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Abstract 

Dry matter is an important process control parameter in the bioconversion application 

field. Acoustic chemometrics, as a Process Analytical Technology (PAT) modality for 

quantitative characterisation of dry matter in complex bioslurry systems (biogas 

fermentation), has not been successful despite several earlier dedicated attempts. A full-

scale feasibility study based on standard addition experiments involving natural plant 

biomass was conducted using multivariate calibration (Partial Least Squares Regression, 

PLS-R) of acoustic signatures against dry matter content (total solids, TS). Prediction 

performance of the optimised process implementation was evaluated using independent 

test set validation, with estimates of accuracy (slope of predicted vs. reference values) 

and precision (squared correlation coefficient, r2) of 0.94 and 0.97 respectively, with 

RMSEP of 0.32 % w/w (RMSEPrel = 3.86 %) in the range of 5.8 – 10.8 % w/w dry 

matter. Based on these excellent  prediction performance measures,  it is concluded that 

acoustic chemometrics has come of age as a full grown PAT approach for on-line 

monitoring of dry matter (TS) in complex bioslurry, with a promising application 

potential in other biomass processing industries as well. 
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1 Introduction 

1.1 Background 

Renewable energy is produced from biological conversion of a wide variety of biomass. 

However, apart from energy production other benefits from bioconversion processes are 

focused on organic waste handling and production of high-nutrient organic fertilisers, as 

emerging biorefining concepts will put biomass handling, utilisation, and processing 

into a whole new perspective at an industrial scale [1-5]. In recent years, renewable 

energy sources such as biogas have been considered important in order to address the 

global concern on energy sustainability, availability, and environmental impact of fossil 

fuels [5-7], but significant challenges still exist regarding diversification of feedstock 

especially by utilisation of various forms of dry matter [8].  In addition, providing 

economical competitive modalities for bioenergy production mostly from animal 

manure, organic waste and food crops is of critical importance [9,10]. This is because, 

in the bioenergy sector, the use of conventional methods remains the paradigm, despite 

several successes recorded by employment of new generation on-line process 

monitoring and analysis known as Process Analytical Technology, PAT [11]. This is far 

from routinely implemented however, because it is considered cost intensive, and 

therefore several technological challenges are experienced. For example, great 

uncertainty accompanies attempts to estimate and control the parameters of interests 

during biomass conversion processes owing to their inherent chemical and physical 

complexity. One of the most important process parameters concerns quantitative 

characterisation of the solid substrate in the bioslurry, because, optimal use of organic 

dry matter in anaerobic bioconversion is quite linked to improved quantity of biogas 

produced as well as increased stability of the process. Therefore, information about the 

contemporary amount of dry matter, as well as its state, is critical with respect to proper 
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control and optimisation of the biogas production process, and can lead to severe 

impairment, if not monitored with the accuracy and precision needed for effective 

process control [4,12].  For the interested reader, further background to bioconversion 

processes in general, and to the biogas production process in particular can be found in 

[1-10,12,13].  

1.2 Process Analytical Technology 

Process Analytical Technology (PAT) modalities are more and more used in the process 

industries due to advantages over conventional process monitoring and data 

interpretation [11]. One main attraction for PAT lies in its applicability on-line, in-line 

or at-line, allowing for continuous monitoring of a process depending on the interest and 

nature of the system to be monitored. Real-time information is now routinely acquired, 

representing an approximation of the true nature of the process. Other benefits include 

low production costs, process optimisation and process status monitoring. Typically 

spectroscopic, chromatographic and other multi-signal sensors are utilised, generating 

multivariate data from processes/samples at various locations and time points. PAT 

applications were mostly introduced in the pharmaceutical sector and have been 

extensively explored [14].  There is now also, a wide-ranging interest in PAT in other 

types of industries such as food processing, chemical, and petrochemical [11]. The PAT 

concept involves use of problem-dependent measurement techniques, especially 

spectroscopy, image analysis and chromatography for characterisation of industrial 

processes. This is done on-line, usually in the process line, followed by multivariate 

data analysis or can be done in real-time using embedded software in dedicated 

controllers to obtain the process-related information of interest. In order to harness the 

full benefits of on-line analytical modalities, applications of statistics and chemometrics 

models as well as signal and data pre-processing are essential. Chemometric methods, 
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including multivariate calibration are employed to acquire information about processes 

such as the so-called early warnings of critical state or product conditions, which often 

involve optimisation of various process parameters and experimental designs [15].  

1.3 Dry matter (TS) monitoring 

The organic substrates for biogas production are highly variable. Full development of 

biogas production will by necessity require a diversification of the feedstock basis [8]. 

For sustainability to be achieved, biogas production requires higher level of total solids 

in the bioslurry in order to boost the amount of organic carbon from carbohydrates, as 

well as reducing the economical cost of acquisition of the relevant biomaterials [8,16]. 

Use of maize silage as feedstock for biogas production has increased significantly in 

recent times [2,17]. Under anaerobic conditions, maize crops are known to improve the 

yield (determine by percentage of methane) of biogas [18], and methane production 

directly depends on the load of organic dry matter present in the bioslurry [2,4,11].   

Determination of total solids in bioslurry is typically done off-line, which is laborious 

and do not depict the actual amount of TS present. Another downside is the disruption 

of the process during collection of the samples for analyses. Even more critical, there 

are few methods available for online monitoring of total solids. However, Luck et al. 

[19] and Nacke, et al. [20], reported on-line monitoring of solids in biogas plant using 

microwaves and NIR spectroscopy, respectively. On the other hand, one of the 

limitations in non-invasive NIR methodology is the need to construct optical aperture in 

the process line. The optical aperture is liable to fouling by microbial growth and may 

reduce effective process monitoring over a long period of time [4,18]. Also, in both 

studies [19,20] optimal validation with independent test set samples were lacking which 

is a cause of critical concern for future prediction purpose [21].  
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1.3.1 Acoustic chemometrics monitoring of TS 

On-line monitoring of TS in bioslurry requires a simple, non-invasive, cost effective and 

robust technique to improve overall production of bioenergy. Acoustic chemometrics 

[22,23,24,25,26,27], fits into this picture, and it has also proven suitable in various 

other, closely related process industries. This study does not present the application of 

acoustic chemometrics for TS monitoring in biogas process for the first time; a similar 

approach for monitoring of dry TS was explored initially by Lomborg et al. [18]. 

However, it was here reported that more work was needed regarding reliable TS 

prediction, due to concern about the applicability in full-scale bioconversion processes.  

Lomborg et al. [18] investigated a biogas production in a 1 L volume reactor only (small 

volume, from which up-scaling of prediction models may not be possible). In addition, 

the developed model was not properly validated (not test set-validated). The use of 

independent test set for model validation is imperative in that this ensures the most 

complete, realistic estimate of the total prediction error [21].  Specifically, the present 

study was done at a full-scale industrial biogas plant, LinkoGas A.m.b.a, Lintrup, 

Denmark (reactor volume of 2 400 m3). The intent of this investigation was to upgrade 

the methodology and solve the central problems encountered during the initial study by 

Lomborg et al. [18]. Thus, the authors here present a complete feasibility study of 

acoustic chemometrics for real time analysis of TS in a full-scale industrial biogas 

process plant.  

2 Materials and methods 

2.1 The recirculation loop 

A recirculation loop (Figure 1) was constructed and connected to one of three full-scale 

anaerobic digestion reactors at LinkoGas A.m.b.a. Two modes of operation was 
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designed and implemented, a) operating as an open loop modus in which bioslurry 

flows continuously to/from the main reactor, and b) closed loop configuration, in which 

a dedicated flow was only allowed to flow through the loop’s measurement sections at 

controlled conditions. This design permit experiments to be made using the closed loop 

configuration for on-line characterisation in a monitoring setup which is identical to 

open loop flow. The recirculation loop includes a pump (EH1024, Bornemann GmbH, 

Obernkirchen, Germany) controlled by a frequency inverter (Omron VZA V-1000, 

YASKAWA Europe GmbH, Eschborn, Germany) allowing adjustment of the flow rate, 

a measurement cell for both optical and acoustic monitoring of the flowing biomass, and 

a three-way valve arrangement (consisting of two valves (EVBS-BE, Armatec, 

Glostrup, Denmark) equipped with a fast (6 s) acting actuator (OA6, Armatec, Glostrup, 

Denmark). For the present work, the loop was operated as a closed system, whereby the 

measurement section was connected to a barrel of 40 L volume, used as the as 

collection, feeding and mixing tank. Bioslurry was let into the 40 L tank via the full 

reactor outlet valve and pumped through the closed loop system at a flow rate of 3.4 L s-

1. Insulation of the system made the temperature constant and the temperature of the 

system near the acoustic sensor were noted on each experimental run. Bioslurry of 

various TS compositions were obtained by spiking the bioslurry with required quantities 

of dry matter in a standard addition manner (more description below). 

2.2 Acoustic measurement 

Two industrial type piezoelectric accelerometers (DeltaTron® 4396, Brüel & Kjær 

Sound & Vibration Measurement A/S, Nærum, Denmark) were used in order to 

evaluate the signal/noise-ratio in two different sensor locations. The accelerometers 

were mounted on glue studs (10-32 cement stud DB0756, Brüel & Kjær Sound & 

Vibration A/S, Nærum, Denmark), which had been deployed onto the process line using 
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cyanoacrylate glue. Signal cable lengths were kept as short as possible (maximum 1 m) 

to reduce electromagnetic interference.  

A two-channel Process Signature Analyser (PSA-100i, Applied Chemometrics Research 

Group (ACRG), Porsgrunn, Norway) was used for data acquisition and signal 

conditioning which involved amplification, filtering, analogue-to-digital conversion, 

Blackman Harris window transformation, Fast Fourier Transformation (FFT), and 

averaging [24,28]. FFT data representing the acoustic signatures emitted from the flows 

in the recirculation loop were transferred from the PSA-100i to a standard portable 

personal computer. Signals from both accelerometers were amplified with a gain equal 

to 15 (23.5 dB) along with low pass filtering (4th order) cut off frequency of 150 kHz 

(maximum). The PSA unit recorded signals from the accelerometers in time domain 

with a sampling rate of 375 kHz, followed by relevant signal processing, including 

transformation from time domain to frequency domain (acoustic spectra) and averaging. 

A window size of 1024 was used with a resolution of 0.18 kHz. Each acquired acoustic 

spectrum covered the frequency range 0 – 187.5 kHz representing an average of 250 

FFT spectra, which corresponds to a compound sampling duration of approximately 60 

seconds. This is considered to result in a precise physical average characterisation of the 

bioslurry flow,  in effect producing a composite sample with a high number of 

increments; full compliance with the Theory of Sampling (TOS) is a critical success 

factor for dealing with systems as complex as flowing bioslurry [29,30].  

2.3 Maize silage preparation 

Maize silage was collected from a local farmer and dried for minimum 40 h at 105ºC in 

a convection oven (ED-115, Binder, Tuttlingen, Germany). The lengths of the biomass 

particles after drying were 10-15 mm. The resulting dry maize silage in conjunction 
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with solids present in the manure slurry is referred to as total solids, TS, in this work. 

Dry matter doses were weighed out on an analytical balance (Sartorius type 1574, Bie & 

Berntsen A/S, Rødovre, Denmark) and stored in sealed polyethylene bags until added to 

the experimental system.  

2.4 Optimisation of process conditions 

Optimisation step involved series of experimentations. These include optimisation of 

process parameters such as the effect of flow rate and sensor location (see Figure 2) on 

the acoustic, as well as quantitative analysis of the amount of added maize silage doses 

in the bioslurry (“reference measures”). More discussions on these are presented below. 

The feedstock used by LinkoGas A.m.b.a for biogas production principally was made 

up of 75 % cow and pig manure and 25 % organic industrial wastes measured on a dry 

matter basis. This resulted therefore, in a bioslurry with about 5.5 % w/w TS. The 

necessity to evaluate previous work on the subject arose because of the poor results 

attained in the initial trials [18] and the desire to unravel the underlying cause(s). In this 

work, necessary measures were taken including acquiring reference samples for 

calibration and validation purposes from the same protocol, carefully insulating the 

process line to ensure stable temperature, and maintaining a constant flow rate 

throughout the duration of the investigation. 

2.5 Acoustic data acquisition procedure  

Bioslurry was fed from the biogas plant reactor into a holding and mixing vessel (40 L) 

connected in series with the flow cell and the slurry was allowed to circulate at flow rate 

of 3.4 L s-1 and mix thoroughly for 3 minutes (Figure 1b) after which data acquisition 

was initiated. Then, the bioslurry was spiked to a maximum of roughly 12 % w/w from 

the base natural dry matter level of 5.5 % w/w with the required doses, and allowed to 
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mix properly by extensive recirculation in the loop for 2 minutes on each dry matter 

feeding. Thereafter, acoustic signals (5 spectra) were recorded for the duration of 

approximately 5 min at each discrete level of dry matter.  Significant efforts were made 

throughout the entire project to ensure that the pipe line was not clogging with dry 

matter and to maintain constant temperature as mentioned earlier (experiments were 

conducted at relatively stable temperature, with a fluctuation set point of no more than ± 

0.5ºC). Subsequently, acquired data were subjected to multivariate calibration (PLS-R) 

of the measured acoustic data and TS (reference).   

2.6 Process sampling and reference samples preparation 

Proper techniques for representative process sampling based on Theory of Sampling 

(TOS), as have been described in-depth in literatures [30,31,32] were employed.  

Representative samples are devoid of a structural sampling bias, while the remaining 

“imprecision” sampling errors are reduced to minimum. In depth description of un-

biased process sampling approaches have been previously provided in many scientific 

literatures [18,29,30,31,32].  In order to implement correct sampling protocol in this 

work, before addition of dry maize silage bioslurry in the recirculation loop was allowed 

to circulate a minimum five looping times and thereby well mixed.  As the material 

flowed from the hose, 20m above a holding and mixing tank, a fast delineation of a full 

cross section of the moving stream were done using a IL volume plastic container. The 

increment collected (about 200 mL) was mixed thoroughly, divided into two portions, 

and poured into two 100 mL plastic containers. Ten such increments were sampled in 

five steps over equidistant time points of 1 minute. Thereafter, the bioslurry was spiked 

with the required doses dried maize supplied in a standard addition approach, which in 

this context implies that equal amounts of dry maize silage were added to the bioslurry 

in the mixing and holding tank such that the concentration of dry matter in the bioslurry 
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increased on each addition. This was performed five times, to obtain six different 

concentration levels, and the same procedure of mixing, data recording (as stated in 

section 2.5), and sampling were executed.  These samples were kept at freezing 

temperature if not analysed same day. The reference samples were used for determining 

the exact content of dry matter (TS) at each level. A full detailed documentation of 

representative process sampling on bioslurry systems, the methods of which were 

followed in the present study, can be found [29,31].   

Ten increments of 100 mL each were sampled at each level of dry matter, then weighed 

individually on an analytical balance (Sartorius type 1574, Bie & Berntsen A/S, 

Rødovre, Denmark), then dried at 105ºC in 2.2 L foil trays for 24 h in a convection oven 

(ED-115, Binder, Tuttlingen, Germany). After drying, increments were again weighed 

individually and the total solid present was calculated according to the standard method 

for determining amount of water and dry residue in sludge, Danish Standard DS/EN 

12880 “Characterization of sludges - Determination of dry residue and water content”. 

For each TS level, the average of each set of the dried ten increments was used as the 

reference sample (y) value (corresponding to TOS’ prescription for a composite 

sample), to be used in the ensuing multivariate calibration stage. 

2.7 Multivariate data analysis 

Multivariate calibrations by Partial Least-Squares regression (PLS-R) were carried out 

using Unscrambler v. 9.8 (CAMO Software AS, Oslo, Norway). Relevant pre-

processing, i.e. auto-scaling (mean-centering and variance scaling) were applied to the 

data. (refs. given below) 

3 Theory/calculation 

3.1 Acoustic chemometrics 
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Acoustic chemometrics is an emerging PAT modality for non-invasive online process 

monitoring. Passive acoustic emission analysis was developed based on the relationship 

between vibration generated by some systems and their physico-chemical properties. In 

acoustic chemometrics, accelerometers are used to capture the system’s vibrations 

generated by an industrial process. An accelerometer is principally made of a piezo 

electric material e.g. quartz crystal that on perturbation generates an electric signal 

corresponding to the vibration dynamics of the system. Acoustic signals are sampled in 

time domain and can be converted to frequencies domain using digital signal 

processing, for instance Fast Fourier Transformation (FFT). The acoustic spectra are 

then subjected to multivariate data analysis (chemometrics) to extract information about 

the system under study. Detailed and extensive documentation of the principle of 

acoustic sensors and signals pre-processing have been done earlier 

[23,25,24,26,27,28,33].  

The location of the sensor and the dynamics of flow [34] in the system is a critical 

factor regarding the quality of information acquired. Kupyna et al. [35] have reported in 

literature, the dependency of acoustic signal on certain process condition such as 

temperature, flow rate and location of the sensor. At present, acoustic chemometrics 

approach for process analysis span from monitoring particle and fluid flow behaviour in 

pipes, chemical reaction monitoring, to process failure detection etc. [23,25,24,27]. 

Previous studies have shown that acoustic behaviour of liquid flow [25,35,36] is 

dependent on the physico-chemical properties such as temperature, pressure, viscosity, 

flow rate, composition and phase. The methodology (acoustic chemometrics) is 

unfortunately not fully appreciated yet, thus more applications need to be explored.  

The key advantages of acoustic measurement lie in the simplicity of non-invasive 

deployment of the sensors, since the process remains undisturbed while information is 



13 
 

being acquired. This fully eliminates the possibility of materials clogging/sticking onto 

the sensors. Also, from economic point of view, virtually no maintenance cost is needed 

once the sensor is effectively deployed, which makes it attractive for process 

monitoring. Acoustic sensors can also withstand harsh industrial environments.  

Furthermore, the sensors are easily deployed onto any process line using glue, glue 

studs or screws and modification of the system under study is required. 

3.2 Process sampling 

Representative sampling should be seen as integral part of any process optimisation 

approach because of the inherent heterogeneity of materials and flows-of-matter, 

slurries etc. In most cases, however, too much emphasis is placed on specific utilisation 

of the sensor signals for process characterization (data analysis, process chemometrics) 

but too little attention is directed to controlling the relevant process sampling errors. 

Only Theory of Sampling, TOS [29,30,31,32], enable  reliable characterisation of the 

heterogeneity of process materials. Typical examples of implementation of TOS in this 

study involved thorough mixing of the materials under study (in the loop, extracted 

increments, sub-samples etc.), cross-sectional delineating of materials from the flowing 

stream while maintaining same sampling frequency, extraction of a sufficient number of 

increments at each concentration/level of the bioslurry, among others (see section 2.6).  

Representative sampling controls the accuracy and precision in process sampling 

procedures. Sampling errors originate from both materials and from the specific 

sampling technique employed. By TOS-correct sampling, the errors due to 

heterogeneous materials or sensor signals are eliminated or reduced. It is crucial that the 

reference samples used for calibration purposes are representative of the substances 

under investigation, as was outlined in detail above.  
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3.3 Partial Least Squares Regression (PLS-R) 

PLS-R involves projection of independent X variables onto lower dimensional 

underlying structures (latent variables). It provides the best possible approximation of 

the systematic variation in both X and y, and is obviously the approach of choice for 

calibration purposes for systems as complex as bioslurry. Several documentations on the 

principles and theory of PLS-R are available references herein [37, 38, 39,40].  

The X variables are here the instrument measurements (FFT acoustic spectra) and the 

TS reference is the y variable. A completely representative training- and test set is both 

a necessary and sufficient condition for the ultimate purpose of optimal prediction of the 

amount of dry matter in bioslurry. The driving force behind application of multivariate 

calibration methods is to reduce the effort (and cost) of performing actual y 

measurements on the full-scale processes. The training set and test set used in this study 

were obtained from independent set of experiments in accordance with the requirements 

stipulated by Esbensen and Geladi [21] regarding realism of independent test set 

validated models. Generally, visualisation plots such as the scores, loading weights, 

explained variances, residual matrices etc. are used for interpretation of the model, and 

explicitly for the purpose of determining the optimal number of PLS-components to be 

retained in the prediction model. Theory and interpretation of these model diagnostic 

plots will not be presented in this work, consult instead [37,38,39,40] for more detail.  

Test set RMSEP estimation is carried out simultaneously with determination of the 

optimal number of PLS components [21]; the optimal model complexity is achieved at 

minimum RMSEP. RMSEP gives the average prediction error in the same unit as y.  

RMSEP = Sqrt ([∑(ypredicted –yreference)2 ] / n) 
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where n is the number of reference samples in the independent test set.  

The relative RMSEP (RMSEPrel) is also used as a convenient measure, where RMSEP 

is assessed in relation to the average y-predicted level. RMSEPrel allows comparison 

between predictions models irrespective of the levels, and units, of the measurement. 

RMSEPrel = RMSEP/averageY-predicted  

3.4 Data pre-processing  

Before any multivariate analysis modelling task, it is always important to check for the 

need to subject the raw data set to some form of pre-treatment, which is done e.g. to 

remove interferences (noise) and thereby better locate the ‘real’ y-correlated 

information in the data - information, that is otherwise dampened or interfered with in 

the original X data. There are numerous pre-processing tools available but this is a 

complex issue and is related to the specific nature of the data. Application of too 

rigorous pre-processing can also dampen the valuable information in data, there are no 

guarantees, and thus should be done with informed experience and care. However, pre-

processing approach such as auto-scaling [37,40], Multiplicative Scatter Correction, 

MSC [37,40],  and filtering such as moving average smoothening [37], are commonly 

used for complex systems, but it is generally not possible to infer which and how much 

pre-processing will be necessary in specific cases. For auto-scaling, variables are mean-

centred, and scaled to unit variance such that they have equal variances, allowing the 

multivariate data model to be based on correlations between all X- and Y-variables. 

Both mean-centering and variance scaling are variable-wise operations. Mean-centering, 

involves calculation of mean value of each of the variable and subsequently subtracting 

the value from the data, whilst in variance scaling; the data is standardised (multiplied 

by the reciprocal of the standard deviation, 1/SD). Variance scaling is a conjecture that 
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all variables are a priori equally important. More detailed information on these pre-

processing tools are documented in literatures [37,40]. MSC can compensate effectively 

for additive and multiplicative effects in data whilst moving average smoothening 

involves filtering of data to remove spectral random noise. 

The acoustic data used in this investigation were found only to need auto-scaling (mean-

centering and variance scaling) however.  

4 Results    

4.1 Process optimisation 

Optimal location of the acoustic sensors for dry matter monitoring was determined by 

comparing the amplitude of generated acoustic signals.  The acoustic signals from 

sensor 1 and sensor 2 were analysed. The signals from these acoustic sensors were 

amplified to the maximum possible digital resolution. The amplitude of the time series 

signals, of sensor 1 and sensor 2 were found to be ± 0.25 and ± 0.5, respectively. This 

indicated that sensor 2 was better. Futhermore, the acoustic spectra from both sensors 

were also plotted and it was observed that sensor 2 generated signal with higher 

amplitude as well as more peaks than sensor 1, as depicted in Figure 3. Therefore, 

sensor 2 was used for this present study. The observations are in line with the extensive 

studies documented by Esbensen et al [25] and Kupyna et al [35,36]. In addition, effect 

of flow rate on acoustic signal was monitored and is herein shown in Figure 4. In 

summary, the result confirms that high flow velocity generated more vibration in the 

system. See instead in-depth studies on this in [25,35,36].  

4.2 Multivariate data analysis  
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In the multivariate calibration step only auto-scaling and frequency range reductions 

were necessary before the final modelling. The model, comprised of acoustic spectra 

calibrated against the doses of TS (reference samples) using PLS-R, and validated by 

predicting the total empirical levels of TS in independent test set samples. A comparison 

of relevant model diagnostics for four regression models at different frequency ranges is 

presented in Table 1. The best model, based on the results presented in Table 1 will 

from this point be discussed, wherein the frequencies range of 9.3 – 98.3 kHz was used. 

The criterion used for the choice of optimal number of PLS-components in the 

regression is the RMSEP, and three PLS-components were required. This is evident in 

the regression results in Table 1, as the application of the frequency range, 9.3 – 98.3 

kHz, gave the lowest RMSEP value. For model validation, use of independent test set 

from an experimental run different from that of training data set, whilst maintaining the 

same measurement and sampling protocols, demonstrated the reliability of the optimal 

number of PLS components. It is also interesting to state that there were no outliers 

present during the modelling step. Satisfactory results were achieved as can be seen in 

the predicted versus plot (Figure 5, lower plot).  In multivariate modelling, explained 

variance plots are important indicator since the percentages of modelled X− and y− data 

can be deduced visually (quantitative measures are of course also produced). An 

optimal prediction model was produced with 96 % of the total X− variables used in the 

calibration step (Figure 5, upper right). Considering the Y− validation variance plot in 

Figure 5 (upper left), the prediction model requires only three PLS components for 

optimal TS prediction. Therefore, utilisation of PLS component less (under-fitting) or 

more (over-fitting) than three would have resulted in not modelling all the systematic 

information in the X data (under-fitting), or in modelling of noise/error in X (over-

fitting). In Figure 5 (lower plot), predicted and measured reference samples exhibited 
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high correlation with each other (squared value of correlation coefficient, r2 =0.97). The 

accuracy (slope of fitted regression line) of 0.94 and an estimate of RMSEP of 0.32 % 

w/w is also highly satisfactory. This translates into a relative RMSEP of 3.86 %, which 

is considered an acceptable precision, indeed excellent, for a system as complex as 

bioslurry – especially also as compared to previous acoustic chemometrics attempts 

(refs. given above).  

The loading weights of the X− variables for the three-component model, as well as a 

spectrum  comprising of the frequencies 0- to 98.3 kHz of the highest TS content (10.8) 

predicted is shown in Figure 6. The spectrum comprise of the frequencies 0- to 98.3 

kHz of the highest TS content (10.8) predicted. Variables with weights significantly 

different from zero influence the model most because these are the frequencies 

constituting the X-data that form the basis for the quantitative relation with y. In other 

words, high weights are assigned to X-variables, in this context; frequencies that are 

highly correlated with Y-variable (see refs. for PLS-R in section 3.3).  For the 

investigated spectral range (9.3 – 98.3 kHz), first-, second-, and third- PLS-component 

comprised of  80%, 12%, and 4% of the spectral information (X) used for modelling 

84%, 8%, and 4% of the TS (y), respectively, in the bioslurry. Close inspection of the 

final model showed that the most influential variable intervals are distributed across all 

frequencies, as shown by the horizontal disposition of  the first loading weight, W1 

(which mainly accounted for the changes in concentration level), with well-defined, 

narrow specific intervals laid out to be the details of  second loading weight, W2, and 

third loading weight, W3; which also added to the final model, as seen by the ‘Y-

variance validation’ plot in Figure 5 (upper left).  

5 Discussion 
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5.1 Substrates for biogas production 

The biogas plants are forced to investigate new options in order to maintain stable 

operation and sufficiently high biogas process yield. Agricultural biomass wastes are 

not fully utilised at present and these materials include various types of straw, grasses, 

silages, and other plant residues. In the future also, energy crops such as maize, sugar 

beets, and grasses, which are abundant in most part of the world, can dominate in the 

biogas material portfolio. Hence, biogas production concepts will be based on either 

increasing the dry matter fraction of manure or introducing dry matter in the form of 

dedicated energy crops [8,13]. The change has to most likely include discovering of 

easily degradable organic matter such as lipids, sugars, or protein that can be added to 

the process as by-products from food industries or as food leftover. 

5.2 Bioconversion process monitoring 

The quality of measurements from a PAT system is a direct result of the compatibility 

of the analytical strategy employed to elucidate the information of interest. For 

experiments involving sensors, a thorough understanding the technological features as 

well as determining the relevant process and analyte factors that influence the output 

signal is of paramount importance. The bioconversion sector (and other process 

industries) requires full knowledge of the behaviour and composition of critical 

components. Some improvements have been recorded in this sector over the last ten 

years and more researches are ongoing with specific aim of harnessing the most relevant 

real-time monitoring information [1,10]. If bioconversion processes are not well 

understood and managed, the economic viability of bioenergy production will be 

compromised. An early attempt to develop appropriate monitoring tools to address the 

challenges associated with bioconversion employing acoustic chemometrics was applied 
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for dry matter determination in bioslurry as reported by Lomborg et al. [18]. However, 

this study, as well as several others (partially unpublished M.Sc. studies) suffered from 

incomplete optimisation of the system under study. Sub-optimal sensor deployment 

location [25, 27, 35], low flow speed [35,36], or insufficient experimentation to 

generate enough data for full elucidation and modelling of the systems involved (test set 

validation) are the likely culprits, or this may have been as a result of calibrating the 

acoustic spectra against the nominal volumes of the added dry matter only, not the real 

concentration with respect to  the complexity of the bioslurry.  

5.3 Process control and optimisation strategies  

Initial experiments were conducted on the experimental loop to become familiar with 

the behaviour of the process. For acoustic measurement, the temperature of the 

measurement system, flow rate, and sensor location have profound effects on the 

spectra. Temperature gradient in a system for acoustic chemometrics monitoring will 

definitely affect the nature acquired spectra even if the same component/analyte is 

studied. This generally, is one of the specific problems that need much attention when 

using acoustic sensors for process monitoring. Kypyna et al. [35], among other authors, 

have carried out research to investigate this phenomenon. In study  presented herein, the 

temperature of the system was stable due to insulation of the loop, basically to eliminate 

temperature fluctuation generated problems. In real world processes though, 

maintaining constant temperature is a herculean task and might not always be perfectly 

achievable. There is always a possibility for ‘internal’ temperature compensation based 

on the multivariate full-spectrum advantage, but this is mainly a system-dependent 

issue, which must be investigated in each particular case.  
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Optimization step geared towards determination of the best sensor location on the 

system was executed. Vibration gradient detected at specific locations on the 

recirculation line can be argued to result from changes in the rheological properties of 

flowing stream stemming from difference in the configuration of the recirculation line 

(as can be seen Figure 2). Extensive studies on finding optimal sensor location for 

acoustic measurement have been carried out by Esbensen et al. [25] and Kupyna et al 

[35]. The authors concluded that the existence of a pressure drop following modification 

of the transport line by introducing constriction, such as use of orifice plate with smaller 

dimension, resulted in more vibrations.  

It was not, however, reasonable to use orifice on the recirculation line under 

investigation because the slurry contain dry particles that would have resulted in 

clogging of the pipeline. Therefore, sensors were deployed at definite locations (as 

shown in Figure 2) based on their features, for instance, the tapered nature of the pipe 

where sensor 1 was mounted (lower dimensionality of the pipe at this juncture as 

compared to lower part of the pipeline) can be argued to create similar effect as a 

dedicated constriction. On the other hand, sensor 2 was deployed close to a bend on the 

pipeline on the ground that some degree of perturbation occurred due to the change in 

flow pattern of the flowing medium, resulting most likely in pressure drop that in turn 

produced more vibration energy at the region immediately after the bend. An example 

from this work is presented in Figure 3, where higher signal and more peaks were 

observed for acoustic spectrum of sensor 2 compared to sensor 1.  Generally, the most 

sensitive sensor locations for a fixed flow regimen are not necessarily the optimal 

locations; there are several hydro dynamical issues to consider in ducted multi-phase 

flow, as have been documented earlier [25,34,35]. The change in characteristic signal of 

acoustic spectra due to use of different flow velocities on the system is presented in 
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Figure 4, which conforms with studies done earlier [25,35] showing increase in the 

magnitude of acoustic signal due to more vibrations as flow rates increase in a moving a 

flowing medium. Therefore, keeping all these parameters constant at optimal settings or 

configurations is crucial for PAT to succeed. 

 Acoustic chemometrics, in this study, demonstrated the feasibility of characterising TS 

in bioslurry in real-time which led to the present completion of this line of approach. 

More efforts were directed towards optimisation of the process and process sampling 

which leads to accurate and precise results (Figure 5) from the test-set validated data 

analysis.   

6 Conclusions 

On-line methodologies are necessary for monitoring and for improving the yield of 

bioenergy production while maintaining control over production costs. For this to be 

achieved, diversification of substrates for bioenergy production must be considered, 

which leads to a critical focus on methods for easy and reliable dry matter 

determination.  Application of a new Process Analytical Technology (PAT) modality, 

acoustic chemometrics, was proven feasible for prediction of dry matter (TS) in 

bioslurry in the interval 5.8−10.8 % /w/w, in a field study carried out in a full-scale 

biogas plant. A series of optimisation strategies were explored to master the often erratic 

behaviour of highly complex bioslurry mixture. Acoustic sensors are sensitive to 

changes in flow rate and temperature (but can also withstand high temperature). After 

suitable initial system choices, and subsequent modifications, prediction of independent 

test set samples resulted in a validated measure of accuracy (slope = 0.94), precision (r2 

= 0.97) and RMSEP of 0.32 w/w % (RMSEP (rel) = 3.86 %) over the range of 5.8 – 10.8 

% w/w dry matter content in the bioslurry. These excellent performance statistics 
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confirm the feasibility of calibrating satisfactory prediction models for monitoring of TS 

in complex bioslurry systems. Figure 6 (upper plot) in particular shows a specific 

frequency interval (9.3 kHz – 93.8 kHz) that carried the dominating information from X 

to y, but the main information carrier is clearly a level effect distributed across all 

frequencies, which manifested  itself as a highly dominating first PLS-component.  

Acoustic chemometrics owes a great debt to chemometrics, allowing for efficient full-

spectrum advantage in modelling acoustic (Fast Fourier Transformed) spectra and 

calibrating these against high quality Y reference measurements. A.c. can be seen as a 

particularly effective merging of dedicated sensor technology, signal analysis and the 

full swing of multivariate calibration/validation; as ever against a backdrop of 

mandatory representative sampling (TOS). 

Acoustic chemometrics, which in several earlier dry matter attempts, never really fully 

realised its potential, has now come of age and can now be considered to be a matured 

PAT modality. There is no doubt a significant carrying over potential to other biomass 

(TS) systems within the biogas and bioconversion sectors as well.  
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Figure captions 

Figure 1. Process instrumentation diagram of the process loop used in the study. The re-

circulating loop can be set, using a three-way valve, in both “open (a)” as well as 

“closed (b)” configurations, allowing for realistic flow and stream composition 

experimentation at the measurement interface (acoustic sensor) with input either from 

reactor vessel or from the mixing tank (the latter filled with realistic bioslurry from the 

reactor). Closed loop mode was used in this study: bioslurry from the reactor was 

pumped into a mixing tank via the bypass line (dotted arrow), and allowed to circulate 

in the loop (full arrow) while spiking and sampling for calibration were carried out. 

Figure 2. Acoustic sensors deployed at two different bypass string locations. Sensors 1 

and 2 were investigated, sensor 2 was found to be optimal for the present purpose.   

Figure  3. Choice of optimal sensor location for the study: amplitude of the signals was 

the basis for choice of sensor location. The acoustic spectrum from Sensor 2 was 

considered better based on higher amplitude signals and more peaks generated 

compared to sensor 1, and thus was used for the study. 

Figure 4. Effect of flow rate changes on the acoustic signal. The amplitude of acoustic 

signal increases with increase in flow rate hence flow rate of 3.4 L s-1 was used.  

Figure 5. Final PLS prediction model evaluation. No outliers deleted. Test set 

validation: 3 PLS-components. RMSEP(rel) = 3.86%.  

Figure 6. The loading weights plot (upper plot) and the corresponding spectrum of the 

frequencies (lower plot) used for final modelling. From loading weight, the most 

influential frequency regions can be observed at 9.3 kHz – 93.8 kHz. The acoustic 

spectrum indicate that the most distinct peak at 37 – 39 kHz is particularly relevant for 

all three PLS components. 
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Table 1 

Test set prediction results from PLS regression for full and reduced acoustic 

spectra  

Acoustic spectra # PLS components RMSEP (% w/w) Slope r2 
Full a 1 0.37 0.87 0.96 
Full b 1 0.37 0.88 0.96 
Reduced c 3 0.35 0.92 0.96 
Reduced d 3 0.32 0.94 0.97 
 

a: 0-187.5 kHz, b: 9.3-187.5 kHz, c: 0-93.8 kHz, d: 9.3-93.8 kHz. 
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Figure 5. 
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Figure 6.  

 

 


