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abstract

PURPOSE With a dismal 8% median 5-year overall survival, pancreatic ductal adenocarcinoma (PDAC) is
a highly lethal malignancy. Only 10% to 20% of patients are eligible for surgery, and more than 50% of these
patients will die within 1 year of surgery. Building a molecular predictor of early death would enable the selection
of patients with PDAC who are at high risk.

MATERIALS AND METHODS We developed the Pancreatic Cancer Overall Survival Predictor (PCOSP), a prog-
nostic model built from a unique set of 89 PDAC tumors in which gene expression was profiled using both
microarray and sequencing platforms. We used a meta-analysis framework that was based on the binary gene
pair method to create gene expression barcodes that were robust to biases arising from heterogeneous profiling
platforms and batch effects. Leveraging the largest compendium of PDAC transcriptomic data sets to date, we
show that PCOSP is a robust single-sample predictor of early death—1 year or less—after surgery in a subset of
823 samples with available transcriptomics and survival data.

RESULTS The PCOSP model was strongly and significantly prognostic, with a meta-estimate of the area under
the receiver operating curve of 0.70 (P = 2.6E−22) and D-index (robust hazard ratio) of 1.9 (range, 1.6 to 2.3;
( = 1.4E−04) for binary and survival predictions, respectively. The prognostic value of PCOSP was independent
of clinicopathologic parameters andmolecular subtypes. Over-representation analysis of the PCOSP 2,619 gene
pairs—1,070 unique genes—unveiled pathways associated with Hedgehog signaling, epithelial–mesenchymal
transition, and extracellular matrix signaling.

CONCLUSION PCOSP could improve treatment decisions by identifying patients who will not benefit from
standard surgery/chemotherapy but who may benefit from a more aggressive treatment approach or enrollment
in a clinical trial.

Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a highly
lethal malignancy with a 5-year overall survival rate of
less than 8%.1 Disease in a majority of patients—more
than 80%—is inoperable as a result of locally ad-
vanced or metastatic disease at the time of diagnosis.
Completion of multimodality treatment—surgery com-
bined with adjuvant or neoadjuvant chemotherapy—is
the standard of care for treatment of PDAC. However,
even after surgical resection with curative intent,
median survival does not exceed 28 months and one
half of those patients who undergo surgery develop
recurrent disease and die within 1 year after surgery.
2-4 Therefore, there is a need for a robust prognostic
model to identify patients with a high risk of early
death on the basis of molecular profiles of their tu-
mors. Such a prognostic model could assist clinicians
in identifying patients who may not benefit from
surgery and standard adjuvant chemotherapy but

who may benefit from a more aggressive approach or
enrollment in a clinical trial.

Various clinical factors are prognostic after PDAC
surgery, such as lymph node metastasis status,5 tumor
grade,6 margins,7 degree of differentiation,8 and pro-
tein biomarker CA-19-9.9 However, the prognostic
value of these clinical variables are insufficient to
accurately stratify patients on the basis of risk of
disease recurrence.10,11 With the advent of high-
throughput next-generation molecular profiling tech-
nologies, multiple studies have released transcriptomic
profiles of PDAC to the public domain. These gene
expression profiles have been leveraged to identify
molecular subtypes of PDACs.12-16 Whereas overlap
between these subtypes15 supports the biologic rel-
evance of these published classification schemes,15

they have not been designed to optimize prognostic
value.

ASSOCIATED
CONTENT

Appendix

Data Supplement

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on XXX and
published at
ascopubs.org/journal/
cci on May 9, 2019:
DOI https://doi.org/10.
1200/CCI.18.00102

1

Downloaded from ascopubs.org by 91.186.71.4 on April 15, 2020 from 091.186.071.004
Copyright © 2020 American Society of Clinical Oncology. All rights reserved. 

http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.18.00102
http://ascopubs.org/doi/full/10.1200/CCI.18.00102


Previously published prognostic models were developed
from a small number of samples that lacked proper vali-
dation in multiple data sets.17-21 Attempts have been made
recently to build a prognostic gene signature using pooled
samples from multiple cohorts to identify patients who are
at high risk of short-term survival postsurgery.22-24 However,
they used samples that were profiled using either an array-
or sequencing-based method as the learning cohort;
therefore, the classifiers may perform better for patients
whose samples were profiled using only one of the two
platforms.

To address these issues, we took advantage of a unique set
of 89 PDACs that were profiled using both microarray and
sequencing technologies to develop the Pancreatic Cancer
Overall Survival Predictor (PCOSP) model. Using an in-
dependent set of PDAC transcriptomic profiles from 823
primary resected patients, we show that PCOSP is a robust
single-sample predictor of early death—1 year or less—
after surgery that could be used as a potential tool to assist
clinicians in decision making.

MATERIALS AND METHODS

The meta-analysis pipeline used to develop the PCOSP
model and evaluate its prognostic value is provided in
Figure 1.

Data Sets

We surveyed the literature and curated 17 data sets,
which included 1,236 patients with PDAC, from the
public domain for which transcriptome data of PDAC
were available (Data Supplement). We further filtered
samples on the basis of the availability of overall survival
(OS) and sample size (n = 10 or greater) data after di-
chotomization into high-and low-survival groups on the
basis of an OS cutoff of 1 year (Fig 2). The different
cohorts had similar clinical presentation and were treated
with curative surgery followed by adjuvant chemotherapy
(Data Supplement).

Prognostic Model

To develop a robust predictor for early death, we used gene
expression profiles of 89 samples from patients with PDAC
whose tumors had been profiled using both microarray and
sequencing platforms within the International Cancer Ge-
nome Consortium (ICGC) cohort. Human research ethical
approval was granted as previously published.14 Approxi-
mately one half of patients of the training cohort who were
eligible for surgery experienced relapse within 1 year; we
used this threshold to predict which patients with PDAC
had high risk of early death—1 year or less—postsurgery.
We excluded seven samples from the training cohort as
these patients were censored before 1 year of follow-up.

To make gene expression profiles comparable between the
training and validation sets, we transformed the original
gene expression profiles into binary gene pair barcodes. We
implemented k-Top scoring disjoint pairs classifier pre-
dictor25 using the Wilcoxon rank sum method as a filtering
function in the SwitchBox package (version 1.12.0)26 (Data
Supplement). To assess whether the prognostic value of the
PCOSPmodel could be achieved by random chance alone,
we tested two permutation tests (Data Supplement).

Early Death Prediction

Meta-analysis was performed for the PDAC sequencing
cohorts, PDAC array-based cohorts, and overall combined
cohorts to assess and statistically compare the perfor-
mance of the PCOSP. Patient samples were dichotomized
into two groups on the basis of the outcome variable—time
from surgery to death of 1 year or less. Samples censored
before 1 year of follow-up were excluded from the analysis
of the meta-estimate of the area under the receiver oper-
ating characteristics curve (AUROC). AUROC plots the
sensitivity versus 1-Specificity and is used as a criterion with
which to measure the discriminatory ability of the model.27

AUROC was computed using pROC package (version 1.10.
0), and we estimated the P value using the Mann-Whitney
test statistics that estimated whether the AUROC curve

CONTEXT

Key Objective
Building a robust molecular predictor model to stratify patients with pancreatic ductal adenocarcinoma (PDAC) on the basis of

risk of early death.
Knowledge Generated
We generated a compendium of 17 PDAC data sets, including 1,236 gene expression profiles and 823 patients with survival

data, as a resource for future PDAC analyses. We built the Pancreatic Cancer Overall Survival Predictor (PCOSP), a single-
sample prognostic model robust to heterogeneous gene expression profiling platform and normalization methods for
identifying patients with PDAC who are at high risk of early death.

Relevance
Endoscopic ultrasound biopsies could be used before curative surgery to estimate the prognosis of patients with PDAC using

PCOSP to assist clinicians in predicting high-risk patients and making treatment decisions for this population.
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estimate is significantly different from 0.5 (random clas-
sifier). The meta-estimate of AUROC was estimated using
the random effect model28 implemented in survcomp
package (version 1.26.0).29,30

Survival Prediction

Prognostic value and statistical significance of survival
difference between the predicted classes were assessed
using the D-Index, which is a robust estimate of the tra-
ditional Cox hazard ratio (HR). The main advantage of
D-index compared with HR is a result of the fact that it is
a robust and interpretable scale-free measure of separation
between two independent survival distributions under the
proportional hazards assumption.31 This makes D-index

a suitable estimate of prognostic value in a meta-analysis
setting in which the heterogeneity of different cohorts must
be accounted for. In addition, we used the concordance
index (C-index), which estimates the probability that, for
a random pair of patients, the PCOSP score for the patient
with shorter survival is higher than that of the patient with
longer survival.32 Both the D-index and C-index were calcu-
lated using the survcomp package. We calculated the meta-
estimate of the D-index and C-index for the PDAC sequencing
cohorts, the PDAC array-based cohorts, and the combined
PDAC sequencing and array-based cohorts using the random
effect model28 implemented in the survcomp package. Pa-
tients were stratified into low- and high-risk groups using
median PCOSP score as a threshold. Kaplan-Meier curves
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FIG 1. Pipeline showing the approach used for building the Pancreatic Cancer Overall Survival Predictor. ICGC,
International Cancer Genome Consortium; k-TSP, k-Top scoring disjoint pair; OS, overall survival; OUH, Oslo
University Hospital; PCSI, Pancreatic Cancer Sequencing Initiative; TCGA, The Cancer Genome Atlas; UNC,
University of North Carolina.
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were plotted using survminer package (version 0.4.3)33 in R
and we reported the P values from log-rank test.

Clinicopathologic Features–Based Model to Predict
Early Death

We built the clinical model by fitting the logistic regression
model using common clinicopathologic features—that is,
age, gender, TNM status, and tumor grade available from
the Pancreatic Cancer Sequencing Initiative (PCSI), ICGC
sequencing, ICGC array, The Cancer Genome Atlas
(TCGA), and Oslo University Hospital (OUH) cohorts.

Gene Set Enrichment Analysis

To categorize genes in PCOSP, we performed gene set
enrichment analysis using the RunGSAhyper function
implemented in the piano package (version 1.16.4).34

Comparison With Existing Classifiers

We calculated the Birnbaum signature scores22 and Chen
signature scores23 using the published coefficients of the
25 and 15 classifier genes, respectively, as weight pa-
rameters in the sig.score function implemented in the
genefu R package (version 2.10.0).35 We used Haider
signature scores courtesy of the author.24 We computed the
C-index and D-index for the three classifiers using eight
validation cohorts, excluding the cohorts used for training
by PCOSP and other classifiers in comparison. Further-
more, we compared meta-estimates of the C-index of each
classifier with PCOSP at P , .05 (one-sided t test) as
implemented in the survcomp package.

RESULTS

OS Predictive Model

To predict patients with early death (1 year or less after
surgery), we trained the PCOSP model on the 89 ICGC
cohort samples that were profiled using both microarray
and sequencing transcriptomic profiles. We tested the
prognostic value of the PCOSP score in three independent
sequencing cohorts, including the PCSI,36 TCGA-
Pancreatic Adenocarcinoma (PAAD),15 and Kirby37 cohorts,
and seven independent array-based cohorts composed
of ICGC-array (excluding the 89 samples used for train-
ing),38 University of North Carolina (UNC),13 OUH,39

Chen,23 Zhang,40 Winter,41 and Collisson12 cohorts. We first
tested the predictive value of early death by calculating the
AUROC for each data set separately. PCOSP was significant
overall (AUROC, 0.70;P, 2.6E−22; Fig 3A) but was higher in
the data sets that were generated using sequencing platforms
compared with microarrays (AUROC, 0.72 v 0.68 for se-
quencing and array data sets, respectively) at P = .09,
which suggests that RNA sequencing might be a better
assay for PCOSP than microarray platforms. PCOSP was
significantly predictive of early death in all cohorts (AUROC
2 [0.67, 0.76]; P , .05), with the exception of the Winter
and OUH cohorts (P. .48), and was almost significant for
the Collisson cohort (AUROC, 0.69; P = .051). To de-
termine whether the early death predictive value of the
PCOSP model can be achieved by random chance alone,
we first computed meta-estimates of AUROC by randomly
shuffling the class labels—early deaths—1,000 times and
applying the same training procedure used for the PCOSP
model. We observed that the gene expression profiles were
significantly associated with survival as none of the random
models could yield a predictive value greater or equal to
PCOSP (P, .001; Appendix Fig A1A). We further assessed
whether the gene pairs selected in the PCOSP model were
robustly associated with early death events by randomly
assigning genes to the PCOSP model. We again observed
that the genes selected in PCOSP yielded significantly more
predictive information than the models comprised of ran-
dom genes (P , .001; Appendix Fig A1B), which sup-
ported the biologic relevance of the PCOSP gene set.
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FIG 2. Flowchart showing the inclusion criteria for pancreatic ade-
nocarcinoma (PDAC) samples. A total of 1,236 PDAC samples were
curated from 17 data sets. Samples were filtered on the basis of the
availability of overall survival (OS) and sample size (. 10) after di-
chotomization into high and low survival groups. The total of 1,001
samples met the filtering criteria, of which 178 samples were used for
training and 823 for validation.
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FIG 3. Predictive value of the Pancreatic Cancer Overall Survival Predictor for early death and overall survival. (A)
Area under the operating characteristics curve (AUC) for all cohorts and meta-estimates for sequencing cohorts,
array-based cohorts, and for both platforms combined. (B and C) Forest plot reporting (B) the concordance indices
(C-index) and (C) the D-index (robust hazard ratio) for all cohorts and the meta-estimates for sequencing cohorts
(orange), array-based cohorts (blue), and for both the platforms combined (gray). Squares in the forest plot represent
the point estimates, horizontal bars represent CIs, and the diamond is themeta-estimate. ICGC, International Cancer
Genome Consortium; OUH, Oslo University Hospital; PCSI, Pancreatic Cancer Sequencing Initiative; TCGA, The
Cancer Genome Atlas; UNC,University of North Carolina.
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Prognostic Relevance of the PCOSP Model

To assess the prognostic value of the PCOSP model, we
calculated the C-index and D-index using OS data for all
cohorts. The C-index is significant overall (C-index, 0.63; P
= 1.8E−12; Fig 3B). In agreement with results of early death
prediction, the PCOSP prognostic value was higher for the
sequencing data sets compared with arrays (C-index, 0.65;
P , 3.8E−14 v C-index, 0.61; P , 1.6E−12, respectively;
Fig 3B). Similar to the C-index, PCOSP D-index was strong
and significant overall (D-index, 1.95; P = 1.4E−04; Fig 3C)
and stronger for the sequencing data sets (D-index, 2.24 v
1.83; Fig 3C). To assess whether the prognostic value of
PCOSP depends on PDAC molecular subtypes, we strati-
fied PDAC samples into basal and classic subtypes using
the Moffitt classifier13 and calculated meta-estimates of
C-index and D-index. We found that PCOSP was prognostic
in validation cohorts independent of molecular subtypes
(Appendix Figs A2A and A2B). We further assessed
whether PCOSP prognostic value was complementary to
clinicopathologic parameters and molecular subtypes by
fitting both a multivariable Cox proportional hazards model
to predict survival and a logistic regression model to predict
binary outcome—death at less than 1 year or not (Data
Supplement).

To further illustrate the prognostic value of PCOSP, we
stratified patients into low- and high-risk groups and plotted
Kaplan-Meier curves for each cohort (Figs 4A-4J). OS was
significantly different between risk groups for all se-
quencing cohorts and twomicroarray cohorts (P, .05) and
borderline significant for three microarray cohorts (.05 ≤
P, .10; Figs 4A-4J), with a 10-month difference in median
OS between risk groups.

Clinicopathologic Model to Predict OS

The logistic regression model fitted using these clinico-
pathologic features was used to predict early death of
patients with PDAC. The clinicopathologic model was not
significant overall (C-index, 0.55; P = .17; Fig 5A). In
contrast to PCOSP, the clinicopathologic model was not
predictive in the sequencing cohort (C-index, 0.53 and 0.
58 with P = .75 and .05 for the sequencing and array data
sets, respectively; Fig 5A). Only nodal status, tumor grade,
and molecular classes were significant in the univariable
analysis (Data Supplement). We compared the prognostic
value of the clinicopathologic model with PCOSP (Figs 5B
and 5C). PCOSP was significantly more prognostic than the
clinicopathologic model (one-sided t test, P, .01; Fig 5D).

Comparison With Published Prognostic Models

We compared the prognostic value of PCOSP with three
published PDAC prognostic models, referred to as Birn-
baum,22 Chen,23 and Haider.24 Overall prognostic value of
the three published models was significant (Figs 6A and
6C). PCOSP significantly outperformed published prog-
nostic models in all cases (P , .05; Figs 6C and 6D), with
the exception of the D-index of the Chen classifier where the

superiority of the PCOSP prognostic value demonstrated
a trend to significance (one-sided t test, P = .10).

Pathway Analysis of Prognostic Genes

Gene enrichment analysis for PCOSP signature genes (n =
1,070) found that the extracellular matrix (ECM),
epithelial–mesenchymal transition (EMT), and hedgehog
signaling pathway genes were enriched in the PCOSP
model at false-discovery rate of less than 5% (Data
Supplement).

DISCUSSION

We performed ameta-analysis of the transcriptomic profiles
of 1,236 patients with PDAC and developed the PCOSP,
a new prognostic model with which to identify patients who
are at high risk of early death after surgery. The model is
built from a unique set of 89 patients profiled using both
array-based and sequencing platforms and validated on
a compendium of 10 independent data sets that included
823 patients. The prognostic value of the PCOSP model
was highly significant for both early death—1 year or
less—and OS (P , .001; Fig 3).

Contrary to published prognostic signatures that were fitted
on a small number of samples and that lack validation in
large independent data sets,17-21 PCOSP has been trained
and validated on a large compendium of data sets. Com-
parison of PCOSP with existing classifiers22-24 demon-
strated that the Birnbaum, Chen, and Haider models
yielded significant but significantly weaker prognostic value
than PCOSP (Figs 6C and 6D). Of importance, PCOSP
performs significantly better than existing classifiers for
both microarray and sequencing platforms, likely because
of simplifying the continuous expression space into binary
pair barcodes. This enables PCOSP to be used as a single
sample predictor robust to profiling platforms, potential
batch effects, and normalization methods compared with
other classifiers.

Comparison of PCOSP against known prognostic clinico-
pathologic variables demonstrated that PCOSP out-
performed the clinicopathologic model in predicting early
death (Fig 5). PCOSP prognostic value was significant, even
after adjusting for molecular subtyping (classic v basal) and
clinicopathologic parameters (age, sex, TNM status, dif-
ferentiation grade of tumor, and molecular classes; Ap-
pendix Figs A2A and A2B and Data Supplement).

The PCOSP model incorporates 2,619 unique gene pairs,
totaling 1,070 unique genes. Functional analysis of 1,070
genes demonstrated enrichment of Hedgehog signaling
and ECM and EMT pathways. Numerous studies have
suggested the involvement of EMT in the invasion and
metastasis of PDAC.42 EMT enhances cell motility via loss of
cell–cell adhesion, escaping from the ECM and overcoming
the apoptosis process.42 The ECM and EMT pathways are
not only associated with the metastatic spread of tumor but
also with chemoresistance, which leads to worse survival.43
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PDAC is a heterogeneous and genetically highly com-
plex disease, which supports the molecular13,14 and
morphologic44 characterization of a given tumor as an
important cornerstone for the development of future
therapies. We provide the largest compendium of 17 PDAC
data sets as a gold standard for future PDAC analyses. The
new meta-analysis framework implemented in PCOSP
maximizes robustness and performance across cohorts. To
implement PCOSP as a clinical assay, we tested different
feature set sizes for the k-Top scoring disjoint pairs models
and compared the performance of the reduced models. We
achieved accuracy that was comparable to the 1,070-gene
PCOSP model by including only 256 unique genes, which
supports the potential for the implementation of a smaller
PCOSP-like modelfor the clinic setting (Appendix Fig A3).

Endoscopic ultrasound biopsies could be used before
curative surgery to estimate the prognosis of patients with
PDAC using PCOSP. This may assist clinicians in the se-
lection of patients for surgery and help to identify those
patients with high-risk progressive disease for whom an
operation has little oncologic benefit.

The current study has potential limitations. First, there are
inherent tumor sample collection biases as the different
data sets were collected and sampled at different centers
and have heterogeneous standard-of-care across different
hospitals. Levels of tumor cellularity varied highly across
cohorts as PCSI and Collisson data sets were generated
using laser microdissection before to sequencing; Kirby
and Chen data sets were macrodissected; and TCGA,
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ICGC, OUH, Zhang, and Winter data sets used bulk tumors
for profiling. Second, transcriptomic profiles in our data
compendium were generated using different gene ex-
pression profiling technologies for sequencing (Illumina
HiSEquation 2000/2500; Illumina, San Diego, CA) and
microarray platforms (Agilent Technologies, Santa Clara,
CA; Affymetrix, Santa Clara, CA; and Illumina). Third, all
samples were normalized using the published processing
methods, which depend on the profiling platforms (Data
Supplement). Fourth, there may be a loss of information
with regard to the coexpression and magnitude of differ-
ential expression between genes by converting expression
data into binary barcodes information. However, there are

statistical benefits to the binary barcodes approach over
predictions that are based on continuous gene expression
data. The binary barcode approach produces single-
sample predictions that are insensitive to monotonic
transformation of the gene expression data, which is par-
ticularly relevant in the meta-analysis of heterogeneous
cohorts in which continuous gene expression–based pre-
diction approaches need scaling of data for comparison
across cohorts.

Despite these limitations, PCOSP yielded robust prognostic
value across the heterogeneous data sets, indicating that
the gene expression barcode transformation is robust to the
inevitable biases that are present in large meta-analyses.

FIG 5. (Continued). in the forest plot represent the point estimates, horizontal bars represent CIs, and the diamond is the meta-estimate. (D) The tables
shows the result of test of superiority between PCOSP and clinicopathological model for meta C-index and meta D-index. ICGC, International Cancer
Genome Consortium; OUH, Oslo University Hospital; PCSI, Pancreatic Cancer Sequencing Initiative; TCGA, The Cancer Genome Atlas.
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However, exploring other factors, such as germline vari-
ants, epigenetics, copy number alterations, noncoding
RNAs, protein abundance and epidemiologic and envi-
ronmental factors, will be necessary to further improve the
prediction accuracy of predictive models.

Lack of available clinical and treatment information across
cohorts is also a limiting factor in our meta-analysis, which
prevents us from investigating this source of heterogeneity
further. However, comparison of cohort-specific clinical
information for the cohort was not significantly different
across cohorts (Data Supplement). During the time period
of sample collection, standard-of-care treatment of PDAC
was curative-intent surgery followed by adjuvant chemo-
therapy with gemcitabine or fluorouracil. New approaches
using doublet and triplet chemotherapy regimens are now
becoming standard of care in the adjuvant setting.45 The
survival benefit observed with FOLFIRINOX (folinic acid,

fluorouracil, irinotecan, oxaliplatin) in the adjuvant setting
highlights the importance of systemic therapy in curing
patients with resectable PDAC. The role of neoadjuvant
chemotherapy is also being evaluated in many centers;
thus, heterogeneity in treatment is expected within and
between different cohorts. We will need to test our PCOSP
model using new clinical data sets or preferably within the
context of randomized trials.

In conclusion, we leveraged the largest compendium of
PDAC transcriptomes to develop PCOSP, a prognostic
model that identifies patients with PDAC at high risk of early
death independent of, and superior to, clinicopathologic
features and molecular subtypes. PCOSP may be useful in
the clinical setting as a single sample classifier to identify
patients who could be at higher risk of early death after
surgery and adjuvant chemotherapy, potentially facilitating
treatment decisions.
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APPENDIX

MATERIALS AND METHODS

Data Sets
We surveyed the literature and curated 17 data sets that included
1,236 patients with pancreatic ductal adenocarcinoma (PDAC) from
the public domain for which transcriptome data of PDAC were
available. We filtered samples on the basis of the availability of overall
survival (OS) and sample size (. 10) after dichotomization into high-
and low-survival groups on the basis of an OS cutoff of 1 year. This
resulted in a total of four sequencing studies and seven array-based
studies providing transcriptomic and clinical data for 1,001 patients
with PDAC. A total of 12,430 protein-coding genes commonly
assessed across all cohorts were used for additional analysis.

Prognostic Model
Decision rules are based on the relative ordering of gene expression
values within the same sample in which the k-Top scoring gene pairs
are used to build the classifier. Samples were resampled 1,000 times,
where 40 samples from each group were selected in each run to build
a k-Top scoring disjoint pair (k-TSP) model, and the model was further
tested on the 49 out-of-bag samples. Models were selected if the
balanced accuracy was greater than 0.6 or themodel was rejected. We
then froze the parameters of the predictivemodel and validated it in the
remaining compendium of independent data sets. The class proba-
bility of the sample was calculated as the frequency of the sample
predicted as one class divided by the total number of models. Ad-
vantages of considering pairs of genes with a binary value—“1” if

expression of gene i . gene j, “0” otherwise—are as follows: it
transforms the feature space in a way that mitigates platform biases
and potential batch effects and it makes the model robust to any data
processing that preserves gene order (Patil P, et al: Bioinformatics 31:
2318-2323, 2015; Eddy JA, et al: Technol Cancer Res Treat 9:149-
159, 2010).

Random Classifier
To assess whether gene expression profiles were associated with
survival, we shuffled the actual class labels while maintaining the
expression values. To test whether the gene pairs selected in the
Pancreatic Cancer Overall Survival Predictor (PCOSP) model were
robustly associated with survival, we randomly assigned genes to the
k-TSP model and assessed its prognostic value. Both procedures were
performed 1,000 times. As a prevalidation set, we compared the
balanced accuracy of all 1,000 random models generated using both
approaches to PCOSP using the Wilcoxon rank sum test. Furthermore,
we trained the k-TSP classifier models from both approaches in the
same way as we built our consensus PCOSP model. We then froze the
parameters of the prognostic model and validated it in the compen-
dium of independent data sets and compared meta-estimates for both
models against the PCOSP model.

Subtyping of PDAC Cohorts
PDAC cohorts were classified into basal and classic transcriptomic
subtypes using the Moffitt classifier.13 We calculated the meta-
estimates of C-index and hazard ratio for PDAC subtypes using the
random effect model implemented in survcomp package in R
Schroder et al: Bioinformatics 27: 3206-8, 2011.
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FIG A1. Density plot showing the distribution of balanced accuracy for random models. (A and B) Distribution of meta-estimates of 1,000 models generated
using (A) random reshuffling of labels and (B) random assignment of genes to k-Top scoring disjoint pair (k-TSP) models. Meta-estimates were independently
calculated for all the cohorts combined, sequencing cohorts, and array-based cohorts. Pink, green, and blue dashed lines represent meta-estimate of area
under the receiver operating characteristics curve from the Pancreatic Cancer Overall Survival Predictor model for overall, sequencing, and array-based
cohorts, respectively.
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Gene Set Enrichment Analysis
Genes selected in the PCOSP model (n = 1,070) were compared with
Gene Ontology gene sets, canonical pathways, and hallmark gene sets
in MSigDb (Liberzon A, et al: Bioinformatics 27:1739-1740, 2011;
Liberzon A, et al: Cell Syst 1:417-425, 2015) using as background the
protein-coding genes that are commonly assessed across the gene
expression profiling platforms in our data compendium. Enrichment P
values were corrected for multiple testing using the false-discovery rate
approach (false-discovery rate less than 5%; Benjamini Y, et al: J R
Stat Soc Series B Stat Methodol 57:289-300, 1995).

Research Reproducibility
Our code and documentation are open source and publicly available
through the PDACSurv GitHub repository (http://www.github.com/
bhklab/PDACsurv). A detailed tutorial describing how to run our
pipeline and reproduce our analysis results is available in the GitHub
repository. A virtual machine reproducing the full software environment
is available on Code Ocean. Our study complies with the guidelines
outlined previously (Sandve GK, et al: PLOS Comput Biol 9:e1003285,
2013; Gentleman R: Stat Appl Genet Mol Biol 4:2, 2005; Stroup DF,
et al: JAMA 283:2008-2012, 2000). All data are available in the form of
R package MetaGxPancreas.
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FIG A2. Forest plot of (A) concordance index (C-index) and (B) D-index (robust hazard ratio) for all cohorts divided on the basis of themolecular subtypes.
Gray, green, and pink colors in the forest plot depict meta-estimate of C-index for overall cohort, the basal subtype, and the classic subtype of the cohorts,
respectively. Squares in the forest plot represent the point estimates, horizontal bars represent CIs, and the diamond is the meta-estimate. ICGC,
International Cancer Genome Consortium; OUH, Oslo University Hospital; PCSI, Pancreatic Cancer Sequencing Initiative; TCGA, The Cancer Genome
Atlas; UNC University of North Carolina.
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FIG A3. Scatterplot showing the meta-estimate of area under the
receiver operating characteristics curve (AUROC; orange) and the total
number of unique genes (blue) in the Pancreatic Cancer Overall
Survival Predictor (PCOSP) model at different balanced accuracy
thresholds. The threshold used in the PCOSP is marked as a dashed
line at 0.6.
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