25 6,5 3 3 3

Documentation 26,75 30 39 31,5 32

Research & Set-up 4 16,5 8,5

Implementation 40,5 54 72.5 52 61,5

Design 7 4 6

Test 1 8

Presentation 6

Other 4,25 18 1 11,5 5

Total 96,75 130 115.5 106 116

51.5.1.8 June

Due to the fact that the final documentation delivery date is set to the 29th of May 2012 there has of

course not been logged any work hours in June at this point. However, the project team has

estimated that each team member will work approximately 40 hours on the “Presentation” activity in

this month.

51.5.2 For the whole project period

The following table is a summary of the monthly tables given in the section “Hour list per month” and

is thereby an hour list for each team member and the team as a whole for the whole project period.

Project FHaSS Project Plan 2012

Page 82 of 194

Activity/Person Sondre Sverre Kent Kim Dag

Meetings & planning 72 46,75 30.5 28 30

Documentation 93,25 97 92 106 98

Research & Set-up 93,5 59,5 61 33,5 78

Implementation 238,25 191,5 229.5 126,5 210

Design 21,75 43 2 1,5 28

Test 0 1 0 94,5 0

Presentation 87,5 87 86 80 86

Other 27 20,5 40 18,5 14

Total 633,25 546,25 541 490,5 543

Total number of work hours for the whole project

52 Responsibility

52.1 Fields of responsibility

SondreBjerkerud

 Project Management (until 7.05.2012)

 ScrumMaster

Dag Hem

 Quality Assurance

 Risk

Kent B. Dreyer

 Implementation

 Web-page

Sverre C. Thune

 Project Management (from 7.05.2012)

 Design

Kim R. Johansen

 Test

52.2 Scrum team responsibilities

Following the Scrum project model a project team will be doing a standard meeting before each

sprint (iteration). In this sprint startup meeting the team will together with the Product Owner (the

stakeholders representative) decide which user stories (requirements) to implement in the following

sprint. All the user stories agreed upon goes into the Sprint Backlog where they are broken down into

tasks. It is then up to the team members to pick the tasks they would like to do in the following

sprint.

In our project team we have somewhat clearly defined fields of responsibility as given in the section

“Fields of responsibility”. These responsibilities will be the basis for task picking in the sprint startup

meeting. For instance Sverre will mainly pick designing tasks, while Kent will mainly pick

implementation tasks.

In the case when there will be an overweight of tasks relating to the fields of responsibility of only a

part of the team, the other members will “help” the responsible persons by picking tasks from their

Project FHaSS Project Plan 2012

Page 83 of 194

field of responsibility. However, the person with the field of responsibility relating to that task will

have the head responsibility of the task, independently of who is actually doing it. For instance can

Dag be implementing some functionality of the system, but it is still Kent - who has implementation

as one of his fields of responsibility - who will be the person responsible for that task being done and

done properly.

53 Requirements breakdown
To get an idea of what has to be done to manage to implement the functionality that the

requirements are describing, we had to break down the requirements into tasks. These tasks had to

be specific enough for us to be able to give a good estimate of the work required to do them, but

also general enough so they could be used as the basis of a project plan. Too specific task definitions

would also be way too time consuming to produce and would probably not improve the time

estimates because of the lack of experience we’ve got in this specific technical area.

There is a document attached to this project plan called “Requirements breakdown”. In that

document the requirements breakdown lists and the time estimations for each task that was used as

a basis for the project plan is given.

53.1 Remake of the Requirements breakdown

Closely related to the remake of the Gantt diagram (see section 6: Gantt diagram) is the remake of

the Requirements breakdown. This breakdown is now estimating the time usage for implementing

the User Stories in the Product Backlog instead of the requirements in the Requirements

Specification.

For the user stories in the Product Backlog following the “Time Period Filter” it is still hard to make

good time estimates for. We will therefore be keeping the time estimates for this portion of the

Product Backlog as they were with the 1st version of the Project Plan. The portion of user stories

following the “Time Period Filter” is basically the same functionality that the requirements “Display

hardware/software statistics”, “Display Software Statistics”, and “Future Hardware Prediction”, are

describing. Therefore the time estimate for this portion of functionality is the same, but with the new

version of course distributing the time between the user stories. The distribution has been done

following our experience and intuition.

54 Milestones
Milestones functions as intermediate goals for the project work and will help the project manager

with the task of knowing whether or not the project work is going according to the plan. When

milestones are reached, can and should, the project team gather and celebrate that the goal has

been achieved to strengthen the mentality and focus of the team members for the upcoming work

period against the next milestone.

The following will list the milestones and their respective dates that the project team will work

towards:

1. The 1st presentation (13.01.2012)

2. Release/Deployment: High Priority Requirements (19.03.2012)

Project FHaSS Project Plan 2012

Page 84 of 194

3. The 2nd presentation (22.03.2012)

4. Release/Deployment: Middle Priority Requirements (5.05.2012)

5. Release/Deployment: Final release (19.05.2012)

6. The 3rd and final presentation (06.06.2012)

After each of the release/deployment milestones the system that we are producing will be deployed

at the office in Oslo of our client Funcom and be taken into use by their employees.

54.1 Milestones accomplishment

Both the first project presentation milestones (1 and 3) were accomplished as expected.

Before the 1st project presentation the project team worked hard to be able to reach the first

release/deployment milestone (2), but unfortunately more and more unforeseen problems appeared

and the team realized that the milestone was not completeable at that point. However, after the 1st

presentation, the team continued the work to get the 1st version of FhaSS deployed to the Funcom

severs. Again, unfortunately, more and more problems occured, and the team had to rebuild large

portions of the system. Due to this development/test deployment period the second

release/deployment milestone was just more or less accomplished; The team managed to get a

version of the system deployed, but it was not completely functional and did not have all of the

middle priority requirements implemented. In essence the second release/deployment milestone

was also not accomplished.

The final release milestone (5) on the other side is considered as accomplished. The project team did

their last deployment to the Funcom servers on the 10th and 11th of May. However, the Funcom

employees that also served as supervisors for the project team throughout the project period has at

later dates done deployments to their own server, with some or none assistance from the project

team. Some of these deployments has happened after the set milestone date of 19th of May, but the

project team consider their last major deployment as the final deployment, and therefore consider

this milestone as accomplished.

The sixth (6.) and last milestone date is yet to come, but the project team is on schedule wioth regard

to the preparations for the 3rd and final project presentation.

55 Gantt diagram
In the attachment “Gantt diagram” of this document the Gantt diagram for the project periodis

displayed. The Gantt diagram lists the requirements to be implemented and when the work on them

should start and be finished. All the presentations are added to this diagram as well. The milestones

“High Priority Requirements” and “Middle Priority Requirements” are displayed only as the end of

their corresponding work packages.

55.1 Remake of the Gantt diagram

The first version of the Gantt diagram was based on the requirements in the Requirements

Specification. Because some of those requirements include the functionality described in several user

stories we found it hard to decide whether or not a specific requirement was completed or not. We

decided of this reason to remake the Gantt diagram (31.01.2012) to instead be based on the User

Project FHaSS Project Plan 2012

Page 85 of 194

Stories in the Product Backlog. This decision and remake has proven itself very useful as it is now a

lot easier to gauge the progress of the project with regard to the diagram.

56 Conduction

56.1 Meetings

56.1.1 Meetings with internal supervisor

Meetings between the project team and the internal supervisor AurillaAurelieArntzen will occur on a

regular basis throughout the project period. Each week, on the same day and time of the week, a

follow-up meeting will be held between the two parts. A follow-up document is to be delivered to

the internal supervisor at last 24 hours before the start of this meeting. The contents of these

meetings will be a review of the follow-up document and other project related subjects that are of

interest to/that should be discussed with, the internal supervisor.

56.1.2 Meetings with external supervisor

Following the Scrum project model the project team and the Product Owner shall arrange meetings

before and after each sprint. All of the three following types of meetings will generally be held as one

single meeting, separated into three parts, at the start of a new sprint. That means there will only be

a sprint planning meeting at the start of the first sprint.

56.1.2.1 Sprint planning meeting

The purpose of this meeting is to decide on which user stories/requirements or which parts of them

the project team shall be working on in the following sprint. It is mainly up to the Product Owner to

decide which user stories/requirements the team shall focus on, but it is solely up to the team

themselves to accept what to actually do. The amount of work the team accepts in this meeting shall

and will be expected to be finished at the end of the sprint.

56.1.2.2 Sprint review meeting

The purpose of this meeting is for the project team to show off to the Product Owner what has been

developed in the past sprint. The newly produced functionality shall either be accepted or denied by

the Product Owner, or eventually form the basis for an eventual changes in the Product Backlog.

56.1.2.3 Sprint retrospective meeting

The purpose of this meeting is for the project team to discuss what went well and what went not so

well in the past sprint. The conduction of such a discussion is supposed to improve the effectiveness

and efficiency of the work of the project team.

56.2 Updates to the project plan

The Gantt diagram will typically be updated, if needed, after each sprint (every second week). The

work velocity of the project team is very uncertain at this point, but estimates will probably improve

drastically after just a few sprints, as well as the speed itself. The same goes for the requirements

implementation time estimates. The result is that the project plan will probably have to be updated

often, reflecting both a new work velocity estimate and the new requirements implementation time

estimates.

Project FHaSS Project Plan 2012

Page 86 of 194

56.3 File repository

The project team will be using two types of file repositories in this project:

1. Dropbox will be used for storing and sharing documentation and planning files.

2. Perforce is the versioning software that will be used to handle versioning and storage of files

containing code. That is system specific files.

57 Attachments

 Requirements breakdown

 Gantt diagram

Risk Analysis Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

29.05.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla AurelieArntzen

Dag Hem External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Funcom Hardware Statistics System

Project FHaSS Risk Analysis Document 2012

Page 88 of 194

Risk Analysis Document

58 General Document Information

Deliverable nr: D2.2.3

Deliverable type: Guidelines

Release: Public

Workpackage: WP2

Responsible: Dag Hem

58.1 Declaration of intention

The intention behind this document is to give its reader a quick understanding of what risks are and

how to handle them properly so that we are better equipped when a risk strikes. This document will

also list most known and large risk along with a small description of the risks consequence and a

possible solution. By reading, understanding and using this document we will be more aware of the

overhanging risks we face during this project and also how to avoid, or even solve them if they

occurred. It is this documents main intention to lower the chances of risks happening, and help us

handle them as quickly as possible when they occur.

The assessments that are made in this document are meant to guide the project group through hard

choices regarding activities, priorities, strategic choices of solutions and project management.

58.2 Definitions and acronyms

Impact The damage caused to our project. (Often in form of time-
loss)

API Application Programming Interface

NDA Non-Disclosure Agreement

TSW The Secret World

ID Identity

Crash When a program unexpectedly stops running

Browser Internet browser

MVC Model View Controller (.Net standard)

PM Project Manager

N/A Not applicable

WCF Windows Communication Foundation

58.3 Document history

Version Description Date

1 First version created 1.12.2011

1.5 Peer reviewed 14.12.2011

2 Supervisor reviewed 10.01.2012

Project FHaSS Risk Analysis Document 2012

Page 89 of 194

2.5 Correcting risks 20.03.2012

3 Finalized document 21.05.2012

3.5 Document reviewed 25.05.2012

59 Table of contents
58 General Document Information .. 88

58.1 Declaration of intention .. 88

58.2 Definitions and acronyms .. 88

58.3 Document history .. 88

59 Table of contents ... 89

60 Risk analysis ... 90

60.1 Risk handling .. 90

60.2 Risk table template .. 90

61 Risks ... 91

61.1 Requirements related risks ... 92

61.2 Technical risks .. 93

61.3 Human risks ... 94

61.4 Other risks ... 97

62 Occurred risks .. 98

62.1 Requirement related ... 98

62.2 Technical .. 98

62.3 Human ... 99

62.4 Other ... 100

Project FHaSS Risk Analysis Document 2012

Page 90 of 194

60 Risk analysis

60.1 Risk handling

Risks are a large part of project management, and as the project grows larger, so does the amount of

risks we are going face. As this is a small-scale project with only a handful of developers we do not

expect to be overwhelmed by many risky decisions but it is nevertheless important to have a basic

knowledge of the risks we are up against, and how to handle them in the best possible manner.

The understanding of risk revolves around two main problems; what are the chances of us running

into this risk and how much threat does this risk pose to our project?

These two questions can be summarized in two words: probability and impact, and the product of

these two become the total severity involved with a given risk. The following graph shows the

connection between probability and impact.

Fig 1: Risk probability matrix

The hard part about risk management is to detect large risks that may occur during the development

of a project and identify these properly. If a risk can be foreseen and understood before it has the

possibility to occur, we stand a much better chance at making the right decision when we know the

gravity and seriousness of our choice.

If a new risk is found, and it is believed to be a viable threat to our project its will be brought to the

risk manager for further research. If a risk is deemed dangerous enough the risk manager will analyze

the risk in an effort to learn more about its nature, these are the most important subjects:

 The consequence of the risk – Time setback, data loss or other

 How to prevent the risk – If any measures can and should be taken to avoid this risk

 Finding a possible solution – If the risk have occurred and if it has any simple solutions

60.2 Risk table template

As risks are found and identified they are put in a basic risk table and categorized in the list of risks.

A risks ID is written R[Category number] – [ID] in order to minimize clutter as we add and edit risks

Project FHaSS Risk Analysis Document 2012

Page 91 of 194

during the course of this project.

Every risk will be given a unique risk ID which can be referenced to from other documents in the

project if this is needed; the risks are also given an evaluation of their probability and impact (See fig

2 below).

R[Cat]-[ID]: [Risk name]

Probability: [The chance of occurrence] Impact: [The impact of the risk]

Description(If
needed):

[A short description/clarification of the risk. Only if needed]

Consequence: [A short description of the consequence of this risk occurring]

Prevention: [A short guideline on how to prevent this risk from occurring]

Possible
solution(If any):

[If there is a simple solution to a risk that has occurred, it should be explained
here]

Fig 2: Color-coded chart describing the total severity of probability and impact.

61 Risks
Here is a list over all known and identified risks, placed into several categories.

Project requirements related risks:

 Any A-requirement not met

 Any B-requirement not met

 Any C-requirement not met

Technical & System risks:

 ASP.net or C# programming language difficulties

 Loss of data

 Slow web-page loading times

Project FHaSS Risk Analysis Document 2012

Page 92 of 194

 Bad internal server performance

 Personal computer problems

 Web-page not viewed correctly by different internet browsers

Human risks:

 Broken NDA

 Miscommunication

 Lack of knowledge

 Teammate is unavailable of an extended amount of time

 Solution disagreement

 Internal conflicts

 Disencouragement and workload

 Major project changes/additions

 Change of supervisor

 Change of project manager

Other risks:

 Acquisition of computer hardware

61.1 Requirements related risks

R1-1: Any A-Requirement (functional & non-functional) not working

Probability: Very unlikely Impact: Catastrophic

Description:

Functional A requirements: Display statistics table & evolution charts, filter
statistics, hardware type management and hardware grouping.
Non-functional: Programming language, MVC, Database
type/connection/access, loading times, wiki documentation, BugZilla interface,
windows service

Consequence:
Failing one or more A-requirements means our system will not be satisfactory
for our clients use and will lack crucial functions.

Prevention:
Planning ahead and keeping to the project plan and delivery dates. Detect any
abnormalities early on and deal with them.

R1-2: Any B-Requirement not working

Probability: Unlikely Impact: Major

Description: B requirements: Display additional hardware, network and software statistics

Consequence:
By being unable to meet any B-requirement in time we are failing to meet a
secondary requirement set by the client resulting in a sub-optimal system.

Prevention:
Keeping to the schedule and deal with abnormalities early will give us the
needed time to develop and finish this feature.

R1-3: Any C-Requirement not working

Project FHaSS Risk Analysis Document 2012

Page 93 of 194

Probability: Unlikely Impact: Moderate

Description: C requirements: Future hardware evolution prediction

Consequence:
By being unable to meet any C-requirement in time we are failing to meet a
tertiary requirement set by the client resulting in a still functional system, but it
will be lacking a highly desired functionality.

Prevention:
Keeping to the schedule and deal with abnormalities early will give us the
needed time to develop and finish this feature.

61.2 Technical risks

R2-1: ASP.Net, nHibernate or C# difficulties

Probability: Unlikely Impact: Major

Description:
Since we are using a new programming language as well as a new programming
standard, some trouble is to be expected. Can be caused by lacking
understanding, API or documentation.

Consequence:
By using too much time learning the language, our development timetable may
be affected.

Prevention:
A proper study done in the Programming Language document. Spending
personal time getting used to the language if personal level is below your peers.

R2-2: Data loss

Probability: Unlikely Impact: Moderate

Consequence: May cost us varying amounts of time loss to restore the system.

Prevention:
Keeping backup versions of documents manually, using version verifying
software, securing personal computer with backup systems.

Possible
solution:

If data is lost and cannot be regained, the quickest solution would be for the
project member losing the data to reproduce it as quickly as possible. We also
rely heavily on version verifying software.

R2-3: Slow web-page loading times

Probability: Unlikely Impact: Major

Description:
The user experiences that his browser uses a long time loading the hardware
crash statistics web page. May be due to web-page programming or slow
database connection.

Consequence:
It may be undesirable for the user to even use our new system due to long
loading time.

Prevention:

Having a good understanding of ASP.Net and C# and good programming ethics
will help reuse of code, no memory leaks, low memory usage and flexible yet
robust code. Can be prevented by optimizing system & cleaning code after
testing.

Possiblesolution: If this problem is persistent after several iterations and there is enough time, it

Project FHaSS Risk Analysis Document 2012

Page 94 of 194

might be advisable to either take a closer look and restructure the architecture,
or optimize the code.

R2-4: Bad internal server performance

Probability: Unlikely Impact: Major

Description:
If the internal server does not have enough resources to handle our parser and
all its received data, it may slow down or even experience crashes.

Consequence:
It may hinder the admittance of new data into the database and in a worst case
situation slow down, or even break the database-connection to the user’s web
page.

Prevention:

Enough system resources on the internal server to handle all the processing
(Should be discovered during testing).
Optimized parser-coding and web-page towards fewer and smaller data-
connections.

Possible
solution:

Optimized parser-coding and web-page towards fewer and smaller data-
connections.
Either upgrade current server, or switch to a new one if the problem persists
after several iterations with testing.

R2-5: Personal Computer problems

Probability: Moderate Impact: Minor

Description:
One of the projects member’s laptop breaks down, leaving him without a
workstation at the school/other locations.

Consequence:
Affected person will be unable to work outside of his home for the duration of
the problem. Might hinder communication and workflow with other project
members.

Prevention:
Backup personal data, keep your system up to date, and check your
warranty/guarantee.

Possible
solution:

We may be able to borrow workstations from both the school and our client.

R2-6: System not viewed correctly by different internet browsers

Probability: Likely Impact: Minor

Description:
As different internet browsers handle html code differently there may be
discrepancies between how the page is viewed on the different browsers.

Consequence: Minor visual glitches or lack of data on unsupported browsers.

Prevention:
Writing structured and robust code will always help program stability. By testing
our system up against different types of browsers and using code checking
software we should be able to detect any malfunctioning browser.

Possible
solution:

A workaround solution would be to use a specific browser desired by the user.

61.3 Human risks

Project FHaSS Risk Analysis Document 2012

Page 95 of 194

R3-1: Broken NDA / Leaked data

Probability: Very unlikely Impact: Moderate

Description:
If one of our project group’s members breaks our written NDA by disclosing
information about FunCom’s current system and their upcoming game: The
Secret World.

Consequence:
Project member will be unable to work for FunCom anymore, not wanted on the
project group for breaking our trust.

Prevention:
Keeping both our physical and digital information away from prying eyes by using
password protected systems and common sense. Not discussing, or “leak”
information about TSW to outsiders.

Possible
solution:

We may be able to change the projects scope in order to accommodate the
missing group member.

R3-2: Miscommunication

Probability: Unlikely Impact: Moderate

Description:
Problems often arise from misunderstandings and miscommunication between
people; we would like to minimize these.

Consequence:
The consequence may vary depending on the matter and the misunderstanding.
The impact ranges from missing a workday and undesired design to extra work.
All resulting in lost time.

Prevention:

The user requirements and our product backlog prevent any misunderstandings
towards the project requirements. Minutes from meetings helps us minimize the
chance of misinterpreting the new information. Skype chatting with both our
client and internal supervisor can help clear up misunderstandings quickly.
Weekly meeting with our internal supervisor as well as daily internal meetings
within the group.

R3-3: Lack of knowledge

Probability: Likely Impact: Moderate

Description:

By lack of knowledge it is meant both your personal coding skill and your general
understanding of the system we are creating.
A lack of knowledge may hamper our teams work pace considerably.
This is considered a likely probability due to the fact that we will use ASP.Net and
C# as none of us is familiar with it.

Consequence:

Beyond the slow work pace when working with an unfamiliar language you may
also experience a morale decrease. Another consequence is our project plans
may be written on the wrong basis if we have a shallow knowledge of the
current system.

Prevention:

It is each person’s own responsibility to keep their coding skill at an acceptable
level. To avoid misunderstandings around the system, we should use both our
internal and external supervisors to help us gain a better understanding of what
we’re doing.

R3-4: Group member is unavailable for an extended amount of time

Probability: Very unlikely Impact: Moderate

Description:
There are outside forces that may affect our ability to work, such as long term
illness and jail time amongst others.

Project FHaSS Risk Analysis Document 2012

Page 96 of 194

Consequence:
This will leave the rest of the group with more work, while we may not be able to
shorten down the project scope. The impact depends on the amount of time the
missing member is unable to work.

Prevention:
It is not always possible to foresee or prevent this from occurring, but keeping
healthy and abiding the law is a good start.

Possible
solution:

Some possible solutions could be to either change project scope, getting an
outside workforce or reuse some of the old system.

R3-5: Project related disagreement

Probability: Likely Impact: Minor

Description:

Many of the choices in a large project is often planned months ahead, or
extensively researched if we are unsecure about how to proceed. We may,
however, still come across small issues that need to be resolved quickly between
us.

Consequence:
The consequence will be minor, because of all the larger issues are already
resolved. A conflict like this may take time if the parties does not seek out to find
new information, or fail to reach an agreement.

Prevention:
Many of these disagreements can be avoided by assigning a responsible person
for a certain task and letting them decide.

Possible
solution:

If the parties fail to resolve the issue quickly, they could either take their
argument to an objective team member, or if it seems fitting, ask our
supervisors.

R3-6: Internal Conflicts

Probability: Unlikely Impact: Moderate

Description:
Most people working closely together for an extended period of time are prone
to internal conflicts. Internal conflicts are personal issues between two parties.

Consequence:
Depending on the issue the impact may range between a team member having
to work at home for a short time to relax away from the group, or removing
them from the group permanently.

Prevention:
Celebrate achievements together, discussing your issues with other people in a
grown-up constructing way and have teambuilding sessions.

Possible
solution:

If an internal conflict occurs it is important to know that you can still keep things
at a professional level between co-workers and not necessarily dragging personal
feelings into the workplace.

R3-7: Disencouragement and workload

Probability: Unlikely Impact: Minor

Description:

It is easy to lose morale and be discouraged if you put a lot of work on yourself
for an extended period of time, this may cause burnout. But on the other hand it
is quite easy to deliver uncompleted work and miss deadlines if you take your
work too lightly.

Consequence:

If a member of our group experiences burnout during the course of this project
and renders himself discouraged from working we as a group need to use time
and energy nursing our member into working normally.
By taking our work too lightly, we risk missing deadlines and delivering sub-par
products.

Project FHaSS Risk Analysis Document 2012

Page 97 of 194

Prevention:
Discussing your workload with the project leader, teambuilding and celebrating
achievements.

R3-8: Major project changes/additions

Probability: Likely Impact: Moderate

Description: If it is necessary to make major additions or changes to the project.

Consequence:
The consequences may vary depending on the addition, but in large cases where
new systems should be implemented it may mean an extra set of documentation
in addition to the actual system development.

Prevention:
There isn’t much one can do, except having close communication with our client
and supervisors to get an insight to their future plans.

Possible
solution:

If a major addition is added, the project leader should perhaps develop several
different strategies for handling this additional problem and discussing the best
solution with the project team or supervisors.

R3-9: Change of Supervisor

Probability: Very unlikely Impact: Moderate

Description:
The risk of having to change either the internal or external supervisor because of
illness, change of job, complications or other reasons.

Consequence:
Having to change a supervisor will both be time-consuming and slowing down
our project due to spending time replacing and briefing the new supervisor.

Possible
solution:

We could rely more on our other supervisor during a transition phase.

R3-10: Change of Project Manager

Probability: Very unlikely Impact: Major

Description:
The risk of having to change the current project manager and reinstate another
project member.

Consequence:

A change of Project Manager would cost us a large amount of time to reinstate
another project member. It would also severely decrease the morale of the
affected member as well as the other members of the group. Loss of knowledge
/ routines.

Prevention:
Clear communication with the other project members as well as the client and
any supervisors so that any problem or issue may be solved through constructive
criticism instead of a sudden change as the easiest solution.

Possible
solution:

The team must go together and to coordinate the PM change

61.4 Other risks

R4-1: Acquisition of computer hardware

Probability: Very unlikely Impact: Moderate

Project FHaSS Risk Analysis Document 2012

Page 98 of 194

Description:
To run and test our system we have the need for an internal server hosting our
software.

Consequence:
If there are no servers available to us we will be unable to test the system in a
proper and realistic environment.

Prevention:
Research if either the school or our client can offer/lend us the necessary
hardware.

Possible
solution:

We could test the system exclusively on our own systems, test the system at
Funcom’s location or acquire our own personal hardware.

R4-2: Relocation of offices / hosting

Probability: Unlikely Impact: Minor

Description: If we for some reason have to relocate our equipment.

Consequence:
Relocating would cause both a time-loss and other possible
software/network/firewall issues.

Prevention:
A thorough discussion with the possible parties that can accommodate us such
as HiBu or Funcom to establish whether or not they can meet our requirements.

Possible
solution:

If we are unable to find a suitable office we may have to work at one of the
project member’s house. If we are unable to find a suitable hosting solution for
our internal sever, we might be able to set it up in one of the project member’s
apartments.

62 Occurred risks

62.1 Requirement related

R1-1 A single A-Requirement: BugZilla not implemented

Sprint recognized: N/A Severity: None

Description:
It was an early request made by our client, that our system should use their
current BugZilla to post error reports.

Consequence /
Solution:

With agreement with our client, we decided to implement our own.

62.2 Technical

R2-4: Bad internal server performance

Sprint recognized: Sprint nr 3 Severity: Moderate

Description:
As we fetched more and more data from our database, we recognized a steadily
increased load time for the site as data grew due to un-optimized code.

Consequence /
Solution:

We have done several updates, both to the client-side fetching and to database
optimization through parsing & grouping.

Project FHaSS Risk Analysis Document 2012

Page 99 of 194

R2-4: Bad internal server performance

Sprint recognized: Sprint nr 9 Severity: Minor

Description:
Our system required more and more information from the database as the
system evolved thus slowing down loading-times further.

Consequence /
Solution:

We came up with a caching solution together with our external supervisors in
order to greatly reduce loading times for a limited time span. The consequence
for this was a large rewrite of our fetching mechanisms (basically some time
loss).

R2-2: Data-loss / Setback

Sprint recognized: Sprint nr 7 Severity: Moderate

Description:
Due to inexperience with our version verifying software (Perforce) one of the
project members inadvertently set an earlier version of the project as the
current one, overwriting several updated files.

Consequence /
Solution:

After a heroic effort from several team members we were able to restore the
system. Moderate amount of time-loss.

R2-5: Personal Computer Problem

Sprint recognized: Sprint nr 6 & 8 Severity: Minor

Description:
At the first occurrence, a laptop charger broke. Second time a team member lost
their charger.

Consequence /
Solution:

In both occurrences the affected member had to work from home a small
amount of time before fixing / acquiring new chargers.

R2-6: System is not viewed the same on different browsers

Sprint recognized: Sprint nr 3 Severity: Minor

Description:
Discovered some minor visual glitches on the page when using different
browsers.

Consequence /
Solution:

Changed some deprecated css usage while agreeing with the client on to
optimize towards a specific browser while maintaining functionality in other
browsers.

R2-1: Bad API/Documentation for nHibernate

Sprint recognized: n/a Severity: Moderate

Description:
nHibernate became an integral part of our system and we lacked the necessary
experience to use and understand it correctly.

Consequence /
Solution:

More time spent learning the software than anticipated. Relied heavily on
external supervisor’s support. Designs were a bit off.

62.3 Human

R3-3: Lack of knowledge

Sprint recognized: n/a Severity Moderate

Project FHaSS Risk Analysis Document 2012

Page 100 of 194

Description:
The nature of the project required us to take use of some programming
languages and standards we were inexperienced with, such as C#, the .Net MVC,
WCF services and nHibernate.

Consequence /
Solution:

These challenges did create some small issues during the course of our project.
In the early stage, our inexperience made our analysis and designs somewhat
faulty. The consequence was iterations on the system as our experience grew.
In the middle stages we might “run into a wall” when we failed to properly grasp
a specific concept and loose some morale. The consequence was to switch tasks
and support each other when needed; work might have been a bit slower than
optimal.
In the later stages of the project we recognized that some people became a bit
more specialized in a certain area the more they worked on it. The consequence
became that we could get “tunnel vision” by focusing purely on our own areas
loosing perspective.

R3-10: Change of Project Manager

Sprint recognized: Sprint nr 8 Severity: Major

Description:
At the beginning of our 8th sprint, our supervisors and sensors decided to change
the Project Manager due to some minor misunderstanding between the PM and
our client.

Consequence /
Solution:

The transition between PM’s went very good but we still lost a lot of sorely
needed management expertise the original PM had. The consequence for this
was a severely decreased morale across the board.

62.4 Other

R4-2: Relocation of internal server

Sprint recognized: Sprint nr 1 Severity: Minor

Description:
During our set-up sprint, the IT-Department at HiBu was unable to get our
internal server through their firewall in time.

Consequence /
Solution:

We had to relocate the internal server to avoid additional downtime. We
relocated it to our project manager’s apartment.

Funcom Hardware Statistics System

Project Model Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

10.01.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Sondre Bjerkerud External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................
Sverre Christoffer Thune

............................
Kim Richard Johansen

............................
Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Project Model Document 2012

Page 102 of 194

Project Model Documents

1 General Document Information

Deliverable nr: D2.3.1

Deliverable type: Research

Release: Public

Work package: WP2

Responsible: Sondre Bjerkerud

1.1 Declaration of intention

This document will explain several project models that our team has considered working according

to, as well as a conclusion discussing which model we believe will fit our project the best and why.

1.2 Definitions and Acronyms

UP Unified process

XP Extreme programming

1.3 Document History

Version Description Date

1.0 First version created 19.12.2011

1.1 Peer reviewed. Document
template adopted.

10.01.2011

Project FHaSS Project Model Document 2012

Page 103 of 194

2 Table of contents
1 General Document Information .. 102

1.1 Declaration of intention .. 102

1.2 Definitions and Acronyms ... 102

1.3 Document History ... 102

2 Table of contents ... 103

3 Unified Process .. 104

3.1 Inception .. 104

3.2 Elaboration .. 104

3.3 Construction .. 104

3.4 Transition ... 104

4 Scrum ... 104

5 Extreme Programming .. 105

6 Conclusion ... 105

Project FHaSS Project Model Document 2012

Page 104 of 194

3 Unified Process
The Unified Process (UP) is an iterative and incremental development process. UP is supposed to

work in close collaboration with the Unified Modeling Language (UML). A Use Case Diagram is used

for requirements capturing. In each iteration the project team is developing a set of use cases

entirely, that is all the way from requirements capturing to deployment. When using UP the team is

supposed to address all possible risks as early as possible, both in the overall project period, and in

each iteration.

The Unified Process consists of four major phases; Inception, Elaboration, Construction and

Transition. Within each phase – especially in the three latter ones – it is common to work in

iterations.

3.1 Inception

In this phase the project team is focusing on making major decisions for the work to come in the later

phases. The scope of the project is established and the use cases are outlined as well as one or

several potential system architectures. It is also in this phase that the major risk analysis is done and

the project management is setting up a preliminary project plan as well as a cost estimate.

3.2 Elaboration

In the elaboration phase the work done in the inception phase is elaborated upon, with the primary

goal being to address the risk factors and to establish and validate the system architecture. The

architecture must be validated to ensure that it is possible to implement the major system

requirements, which are also captured in this phase. A final deliverable is supposed to be a plan for

the construction phase.

3.3 Construction

The project team will in this phase be building the complete system upon the foundation that came

out of the Elaboration phase. This phase is the largest of the four and will be divided into a series of

time boxed iterations.

3.4 Transition

In this phase the system is deployed at the user’s location and feedback is gathered for a future

system update. User training and conversion is also included in this phase.

4 Scrum
Scrum is one of several so-called agile software development methodologies which aims to be

flexible throughout the whole project period regarding changes in requirements. They also aim to

reduce the risk of the stakeholders by developing a part of the final system completely in each

iteration.

Scrum represents requirements in terms of user stories. User stories are small stories that describes

a specific thing that the system should do for a specific user, and if found necessary, why this is. User

stories are added and prioritized throughout the project period by the Product Owner, that is the

person that the stakeholders has decided that will represent them towards the Project Team, and are

stored in a Product Backlog.

Project FHaSS Project Model Document 2012

Page 105 of 194

A project team working by the Scrum model is divided into several smaller teams consisting of about

ten people at max. Teams work in time boxed iterations of one to four weeks called sprints where

each team is supposed to completely develop one vertical slice of the final project. Before every

sprint each team picks user stories from the Product Backlog that they commit to fulfill in the

upcoming sprint in a sprint planning meeting. After each sprint the workflow and problem areas are

discussed in a sprint evaluation meeting meant to improve the cooperation and effectiveness of the

team. A so-called daily scrum meeting is a short meeting held each day in a sprint to ensure that the

team is on track against their sprint goal and to let potential problems be discovered. Several sprints

can be gathered and called a release. In the end of a release the developed software will be polished

even more than after each sprint and potentially be shown off for the stakeholders or others.

In each team there is one ScrumMaster. The ScrumMaster’s primary role is to address all problems

that arise that can influence the optimal progress of the team and potentially result in the team not

reaching their sprint goal(s). The ScrumMaster is not supposed to be a developer.

5 Extreme Programming
Extreme programming (XP), as the name hints, is a project model that takes programming to the

extreme. That is to take all the beneficial elements of traditional software development to the

extreme, on the theory that more is better. XP, like Scrum, is a project model of the agile family, and

there are of this reason many similarities between the two.

XP is arranged around four basic activities; Listening, Designing, Implementing, and Testing. Listening

is the activity of listening to the customer and produce a list of requirements which in turn the

Designing, Implementing, and Testing activities, are supposed to accomplish.

With XP the team is working in short iterations, typically one week, and like Scrum also defines

certain releases that is a set of iterations and where the result is a more polished version of the

system developed so far. At the start of an iteration and/or a release a so-called Planning Game is

done by the team accompanied by the client. At this meeting user requirements, in the form of user

stories, are developed and the team is committing to complete a set, or subset, of them in the next

iteration/release. Throughout the iteration/sprint the stakeholders can adjust the plan by adding,

removing or editing requirements.

XP is known for its practice of Pair Programming where two people is programming on the same

computer together. That is one who is writing the actual code and the other who is ensuring

correctness of the code, and both taking part in the discussion of how to code. XP is also known for

its frequent and in-depth testing throughout the development period.

6 Conclusion
There are mainly two forces pulling on us in a direction of which project model to use, so the decision

is not actually one of the group to make.

Høgskolen I Buskerud (HiBU) requires of us to deliver certain documents at certain points in the

project period. Many of the documents are typical deliverables in the standard Unified Process pre-

face (Inception and Elaboration phases), but are documents that not usually are produced when

Project FHaSS Project Model Document 2012

Page 106 of 194

following the agile models Scrum or Extreme Programming. The agile models are a lot more straight

to the point of development, whereas UP is starting up with a thorough pre-face before the actual

development starts. So, in one way our school requires of us to more or less follow the practices of

UP, which isn’t a factor we can influence.

On the other side we’ve got our client Funcom. Game development companies in general have the

last years more and more converted their workflow towards agile practices. This goes for Funcom as

well, working by their own modified version of Scrum. Of this simple reason Funcom urged us to use

Scrum as our project model.

When the UP type of requirements are already set from the school there isn’t much that the project

model choice is actually influencing. Even though we will try to take the practices of Scrum to the

largest extent as possible – both because of the urge from Funcom but also because it seems to be

the most appropriate model to work by for this project; given the team composition, the fluid

requirements, and the good easy-to-understand and clearly defined structure of the Scrum model –

this will probably at most influence the day-to-day workflow of the project, as well as maybe some

per-iteration planning. We will also be adopting the short iterations of only one week that are usually

the case when working by XP. The reason for this is that is gives the team more frequent chances of

steering the development process, more frequent - and thereby more improvements of - time

estimation for planning purposes, and more frequent evaluation of the development process for the

purpose of improving the team’s practices. All as a result of more frequent sprint planning and sprint

evaluation meetings. It is however possible that the lengths of the sprints will be increased to two

weeks after the initial couple of sprints, if we feel that this is more practical. In the start of the main

project period we will only be working three days a week on the project and one full week of work (5

days a week) almost equals two weeks of three days a week. Therefore sprints will start out to be of

two weeks length.

As a sum-up we can say that we will be following a combination of all three of the described project

models; the preface in accordance to the Unified Process, the day-to-day workflow and practices in

accordance to Scrum, but incorporating the short iterations common for XP.

Funcom Hardware Statistics System

IDE Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

10.01.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Kent Brian Dreyer External supervisor Rui M. MonteiroCasais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS IDE-document 2011

Page 108 of 194

IDE-document

7 General Document Information

Deliverable nr: D2.4.1

Deliverable type: Research

Release: Public

Workpackage: 2

Responsible: Kent Brian Dreyer

7.1 Declaration of intention

The purpose of this document is to review available IDE options and clearly define which IDE will be
most beneficial for us to use for this project, so that the team works with a standardized tool.

7.2 Definitions and Acronyms

IDE Integrated Developer Environment

VS Visual Studio

OS Operating System

7.3 Document History

Version Description Date

1 First version created 15.12.2011

2 Document template added
Information reviewed and

updated

10.01.2012

Project FHaSS IDE-document 2011

Page 109 of 194

8 Table of contents
7 General Document Information .. 108

7.1 Declaration of intention .. 108

7.2 Definitions and Acronyms ... 108

7.3 Document History ... 108

8 Table of contents ... 109

9 Introduction ... 110

9.1 Visual Studio 2010 Ultimate .. 110

9.2 #Develop .. 111

9.3 MonoDevelop .. 111

10 Conclusion ... 111

11 References ... 111

Project FHaSS IDE-document 2011

Page 110 of 194

9 Introduction

C# is an official Microsoft computer language and its native IDE is Visual Studio, also
developed by Microsoft. There are also a few other good IDE’s for C# development, but very
few presents all the features and content that we require for our project.

In a sense, the other IDE’s will be matched against VS, since it is generally considered the
natural choice for C# and the .NET framework.

9.1 Visual Studio 2010 Ultimate

Visual Studio is Microsoft’s own IDE for development in C# with .NET framework. The
licensing for this IDE is not free, but via the e-Academy agreement with our school we have
the possibility to get this license free of charge.

VS is a large software and thus will require more processing power to run than the other
IDE’s reviewed in this document. This also means that we will be in a safer position later in
the implementation phase that we have access to required IDE functionality for our project.

Benefits Drawback

 Code Snippet Manager(auto
generation of code)

 Database Designer Tools

 Web Forms Designer

 Superior auto-complete with
Visual Studio IntelliSense

 Custom debugger visualizers

 Native IDE

 Large software

 Reports that VS handles certain
functionality suboptimal or buggy

 Reported file cache problems

 No edit and Continue functionality

Project FHaSS IDE-document 2011

Page 111 of 194

9.2 #Develop

#Develop (SharpDevelop) is an IDE for Microsoft's C# with .NET platform. It is open-source
and free.

#Develop is a lighter software to run than VS, which can be an important factor in the long
run, working with it. The later stable releases of #develop is considered good enough by the
community to compete with VS, but is really regarded as a free option to VS if you are on a
budget. The fact that it is open source doesn’t concern us as we will not spend time
modifying the functionality of the IDE.

Benefits Drawback

 Fast and responsive

 Builds projects faster than other
IDE’s

 Shortcut keys aren’t customizable

 No edit and Continue functionality

9.3 MonoDevelop

MonoDevelop is another free alternative to VS and it is cross-platform, meaning we can use
the same environment to develop on Windows, Mac OS X and Linux. In this project we will
exclusively develop on Windows OS for Windows OS so advantages and drawbacks will not
be listed as this IDE is severely lacking in the feature department, and is not considered a
viable option for us.

10 Conclusion

For this project we will use Visual Studio 2010 Ultimate because of the best integration with

the intended language. It has most features, including debugger, extensive auto-complete

and features we might need in later phases of the implementation.

The sheer size of the IDE is a minor problem, and should not cause any problem for the

team. As of the reported issues these are considered to unimportant for us to discard VS as

the IDE choice.

11 References
● http://www.icsharpcode.net/opensource/sd/(Last visited 13.12.2011)

● http://community.sharpdevelop.net/blogs/mattward/pages/VisualStudioExpressComparison

.aspx(Last visited 13.12.2011)

● http://blog.codebeside.org/post/2011/04/19/replacing-visual-studio-2010-with-

sharpdevelop-4-1.aspx(Last visited 15.12.2011)

● http://desipenguin.com/techblog/2009/07/10/why-sharpdevelop-is-better-ide/(Last visited

11.15.2011)

http://www.icsharpcode.net/opensource/sd/
http://community.sharpdevelop.net/blogs/mattward/pages/VisualStudioExpressComparison.aspx
http://community.sharpdevelop.net/blogs/mattward/pages/VisualStudioExpressComparison.aspx
http://blog.codebeside.org/post/2011/04/19/replacing-visual-studio-2010-with-sharpdevelop-4-1.aspx
http://blog.codebeside.org/post/2011/04/19/replacing-visual-studio-2010-with-sharpdevelop-4-1.aspx
http://desipenguin.com/techblog/2009/07/10/why-sharpdevelop-is-better-ide/

Funcom Hardware Statistics System

Quality Assurance Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

29.05.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Dag Hem External supervisor Rui M. MonteiroCasais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Quality Assurance Document 2011

Page 113 of 194

Quality Assurance Document

12 General Document Information

Deliverable nr: D2.5.3

Deliverable type: Guidelines

Release: Public

Workpackage: WP2

Responsible: Dag Hem

12.1 Declaration of intention

This quality assurance document should teach its readers the quality and standard that any of the
project group’s deliverables should uphold to reach the high quality standard needed to satisfy our
client. This document will review the following:

 Group communication and information exchange

 Quality assurance regarding deliverables and documents

 Quality assurance regarding other publications (such as web-blog or posters)

 Code development standard

12.2 Definitions and Acronyms

QA Quality Assurance

NDA Non-disclosure agreement

MSN Microsoft Network (Messenger)

WP Workpackage

e.g. Exemplī grātiā (for example)

FHaSS FunCom Hardware Statistics System

12.3 Document History

Version Description Date

1 First version created 20.12.2011

1.5 Peer reviewed 15.03.2012

2 Updated 19.03.2012

3 Document finalization 29.05.2012

3.5 Document reviewed 28.05.2012

Project FHaSS Quality Assurance Document 2011

Page 114 of 194

13 Table of contents
12 General Document Information .. 113

12.1 Declaration of intention .. 113

12.2 Definitions and Acronyms ... 113

12.3 Document History ... 113

13 Table of contents ... 114

14 Introduction ... 116

15 Communication and Information Exchange .. 116

15.1 Communication ... 116

15.1.1 E-mail guidelines.. 116

15.1.2 Regular supervisor meetings ... 116

15.1.3 Group communication ... 117

15.2 Information Exchange (File sharing) .. 117

15.2.1 Project files folder (Dropbox) .. 117

16 Deliverable guidelines ... 117

16.1 Deliverable distribution ... 117

16.1.1 Deliverable list ... 118

16.1.2 Naming convention ... 118

16.1.3 File formats .. 118

16.2 Deliverable quality process ... 118

16.2.1 Document creation and Structure ... 119

16.2.2 Timelines ... 119

16.2.2.1 Timeliness & exceptions .. 119

16.2.3 Pre-completion process ... 119

16.2.4 Reviewing a deliverable ... 120

17 Other publications and releases .. 120

17.1 Notice of meeting, Agenda and Minutes guidelines ... 121

17.1.1 Notice of meeting & Agendas.. 121

17.1.2 Minutes .. 121

18 Coding standards and plugins ... 121

18.1 Coding guidelines .. 121

18.1.1 Naming conventions .. 121

18.1.2 VAR vs. specified type ... 121

18.1.3 LINQ usage ... 121

Project FHaSS Quality Assurance Document 2011

Page 115 of 194

18.2 Versioning Control - Perforce .. 122

18.3 Plugins ... 122

18.3.1 StyleCop ... 122

18.3.2 ReSharper .. 122

19 References ... 123

Project FHaSS Quality Assurance Document 2011

Page 116 of 194

14 Introduction
As our group consists of persons from very different backgrounds we therefore have many different

views on document layout, document and code quality, timeliness, communication and information

exchange. This gives us the need for a collected set of rules and guidelines so that we are all on the

same level regarding document, code and communication standards.

To ensure the highest possible quality in all our written forms (Deliverables, documents, code syntax

and other publications) every member of the project group shall read and apply the rules discussed

in this document to their work.

15 Communication and Information Exchange
This section is divided into two parts and contains information regarding the communication flow

and information exchange between the members of the project group, the supervisors and our

client.

The communications section handles how the group will communicate with others and what

communication channels that are used while the information exchange section handles the

management of digital files such as deliverables & documents, source files and other project files.

15.1 Communication

15.1.1 E-mail guidelines

E-mail is our main communication channel to both our supervisors and our client and will mainly be

used for:

 Announcing completed documents that are ready for comment and review

 Announcing up-coming deadlines to our project members

 Administrating meetings (More information below)

 Notifications about large project changes or changes to the product backlog

While we use E-mail to announce documents that are to be reviewed (or that the review is

completed), it is encouraged that comments and changes is added to the document using the built in

office tool (See point16.2.4Reviewing a deliverable). If any large changes are to be made it should be

announced via email to the parties involved.

15.1.2 Regular supervisor meetings

The project group will hold regular meetings with one or more of our supervisors approximately once

a week. This meeting may be held in personor via teleconference.

The participants should be given approximately 1 day notification email ahead of the meeting to give

them the opportunity to reschedule. The meeting agenda should also be sent to all participants at

least one day before the meeting as well as being placed in our Meetings/Notices and Agendas folder

(See section15.2.1Project files folder (Dropbox)and section17.1Notice of meeting, Agenda and

Minutes guidelines).

Project FHaSS Quality Assurance Document 2011

Page 117 of 194

There should always be a secretary present to take minutes of the meeting that should be edited and

distributed to all participants within one workday as well as being placed in our Meeting/Minutes

folder.

Meeting topics may vary in scope, but will at a minimum, contain the following:

 Project updates on all completed work (Since last meeting) or work in progress.

 Questions from the team to the supervisor(s).

 Work to be done until the next meeting.

 Topics for the next meeting.

 Any conflicts/problems the supervisor should be aware of.

The meeting is always started and closed by the meeting leader; the meeting leader may alternate or

change depending on the meeting.

15.1.3 Group communication

The project group will use additional communication means (such as Skype and MSN) between each

other for faster and easier communication, however, any major item or news should be announced

via email to all affected parties.

15.2 Information Exchange (File sharing)

15.2.1 Project files folder (Dropbox)

The project group will be using a collaboration tool called Dropbox to store and share all our project

related files. Dropbox gives us easy access to all our files wherever we are, as well as synchronizing

them to the latest version.

Only the project members and our supervisors will be given access to our Dropbox files.

16 Deliverable guidelines
This section covers the structure, layout and routines of the group’s deliverables; it also defines the

quality process and timelines that any group member should follow.

16.1 Deliverable distribution

Deliverable distribution between members of the project group will usually happen using an ad-hoc

communications channel and as a benefit of using the Dropbox file sharing system we will always be

able to reach our documents on our workstations. Any completed deliverable should be moved from

its temporary folder to the “Deliverables” folder and then to the correct Workpackage.

Distributing a deliverable to either supervisor requires that the document has been completed and

reviewed by a fellow project member (See section16.2.3Pre-completion process) before delivering

the document either by e-mail, cd/dvd or a paper copy.

If a deliverable is to be delivered in paper format it should be printed out in color and stapled

together at the top-left corner, also review the document and check if any page-layout errors are

visible.

Project FHaSS Quality Assurance Document 2011

Page 118 of 194

16.1.1 Deliverable list

An updated list off all deliverables and their respective delivery date is found in our Gantt-diagram

which all project members and supervisors have access to.

16.1.2 Naming convention

Any completed deliverable should be named after the following format:

D[Workpackage nr] . [Deliverable nr] . [Version] [Document name]

(Ex: D2.5.1 Quality Assurance Document)

Where:

Field Content

[Workpackage nr] The workpackage the deliverable belongs in.

[Deliverable nr] The deliverables number.

[Version]
Starts with1
Minor changes add 0.5 to the version number.
If it has gone through major changes or review it is increased by 1

[Document name] The entire name of the document

All the information needed is to be found in the project Gantt diagram where all the documents are

listed.

16.1.3 File formats

Any new deliverable should be created from the pre-formatted template (See section

16.2.1Document creation and Structure) and will therefore be of the Microsoft Office 2007(or later)

Word format .DOCX.

After a document have been reviewed (See section 16.2.3Pre-completion process) and completed it

should be converted to the Adobe.PDF format.

16.2 Deliverable quality process

A deliverable is a document which will be passed to the sensors and supervisors both in electronic

and paper form for extensive reviewing; it is therefore of the upmost importance that any

deliverable holds the highest standard possible. The quality process is a guideline to make sure the

deliverable meets the minimum of requirements, the quality process consists of:

 Having the correct document structure (Introduction, Content, Summary)

 Making sure all technical references are correct and valid

 Any comparison to other work in the field is adequate

 Following the document template

 Correcting any typographical errors such as spelling and sentence structure

 Using correct cross-references if you are referencing something within the same document

In addition, the process is also intended to ensure that every contributor to the deliverable ensures

that their submission adequately reflects their intention.

Project FHaSS Quality Assurance Document 2011

Page 119 of 194

16.2.1 Document creation and Structure

Any new deliverable is to be created from the document template foundin “../Temporary”.

This template contains the modified styles that are changed according to this projects color and

layout, such as numbered headers, different theme colors and general structure examples.

A newly created deliverable or document that is yet to be completed should be placed in either the

“../Temporary” folder or any personal folder.

Most deliverables should contain the most basic of content to keep the wanted document structure:

 A front page

 A general document information page

 A table of contents

 An introduction relative to the technical field the deliverable is about

 A summary or conclusion(Where applicable)

 A list of references and sources (Where applicable)

Beyond this, any deliverable should be neatly structured for easy navigation using the correct

headers and sub-headers.

16.2.2 Timelines

A document should be completed by its original authors at least 2 workdays before the planned

completion date, before it is given to another project member for a peer review(See section

16.2.3Pre-completion process).

The peer review should be done at least 2 workdays before the delivery deadline and mailed to the

internal supervisor by the original author for a final review.

16.2.2.1 Timeliness & exceptions

It is each author’s own responsibility to ensure the on-time completion of their deliverable, and also

their responsibility to make sure that each review step is completed on time. The project manager

should, however, still keep track of each author’s progress and give them a notification if it is

believed that their deliverable should take longer than planned.

If a project member feels that their given time will not be enough to complete the deliverable they

should discuss this with the project manager.

16.2.3 Pre-completion process

Completed 1st version:

When a document or deliverable is nearing completion its author should take his time to do a

complete self-assessment review before deeming it completeand place it in the

“Deliverables/*Correct WP+/” folder.

After a deliverable is considered completed by its author it should be reviewed by a suitable peer

within the project group, this individual should ideally be:

 Knowledgeable about the subject

Project FHaSS Quality Assurance Document 2011

Page 120 of 194

 Not a co-author of the document

 Have the time to perform a thorough review

Completed peer review:

After the peer has reviewed the document according to the QA specifications (See section

16.2.4Reviewing a deliverable)he should update the deliverables versionand notify the original

author.

After the original author reviews and accept any changes made by his peer he should place a backup

version of the document under the “Deliverables/*Correct WP+/Old Versions” folder before sending

it for a final review to our internal supervisor.

Completed supervisor review:

When the internal supervisor has reviewed the document and either applied changes or added

comments the original author should go through these and make the appropriate adjustments to the

deliverable and updating the document version. After the corrections have been made, the author

should update the documents version.

16.2.4 Reviewing a deliverable

To make sure the reviewing process is performed optimally one should always follow these

guidelines:

 Fix faulty typography(spell check, punctuation, etc.) and grammar

 Be critic about what you read (mark statements that lack proper citation)

 Optimize the document structure/layout if possible

 Make updates to the document if the document template has been changed

 Add comments and notes where needed.

 Use the “Track Changes” function of Microsoft Office Word

 Update all document references (To files, headings or web pages)

The reviewer should fix any minor errors if possible, but it is the author’s job to be aware of and

possibly improve any area commented by the reviewer.

17 Other publications and releases
In addition to formal deliverables the project group may from time to time publish material that does

not count as a document and may even be open for public viewing; therefore certain guidelines have

been created to keep any of our publications at a professional level with the same high quality

standard one would find in our deliverables.

Any official project group document shall follow the given document guidelines to the extent

necessary and work closely with the quality assurance manager in order to create new guidelines and

templates if needed.

If any member of the project group is planning to create a publication or release information under

the project group’s name they must notify the other members of the group regarding the planned

publication and provide the opportunity to both perform a quality check of a reasonable length and

gain the approval of the project member’s that the publication is bearing the project group’s name.

Project FHaSS Quality Assurance Document 2011

Page 121 of 194

17.1 Notice of meeting, Agenda and Minutes guidelines

17.1.1 Notice of meeting & Agendas

Any notice of meeting and agenda should be created using the Notice of Meeting Template found in

“../Meetings/Notices and Agendas/”.

17.1.2 Minutes

Any minute from a meeting should be created using the Minutes template (“../Meetings/Minutes”),

and one should also refer to the Minutes writing guidelines(“../Meetings/Minutes/”) for further

assistance.

18 Coding standards and plugins
Because every member of the project group has taken the same classes during their bachelor it is

natural that their “way of coding” (coding standard) resembles each other’s to some degree, but we

are still in the need of some external tools and predetermined set of rules to make sure we deliver

code with a high standard and a clear conformitythroughout the project.

The project group will not be weighted down by a large list of specific rules, but rather take use of

plugins that are tweaked for our specific needs and a small set of guidelines set by this document.

18.1 Coding guidelines

18.1.1 Naming conventions

It is the project group’s intention that our code is easily readable and understandable by external

viewers.

CamelCase: The project group will take use of “CamelCase” on variables, methods and classes. The

initial letter is lower case on variables, while methods and classes use upper case on initial letters.

(E.g. variable “gpuModelDictionary” and method “RefreshCache”)

Descriptive naming: Every variable, method and class name should be descriptive of their respective

purpose without creating unnecessary confusion.

18.1.2 VAR vs. specified type

In many situations it is faster to use a non-specified variable type, but it more often than not

complicates code for a reader. A non-specified variable type should mostly be used where the

variable has a simple and specific usage (e.g. the int i in a for-loop).

18.1.3 LINQ usage

LINQ may sometimes be used to refactor/simplify certain (for/foreach) loops in our code but it

should be noted that LINQ is somewhat hard to read and understand for people with little previous

knowledge of the system. Only use LINQ where it would be an improvement to the code, and

comment it properly.

file:///D:/Dropbox/HovedProsjekt/Meetings/Notices%20and%20agendas/Notice%20of%20meeting%20template.docx
file:///D:/Dropbox/HovedProsjekt/Meetings/Minutes/Minutes%20template.docx
file:///D:/Dropbox/HovedProsjekt/Meetings/Minutes/Minutes%20writing%20guidelines.docx

Project FHaSS Quality Assurance Document 2011

Page 122 of 194

18.2 Versioning Control - Perforce

Perforce is a piece of version control software to help the project members share and merge their

additions to the project in fast and simple manner. Perforce keeps the latest deployment/version of

the system on its depot while each team member must “check out” any files they wish to edit and

make additions to. After changes have been made, the team member uploads their addition to the

project back into the depot.

Any member should only upload files that contain changes to the original file. They should also get

the latest revision (if any) from the depot and thoroughly test this with their own version of the

project. If everything works after merging with the latest deployment on the depot, the user should

write a description explaining the changes they have done and the necessary precautions other users

should be aware of (such as schema changes or getting acquainted with the new functionality).

After submitting a new build of the project, it is advised that at least one other project member

immediately test this new version to uncover any bugs that might appear due to discrepancies

between their versions (if any).

18.3 Plugins

Each student in the project group can and should take use of two additional plugins at their own

leisure to help them conform to the set standards.

Each student is responsible for their own licenses.

18.3.1 StyleCop

StyleCop is an open source code analysis tool that helps us use the correct standards when it comes

to code naming, readability, ordering, spacing, maintainability and layout amongst others. ReSharper

helps us maintain our code standards and thereby keep the code as easy to read and structured as

possible without hampering implementation.

We have implemented Funcom’s StyleCop rules into our own add-ons to make sure our codefollows

our client’s standard.

Each student using StyleCop is advised to take use of the configuration filelocated in

“../Other/Settings.StyleCop”

18.3.2 ReSharper

ReSharper is a refactoring and productivity extension used to point out bad programming practices

and better solutions to our code. It is a tool that helps us with hints, errors and warnings to make

sure our code is as quick and clean as possible.

We have implemented Funcom’s ReSharper rules into our own add-ons to make sure our code

follows our client’s standard.

Each student using ReSharper is advised to use theconfiguration filelocated in

“../Other/ReSharper_CodeStyleSettings.v6”

Project FHaSS Quality Assurance Document 2011

Page 123 of 194

19 References

 http://blogs.msdn.com/b/sourceanalysis/ (Last visited 24.05.2012)

 http://www.jetbrains.com/resharper/ (Last visited 24.05.2012)

 http://www.perforce.com/ (Last visited 24.05.2012)

 https://www.dropbox.com/home (Last visited 24.05.2012)

http://blogs.msdn.com/b/sourceanalysis/
http://www.jetbrains.com/resharper/
http://www.perforce.com/
https://www.dropbox.com/home

Funcom Hardware Statistics System

Version Control Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

29.05.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Sverre C. Thune External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Version Control Document 2012

Page 125 of 194

Version Control Document

20 General Document Information

Deliverable nr: D2.6.1.1

Deliverable type: Research

Release: Public

Workpackage: 2

Responsible: Sverre C. Thune

20.1 Declaration of intention

The purpose of this document is to decide which version control system is best to use for our project.

20.2 Definitions and Acronyms

Impact The damage caused to our project.

API Application Programming Interface

NDA Non-Disclosure Agreement

TSW The Secret World

ID Identity

IDE Integrated development environment

Crash When a program unexpectedly stops running

P4 Perforce, version control software

SVN Subversion, version control software

Revision A version of a file in the files history

Check out A user checks out a copy of a file from the server which he
can edit

Check in A user checks in an edited copy of a file so the server so the
server has the latest revision

Merge Combine the changes from two users on the same file

User A developer in the team

20.3 Document History

Version Description Date

1 First version created 16.12.2011

1.1 Supervisor suggestions integrated 03.01.2012

1.5 Updates after document review 29.05.2012

Project FHaSS Version Control Document 2012

Page 126 of 194

21 Table of contents
20 General Document Information .. 125

20.1 Declaration of intention .. 125

20.2 Definitions and Acronyms ... 125

20.3 Document History ... 125

21 Table of contents ... 126

22 Introduction ... 127

23 Version Control .. 127

24 Perforce ... 127

25 Subversion ... 128

26 Other Systems ... 129

27 Comparison ... 129

28 Conclusion ... 130

29 Sources .. 130

Project FHaSS Version Control Document 2012

Page 127 of 194

22 Introduction
In this document we will take into account that IDE document (our deliverable about which IDE we

are going to use) concludes that we are going to use Visual Studio 2010 Ultimate to write code. So a

prerequisite for this document is that we are using the Visual Studio 2010 Ultimate IDE and therefore

need a version control system that works well with Visual Studio.

To work simultaneously on the same Visual Studio project we need a version control system. The
purpose of this document is to decide which version control system is best to use for our project.

Certain operations that we need to do will be tested in the different version control systems. This

includes installing the server and client, adding files, checking out files, checking in files, merging

files, viewing changes between revisions and reverting to an older revision.

23 Version Control
Version control is also known as revision control and source control.

A version control system is software that keeps track of the history of your project, including code

files, documents and any other type of file that you want to track. It is also a tool for sharing a project

so that multiple people (a team) can work on the same project (even the same files) simultaneously.

This is done by having a server which hosts the main project, every file that belong to the project is

stored on this server. A user (a developer in the team) can then connect to the server and "check

out" the files he is going to work on. When the user is finished working on the file he needs to "check

in" the files he edited, so that the new revision is stored on the server. When a file is checked in, it

becomes a part of the current revision of the project. Before it is checked in it is just an unfinished

temporary copy of the file.

There are some criteria for checking in files that should be followed. The most important is that the

project should always be able to build on the client before checking in updated files. If you check in a

file that makes the project unable to build, this can lead to everyone working on the project to be not

able to build. Never check in files that does this. Also every check in should have a comment attached

that shortly describes what the changes are.

24 Perforce
Perforce (P4) is a version control system developed by Perforce Software. You can use P4 for free

with either two users and five workspaces or unlimited users but up to 1000 files.

Installing the P4 server is very easy, you only need to download the installation file and run it. You

need to make sure that the clients can connect through the firewall on the server, if there is one. The

P4 GUI client is also as easy to install. When the client is installed you just run it and connect to the

server with the IP address of the server. You also have to create an account to connect, but it is really

fast to do it. Just input a username, if you want, a password, and an email address and you are ready

to connect. You also need to install and set Visual Studio to use the Perforce SCC plug-in.

Setting up a project to use P4 is straightforward. First you create a project and then "add the solution

to source control" in Visual Studio. After that, adding a file to the version control is easy. Just create

Project FHaSS Version Control Document 2012

Page 128 of 194

the file in Visual Studio and it is automatically added to the pending change list. Check in and the new

files are added. To submit changes you are required to add a comment describing what the change is.

This way it is easy to track the history, since you can view the comments of every change submitted.

You can also use the P4 GUI client to add files, which can be useful for adding other types of files

than code to the version control.

If files have been changed by other users, after you refresh your P4 GUI client (by pressing F5) you

will get a notice that there is a new revision. By choosing "get latest revision" you download the

newest changes from the server.

Checking out files can be done either manually through the P4 GUI client or automatically in Visual

Studio just by starting to write in the code file. You can even see if files are checked out by other

users and by whom.

After you are done editing a file (or multiple files) you need to check them in, just like when adding

new files, you then have to submit the change in the "pending" list. As mentioned earlier, to submit

you are required to add a comment describing what the change is. This way it is easy to track the

history, since you can view the comments of every change submitted.

If two different users have checked out the same file and both wants to check them in a conflict

occurs, and it has to be resolved. This can be done be merging the files. P4 has a tool for this, which

works very well. You can view the changes from both of the users and compare them to both the

current revision on the server and the automatically merged file. If you are happy with the result,

accept the merge and re-submit the merged result. You can also edit the merge to your liking.

You can compare different revisions of files by using the "diff" function in the both visual studio and

the P4V GUI client. Changes between the revisions are displayed very well and it is easy to

understand. It is also no problem reverting to an older revision of a file.

Deleting files locally can create problems. You have to delete files with the P4 GUI client so the server

knows. If you delete a file locally, it will not be downloaded again on successive updates because the

server thinks you already have it. If this happens you may need the clean your local copy and

download it again, which can be time consuming. By just making sure to delete files with the P4 GUI

client this problem is avoided.

25 Subversion
Subversion is an open source version control system developed as a project of the Apache Software

Foundation. There are different software that uses this open source project as a basis. For the server

we will test "VisualSVN Server", and for the client we test "AnkhSVN", because these are free and

recommended by multiple people (on stackoverflow.com). Throughout the document "SVN"

(Subversion) will be used to refer to this system.

First we have to install the subversion server "VisualSVN Server". You have to set up users/accounts

on the server which clients can connect with. Then we install "AnkhSVN" on the clients, which is the

plug-in for Visual Studio. The installation process is straightforward and without problems.

Project FHaSS Version Control Document 2012

Page 129 of 194

Setting up a project to use SVN is straightforward. First create a project and then "add the solution to

subversion" in Visual Studio. Commit the changes and it is done. After that, adding files works very

well, just like with P4, you just have to create the file in Visual Studio and it will automatically be

added to your pending change list. Then you just have to commit the change and the file is added.

Checking out files is also very easy, it is completely automatic, just start writing code in the file and it

is checked out. With this plug-in you can’t see if there is someone else who have checked out a file.

Also you cannot see if there is a newer revision of the file on the server, you have to manually check

if you can get a new revision.

Checking in files is also simple, just like with P4. Every file you change is automatically added to a

pending list. Just click "commit" and the files are checked in.

The merging tool works well enough with AnkhSVN. The new code from two users is merged

automatically, but some extra lines are added that show which user that part of the code was from,

these extra lines you will need to remove manually before committing the change. There are also not

simultaneous views to compare the different revisions that you want to merge.

Comparing changes between different revisions in the history of a file is simple. Right-click and

choose view history and then choose two revisions to view the changes. It is simple and easy to use.

There is no problem reverting a file to an older revision.

26 Other Systems
GIT and Mercurial are two other version control systems that could be used. They include similar

features to P4 and SVN, but the server set-up is more complicated than just installing and running it

(command-line seems to be unavoidable). Because the setup is not simple enough, these two

alternatives are discarded and will not be compared or taken into account in the conclusion.

27 Comparison
The installation process for P4 and SVN are both quite easy. You only need to install one plug-in for

each of the version control systems, but by also installing the P4 GUI client you get some extra

features. For example being able to see if there are newer revisions of files on the server just by

pressing refresh (F5) is one of these features that are very useful. With SVN this is not available.

Adding new files, checking out and checking in files in a project are easy with both systems, within

Visual Studio it is done almost identically. You can also use the P4 GUI client.

Both systems have tools to merge a file edited by two different users. The merge tool in P4 works

better than the merge tool in SVN. In P4 you can simultaneously view the current revision on the

server, the two new revisions from the users and the automatically merged version. Changes are

easily done and saved if needed. The tool with SVN works alright, but not as good as P4. The new

code is merged, however some extra lines are added that show which user that part of the code was

from, these you need to remove manually before committing the change. With SVN you also don’t

have the nice simultaneous view of all the revisions.

Project FHaSS Version Control Document 2012

Page 130 of 194

Viewing the changes between revisions of files is easy in both systems, but P4 does have better

graphical representation of the changes. The lines highlighting the changes are linked between the

views for the different revisions.

Reverting to an older revision works well and similarly with both systems.

28 Conclusion
Both systems work very well and include the features we need for our project. However, P4 is the

optimal choice for us, because of the feature to easily view which revision of a file you have

compared to the server, and if other users have checked out files. Also the merge tool in P4 is also

better and easier to use.

A potential problem with P4 is that the free version will only allow 1000 files when working with

more than two users. This is not a problem with SVN, but it is unlikely that our project will contain so

many files, so P4 is still preferred.

29 Sources

 D2.4.1 IDE Document.docx project FHaSS (Last visited 03.01.2012)

 http://stackoverflow.com/questions/157429/what-are-the-benefits-of-using-perforce-

instead-of-subversion (Last visited 16.12.2011)

 http://www.perforce.com/ (Last visited 19.12.2011)

 http://ankhsvn.open.collab.net/ (Last visited 19.12.2011)

 http://stackoverflow.com/questions/453481/what-subversion-plugins-for-visual-studio-are-

there(Last visited 19.12.2011)

 http://johnhforrest.com/2010/09/how-to-subversion-server-for-windows/(Last visited

20.12.2011)

http://stackoverflow.com/questions/157429/what-are-the-benefits-of-using-perforce-instead-of-subversion
http://stackoverflow.com/questions/157429/what-are-the-benefits-of-using-perforce-instead-of-subversion
http://www.perforce.com/
http://ankhsvn.open.collab.net/
http://stackoverflow.com/questions/453481/what-subversion-plugins-for-visual-studio-are-there
http://stackoverflow.com/questions/453481/what-subversion-plugins-for-visual-studio-are-there
http://johnhforrest.com/2010/09/how-to-subversion-server-for-windows/

Funcom Hardware Statistics System

Design Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

28.05.2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Sverre C. Thune External supervisor Rui M. MonteiroCasais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Design Document 2012

Page 132 of 194

Design Document

30 General Document Information

Deliverable nr: D4.1.16

Deliverable type: Report

Release: Public

Workpackage: Independent

Responsible: Sverre C. Thune

30.1 Declaration of intention

The purpose of this document is to present our design for user stories in the sprints. Each section of
the document contains the design for a specific user story or larger overall updates to the design.

30.2 Definitions and Acronyms

FHaSS Funcom Hardware Statistics System

ASP.NET
MVC3

ASP.NET MVC3 is a framework for how code should be
structured using the Model View Controller pattern.

WCF Service Windows Communication Foundation Service

nHibernate A library for accessing a database

UML Unified Modeling Language

OS Operating System

30.3 Document History

Version Description Date

1 First version created 26.01.2012

1.5 Updated class diagram after review and feedback of the document
from Funcom employees Lorenzo Aurea and Hans Birkeland

26.01.2012

2 Game filter design, added database diagram and server filter design 07.02.2012

3 Added design for CPU speed grouping 12.02.2012

4 Added redesign of WCF web service (Sondre).
Added new database and parser design (Sverre)

Added CSS & UI Design (Dag)

15.02.2012

5 Added design for GPU manufacturer and vram 23.02.2012

6 Added design for memory and os 29.02.2012

7 Added Redesign of responsibilities of WCF and Parser, and GPU user
story (Sondre).

01.03.2012

8 Added HWParser Interface design (Dag) 01.03.2012

9 Update design with CPU model 14.03.2012

10 Updates after code review / before first deployment 19.03.2012

11 HighCharts 18.04.2012

Project FHaSS Design Document 2012

Page 133 of 194

Geographical Location (Dag)

12.0 Windows service 24.04.2012

13.0 General model relation search / manufacturer 27.04.2012

14.0 Hard disk information 04.05.2012

15.0 Filter storage and URL, exception handling and logging, caching 09.05.2012

16.0 Final updates after document review 28.05.2012

Project FHaSS Design Document 2012

Page 134 of 194

31 Table of contents
30 General Document Information .. 132

30.1 Declaration of intention .. 132

30.2 Definitions and Acronyms ... 132

30.3 Document History ... 132

31 Table of contents ... 134

32 Introduction ... 135

33 Game filter ... 135

34 CPU Speed grouping .. 137

34.1 The new database ... 139

34.2 The parser .. 139

34.2.1 The Parser interface .. 140

35 Redesign of the WCF web service ... 142

36 Designing the page layout ... 143

37 GPU Manufacturer and VRAM .. 146

38 Memory and OS user stories ... 148

39 Redesigned responsibilities of WCF and Parser .. 151

40 GPU user story ... 152

40.1 Resolution .. 153

41 CPU Model ... 153

42 Updates after code review / before first deployment .. 154

43 HighCharts ... 157

44 Geographical Location ... 157

45 Windows service.. 158

46 General model relation search / manufacturer .. 158

47 Hard disk information .. 159

48 Filter storage and URL ... 160

49 Exception handling and logging ... 160

50 Caching .. 161

51 Conclusion ... 162

Project FHaSS Design Document 2012

Page 135 of 194

32 Introduction
The purpose of this document is to present our design for user stories in the sprints. Each section of
the document contains the design for a specific user story or larger overall updates to the design.
This document will be expanded when we create new designs throughout the project period, so one
can see how the system has evolved. UML diagrams are used to describe the system, so general
knowledge of UML is recommended to fully understand this document.

33 Game filter
Our first objective is to complete the "Game filter" user story. The goal of this user story is to display

how many entries there are per Funcom game in the HW_INFO table.

There is no column in the HW_INFO table that tells us which game the row of information is

connected to. There is however a column called Universe, which stores the name of the universe

(server). We can use the universe name to find out the game. To do this we will create a table that

contains different games and a table that contains the different universesand relations between

these two tables so that when one searches for one specific game it will search through all the

universes connected to that game. Below (figure 1) you can see the tables that will be in the

database.

Figure 1 Database tables

The overall system will contain two applications. The WCF Service Application where the database

queries and calculations will take place, and the ASP.NET MVC3 Application which is the web side

application that displays the information from the database.

The WCF Service Application contains the IReadDataService.cs which is the interface of the service

and the ReadDataService.svc which implements the interface. There are also the mapped classes

which nHibernate uses to communicate with the database tables. Below (figure 2) shows the classes

that will be in the ReadDataService application.

Project FHaSS Design Document 2012

Page 136 of 194

Figure 2 ReadDataService class diagram

By finding the universes that exist in the HW_INFO table, the system won't need to be updated in the

future, as it will automatically detect new universes when they are added to the database. You only

need to set up the new relations between the games and the universes, so that application will take

the new server into account.

The ReadDataService will need a method that updates the Games table with all the distinct games

and a method that updates the Universe table with all the distinct universes. Also a method that

counts how many entries there are per game in the games table, and hold these numbers in a list.

ASP.NET MVC3 Application will have models to get the required information from the service, and

we also need an appropriate controller and a view to finally display the amount of entries. We are

also going to have a model, controller and views to let the user set up new game-to-universe

relations easily through the web interface. Below (figure 3) you can see a figure of these classes.

(The views are not really classes, however it is an important part of the MVC pattern so I decided to

include it here).

Project FHaSS Design Document 2012

Page 137 of 194

Figure 3: Game filter class diagram

The second user story is about the server (universe) filter. It should function like this: the user select

the game, and then a specific server for that game. The view should then display the number of

entries for the specific server for the game. A server is also called a universe, which is the name used

in the database tables. See figure 2 (below) for a activity diagram describing the flow of events in this

user story.

Figure 4: Server filter activity diagram

This user story will mostly use the same classes as the last one. The reason for this is that we already

had the need for retrieving universes in the game filter user story, so most of the logic is already in

place. Some methods will be created or modified in the ReadDataService to reach the desired

information with new queries.

34 CPU Speed grouping
This user story entails showing CPU speeds by brackets starting at 1 GHz and incrementing with

400Mhz per bracket. We want to display both the number of entries within a speed group and the

percentage that speed group is of the total.

Currently the CPU information is stored in the CPU column of the hw_info table. The information

stored is the full line copied from a dxdiag file. This means that there is a lot of extra information

stored, so we need to parse the CPU speed. To do this we will create a few new methods in the

Project FHaSS Design Document 2012

Page 138 of 194

ReadDataService (figure 5). This includes a method to get a list with all the CPU information from the

database, a method to filter the strings and a method to count for the different speed groups.

Figure 5: CPU grouping methods for the ReadDataService

A new model, controller and view (figure 6) also needs to be created so that we have a specific page

that displays the information in this user story.

Figure 6: MVC Classes

After the second iteration it became clear to us that using the original hw_info database table by

parsing the columns for the information we want (for example CPU speed) is very inefficient. The

parsing of strings takes a lot of time so it is impossible to fulfill the performance requirement of max

two seconds load time when searching through large amounts of data. However, if the hardware

information we want is already parsed and stored in a way so that we can directly extract it from the

database, it will go fast. Therefore we are going to create a new database with the exact information

we want, and a parser that will be used to get the information from the original database to the new

one. This is a temporary solution, in the future we will use integrate this into the current system that

Funcom have, replacing the parser they have now instead of having an extra.

Project FHaSS Design Document 2012

Page 139 of 194

34.1 The new database

Figure 7: Database diagram

The new database (figure 7, above) will contain multiple tables, with the main table being the

hardware table. The columns will as mentioned only contain the exact information we want. So the

CPUCores will contain e.g. the integer 4, meaning four CPU cores.

34.2 The parser

Figure 8: HWParser class diagram

The parser will contain the classes in the figure above (figure 8). The stringParser will be a class with

methods to parse a general string based on a start and end keywords. E.g. "@" as start keyword and

"GHz" as end keyword. In some cases the strings stored will need extra checks to be able to find what

we want, as not every string use the same format.

Each of the filter methods in the HWParser will have specific keywords and this way find the desired

result. Depending on if the result returned is text or a number we want to return a string or an

integer, therefore we will need different methods in the stringParser that can return different types.

Project FHaSS Design Document 2012

Page 140 of 194

Figure 9: HWParser sequence diagram

The figure above (figure 9) shows how the parser will work. The RunParser method starts the

sequence. First the GetCPUList method is called, this is going to return all the rows contained in the

CPU column in the original database table (hw_info). This method should use nHibernate to

communicate with the database. Then the FilterCPUList receives the list of strings containing the CPU

information and runs a loop the calls the different filter methods that filters each string in the string

list for the desired information. After a string is filtered the returned values will be inserted into the

new database with the InsertIntoDB method (which will also use nHibernate). The loop continues

filtering each string and inserting the information into the new database until the whole string list is

filtered.

The parser will run in a console application containing a Main method with a loop that starts

RunParser after a certain amount of time has passed. This console application will therefore need a

timer to keep track of how much time has passed, so it will know if the RunParser method should be

executed.

34.2.1 The Parser interface

Since the parsing and grouping of tables happen automatically as data is entered into the system or

each time an administrator changes the grouping rules there is the need for an interface where it is

possible to check the parser and grouping threads status due to their complex nature and long

runtime.

Due to the nature of the current database structure and size we need to create a user-friendly

interface to handle the separate parsing thread. The interface will provide basic functions to the user

of the system so that they can control the parser and view parsing statistics without having access to

the underlying systems.

Project FHaSS Design Document 2012

Page 141 of 194

To achieve this, the parser will be controlled by the help of an admin web-page where the user can

start and stop the parser while reviewing the parsing status. The parser is design to run its own

thread and terminate gracefully when the user so chooses.

The only communication between the parser and the web-page is by the model, and the model will

call methods in the parser to achieve its goals. The MVC framework communicates in the normal

way.

Figure 10: Class diagram of HWParsers interface system

The solution to graceful threading is to use a volatile Boolean to exit the while loop sustaining the

thread alive.

Project FHaSS Design Document 2012

Page 142 of 194

Figure 11: Sequence diagram of parser interface

As we can see from the diagram above, the MVC framework communicates through normal means

while the parserModel calls method in the parser.

35 Redesign of the WCF web service
After discussion both internally and externally with the external supervisor and employees at

Funcom we came to the solution to add a parsing application layer between the current hw_info

table and a new hw_info table. The addition of this parser made it clear that some of the

functionality that the WCF service currently possess would be transfered to this new parser layer.

After our discussion about the parser we also understood that the way the WCF service is currently

handling queries to the database could be improved. We decided therefore to implement a more

general database fetching method that is responsible for building up a query dynamically. The query

shall be built based on filtering criteria given by the client (MVC) as arguments to the fetching

method. This new method will also have the responsibility of sending the fetched result to private

grouping methods in the WCF where the data will handled and grouped according to the

requirement specifications. Lastly the method is responsible for returning the result back to the

client.

Since the rules of WCF web services sets restrictions on what types of data can be returned to the

client we had to think of a good way for returning the fetched and processed data. The conclusion we

came to was to create two new classes; FetchResult and FetchResultPart, which has the responsibility

of storing the results produced from the grouping methods. An instance of FetchResult, built up by a

set of FetchResultPart’s, is then returned to the client.

Project FHaSS Design Document 2012

Page 143 of 194

Figure 12: ReadDataService class diagram

After feedback from a Funcom employee we also decided to make the NhibernateHelper non-static,

and instead initiate an instance of it in the ReadDataService.svc.cs class. Since the UpdateUniverses

method will be run in its own thread we concluded to open a new session from the

NhibernateHelper for each time our system is talking with the database.

36 Designing the page layout
The web-page design and layout have so far primarily been designed through internal discussion

within the team as we add functionality to the page (such as the hardware statistics table).

Both we and our client have the need of a layout mockup and CSS design so that we have something

steadfast to iterate on while we also make sure that our vision of the system matches with our

clients. Because the system is still in its early stages there is a lot of unknown functionality that we

cannot account for (or it simply isn’t implemented yet) but we can still create a general layout for the

page, and CSS styles from that.

The early designs were created from the idea that our system should replicate a similar system

(Steam Hardware Survey©) in terms of functionality and appearance and from that a few key

elements were quickly in place like the evolution charts, hardware statistics table, header and footer.

Our distinguished feature is the filter menu which can (in some situations) take a lot of room while it

still needs to be readily available on the page. In addition to this we need to display meta-data

(information about the selected entries) to the user as well as figure out how the menu, charts and

table should behave from user input.

Project FHaSS Design Document 2012

Page 144 of 194

Figure 13: Early page design

In the earliest design it became clear that the filtermenu felt most natural on the left hand side of the

page, it also seemed natural that the meta-information about the entries (where the data comes

from in terms of universes, countries and time period) should be displayed in the table. Site

navigation buttons also fit very nicely centered at the top of the page.

After getting good feedback about the initial design by our client we were confident that our vision of

the system matched up with our clients. A few more mockups were created to illustrate different

solutions we could have chosen for our page which in turn gave us some ideas for where to place the

future functionality, but the layout itself stayed true to the original designs.

Project FHaSS Design Document 2012

Page 145 of 194

Figure 14: Final iteration

The final iteration design became a bit more complex as we factored in functionality that have not

yet been planned (let alone implemented). The UI’s behavior became more defined in this iteration

when it comes to markings, expandable/collapsible fields, dynamic fields and how information

should be displayed.

All in all, the design is quite simple but offers a clean natural look making it intuitive and easy to use

for new users. Tooltips will also be implemented in a later stage to let users get acquainted with both

the advanced features of the system as well as some tips and tricks.

As the mockup was done, the next step was to create a basic CSS layout for the main page which

would prepare the page for implementation of the filtermenu amongst other functionality.

Project FHaSS Design Document 2012

Page 146 of 194

37 GPU Manufacturer and VRAM
This user story will add information about the GPU manufacturer and vram for the user to see

information about. One should be able to see how many players use ATI, NVIDEA or Intel GPUs in

both numbers and percentage and also how much vram they have.

The HWParser needs to be updated so it will filter the vcard column in the hw_info table for the

manufacturer and the vram column for the amount of vram. Also the database needs to be extended

to include this new information. Below are updated diagrams illustrating this.

Figure 15: GPU methods added to HWParser class

The class diagram above (figure 11) shows the new GPU related methods and also some changes that

were done to the design during implementation of the previous user story.

Project FHaSS Design Document 2012

Page 147 of 194

Figure 16: GPU methods added to HWParser sequence

The sequence diagram above (figure 12) shows how the GPU methods in the sequence for the

HWParser and also some changes that were done to the design during implementation of the

previous user story. The best way to actually transfer the GPU information to the new tables will be

to delete all the previous entries and run the parser through fully once more.

Figure 17: GPU info added to database

Project FHaSS Design Document 2012

Page 148 of 194

Above (figure 13) displays the additions to the database to store the GPU information. There is a new

table that will contain the existing GPU manufacturers and the hardware table have a new foreign

key and vram column.

Figure 18: ReadDataService additions

The ReadDataService and the MVC also needs to be updated to include the GPU information (figure

14, above). First of all there is the mapped classes for the additional tables needs to be created. Then

we have the new grouping methods for the GPU manufacturer and the Vram which will be similar to

the previous grouping methods.

In the end the MVC also needs to be updated to display the GPU information the same way as for

CPU information. Also new MVCs needs to be added for administrating the GPU manufacturer and

VRam groups so that a user can manually change these.

38 Memory and OS user stories
For the memory user story we want to be able to see memory information by groups of memory

amount. The OS user story includes windows version, bit version and DirectX version. For now we do

not have any information stored about DirectX, so we will skip it.

Project FHaSS Design Document 2012

Page 149 of 194

Figure 19: Memory, OS and bit methods

New filter methods needs to be created to get the data from hw_info and into the Hardware table.

Also the InsertIntoHardwareDbTable method needs to be updated.

Below, we can see the new sequence of the methods in the HWParser.

Project FHaSS Design Document 2012

Page 150 of 194

Figure 20: New HWParser sequence

Then we have the updates to the database.

Project FHaSS Design Document 2012

Page 151 of 194

Figure 21: Database updates

The OS table will contain the different existing OS. the hardware table have new columns for ram, os

and bits. Then we have the ramgroup table.

In the end new MVCs must be created to administrate the OS table and ramgroup table.

39 Redesigned responsibilities of WCF and Parser
Because of the bad performance that our system encountered when querying the database for large

sets of data, we had to look into enhancing the data processing. The result we came to was to move

the grouping functionality that was currently implemented in the WCF web service layer to the new

Parser layer. This will make it possible for the system to do almost all the pre-display work even

before the SQL query has been sent from the WCF.

Since the filtering and grouping operations of the current hw_info database are two separate

operations that most often will be run independently and with different intervals in time, our

solution was to create another hardware table called groupedhardware (see database illustration in

previous section). With this separation of storage the grouping operations will be working on already

parsed data stored in the hardware table, while the parsing functionality will be working on the raw

data from the hw_info table.

The Parser will be running kind of more in the background than the WCF will do. The WCF will be

doing its work on demand from the MVC, while the Parser will more or less almost always be

running. Because of these different modes of runtime it is more appropriate that the Parser will be

the process running the UpdateDistinctUniverses function that was previously implemented in the

WCF, and also the new UpdateDistinctGpuModels function. Because of the decision that the Parser

Project FHaSS Design Document 2012

Page 152 of 194

will now take over the grouping functionality it would also be a breach of the separation of concerns

to still have these functions still running in the WCF layer.

In meetings with Funcom employees we have found out that they want to be able to control almost

everything related to the systems grouping functionality manually. Since the only interface our

system has with the user is the MVC, and the only interface between the MVC and the database is

the WCF, the WCF is of course then the part that will have to handle this database table updating.

The WCF has earlier only been used for retrieving data from the database and sending it to the MVC

for display. Since the WCF has now been extended with this new administration functionality it has

become obvious that the most appropriate action is to separate the earlier service methods and the

new admin methods into their own services. The old functionality will still be stored in the

ReadDataService service, while the new admin functionality will be stored in the AdminService

service.

Figure 22: Admin Service class

40 GPU user story
Because of a large variety in the different GPU models that is registered in the hw_info database, a

bit more sophisticated filtering and grouping functionality had to be used for this. If we had gone

with the same functionality as used in earlier user stories the hardware statistics display would

contain lots and lots of GPU models with both big and small differences in their names.

Our solution to this problem was to create two database tables; distinctgpumodel and

generalgpumodel (see database illustration in section 8). The distinctgpumodel table will be a table

similar to the universe table where all distinct registered GPU models in the hardware table are

Project FHaSS Design Document 2012

Page 153 of 194

stored. Then we let the user of our system create and maintain a set of more general GPU models,

stored in the generalgpumodel, and choosing which distinct GPU models shall be mapped to which

general GPU model. Our system will then generate all statistics and displays for GPU models as

though the distinct GPU models actually was of the general GPU model it is mapped to, making the

statistics a lot more readable and informing.

40.1 Resolution

For the resolution parsing filter we will create a new resolution table that will contain the resolutions

that are going to be parsed.

41 CPU Model
Like the GPU user story Funcom wants to see statistics of general CPU models. For example they

want to see how many percentage of the players have a Core 2 Duo or an i5 processor. A

distinctcpumodel and a generalcpumodel table will be used and the user of our system will be able to

create and maintain these general CPU models, just like with the GPU models. The user will be able

to set the distinct CPU models relation to a general CPU model, and our system will then display all

statistics as if the distinct CPU model actually was of the general CPU model it is mapped to.

Figure 23: HWParser classes

Project FHaSS Design Document 2012

Page 154 of 194

The class diagram above shows the updated design of our parser, including the CPU model additions

and also general updates to the design that have been made while implementing the code. The

grouping logic have been moved to its own class, and so has the update and auto relate methods for

the distinct tables.

Figure 24: Database tables

Above are the tables in our database, including the distinctcpumodel and generalcpumodel tables.

In addition to the previous updates, all the data models that nHibernate uses and the nHibernate

helper are moved to its own project.

42 Updates after code review / before first deployment
After reviewing our code before the first deployment, better ways to structure our system were

discovered. These updates are represented in the updated UML diagrams below.

Project FHaSS Design Document 2012

Page 155 of 194

Figure 25: nHibernateMappings classes

All the MappedClasses created for nHibernate and the helper are moved to the new

NHibernateMappings project so that the mappings can be used in both the services and the parser

easily.

Figure 26: HWParser classes

Project FHaSS Design Document 2012

Page 156 of 194

Some unnecessary methods have been removed from the parser classes after rewriting parts of the

code.

Figure 27: Service classes

A third service has been created to contain the code for communication with the parser object.

The diagram below shows the main components for the current system.

Figure 28: Overall system components

Project FHaSS Design Document 2012

Page 157 of 194

43 HighCharts
For creating the charts we were recommended to use a JavaScript API called HighCharts.

This API contains a lot of different functionalities and has a lot of customization options available to

generate whichever charts necessary for displaying the relevant information.

The way they are generated is by dynamically generating JavaScript with Razor C# syntax using loops

and conditions.

HighCharts are structured in a simple, yet expansive fashion. The UML diagram below shows a simple

version of the structure, and shows the parts we used to generate the charts for our system.

The Highcharts.js file contains the main graph rendering tools, where as we customize it further with

the use of the themes class to make it match our system’s color scheme and the export class simply

to export the charts as image- or PDF files.

There are many ways to define the options of the charts, either via an options instance or directly in

the charts instance right before rendering. We went for the latter one giving us complete control to

customize the individual parts of the charts from our dynamically generated hardware lists.

44 Geographical Location
Because of the nature of our system is to filter information according to what the user needs it is

imperative to be able to filter the database entries by their geographical location. Being able to filter

entries by location would help the users to easily see statistical differences (in hardware) between

countries or entire regions.

In order to specify the origin of a bug report we would first need its IP address, but because of a

limitation within Funcom’s current python parser it does not currently provide this information.

There were also several other pieces of information that our new system needed (such as OS bit,

resolution and DirectX information) and after we brought this to Funcom’s attention they did the

necessary alterations to the python parser in order to make this information available in our

database.

Researching geotargeting quickly told us that we need some external pieces of software and data to

retrieve a country from an IP address. Because a country does not have a predetermined range of IPs

but rather a set of ranges that may vary you end up with a whole lot of different ranges to different

countries, luckily this information is collected by interested parties and stored within a geolocation

database which is available for free. In addition to requiring the data itself, we also need to

implement an external C# class that handles the conversion of IP address to a number (IP number)

which is used as the key for values within the database.

We settled with MaxMind®’s free GeoIP database as well as the accompanying open source C#

CountryLookup class. The GeoIP data file is to be implemented as an embedded resource while the

open source code is to be used as a standalone class in our parser.

Project FHaSS Design Document 2012

Page 158 of 194

45 Windows service
Originally the parser was a console application which had to be started by a exe file. A new

requirement added late in the project period was that the parser had to be re-implemented as a

windows service application. The reason for this is that it should be installed to run in the

background.

So the parser had to be rewritten to support windows service functionality. Several new specific

windows service methods needs to be added like for starting and stopping the service. Other than

the new methods that are used to manage the application as a windows service the code of the

parser is the same.

Figure 29: Illustrating the parser as a windows serivce

46 General model relation search / manufacturer
In the general CPU and GPU models section of the administration page it is possible to add new

general models to the database, similar to the other administration pages. Specifically it works like

the universe to game administration in the way that a general model will have a database relation to

multiple distinct models. There are however a lot more distinct models to relate to a general model

than there is universes for a game, therefore an easier way to relate many of the models

automatically is wanted, so that the user can avoid relating one distinct model at a time.

The automatic relation should be done when the model is first created. A simple way to do this will

be that the user provides a string that will occur in the distinct model names. One will then retrieve a

list of all the distinct models that do not already have a relation, iterate through it and check if the

names contains the provided string. If it does, the relation will be set to the newly created general

model.

Another feature that is wanted is to easily be able to sort the models after manufacturer and also be

able to display a logo for it. A simple way to do this is to let the user choose a manufacturer when he

creates the general model. The general model can contain a database relation to the manufacturer

and the manufacturer should also be added to the name of the general model.

Project FHaSS Design Document 2012

Page 159 of 194

So to summarize, to create a new general model the user should specify a name, a relation search

(optional) and a manufacturer. The relation search is optional because the user should be able to

choose to set the relations manually if wanted. If this is the case the relation search string should just

be left empty and this needs to be handled by the system.

Figure 30: Sequence of automatically relating distinct to general models

47 Hard disk information
This task in our project requires code to be written that will be used in the game client to extract

hardware information from the player pc and add this to the bug report that is sent to Funcom. The

task was to make a prototype program that would find out if the hard disk is a SSD disk or not, based

on the model number of the disk, and also the free and total space available on the disk.

The prototype should just get the information and then print it out. So the design is quite simple. All

the disks on the pc should be found, and then the model number and free/total disk space should be

extracted and printed. If the model number contains the keyword "SSD" it should be printed that it is

an SSD disk. While the design is quite simple, the task is quite a challenge because it needs to be

written in C++ without the use of .NET libraries or CLR, so that it eventually can be included in the

“The Secret World” game client. This will require finding and learning to use low level functions in

windows.

Figure 31: Sequence for finding hard disk information

Project FHaSS Design Document 2012

Page 160 of 194

48 Filter storage and URL
There are some filters the users of the system would like to be able to view easily and fast because it

is information they regularly want to review or show to different people. Two new functionalities will

give the users the ability to do this.

The first one is the filter storage. The user should be able to select what he wants in the filter menu

and the give the filter a name and save it. The filter should then appear in a secondary menu that all

users of the system can see. When the name of the filter is clicked the filter will be loaded. To store

the filter some new database tables are needed. One table will store the name of the filter and the

timer period. Another will store countries connected to saved filters and the last will store the

universes connected to the saved filters.

Figure 32: Database tables for storing filters

The second is that the filter should generate a unique URL which the user can then bookmark and/or

share with other users. This will easily be done by changing theHTML request method of the Filter

Menu form from POST to GET.This results in a resulting URL including all the forms inputs names and

values. The URL can for instance be accessed by other users of the system, and he/she will get the

exact same data presented.

49 Exception handling and logging
Late in the project period we have realized that a lot of the crashes we experienced with the parser /

grouper are not really possible to always avoid. These are for instanceissues like timeouts to the

database. The only realistic fix is to handle these exceptions that occur, because they can't always be

avoided and will happen randomly.

Our solution is to try to run a method again when an exception occurs. The event should be logged to

the database (if possible, if this fails then to a file). If the exception should occur again on the next

attempt, then it needs to try again. This should repeat until it is successful or it have tried a maximum

amount of times (four). Between each attempt it should wait a short but increasing amount of time

before trying again, so that the other systems it is relying on can become available (e.g. the database

connection). If it fails the last attempt the program should log this and then shut down and needs to

be restarted. Functionality to automatically restart is included in the windows service.

Project FHaSS Design Document 2012

Page 161 of 194

Figure 33: Sequence for exception handling

The last few entries in the log should be viewable on the administration page under the interface

section.

50 Caching
As our queries to the database took longer and longer as the database grew we had no chance of

meeting the loading time requirements with the current system, so after a discussion with the

product owner and other Funcom employees this requirement has been dropped. Good

performance is of course one of our top priorities so we (with the help of Funcom employees)

developed a solution which could work as a compromise between extremely large amounts of data

as well as fast loading times. The compromise would be that this solution only works on a preset time

span of data, in our case this became one month of information.

By caching every entry for the last month into the service memory, any request regarding

information within that time span would be processed without needed to query the database.

This way we avoid the heavy loading time caused by accessing the database with several million rows

(about four and a half at the moment).

The caching is implemented by having the WCF service retrieve the database rows for the previous

month and store this in memory. Every day it should update the memory so that this stays true. For

example, one day the memory will contain data from 10.04.2012 to 10.05.2012 and the next day the

memory will contain data from 11.04 to 11.05.

A logical check on the dates is needed in the ReadDataService to decide whether or not to use the

cached memory, the input (parameters like universe and country) and the output (the result) from

the service remains the same.

Project FHaSS Design Document 2012

Page 162 of 194

New methods need to be written to iterate through the cached entries for sorting, counting and

grouping before returning the result in the same fashion a normal database query would.

51 Conclusion
The system has evolved quite a lot throughout the project period. Some of the requirements we have

implemented have made us realize better ways to solve specific problems which have led us to

rewrite parts of the code.

This is especially true for the parser, where the design and implementation has been changed quite a

few times. It started out just as a simple console application that later was being handled by a WCF

Service, but in the end we ended up designing and implementing it as a Windows Service.

On the MVC (i.e. the user interface) side, after our mock-ups were done of the system, not much

have been changed other than implementing new features over time as we got to designing and

implementing the requirements.

The WCF Service have changed quite a lot. From only doing database queries with nHibernate to

using cache for faster loading times inside the last month.

Funcom Hardware Statistics System

Test summary

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

29.05.12 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla Aurelie Arntzen

Kim Richard Johansen External supervisor Rui M. MonteiroCasais

Group members

............................
Sondre Bjerkerud

............................

Sverre Christoffer Thune

............................

Kim Richard Johansen

............................

Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Test log 2012

Page 164 of 194

Test summary

52 General Document Information

Deliverable nr: D8.2.1

Deliverable type: Report

Release: Public

Workpackage: Independent

Responsible: Kim Richard Johansen

52.1 Declaration of intention

This is a document containing information about all tests that has been completed, successful and
unsuccessful. Tests that have not been executed are also listed with an explanation for why it has not
been completed. Verification tests are listed with a short summary.

52.2 Definitions and Acronyms

Bug An error in the programming code.

Parser Searches a data file for key words and copies the values it
finds.

CPU Central Processing Unit

GPU Graphical Processing Unit

RAM Random Access Memory

DX DirectX: A collection of application programming interfaces
(APIs) for handling tasks related to multimedia, like for
instance game programming.

HDD Hard Disk Drive

SSD Solid State Disk: A type of HDD.

OS Operating System

COS Condition of Satisfaction

Bug An error in the programming code

IDE Integrated development environment

52.3 Document History

Version Description Date

1 First version created 24.05.2012

1.5 Updates after document review 28.05.2012

Project FHaSS Test log 2012

Page 165 of 194

53 Table of contents
52 General Document Information .. 164

52.1 Declaration of intention .. 164

52.2 Definitions and Acronyms ... 164

52.3 Document History ... 164

53 Table of contents ... 165

54 List of validation tests completed ... 166

55 Logs for validation tests performed .. 166

55.1 Story 3: Game filter ... 167

55.2 Story 4: Server filter... 167

55.3 Story 5: CPU information ... 168

55.4 Story 6: Graphics card information ... 170

55.5 Story 6/7: Hardware type management and grouping ... 170

55.6 Story 7: OS information ... 172

55.7 Story 8: Memory information.. 174

55.8 Story 9: Geographical location filter .. 175

55.9 Story 11: Time period filter ... 176

55.10 Story 20: Trend charts ... 176

Other ... 177

56 Validation tests that were not performed and why .. 178

56.1 List of validation tests that were not performed .. 178

56.2 T-R-1 Display hardware / software statistics ... 178

56.3 T-R-3-2 Filter statistics –user interface.. 179

56.4 T-R-5 Display software statistics .. 180

56.5 T-R-6 Future hardware prediction ... 180

57 Verification tests.. 181

57.1 Code review ... 181

57.2 Code compilation .. 181

57.3 Debugging .. 181

57.4 Strain test .. 181

57.5 Regression test/Ad hoc test .. 182

57.6 Performance test ... 182

Project FHaSS Test log 2012

Page 166 of 194

54 List of validation tests completed

Userstory Name of test Test id Date

3: Game filter Filter statistics –game filter T-R-3-3 02.02.2012

4: Server filter Filter statistics –server filter T-R-3-4 26.02.2012

5: CPU information Display hardware / software
statistics –CPU information

T-R-1-1 27.04.2012
11.03.2012

6: Graphics card information Display hardware / software
statistics –GPU information

T-R-1-2 27.04.2012

6/7: Hardware type
management and grouping

Hardware type management
and grouping

T-R-4-1 22.05.2012

6/7: Hardware type
management and grouping

Hardware type management
and grouping –new hw type

T-R-4-2 22.05.2012

7: OS information Display hardware / software
statistics –OS information

T-R-1-4 14.03.2012

7: OS information Display hardware / software
statistics –Direct X information

T-R-1-5 27.04.2012

8: Memory information Display hardware / software
statistics –RAM information

T-R-1-3 13.03.2012

9: Geographical location filter Filter statistics –geographical
location filter

T-R-3-6 27.04.2012

11: Time period filter Filter statistics –time period
filter

T-R-3-5 27.04.2012

20: Trend charts Display hardware / software
evolution charts

T-R-2 02.05.2012

Other Filter statistics T-R-3-1 23.05.2012

55 Logs for validation tests performed
This is meant as a short overview for each of the validation tests performed.

Explanation:

Tests with outcome --Test Failure-- means that the test failed and the system worked as planned.

Tests with outcome --Test Successful-- means that the test successfully pointed out that something in

the system did not work as planned. Modifications where needed on the system and a new test was

scheduled.

Project FHaSS Test log 2012

Page 167 of 194

55.1 Story 3: Game filter

Name Filter statistics –game filter Test ID T-R-3-3

Requirement ID: A-F-3

Test description: Test to see if the game filter combinations are working correctly.

 Test if results after filtering show entries for each universe for that game

Test date: 02.02.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 4. Start the filter combination to be tested.
5. Wait for the web-page containing the filtered statistics to load.
6. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 01.31.2011
Errors: None. Tried each filter combination and the right amount of entries did

show for each of them.

Outcome Tried each game filter. The results after filtering did give the right amount of
data from the universes for that game. The test data set confirms the result.
Age of Conan 390 13 universes
The Secret World 210 7 universes
Global 90 3 universes

 At this stage in the project CPU results did show for the universe filtering, but
due to the parser not being 100% at the moment, results did not match the test
data set.

---Test Failure---

55.2 Story 4: Server filter

Name Filter statistics –server filter Test ID T-R-3-4

Requirement ID: A-F-3

Test description: Test to see if the server filter combinations are working correctly.

 Test if results after filtering universe show entries.

Test date: 26.02.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Start the filter combination to be tested.
2. Wait for the web-page containing the filtered statistics to load.

Project FHaSS Test log 2012

Page 168 of 194

3. Compare the produced filtered percentage statistics to the manually
calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 31.01.2012
Errors: None. Tried each filter combination and the right amount of entries did

show for each of them.

Outcome Tried each filter combination. Each of the 23 universes showed 30 entries and
that is correct with the manual calculations in the test data set.
Combining universes also worked, showed and combined entries correctly.
At this stage in the project CPU results did show for the universe filtering, but
due to the parser not being 100% at the moment, results did not match the test
data set.

---Test Failure---

55.3 Story 5: CPU information

Name Display hardware / software statistics –CPU information Test ID T-R-1-1

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different CPUs stored in the database.

It should be possible to toggle between number of entries and %.
Data to be shown:

 CPU speed by brackets (like Steam). Inc. at 400mhz, staring at 1.0hgz.

 Show split between AMD and Intel (and other)

 Show number of cores

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 5. Put in the time period for which the statistical data shall be produced
with basis upon.

6. Choose to get to see statistical information for CPU.
7. Wait for the web-page containing the information to load.
8. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 23.12.2011

Project FHaSS Test log 2012

Page 169 of 194

Errors: None

Outcome Test data set loaded into the data base and went through the parser and
grouper functionality successfully.
The information displayed on the website corresponded to the manually
calculated results for different models, speed groups, manufacturer and number
of cores.

--Test Failure--

Name Display hardware / software statistics –CPU information Test ID T-R-1-1

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different CPUs stored in the database.

It should be possible to toggle between number of entries and %.
Data to be shown:

 CPU speed by brackets (like Steam). Inc. at 400mhz, staring at 1.0hgz.

 Show split between AMD and Intel (and other)

 Show number of cores

Test date: 11.03.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for CPU.
3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 23.12.2011
Errors: Information display correctly on the web site but:

- CPU manufacturer does not contain the right percentages
- CPU speed does not contain the right percentages
- CPU core does not contain the right percentages

Outcome Information displayed correctly but does not correspond with the data in the
test data set.
The reason for not showing the right percentages could be that the parser is not
accurate enough when it comes to extracting the speed, manufacturer and cores
from CPU information. A few entries differed for speed and manufacturer but
cores did not even show all the different types.

--Test Successful--

Project FHaSS Test log 2012

Page 170 of 194

55.4 Story 6: Graphics card information

Name Display hardware / software statistics –GPU information Test ID T-R-1-2

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different GPUs stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show split between nVidia, Intel, AMD, and others.
Data to be shown:

 Show video card model like Steam.

 Show VRAM

 Show Primary and multi-monitor resolution.

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 5. Put in the time period for which the statistical data shall be produced
with basis upon.

6. Choose to get to see statistical information for GPU.
7. Wait for the web-page containing the information to load.
8. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 23.12.2011
Errors: None

Outcome Test data set loaded into the db and then went through the parser and grouper
functionality.
The information displayed on the website corresponded to the manually
calculated results for video card model, VRAM and Primary resolution.
Multi-monitor resolution has been changed to an extension of the system and
therefore not a part of this test.

--Test failure--

55.5 Story 6/7: Hardware type management and grouping

Name Hardware type management and grouping Test ID T-R-4-1

Requirement ID: A-F-5

Test description: Test to see if the hardware from the bug reports is grouped correctly under
general hardware types and that it shows the correct percentage for each of
them based on the total.

Project FHaSS Test log 2012

Page 171 of 194

This test will also contain:

 Test if registered but unrecognized hardware is grouped in the
unrecognized category and shows the right percentage.

Test date: 22.05.2012 Tester: Sverre C. Thune

Testing method: Function test, black box

Test approach:

3. Get the statistics page. Print out, write down, etc., the groups and their
respective percentages.

4. Compare the group percentages to percentages manually calculated
from the test data set.

Test criteria

 Database and website is up and running.

 There has to be one or more currently registered but not recognized
hardware types.

 Test data set has been made and inserted into database

Expected results

 That the system produced percentages is the same as the manually
calculated ones.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: None

Outcome The statistics in the hardware info table show the same counts and percentages
as the test data set. All the percentages add up to a hundred percent.

--Test Failure--

Name Hardware type management and grouping –new hw type Test ID T-R-4-2

Requirement ID: A-F-4 and A-F-5

Test description: Test is run after T-R-4-1
Create a new general hardware type and choose which type of hardware it
should contain from the unrecognized hardware group.

Test date: 22.05.2012 Tester: Sverre C. Thune

Testing method: Function test, black box

Test approach:

7. Get the statistics page. Print out, write down, etc., the groups and their
respective percentages.

8. Create a new general hardware type of one of the possible categories;
CPU, Graphics Card.

9. Choose group one/some/all of the registered but not recognized
hardware types under the newly created general hardware type.

10. Get the updated statistics page. Print out, write down, etc., the groups
and their respective percentages.

11. Compare the new group percentages to percentages produced before
adding the hardware type(s) to the new general hardware type (step 1).

12. Compare results the group percentages whit percentages manually
calculated from the test data set.

Test criteria

 Database and website is up and running.

 There has to be one or more currently registered but not recognized

Project FHaSS Test log 2012

Page 172 of 194

hardware types.

 Test data set has been made and inserted into database

Expected results

 That the system produced percentages is the same as the manually
calculated ones. That is, both the basis statistics page (step 1) and the
updated statistics page (step 4) contain the same percentages as the
manually calculated percentages for the two instances of the general
hardware type grouping.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: None

Outcome After mapping all the distinct GPU models and CPU models to general GPU
models and CPU models, the values printed in the statistics table corresponded
to the test data set.

--Test Failure--

55.6 Story 7: OS information

Name Display hardware / software statistics –OS information Test ID T-R-1-4

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different OS information stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show the OS from all systems in db and group them under different groups.
Data to be shown:

 OS grouped under:

Windows 7 64 bit

Windows 7 32 bit

Windows Vista 64 bit

Windows Vista 32 bit

Windows XP 64 bit

Windows XP 32 bit

Unknown

Test date: 14.03.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 5. Put in the time period for which the statistical data shall be produced
with basis upon.

6. Choose to get to see statistical information for GPU.
7. Wait for the web-page containing the information to load.
8. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

Project FHaSS Test log 2012

Page 173 of 194

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 13.03.2011
Errors: None.

Outcome After the test data set had been parsed and grouped the information displayed
on the website was correct according to the manual calculated results in the test
data set. Correct amount and percentages.

--Test Failure--

Name Display hardware / software statistics –Direct X information Test ID T-R-1-5

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contain accurate information about the
different Direct X information stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show the Direct X from all systems in db and group them under different
groups.
Data to be shown:

 Direct X grouped under:

Direct X 11.1

Direct X 11.0

Direct X 10.1

Direct X 10.0

Direct X 9.0c

Unknown

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 5. Put in the time period for which the statistical data shall be produced
with basis upon.

6. Choose to get to see statistical information for GPU.
7. Wait for the web-page containing the information to load.
8. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 16.03.2011
Errors: None.
Outcome Loaded test data set containing DirectX into the database and ran the parser and

Project FHaSS Test log 2012

Page 174 of 194

grouper system.
Loaded the website and checked if the information displayed corresponded to
the manually calculated results. It did.

--Test Failure--

55.7 Story 8: Memory information

Name Display hardware / software statistics –RAM information Test ID T-R-1-3

Requirement ID: A-F-1 and B-F-1

Test description: Test to see if tables are created and contains accurate information about the
different RAM stored in the database.

It should be possible to toggle between number of entries and %.
COS: Show the RAM from all systems in db and group them under different
range groups.
Data to be shown:

 RAM grouped under:

Less than 512 MB

512 MB to 999 MB

1 GB

2 GB

3 GB

4 GB

5GB and higher

Unknown

Test date: 13.03.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 5. Put in the time period for which the statistical data shall be produced
with basis upon.

6. Choose to get to see statistical information for GPU.
7. Wait for the web-page containing the information to load.
8. Compare the resulting percentages to the percentages that have been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Kim Richard Johansen 13.03.2011
Errors: Zero errors.

Outcome All the different universes gave the same results and they corresponded to the
test data set.

Project FHaSS Test log 2012

Page 175 of 194

--Test Failure--

55.8 Story 9: Geographical location filter

Name Filter statistics –geographical location filter Test ID T-R-3-6

Requirement ID: A-F-3

Test description: Test to see if the geographical location filter combinations are working correctly.

It should be possible to choose between continent and country as a filtering
option.
COS: That the data shown after choosing a continent or country corresponds to
the manually calculated results.

Continents to be able to choose from:

North America

South America

Antarctica

Africa

Europe

Asia

Australia

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 4. Set the filter combination to be tested.
5. Wait for the web-page containing the filtered statistics to load.
6. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 24.04.2012
Errors: None.

Outcome Combinations tested:
Each country and combination of countries from different regions.
Each region and combination of different regions.
Mapping interface.
All worked successfully.

--Test failure--

Project FHaSS Test log 2012

Page 176 of 194

55.9 Story 11: Time period filter

Name Filter statistics –time period filter Test ID T-R-3-5

Requirement ID: A-F-3

Test description: Test to see if the time filter combinations are working correctly.

 Test if the data shown on the website corresponds to the manually
calculated results after setting a time filter.

Test date: 27.04.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 4. Set the filter combination to be tested.
5. Wait for the web-page containing the filtered statistics to load.
6. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for the tested filter
combination.

Test creator: Kim Richard Johansen 24.04.2012
Errors: None.

Outcome Tested information that gives an error in the date fields such as non numeric
characters, nothing, 0, out of bounds (such as day nr 32 and month nr 13). It
worked well.
Default values are used when an error occurs. Worked.

Tested predefined dates in from field and to field and checked if the total
amount of entries displayed corresponded to the manually calculated results.
They did.

--Test failure--

55.10 Story 20: Trend charts

Name Display hardware / software evolution charts Test ID T-R-2

Requirement ID: A-F-2

Test description: Test to see if evolution charts are created and to see if the contained
information is accurate against the test data set.

Test date: 02.05.2012 Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 6. Put in the time period for which the evolution charts are to be produced
with basis upon.

7. Choose to get to see one of the possible evolution charts; CPU, GPU,
CPU cores, or Windows OS version and DirectX version.

Project FHaSS Test log 2012

Page 177 of 194

8. Wait for the chart to load.
9. Do as exact a comparison between the manually calculated data and the

chart. The chart shall be compared to the manually calculated data at
five (5) times/points with equal distance between them. The first and
the last times/points are the same values that was put in at stage 1 of
this test, which will be the start and end of the chart lines.

10. The percentages displayed in proximity to the chart are compared to the
manually calculated percentages for the last time/point the chart is
describing.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the chart seems to display similar values to those who have been
calculated manually for each of the five points/times of the chart.

 That the percentages displayed in proximity to the chart based on the
test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: None.

Outcome The manually calculated results had data from 07.01.2012 to 12.31.2012 set with
a time span resolution of 6.
The same time span and resolution was chosen in the filtermenu and the site
refreshed.
The charts displayed correctly and the % values for each category and time
resolution corresponded to the manually calculated results.

--Test Failure--

Other

Name Filter statistics Test ID T-R-3-1

Requirement ID: A-F-3

Test description: Test to see if the different filter combinations are working correctly.

 Test each filter by itself. That is for instance putting in values for the
time period filter only, leaving the other filters with null value/the
standard value.

 Test with all filters set.

The filter values that will be beneficial to put in will depend on the data set. For
instance should both values that are represented in the data set and values that
are not represented in it (say for instance a specific Funcom game) be filtered
upon. For the time period filter both the whole period which the test data set is
describing, and only parts of it, and also with time periods where the to and
from limits are stretched further into time or farther back in time than the test
data set describes.

Test date: 23.05.2012 Tester: Kim Richard Johansen

Project FHaSS Test log 2012

Page 178 of 194

Testing method: Function test, black box

Test approach: 7. Put in the filter combination to be tested.
8. Wait for the web-page containing the filtered statistics to load.
9. Compare the produced filtered percentage statistics to the manually

calculated percentages.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 That the produced filtered percentages based on the test data set are
similar to the manually calculated percentages for each of the tested
filter combinations.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors: None.

Outcome Mapped all countries to their respective region and servers to their game.
Tried to use just the time filter, just the geographical filter and just the universe
filter. All data corresponded to the test data set.
Tried combinations of time with both geographical and universe filter and all
data corresponded to the test data set. Zero errors.

--Test Failure--

56 Validation tests that were not performed and why
This is meant as a short summary for each of the validation tests that were not performed during our

project period also with an explanation for why.

56.1 List of validation tests that were not performed

Name of test Test id

Display hardware / software
statistics

T-R-1

Filter statistics –user interface T-R-3-2

Display software statistics T-R-5

Future hardware prediction T-R-6

56.2 T-R-1 Display hardware / software statistics

This test ended up being too vague due to covering all the information to be showed in the statistical

table without going into details about each category. The test was therefore split into 5 new tests:

T-R-1-1, T-R-1-2, T-R-1-3, T-R-1-4 and T-R-1-5.

Name Display hardware / software statistics Test ID T-R-1

Requirement ID: A-F-1 and B-F-1

Project FHaSS Test log 2012

Page 179 of 194

Test description: Test to see if tables are created and contains accurate information about the
different hardware/software stored in the database.

Test date: .-.-.-.-.-.-.-.-.-.-.-. Tester: Kim Richard Johansen

Testing method: Function test, black box

Test approach: 1. Put in the time period for which the statistical data shall be produced
with basis upon.

2. Choose to get to see statistical information for one of the
hardware/software categories; CPU, Graphics Card, RAM, Windows OS,
HDD, or Network download speed.

3. Wait for the web-page containing the information to load.
4. Compare the resulting percentages to the percentages that has been

manually calculated from the test data set.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors:

Outcome

56.3 T-R-3-2 Filter statistics –user interface

This test ended up being unnecessary due to change in the user interface originally planned. Now all

the games and underling servers are always shown on the left side and it is now possible to filter with

more than one game and not only one. The user interface has also been thoroughly tested in test

T-R-3-1.

Name Filter statistics user interface test Test ID T-R-3-2

Requirement ID: A-F-3

Test description: Test is run after T-R-3-1.
Test to see if the user interface for the filter statistics option is working correctly.

 Check if game server filter is available when a specific Funcom game is
selected and unavailable when a game isn’t selected.

Test date: .-.-.-.-.-.-.-.-.-.-.-. Tester: Kent Brian Dreyer

Testing method: User interface test, Black box

Test approach: 5. Set all filter options blank/null.
6. Check if game server filter is unavailable.
7. Choose one of the available Funcom games as a filter.
8. Check if game server filter is available.

Test criteria Database and website is up and running.

 Test data set has been made and inserted into database

Expected
results:

 Game server filter works as explained in the test description.

Project FHaSS Test log 2012

Page 180 of 194

Test creator: Kim Richard Johansen 9.01.2012
Errors:

Outcome

56.4 T-R-5 Display software statistics

This test was to check if the software programs (e.g. Skype, Steam, MSN...) stored on the computer

from a player experiencing a game crash, would show up correctly in the right groups under the

software statistics table. This functionality was not implemented due to other priorities and time and

therefore there were no need for this test to be executed.

Name Display software statistics Test ID T-R-5

Requirement ID: B-F-2

Test description: Test to see if the tables are created and contains the same percentage value as
manually calculated from the test data set about the different software stored in
the database.

Test date: .-.-.-.-.-.-.-.-.-.-.-. Tester: Sverre C. Thune

Testing method: Function test, black box

Test approach:

3. Load the web-page containing the software statistics.
4. Compare the calculated percentages to the manually calculated

percentages.

Test criteria

 Database and website is up and running.

 Test data set has been made and inserted into database

Expected results

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors:

Outcome

56.5 T-R-6 Future hardware prediction

After discussion with the project manager we decided to not perform this test due to the time it

would take to create the data for the test data set and this being a C requirement. The functionality

is implemented and debug tested locally by the creator to ensure that it works, but it is not

documented.

Name Future hardware prediction Test ID T-R-6

Requirement ID: C-F-1

Test description: Test to see if an extension of requirement A-F-2 works. The extension is to
predict the future trend of hardware usage for the players of Funcom games.
When the chart for requirement A-F-2 is shown it will be possible to toggle the
prediction on and off. The prediction will extend the current lines for hardware
evolution in the chart and predict the future evolution.

Test date: .-.-.-.-.-.-.-.-.-.-.-. Tester: Kim Richard Johansen

Testing method: Function test, black box

Project FHaSS Test log 2012

Page 181 of 194

Test approach:

6. Put in the amount of time into the future the system is to predict the
hardware evolution for.

7. Load the web-page containing one of the possible charts containing
future hardware prediction.

8. Toggle the chart to display the future hardware prediction chart lines if
toggled off.

9. Check that the hardware evolution prediction lines are proportional.
10. Compare the updated percentages in proximity to the chart to the

manually calculated percentages. This stage corresponds to testing the
last time/point on the chart to the manually calculated percentages for
the whole test data set for the whole time period put in (1).

Test criteria

 Database and website is up and running.

 Test data set has been made and inserted into database

Expected results

 That the hardware evolution prediction lines are proportional.

 The percentages the system produces and displays on the web-page
based on the test data set are similar to those calculated manually.

Test creator: Sondre Bjerkerud, Sverre C. Thune 21.12.2011
Updated by: Kim Richard Johansen 23.12.2011

Errors:

Outcome

57 Verification tests
This is meant as a short summary for each of the verification tests performed during our project

period.

57.1 Code review

Most of the code review work was not documented but instead orally communication between the

project members was used and worked without problems.

57.2 Code compilation

When compiling produced code we removed most of the possibilities for a group member to upload

a code to the source control with issues, but since more than one member could be working on the

same code fileuser related issues still did occur.

57.3 Debugging

Debugging has been done regularly by each group member when developing functionality on the

system. The built in debugger in our IDE Visual Studio was quite powerful and enable us to have a full

overview of the system when we executed the code developed. Debugging has therefore been a big

help when trying to indentify bugs/issues that occurred.

57.4 Strain test

This test ended up being unnecessary due to change in our project requirement. Our system will

parse newly added entries in Funcoms database when theirown parser has parsed the bug

Project FHaSS Test log 2012

Page 182 of 194

reportssupplied by players. The amount of entries to parse/group in our system is set to only deal

with a fixed amount at a time so therefore the strain test was unnecessary.

57.5 Regression test/Ad hoc test

These tests have been performed by the test manager at regularly intervals to detect issues/bugs on

the system. If something was detected the issue/bug has been added to a list. Group members that

were responsible for theissues/bugs were notified of these bugs and when resolved they were

removed from the list.

57.6 Performance test

Has been done regularly to keep track of loading times for the different web pages of our system and

the time our parser and grouper uses average per workload.

All in all a big help for improving the performance of the code and finding new ways to do the same

task but with a shorter loading time.

Funcom Hardware Statistics System

Project Reflection Document

Project name

Funcom Hardware Statistics System

Client Acronym

Funcom N.V. FHaSS

Date Sensors & Supervisors

5/29/2012 Internal sensor Olaf Hallan Graven

Author Internal supervisor Aurilla AurelieArntzen

All members External supervisor Rui M. Monteiro Casais

Group members

............................
Sondre Bjerkerud

............................
Sverre Christoffer Thune

............................
Kim Richard Johansen

............................
Dag Hem

............................
Kent Brian Dreyer

Project FHaSS Reflection Document 2012

Page 184 of 194

Reflection Document

58 General Document Information

Deliverable nr: D8.3.1

Deliverable type: Report

Release: Public

Workpackage: W8

Responsible: All members

58.1 Declaration of intention

The purpose of this document is to reflect on our work during the development period of our
product and present features with intentions as well as what could have been done differently.

58.2 Definitions and Acronyms

FHaSS Funcom Hardware Statistics System

JPEG / PNG Standardized image file formats

nHibernate A library for accessing a database

.NET Framework library we use for the system

WCF Windows Communication Foundation

58.3 Document History

Version Description Date

1 First version created 22.05.2012

2 Updated content, finalized document 29.05.2012

Project FHaSS Reflection Document 2012

Page 185 of 194

59 Table of contents
58 General Document Information .. 184

58.1 Declaration of intention .. 184

58.2 Definitions and Acronyms ... 184

58.3 Document History ... 184

59 Table of contents ... 185

60 Introduction ... 187

61 Challenges ... 187

61.1 Loading time .. 187

61.1.1 Parser ... 187

61.1.2 Grouper ... 187

61.1.3 Further loading time improvements ... 188

61.1.3.1 Single SQL query .. 188

61.1.3.2 Memory cache ... 188

61.2 NHibernate .. 189

62 Filter saving ... 189

63 Read Data Service .. 189

64 Graphs and visual presentation of data .. 190

64.1 HighCharts ... 190

64.2 View raw data / view full screen graphs ... 191

64.3 X-axis zoom for graphs .. 191

64.4 Exporting the graphs ... 191

64.5 Future prediction of hardware in graphs .. 191

65 Administration side, full control to the user ... 191

66 Reflection... 192

66.1 Requirements capturing .. 192

66.2 Differences in development and production environments ... 192

66.3 Very large amounts of data ... 192

67 FHaSS extension suggestions .. 192

67.1 CPU cores groups with range .. 193

67.2 Physical and virtual CPU cores statistics ... 193

67.3 Saved filter administration with AJAX ... 193

67.4 Graph resolution.. 193

67.5 Dual page view .. 194

Project FHaSS Reflection Document 2012

Page 186 of 194

67.6 Toggle displaying individual charts .. 194

67.7 Compare newest event log entry from database to local event log 194

67.8 Recommended hardware/software to look into/these need attention 194

Project FHaSS Reflection Document 2012

Page 187 of 194

60 Introduction
The purpose of this document is to view our work and implementation period in retrospect, giving a
short explanation of the implemented functionalities and features, evaluate what was excluded from
the extensions and go into detail about what could be done differently and explain the workarounds
we had to undergo with to get the FHaSS-system to the usable state it is in now.

61 Challenges

61.1 Loading time

When we first had a meeting with the product owner we were told that 2 seconds load time was the

requirement, and that it was a quite feasible time to retrieve the entries from the database. Looking

at this in retrospect we now understand that this wouldn’t be doable, given that there are far beyond

four million entries in the hardware statistics database and that this number will increase each day.

At the start of our project we had huge problems with the loading time, which required us to

constantly try to optimize the database fetching queries and algorithms.

In the first version of the system we handled everything on demand, per request. Everything in this

context means; handling the request from the users web browser, setting up the connection with the

WCF web-service, retrieving the hardware statistics from the database, process and prepare the

data, and return them to the MVC layer for display. This solution gave us very long loading times for

the final web-page displaying the hardware statistics. This was especially true for large time spans

(large amounts of statistics data), and we quickly understood that some of the work that back then

was done per request, had to be done in advance of the actual request instead, to decrease the

overall loading time.

61.1.1 Parser

The second version of the systems backbone layer therefore had a new feature implemented; the

Parser. Some of the work that in the previous version was done in the data processing and

preparation phase had now been moved to another part of the system. Here the work could be done

completely independent and in advance of the users requests. More specifically, the Parsers job is to

improve the accuracy of the hardware information stored. For instance it is the job of the Parser to

retrieve the CPU speed from the original CPU string that is sent by the crashed game clients. Having

the more accurate data retrieved in advance and stored in another database table, one major

operation earlier done per request had been removed.

61.1.2 Grouper

With the wide range of different hardware specifications in terms of memory, CPU frequency,

storage and so forth we needed to group similar hardware in the database, to improve the load time

and how we retrieve and present the data. The new version of the system worked well, and the

loading time improvements were significant, but still they did not match the requirements of

Funcom. After discussion with the Funcom employees we decided to again build more of the work,

which at that point was done per request, into its own part of the system. We called the new part the

Grouper and its job was to work on the data that was the product of the Parser and make them even

more optimized for counting. By using a set of supporting database tables giving the restrictions and

limits for the groups in each hardware category, the Grouper could group every hardware statistics

Project FHaSS Reflection Document 2012

Page 188 of 194

entry in to their respective group for all the hardware categories. For instance the grouper would

group a hardware statistics entry with a CPU speed of 2300MHz into the CPU speed group that has a

range from 2000 to 2400MHz, and in a highly optimized database table only store the CPU speed

group id. After implementing the Parser and Grouper, the work left to be done per request was

reduced a lot.

61.1.3 Further loading time improvements

The load times decreased even more after the implementation of the new Grouper, but still we were

experiencing way too long loading times. The project team was out of ideas on how to improve the

loading times and we had extensive discussions with the Funcom employees on possible solutions to

this. The Funcom employees came up with several new ideas, two of which has been implemented in

the current version of FHaSS; a single SQL query per hardware category and memory caching.

61.1.3.1 Single SQL query

Up until this point the WCF web-service interacting with the database had done one database query

per hardware category per day. As a result, a lot of queries had to be done for each user request. By

following the test-and-fail procedure the project team managed to put together more sophisticated

SQL queries that retrieved all the information for all days for one hardware category. The load time

improvement the system saw after this enhancement was enormous compared to the amount of

work hours that had been used for the implementation of it.

61.1.3.2 Memory cache

There was a lot of back and forth regarding the load issue, but just needed the users to accept the

fact that we are dealing with a lot of information here, this is a heavy system. So fetching all the

entries in the database (4.000.000+ entries) takes about 40 seconds which is far from the original

requirement, but thinking about it, how often does the users need to view this long term

information? This is a quick analysis system to check on how the latest patches are working out, and

what types of hardware that causes the most significant crashes, that’s why we came up with the

caching solution.

The caching was implemented by fetching every single entry for the last month and storing them in

the program memory as a static variable, and because the entries were fetched using nHibernate it

automatically created objects and groups of that fetch for us. Because the home page uses the last

month by default the users will almost always be using the cached information.

This made our home index pop up almost instantly, given the fact that this is also the most relevant

information to analyze this was a great solution to our load time issues. The drawback is that the

cache needs to be built the first time the system starts up and the first time a user uses the page for

the first time in a day to let the cache refresh itself, this should take as much time as a normal

database fetch (as if a user wanted information about a time period that goes back more than one

month).

We also considered using a thread that would do this at the turn of a day, but that could cause issues

with the web client which is a singleton, meaning there’s only one instance of the client at any given

time. If several processes would try to access this simultaneously there could be problems.

Workarounds for this problem could obviously been developed, but this was implemented in one of

Project FHaSS Reflection Document 2012

Page 189 of 194

the later periods of the project so we didn’t have the resources or time to implement this potential

improvement.

61.2 NHibernate

NHibernate is an object-relational mapper for the .NET framework and it was a requirement from

Funcom to use this software for the systems database interaction. In essence NHibernate has been a

big blunder to the project team. NHibernate was very stubborn, hard to work with and far from

intuitive, and we had to make many workarounds to make this work. All the project members had

previous experience with writing SQL database queries and handling the results of such. The

transition to writing, reading, and thinking in the way of NHibernate Criteria Queries was nothing but

painful. And so was the adaptation of having to write out the mapping database-table-to-object

mapping XML documents. A stream of errors that felt endless, was hard to debug and even harder to

fix, was awaiting the project members when we started out on the development phase of the

project.

62 Filter saving
To save some time on inputting commonly used filter combinations, we created default saved filters

for The Secret world, Age of Conan and a filter combination of both games. Aswell as access to these

filters, the user can also save their own combinations of filter parameters for a quicker and easier

hardware monitoring experience. The filters are saved on the database so that they will show up for

all users accessing the system. This was implemented purely for the reason that we want this to be a

quick-to-use system where the users can get specified information in no time.

In addition to this we wanted to implement a “dual-view” functionality e.g. to view a crash

comparison of ”The Secret World” and “The Age of Conan: Hyborian Adventure”. This was a low

priority extension however so sadly this did not get implemented the way we wanted, but the filter

save functionality will somewhat fill the dual view’s place and give them the specified information

needed.

63 Read Data Service
Our system uses two WCF services in order to separate two largely different information services,

where one handles everything related to administration of the system (the AdminService) while the

other has the sole role of delivering the actual statistical data (the ReadDataService).

The ReadDataService uses (just as the AdminService) the nHibernate API to fetch and insert

information to and from the database which has caused some issues during development. The main

issue with nHibernate was a lack of experience from our side and the lack of documentation that

came with nHibernate; this mainly caused minor problems where we were unsure about how we

should use nHibernate to get the correct information back as simple as possible. nHibernate also

caused some larger issues when we were unsure about how it worked and even what we could use it

for (this is explained more in-depth elsewhere).

This WCF service slowly changed over the course of the project period due to a number of

optimization efforts and the increasing the demand for more and more statistical information, this

Project FHaSS Reflection Document 2012

Page 190 of 194

way it has become a part that has been completely rewritten and gone through numerous iterations

since we first created it in the beginning of the project.

The ReadDataService had to evolve to supply more and more data using less and less time, and is

solely used to fetch, sort, count and group statistical information. It contains the following

functionality (when fetching information it always accounts for the filtered options such as universes,

country and time span):

 Fetching/Sorting/Counting/Grouping information for every hardware part from the database

 Fetching/Sorting/Counting/Grouping information for a single hardware part from the

database

 Fetching information for a month and storing this in a cache

 Sorting/Counting/Grouping information for every hardware part from the cache

 Sorting/Counting/Grouping information for a single hardware part from the cache

 Estimate future values for a set of data

64 Graphs and visual presentation of data

64.1 HighCharts

For creating the visual graphs we were recommended to use a JavaScript API called HighCharts.

This API contains a lot of different functionalities and has a lot of customization options available to

generate whichever graph necessary for displaying the relevant information. Our graphs are of the

type “Stacked Percent Area” which was a request from the product owner. This type of graph

displays the percentage of entries for a hardware part based on the other hardware parts entries.

We started out with having a fixed resolution of 12 x-axis points, where we printed out the date from

and date to, summarizing the entries between the intervals as the y-axis value.

As we improved the fetching of data from the database we wanted the graphs to yield more precise

information, thus we made an x-axis point for each single day of the filter period. Although this yields

better information over short periods of time (1 – 4 months) it gets a bit overpopulated when they

request data spanning over vast time periods. However, the visual information given by the graphs

are not particularly affected by this.

If the user requests a date in the future, a mathematical formula will calculate the predicted entries

based on the past entries. We didn’t get time to implement a way to indicate the transition to a

future date in the graphs, since there was a problem extracting the point positions after the graph

was rendered. A fix for this is possible, but alas we did not have the time to fully implement this since

other known issues had a higher priority.

The tooltip also has a minor problem where it won’t show the dates if the x-point is an empty string,

this is solely because HighCharts require that the series data and the x-axis categories (arrays) are of

same length, so we had to print empty strings in order not to overlap the dates printed below the

graphs.

In the end the graphs turned out quite nicely after a bit of trouble getting it dynamic and finely tuned

to fit into the rest of the design and layout of the FHaSS-system

Project FHaSS Reflection Document 2012

Page 191 of 194

64.2 View raw data / view full screen graphs

Above the graphs there are two links which opens in a new browser tabs. The linked views contains

raw graph data, showing all the entries in a HTML table for each date. The other link extends the

desired graph in to a full screen window for in depth analysis. To store the filter information for use

in a new View we store the settings in Session variables. These variables timeouts and resets after 20

min of inactivity, but can be increased in binding options. We experimented putting this information

as cookies, but were deemed useless as the Session variables work better, keeping the time out in

mind. These functionalities were a request from the product owner, but prior to this already noted as

an extension task.

64.3 X-axis zoom for graphs

The graphs support zooming by clicking and dragging the mouse over the desired period. This works

in the Home index as well as in the full screen extension. We experimented with making this zoom

compatible for both X- and Y-axis but since the graphs are of the type “stacked Percent” graph zoom

for the Y-axis would be irrelevant as the data must be compared to the other hardware entries, thus

we did not include the y-axis zoom functionality.

64.4 Exporting the graphs

In the top right corner of the graphs we implemented a functionality to export the graphs to an

image file (PNG / JPEG) as well as support for exporting it to a PDF-file. This was a feature

implemented by us if the graphs are to be used in a presentation or similar.

64.5 Future prediction of hardware in graphs

We wanted to give the users the possibility to apply future dates to the filter menu, so instead of

giving them some sort of an error or warning, we calculate the predicted trend pattern of the

hardware parts with the use of linear regression based on previous entries, giving the developers an

idea of what the coming days or months might bring in terms of hardware crashes. It has to be noted

that the hardware info table will not get populated with this information, since this cannot be

monitored in a day-to-day sense, and we do not want the table to yield any ‘false’ information

regarding the crash statistics. This functionality was requested by the product owner, so we

implemented it, but it should be used with care by the users since the entries are in a way just fictive

predictions.

65 Administration side, full control to the user
In this section the users of the system can modify the structure of the database without the need to

manually inject database queries, as well as start and stop the grouper and parser. This section was

created to make the system modifiable and dynamic for future use. If there are hardware changes in

the market or Funcom releases new titles, entries can be added, deleted, mapped and modified

whilst making the parser and grouper aware of these changes. We managed to make the interface

self-explanatory and intuitive yet expansive. Changes in this section however might require reparsing

and regrouping of the database structure which can be time consuming for the back-end of the

system. For this reason we display warnings before any changes are applied. The users should be

aware of this and the administration section should not be used to frequent as it is designed for

larger changes in the system.

Project FHaSS Reflection Document 2012

Page 192 of 194

We feel that we have covered every necessary option in this section, the Funcom employees has not

raised any additional requests to this part. There was problems getting all of this completely

debugged but as of now, none are reported.

66 Reflection
Looking back at the last months (of the development period) it is easy to see what mistakes the

project team has done and what could have been done differently.

66.1 Requirements capturing

In the startup of the project the team should have put more time into understanding exactly what

way and to what purpose the FHaSS was going to be used. A better understanding of this would have

saved us very much time. On the other side we would have had to put in more time in the pre-face of

the project, and probably much more time in a pre-face design period, which is not according to how

the Scrum project model suggests the project workflow.

66.2 Differences in development and production environments

Ever since the first attempt to deploy the FHaSS in the Funcom offices in Oslo the differences

between the project team’s software development environment and Funcoms production

environment has been prominent. A lot of thought and work hours have been put into solving

problems that only occurred in the production environment throughout the latest half of the project

development period.

We could probably have been able to become better known with the environment differences had

we been able to spend more time in the Funcom offices in Oslo. However, this was not easy to

accomplish both due to time and economy.

66.3 Very large amounts of data

The raw hardware statistics database table that Funcom was already using for their previous

hardware statistics system had over four (4) million entries. With the help of the Funcom employees

we quickly got a dump of this table downloaded to our server to test our system against. However,

testing for instance the parser and grouper (discussed in section …) against such a large number of

database table entries takes a lot of time. We are talking up to several days to complete such a

process. As a result, the testing and debugging of the system in the development period has mainly

been done on a subset of the original database table. While this gave us the opportunity to test more

frequently and efficiently, it introduced another potential area of issues; the stability and endurance

of the backbone of the system. We now see that this area was not tested as frequently and thorough

as it probably should have, and as well there should have been created one or several tests in the

test specification for testing this area specifically.

67 FHaSS extension suggestions
In the following will several ideas to extension features that either the project team has thought of

themselves or that Funcom gave as feedback after the first successful deploy of the system, be

discussed and given proposals to design solutions of.

Project FHaSS Reflection Document 2012

Page 193 of 194

67.1 CPU cores groups with range

The grouper is currently grouping hardware statistics entries for the CPU cores hardware category

based on groups representing distinct number of cores values (for instance four (4) cores). Say in five

years, the computer hardware market will have changed much, and the CPU evolution trend of more

and more CPU cores onto a single CPU chip will most probably just continue. Using FHaSS, Funcom

will then have to have one CPU cores group for each possible CPU cores number, while it is at this

point probably more informative to get statistics for how many CPUs there are in this and this range

of number of CPU cores (like FHaSS has for CPU speed for instance). The current system does not

take this into account because it is not a demand of the current computer hardware market. A

“range” solution would both work with the current market situation and an eventual future situation

like explained above.

67.2 Physical and virtual CPU cores statistics

On the client side of their MMORPG games Funcom is using the DirectX Diagnostic (DxDiag) tool that

comes with Windows to retrieve hardware statistics to return to their hardware statistics server. One

of the problems with this approach is that the DxDiag tool does not take into account whether or not

the amount of CPU cores that Windows is working on are physical cores on the CPU chip or just

virtual cores. As a result, the statistics that FHaSS is producing about CPU number of cores is a

merged statistics of both physical and virtual number of cores.

A possible solution for giving correct statistics in this context is to rewrite the hardware information

gathering software to gather the CPU number of cores information from the msinfo32 system

information tool instead of the DxDiag tool.

67.3 Saved filter administration with AJAX

Currently the saved filter administration functionality has got its own page in FHaSS. This

functionality could potentially have been put in the administration section, but since all the

functionality in the administration section controlled the backend part of the system it felt wrong to

put frontend administration functionality like this in the same section. The functionality could also

have been implemented into the Filter Menu on the Home page, but due to the Home page having to

reload between each new HTTP request (which a deletion of a saved filter would produce) the user

would get very bad loading times for a simple operation (having to wait for all the hardware statistics

to load once more).

The solution that the project team has come up with to remove the need for the single Saved Filters

administration page is to implement the administration functionality into the Filter Menu like

explained above, by using AJAX. By using AJAX the web-browser can send HTTP requests without

having to reload the page, and thereby good response times could be kept up while at the same time

offering a good user interface to the Funcom employees.

67.4 Graph resolution

The graphs on the Home page of the web-page interface of FHaSS is currently displaying one data

point for each day for each of the top six (6) groups of the hardware category. If the user choose to

get statistics from the last year for instance (by using the Time Period Filter) the charts would display

365 * 6 = more than 2000 data points, which is quite a lot. Given that the charts are displayed side by

side the amount of space they’ve got for displaying their data is limited, and with many data points

Project FHaSS Reflection Document 2012

Page 194 of 194

the charts are looking very spiky. The charts could potentially be more informative if the chart

resolution (number of data points) was either static, variable and calculated based on the charts

available space, or given by the user. With some more fixing in the backend of FHaSS such a solution

could potentially also improve the loading times for the Home page.

67.5 Dual page view

Feedback from the Funcom employees said that it was wanted that the FHaSS web-page interface

should be capable of displaying two or several pages of hardware statistics without having to reload

the page. Such functionality would make it easier for the user to compare statistics calculated based

on two or more different filter selections in the Filter Menu.

67.6 Toggle displaying individual charts

How the system works today is that all categories displayed in the statistical table have their own

chart showing information. These charts will be created as long as the amount of days in the time

span chosen is under 600 days.

An option to choose which charts to be created could be added to reduce the loading time of the

statistical page or to just show the relevant ones and use less space.

67.7 Compare newest event log entry from database to local event log

How the parser, grouper and distinct updater of the system works today if an exception was to

happen is that an event log about the exception is written to the database and to a local file where

the windows service is stored. If the database connection is down (still after 4 retries) the event log

will only be written to the local event log and another log saying could not log event to database.

Today there is no functionality to check if the local file has newer log entries than the database. This

could be implemented so the user could be given a message of this when viewing the event log on

the parser interface page under administration without having to check this manually.

67.8 Recommended hardware/software to look into/these need attention

The group has come up with an extension of the system that could be helpful for Funcom employees

using the FHaSS system. Another list could be added to the statistical table showing the most

frequent hardware/software found in the database. This could identify the source of most recent

crashes. This extension should also have the possibility to remove entries in the list if the

hardware/software is not the cause of the bug but is just often used in computers that experience

crashes or that the specific hardware/software issue has been resolved.

