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a b s t r a c t

This paper presents a novel approach for implementing a robust real-time optimization framework
under the presence of parametric uncertainty. Conservativeness is an inevitable drawback of a robust
control approach. Therefore we aimed to provide a simple and efficient method to mitigate the
conservativeness while the robust fulfillment of the constraints is still preserved. The proposed
method in this paper is based on the worst-case realization of the uncertainties, however, with
constraint modification. The mismatch between measured and predicted output is used directly to
modify the active constraint in the optimization problem. The superiority of the method in terms of
conservativeness and computational time has been demonstrated in comparison with the other robust
optimization counterparts, such as traditional min–max and multi-stage MPC. The promising advantage
of the proposed method is that not only it reduces the conservativeness significantly, but also
the computational price for this achievement is considerably cheaper than closed-loop optimization
methods such as multi-stage MPC.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Model Predictive Control (MPC) is an advanced optimization
trategy with remarkable merits that has received a great deal
f attention, especially in the process control community. It is a
onvenient tool for dealing with multiple-input multiple-output
rocesses. Moreover, it is capable of handling the constraints
irectly, whether they are on the states, control actions, or out-
uts. However, the fact that it uses a mathematical model to
orecast the future behavior of the process can make it susceptible
o poorer performance in practical applications since a perfect
athematical model simply does not exist in most cases.
Parametric uncertainty, unmodeled dynamics, exogenous dis-

urbances, measurement noise, etc., are some well-known sources
f uncertainty that introduce a mismatch between the model and
he actual process. This mismatch can deteriorate the prediction
art of MPC and consequently lead to poor performance. This
ituation becomes even more challenging when there are hard
onstraints that should strictly be satisfied throughout the oper-
tion. Therefore it is almost inevitable to consider the effect of
ncertainty in practical applications.
A conventional remedy to mitigate the effect of uncertainty is

he robust approach, where the uncertainty is assumed to belong
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to a bounded set, and the controller is designed to guarantee
robust requirements for the worst-case situation. This ensures
that if any other realization within the bounded uncertainty
region happens, the controller is able to handle it. The worst-case
formulation, which is also known as the min–max formulation,
was originally proposed in [1] and later in the context of MPC
in [2]. Traditional min–max MPC formulation as well as standard
MPC are open-loop optimizations in the sense that they solve an
open-loop optimal control problem at each sampling time. An
open-loop optimization fashion does not take into account the
explicit notion of feedback in the formulation of the optimization
problem, although the new information will be available in the
next time instance. The main drawback of open-loop optimization
is that it leads to an overly conservative solution; therefore,
the controller will be significantly sub-optimal, and all resources
available in the process may not be fully utilized.

To address the problem of conservativeness, the notion of
feedback has been explicitly introduced in the closed-loop min–
max framework as in [3,4]. This means that the optimization will
be solved over control policies rather than a single control se-
quence. This allows the future decisions to depend directly on the
future measurements. In other words, it introduces some extra
degrees of freedom to the optimization problem that reduces the
conservativeness. However, the general formulation which leads
to dynamic programming suffers from the curse of dimensionality
and will not be practically implementable. Hence, optimization
over state feedback policies [5], affine policies parameterized on
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he uncertainty [6,7], and deep neural network [8] have been
roposed to approximate the general problem.
Tube-based MPC method is another alternative in the frame-

ork of robust approach for both linear [9] and nonlinear sys-
ems [10]. The basic idea of this method is to split the control
roblem into two parts. First is an ancillary controller, which
s responsible for maintaining the real uncertain system within
n invariant set around the nominal trajectory. Second, a de-
erministic standard MPC with tightened constraints based on
he nominal trajectory which steers the bundle of trajectories
known as tube) to the desired state. Since the invariant set
an be designed offline, the method does not impose too much
xtra online computational cost. However, constructing such an
nvariant set might not be simple, especially for complicated
onlinear systems. Different modifications of the method have
een presented in [11–14].
Another possibility to implement closed-loop optimization in

he framework of robust MPC is to use multi-stage MPC [15].
his method approximates the general formulation of dynamic
rogramming by considering only a finite realization of the uncer-
ainty, which is represented by a scenario tree. The scenario tree
akes it possible to solve the optimization problem over different
ontrol trajectories; hence it will reduce the conservativeness.
owever, the computational cost is still expensive because the
umber of scenarios and consequently the size of the problem
rows exponentially with the length of the prediction horizon
nd the number of uncertainty realizations considered. Therefore
pplicability of the method is still limited.
The main challenge in this regard is that the robust methods

re inherently conservative, and the existing methods to reduce
he conservativeness are either computationally heavy or they
eteriorate the robust performance [16]. Therefore, this paper
ims to address the problem of conservativeness, particularly
y looking into a case study to maximize the oil production
rom a gas-lifted oil network under the presence of parametric
ncertainty. Previous studies [17,18] have shown that parametric
ncertainties must be considered in the optimization problem;
therwise, the constraints would be violated. It has also been
hown that robust formulations are overly conservative or com-
utationally expensive. Conservativeness, which in this case can
e interpreted as an unexploited possibility for more production,
s an inevitable price that should be paid to ensure robust perfor-
ance. However, this paper aims to provide a simple and efficient
ethod to mitigate conservativeness while the robust fulfillment
f the constraints is preserved.
The proposed method in this paper is based on the worst-

ase realization of the uncertainties with constraint modification.
ore specifically, the mismatch between measured and predicted
utput is used directly to modify the active constraint in the
ptimization problem. Since the design is based on the worst-case
ituation, there will be no mismatch between the prediction and
easurement when the worst-case realization of the uncertainty
ccurs. Under such conditions, the method reduces to traditional
in–max MPC. However, for the other realizations of uncertainty,

he constraint modification leads to a higher production rate and
hus results in a less conservative operation.

Although the output error was employed in the early versions
f predictive control [19] and later in more recent versions of
daptive model predictive control [20,21], the fundamental dis-
inction between the proposed method of this paper and previous
orks lies in the role of measurements. Despite the adaptive
pproach, which makes use of output error to estimate the un-
ertainty and utilizes the estimated values of uncertainty in the
ptimization problem, in the proposed method of this paper,
he output error is used directly to reconstruct the boundary on
onstraints in the optimization problem, meaning the method
oes not contain any estimation algorithm. It is well known
2

that in an adaptive approach, the constraints can be violated
dynamically during the transient periods due to the lag in the
parameter estimation step [16]. However, the proposed method
of this paper does not estimate the parameters. Instead, the mea-
surement is used to modify the constraint boundaries directly.
The second major difference is that contrary to the adaptive
approach, the optimization problem in the proposed method is
based on the worst-case realization of the uncertainty, which
enables this method to fulfill the constraints robustly for all the
realizations of uncertainty within the considered bounded set.

Although the proposed method has been developed based on
special features of gas-lifted oil fields, it can be generalized to
be applicable to a class of systems with the same features. The
superiority of the method in terms of conservativeness and com-
putational time has been demonstrated in comparison with the
other robust optimization counterparts, such as traditional min–
max and multi-stage MPC. The main contribution of this work is
that it not only significantly reduces conservatism but also the
price for such achievement is considerably cheaper than closed-
loop optimization methods such as multi-stage MPC. This puts the
proposed method superior to the original min–max MPC since the
proposed method is less conservative with the same level of com-
plexity and robustness. The advantage of the proposed method
over multi-stage MPC is that it is simpler and computationally
more efficient, and it reduces the conservativeness even better
than multi-stage MPC.

The rest of the paper is organized as follows. Section 2 briefly
describes mathematical modeling of the gas-lifted oil field sys-
tem. The control design and simulation results are presented in
Sections 3 and 4, respectively before concluding in Section 5.

2. Mathematical model of gas-lifted oil field

2.1. Process description

The gas lift mechanism is a well-known artificial lifting
method to increase or revive the production from oil fields by
reducing the fluid mixture density in the well’s tubing. A gas-
lifted oil field consists of multiple oil wells that share a common
lift gas source. Different components of a single oil well have
been shown schematically in Fig. 1. A gas-lifted oil well simply
works by injecting high-pressurized natural gas into the well’s
annulus. For each well, a gas lift choke valve controls the gas
flow rate from the common gas distribution pipeline into the
annulus. The injected gas finds its way towards the tubing at
some points located at proper depths and mixes with the multi-
phase fluid from the reservoir. As a result, the density of the
mixture in the tubing will be reduced. Consequently, the hydro-
static pressure of the column of fluid above the injection point
and the flowing pressure losses in the tubing will be reduced.
Therefore, the pressure gradient between the reservoir and top
side will be sufficient to overcome the resistance in the well and
pushes the reservoir fluid to the surface.

First principle modeling of gas-lifted oil fields has been in-
vestigated for flow stabilization [22–24], control and production
optimization purposes [17,18,25]. All these models are derived
based on the mass balance of different fluid phases in the tubing
and annulus. It has been shown that the first principle models
based on mass conservation are accurate enough to be used for
control purposes [26].

2.2. Governing equations

In this section, we only briefly present the governing equations
of the process as derived in [18] because mathematical modeling
is not the objective of this paper. The readers are also referred
to [17,25] for further details. We considered a gas-lifted oil field
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Fig. 1. Schematic diagram of a single gas lift oil well.
ith two oil wells that share a gas distribution pipeline and a
athering manifold. The superscript i refers to the ith oil well.
hree states are considered for each well, namely, the mass of
ift gas in annulus mi

ga, the mass of gas phase in the tubing above
he injection point mi

gt , and the mass of liquid phase (mixture
of oil and water) in the tubing above the injection point mi

lt .
hree corresponding differential equations derived using the law
f mass balance are given by:

˙
i
ga = wi

ga − wi
ginj (1)

ṁi
gt = wi

ginj + wi
gr − wi

gp (2)

ṁi
lt = wi

lr − wi
lp (3)

wi
ga is the mass flow rate of the injected lift gas into each well

from the gas lift choke valve (control input). wi
ginj is the mass flow

rate of the gas injection from the annulus into the tubing. wi
gp and

wi
lp are the mass flow rates of the produced gas and liquid phase

fluid from the production choke valve, respectively. wi
gr and wi

lr
re the gas and liquid mass flow rates from the reservoir into
he well. wi

glp is the total mass flow rate of all phases from the
production choke valve, and wi is the oil compartment of the
op

3

wi
lp. All the flow equations are given by:

wi
ginj = K iY i

2

√
ρ i
ga max(P i

ainj − P i
tinj, 0) (4)

wi
gp =

mi
gt

mi
gt + mi

lt
wi

glp (5)

wi
lp =

mi
lt

mi
gt + mi

lt
wi

glp (6)

wi
lr = PI i max(Pr − P i

wf ) (7)

wi
or =

ρo

ρw

(1 − WC i)wi
lr (8)

wi
gr = GORiwi

or (9)

wi
glp = CvY i

3

√
ρ i
m max(P i

wh − Ps, 0) (10)

wi
op =

ρo

ρw

(1 − WC i)wi
lp (11)

P i
a is the pressure of lift gas in the annulus downstream of

the gas lift choke valve. P i
ainj is the pressure upstream of the

gas injection valve in the annulus. P i denotes the pressure
tinj
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ownstream the gas injection valve in the tubing. P i
wh and P i

wf
are the wellhead and bottom hole pressure, respectively. All the
pressures are given by:

P i
a =

zmi
gaRT

i
a

MAi
aL

i
a_tl

(12)

i
ainj = P i

a +
mi

ga

Ai
aL

i
a_tl

gLia_vl (13)

i
tinj =

zmi
gtRT

i
t

MV i
G

+
ρ i
mgL

i
t_vl

2
(14)

i
wh =

zmi
gtRT

i
t

MV i
G

−
ρ i
mgL

i
t_vl

2
(15)

i
wf = P i

tinj + ρ i
lgL

i
r_vl (16)

ρ i
ga is the average density of gas in the annulus. ρ i

gl is the den-
sity of the liquid phase (mixture of the oil and water). ρ i

m denotes
he average density of the multi-phase mixture (oil, water, and
as) in the tubing above the injection point. Y i

2 and Y i
3 are the

gas expandability factors for the gas that passes through the gas
injection valve and production choke valve, respectively. V i

G is
the volume of gas present in the tubing above the gas injection
point, and Cv is the production choke valve characteristics. All the
densities and other algebraic variables are given by:

ρ i
ga =

M(P i
a + P i

ainj)

2zRT i
a

(17)

i
l = ρwWC i

+ ρo(1 − WC i) (18)

i
m =

mi
gt + mi

lt

Ai
tLit_tl

(19)

Y i
2 = 1 − αY

P i
ainj − P i

tinj

max (P i
ainj, P

min
ainj )

(20)

i
3 = 1 − αY

P i
wh − Ps

max (P i
wh, P

min
wh )

(21)

i
G = Ai

tL
i
t_tl −

mi
lt

ρ i
l

(22)

It should be noted that the algebraic variables given by the
qs. (4) to (22) can be eliminated by substitution. So the explicit
et of ordinary differential equations (ODE) in compact form can
e written as:

˙ = f (x, u, θ ) (23a)

y1 = h1(x, θ ) (23b)

2 = h2(x, θ ) (23c)

x ∈ X ⊂ R6 and u ∈ U ⊂ R2 are the states and control
inputs as shown in Eqs. (24) and (25). y1 ∈ Y1 ⊂ R and y2 ∈

2 ⊂ R in Eqs. (26) and (27) are two desired outputs denoting
otal produced oil and total produced fluid respectively. Finally,
∈ Θ ⊂ R6 in Eq. (28) is the vector of uncertain parameters of

he process that includes productivity index, gas to oil ratio, and
ater cut of each well.

=
[
m1

ga m2
ga m1

gt m2
gt m1

lt m2
lt

]T (24)

=
[
w1

ga w2
ga
]T (25)

1 =

2∑
i=1

wi
op (26)

2 =

2∑
wi

glp (27)

i=1

4

θ =
[
PI1 PI2 GOR1 GOR2 WC1 WC2]T (28)

2.3. Uncertainty description

According to the sensitivity analysis in [18] three uncertain
parameter has been considered for each well. Productivity index
PI denotes the reservoir’s ability to deliver fluids to the wellbore.
The gas to oil ratio GOR is defined as the mass ratio of produced
gas to produced oil, and the water cut WC is defined as the
volumetric flow rate of water to the total produced liquid. These
uncertain parameters are upper and lower bounded and can take
any value within their bounds.

θi = θnom
i ± θdev

i , i = 1, 2, . . . , 6 (29)

For PI , GOR, and WC of each oil well, a deviation of 10%, 5%,
and 15% from their nominal values are considered, respectively,
based on expert knowledge. The nominal values of the uncertain
parameters and all the other parameters are provided in Table 1.

3. Controller design

3.1. Classical min-max MPC

In this section, the original formulation of open-loop min–
max MPC will be presented. The design procedure assumes the
uncertain parameters are constant and bounded, as described in
Section 2.3. Nevertheless, the controllers are also tested against
time-varying parameters to show the capability of handling any
parameter change within the uncertainty region. The primary
objective is to find the optimal distribution of lift gas between
two wells that maximizes the total oil production (output y1
from Eq. (26)) from the field, subject to some operational con-
straints. Therefore the objective function includes the total oil
production from the field y1 with the negative sign to pose it as a
minimization problem. Additionally, the injected lift gas u and its
rate of change ∆u can be incorporated into the objective function
to penalize excessive lift gas utilization and fluctuations in the
control signal. Hence for k ∈ {0, 1, . . . ,N − 1} where N is the
length of the prediction horizon and Q , R, and S denote proper
tuning weights, the objective function is given by:

J(x, u, θ ) =

N−1∑
k=0

(
−Q (y1,k)2 + R

2∑
i=1

uk(i)2 + S
2∑

i=1

∆uk(i)2
)

(30)

The most important operational constraints in the problem
rise from separator capacity and the total available lift gas. In
articular, the total amount of produced fluid (mixture of oil,
ater, and gas) should be less than the separator capacity, and
he total gas needed for injection should not exceed the total
vailable lift gas. So, the optimal control problem formulation
hroughout the prediction horizon K = {0, . . . ,N − 1} is given
y:

min
x,u

J(x, u, θ ) (31a)

s.t. xk+1 = f (xk, uk, θ) , k ∈ K (31b)
2∑

i=1

uk(i) ≤ Wmax
gc,k , k ∈ K (31c)

y2,k ≤ Wmax
s , k ∈ K (31d)

uLB ≤ uk ≤ uUB, k ∈ K (31e)

∆uLB ≤ ∆uk ≤ ∆uUB, k ∈ K (31f)

Eq. (31b) denotes the discretized dynamic model and is im-
osed as state continuity constraint. The constraint on the used
ift gas is denoted in (31c) where Wmax represents the total
gc,k
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Table 1
List of the parameters and their corresponding nominal values.
Parameter Well 1 Well 2 Units Comments

PInom 2.51 1.63 [kg/s bar] Nominal productivity index
GORnom 0.08 0.07 [kg/kg] Nominal gas to oil ratio
WCnom 0.15 0.15 [m3/m3] Nominal water cut
La_tl, Lt_tl 2758 2559 [m] Total length above injection point
La_vl, Lt_vl 2271 2344 [m] Vertical length above injection point
Lr_vl 114 67 [m] Vertical length below injection point
At 0.0194 0.0194 [m2] Tubing cross section area
Aa 0.0174 0.0174 [m2] Annulus cross section area

K 68.43 67.82 [

√
kgm3
bar
hr ] Gas injection valve constant

Ta, Tt 280 280 [K] Annulus/tubing temperature
Pr 150 150 [bar] Reservoir pressure
Ps 30 30 [bar] Separator pressure
αY 0.66 0.066 – Constant
Cv 8190 8190 – Valve characteristics
ρo 800 800 [kg/m3] Density of oil
ρw 1000 1000 [kg/m3] Density of water
M 0.020 0.020 [kg/mol] Molar mass
z 1.3 1.3 [–] Compressibility factor
a
m

3

t
c
n
p
t
b
i
c
f
s
t
T
(
r
a
t
s
d

l
s

n
δ

available lift gas. The constraint on the total produced fluid is
enforced in (31d), where y2 comes from Eq. (27) and Wmax

s stands
for the maximum capacity of the separator. The lower and upper
bounds on the control signal and the rate of change of control
inputs are also implemented in (31e) and (31f), respectively.

Due to the uncertainty in the parameters, the problem defined
in (31) cannot be solved directly. However, classical open-loop
min–max formulation considers the worst-case realization of the
uncertainty. In other words, it finds the appropriate decision
variables that minimize the maximum of objective functions over
all the possible realizations of θ . Classical open-loop min–max
MPC formulation is given by:

min
x,u

max
θ

J(x, u, θ ) (32a)

s.t. xk+1 = f (xk, uk, θ) , k ∈ K, ∀θ ∈ Θ

(32b)
2∑

i=1

uk(i) ≤ Wmax
gc,k , k ∈ K, ∀θ ∈ Θ

(32c)
y2,k ≤ Wmax

s , k ∈ K, ∀θ ∈ Θ

(32d)
uLB ≤ uk ≤ uUB, k ∈ K, ∀θ ∈ Θ

(32e)
∆uLB ≤ ∆uk ≤ ∆uUB, k ∈ K, ∀θ ∈ Θ

(32f)

Solving the original problem defined in (32) is not always
straightforward since the worst-case realization of the uncer-
tainty is not trivial. However, for the application considered in
the paper, it is well known that the worst-case scenario oc-
curs when the PI and GOR of all the wells take their maximum
realization and the WC of all wells take their minimum real-
ization, simultaneously [17]. Therefore we can simply take the
a-priori computed worst-case values of all parameters, and the
optimization problem reduces to:

min
x,u

J(x, u, θw) (33a)

s.t. xk+1 = f (xk, uk, θw) , k ∈ K (33b)
2∑

i=1

uk(i) ≤ Wmax
gc,k , k ∈ K (33c)

y ≤ Wmax, k ∈ K (33d)
2,k s

5

uLB ≤ uk ≤ uUB, k ∈ K (33e)

∆uLB ≤ ∆uk ≤ ∆uUB, k ∈ K (33f)

θw in (33) stands for the worst-case realization of uncertainty,
nd it is equal to the maximum values of all PIs and GORs and
inimum values for all WCs.

.2. Proposed constraint modification

The proposed method in this section is a modified version of
he original min–max MPC to reduce the conservativeness of the
lassical open-loop min–max in a computationally efficient man-
er. Since the proposed method does not solve the optimization
roblem over control policies, it does not increase the compu-
ational costs; however, it decreases the conservativeness even
etter than the closed-loop optimization techniques. The main
dea behind this novel method relies on the fact that the output
onstraint is upper bounded, and the conservativeness arises
rom overestimating outputs in the prediction part. Therefore a
imple innovative method has been developed to compensate for
his overestimation by modifying the active output constraint.
he most important requirement of the method is that the output
constraint) should be directly measurable, which is an admissible
equirement for several chemical processes since the constraints
re mostly on pressures or temperatures or flows. Therefore,
he method can be generalized to be applicable to a class of
ystems where this requirement is fulfilled, although it has been
eveloped based on a gas-lifted oil field as the case study.
Since the design is based on robust worst-case optimization

ike (33), while the active constraint will be modified using mea-
urements, the new method can be formulated as:

min
x,u

J(x, u, θw) (34a)

s.t. xk+1 = f (xk, uk, θw) , k ∈ K (34b)
2∑

i=1

uk(i) ≤ Wmax
gc,k , k ∈ K (34c)

y2,k ≤ Wmax
s + δW , k ∈ K (34d)

uLB ≤ uk ≤ uUB, k ∈ K (34e)

∆uLB ≤ ∆uk ≤ ∆uUB, k ∈ K (34f)

The correction factor δW in (34d) reduces the conservative-
ess by modifying the constraint. It should be emphasized that
W is not a slack variable which is calculated by the optimizer.
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t

δ

w

Fig. 2. Scenario tree representation of the uncertainties considered in this study with 65 scenarios and the robust horizon equals 1.
owever, it represents how much mismatch exists between the
orecast model in the controller and the real process, and it can be
alculated by subtracting the measured output (constraint) from
he predicted output (constraint) at the current time (k = 0) as:

W = y2(xk, θw) − ymeas
2,k (35)

here y2(xk, θw) is the calculated total produced fluid based
on the worst-case realization of the parameters and ymeas

2,k is
the measured total produced fluid at the current time k = 0.
When the parameters of the actual process take their worst-case
realization, there will be no mismatch between the prediction
and measurement; therefore, the method would be equivalent
to a min–max MPC applied in the worst-case situation of the
process. Otherwise, the mismatch between the prediction and
measurement modifies the upper bound of the constraint and
decreases the conservativeness.

3.3. Multi-stage MPC

Multi-stage MPC is used in this paper as a competing alterna-
tive to demonstrate the promising features of the novel method
presented in this paper. The method behind multi-stage MPC
is well documented in the literature [15,27]; therefore, only a
condensed explanation of what has been used in this work is
presented, and the readers are referred to [28] for more details
on the multi-stage MPC for gas-lifted oil network.

Considering the boundaries of six uncertain parameters, there
are 26 combinations of uncertainty realizations (branch) that
adds up to 65 with nominal values. However, since the number
of scenarios grows exponentially with the number of branches
and time steps, the robust horizon is chosen to be 1. Therefore
branching stops after the first node, as shown in Fig. 2 and 65
distinct scenarios are considered overall.

The optimization problem should be formulated over all the
discrete scenarios of the scenario set S = {1, . . . , S} throughout
the prediction horizon K = {0, . . . ,N − 1}. Therefore, for ∀j ∈ S ,
and ∀k ∈ K and the tuning weights ωj, the multi-stage MPC is
formulated as:

min
x,u

S∑
ωjJj (36a)
j=1

6

s.t. xjk+1 = f
(
xp(j)k , uj

k, θ
r(j)
k

)
, j ∈ S, k ∈ K (36b)

2∑
i=1

uj
k(i) ≤ Wmax

gc,k , j ∈ S, k ∈ K (36c)

yj2,k ≤ Wmax
s , j ∈ S, k ∈ K (36d)

uLB ≤ uj
k ≤ uUB, j ∈ S, k ∈ K (36e)

∆uLB ≤ ∆uj
k ≤ ∆uUB, j ∈ S, k ∈ K (36f)

uj
k = ul

k if xp(j)k = xp(l)k , ∀j&l ∈ S, k ∈ K (36g)

Jj in (36a) denotes the objective function for scenario j. Tuning
weights ωj represent the relative likelihood of occurring each
scenario. The constraint (36b) denotes the equation of the states.
It means that the states at time t = k + 1 in scenario j are
a function of their parental state xp(j)k and the corresponding
control uj

k and uncertainty realization θ
r(j)
k . The non-anticipativity

constraints introduced in (36g) reflects the fact that at each time
instance k, controls uj

k and xlk from scenarios j and l with the

same parental state xp(j)k = xp(l)k have to be the equal. In our case,
branching happens only once; therefore, u1

0 = u2
0 = · · · = u65

0
is the only set of non-anticipativity constraints because all these
controls are branched from the same parental node x0 as shown
in Fig. 2. According to the receding horizon strategy, this first
control action is the one that will be applied to the target system,
and the non-anticipativity constraint guarantees that this value is
unique.

4. Results and discussion

4.1. Simulation setup

The proposed novel method of this paper, classical min–max
MPC, and multi-stage MPC method, have been applied to a gas
lifted field with two oil wells. All the parameters of the wells are
presented in Table 1. For all three methods, the tuning wights Q ,
R, and S that reflect the importance of each term in the objective
function (30) are chosen to be 1, 0.5, and 50, respectively. All the
sixty-five weights ωj for sixty-five scenarios in the multi-stage
method (36) are considered to be equally one because all the
scenarios are equally likely to occur.
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Fig. 3. Total produced fluid, total produced oil, injected lift gas, and normalized values of the uncertain parameters when the proposed method i.e. min–max with
onstraint modification (MMCM) and standard MPC based on the nominal model, are applied to the plant with varying parameters.
Classical min–max MPC is implemented by solving the op-
imization problem in (33) in a receding horizon fashion. The
roposed method and multi-stage MPC are implemented respec-
ively by solving optimization problems in (34) and (36). In all
imulations, the total available lift gas Wmax

gc varies during simu-
ation to indicate the change in operational condition, while the
onstraint on the maximum capacity of the separator is assumed
o be constant with Wmax

s = 175 [kg/s]. The lower and upper
ounds of the gas injection flow rates (control signal) are 0.323
nd 11.66 [kg/s]. The rate of control change is limited between
0.15 [kg/s]. A sampling time of 20 s and a prediction horizon
ith 25 sampling times (≈8.3 min) is used for all methods.
The dynamic optimization problem is discretized using the

irect multiple shooting method in CasADi v.3.5.5, an open-
ource tool for nonlinear optimization and algorithmic differ-
ntiation [29]. The simulations were implemented in MATLAB
2022b, using a 1.8 GHz laptop with 16 GB memory. The IPOPT
.3.14.1 solver has been used to solve the problem [30].
7

4.2. Simulation results

The applicability of the proposed approach is demonstrated
and compared to competing approaches such as classical min–
max and multi-stage MPC in terms of conservativeness and exe-
cution time.

The first simulation case has been conducted to show the
robustness of the proposed method and the shortcoming of stan-
dard MPC in compensating for the parametric uncertainty. To do
so, the proposed method and a standard MPC based on nominal
values of parameters have been applied to the process with
varying parameters. The result is plotted in Fig. 3. The first subplot
(a) demonstrates the total produced fluid from the field and its
upper bound. The second subplot (b) shows the total produced oil.
Control inputs (injected lift gas) are shown in the third subplot
(c). The fourth subplot (d) depicts the total lift gas used and
its upper bound. And the last subplot (e) shows the uncertain

parameters, which are normalized with their nominal values.
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n all the subplots, a vertical dashed red line shows the time
hen the real-time optimizer is activated. It can be seen that the
ncertain parameters take their nominal values at the beginning,
nd then they change to their worst-case realization in random
rder.
Subplot (a) in Fig. 3 demonstrates that standard MPC based on

he nominal model is not able to fulfill the constraint and the total
roduced fluid exceeds its upper bound. However, this constraint
s robustly respected by our method all the time, even in the
resence of sudden changes in parameters. It should be noted that
he constraint on the output (separator capacity) becomes active
nly at the end of the simulation time when all the parameters
ave taken their worst-case realization. However, at other times
hen at least some of the parameters are not taking their worst-
ase realization, the controller prefers not to use all the available
ift gas even though the constraint on the separator part is not
ctive and even when there is a possibility of higher production.
his price that has to be paid to guarantee robust satisfaction of
he constraint is typically known as conservativeness.

In the subsequent three simulation cases, it has been shown
hat the proposed method is superior to the traditional min–
ax and multi-stage MPC in terms of conservativeness. In other
ords, the proposed method has the same performance in the
orst-case situation, while it is considerably less conservative at
ther times.
In case (I), all three methods, namely traditional min–max

PC (MM), multi-stage MPC (MS), and the proposed min–max
ith constraint modification method (MMCM), are applied to the
lant with the worst-case realization of uncertain parameters.
otal produced fluid and the corresponding constraint, the total
roduced oil, injected lift gas to each well, and the total injected
nd available lift gas are plotted in Fig. 4 for all three methods.
he first and fourth subplots show that the production will be
ncreased by utilizing all the available gas in the beginning until
he constraint on the separator side becomes active. Then the
ontroller decreases the amount of injected lift gas since it has
een penalized in the objective function. After almost four hours,
ll three controllers decreased the total used lift gas even further
o respect the constraint on the amount of available gas. The
imulation shows that all three competing methods are able to
ope with the worst-case realization of the uncertainty; therefore,
hey are robust.

In case (II), all three methods are applied to the plant with
he nominal realization of uncertain parameters to investigate
he conservativeness of the methods. The results are plotted in
ig. 5 for comparison. As expected, all three methods are con-
ervative to some extent in the sense that they do not utilize
ll the available lift gas to increase production. However, the
aximum production rate is not touched yet. Nevertheless, their

evel of conservativeness is not the same. The traditional min–
ax MPC as an open-loop optimization method is the most
onservative one. Multi-stage MPC as a closed-loop optimization
ethod increases the oil production by around 0.1%, which is

ustifiable considering six uncertain parameters in the process.
he proposed novel method is the least conservative method
mong these three competitors. It increases the oil production by
.46% with respect to standard min–max MPC, while it does not
ncrease the complexity of the problem compared with open-loop
in–max MPC.
The third and last case is case (III), where the three methods

re applied to the process in which the PI and GOR of all the
ells take their minimum realization and the WC of all wells take
heir maximum realization, simultaneously. The special fact about
he considered case is that all the parameter realizations are
xactly the opposite with respect to the worst-case realization.

his means if the constraint was lower bounded as well (which

8

Fig. 4. Case (I): Applying standard min–max MPC (MM), multi-stage MPC (MS),
and the proposed method i.e. min–max with constraint modification (MMCM)
to the plant with the worst-case realization of uncertain parameters.

is not the case in our process), this combination of uncertain
parameters would be the worst-case realization corresponding to
the lower bound of the constraint. In other words, this case is the
farthest distance to the worst-case realization of uncertainties;
therefore, it is preferred to call it the safe case. All the other
realizations of parameters within the uncertainty range put the
process between these two extremes. The simulation result for
case (III) is presented in Fig. 6. It can be seen that the improve-
ment made by the proposed novel method is more significant.
The method increases the oil production by 3.44% with respect
to standard min–max MPC, while multi-stage MPC increases the
production only by 0.2%.

The other advantage of the method proposed is low com-
putational costs. In contrast to multi-stage MPC, which reduces
the conservativeness by solving the optimization problem over
control policies, the proposed novel method is still an open-loop
optimization method. Therefore, its computational cost remains
at the same level as open-loop min–max MPC. This has been
validated by comparing the execution time of the methods for
the three discussed cases. The execution time for each iteration
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u
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Fig. 5. Case (II): Applying standard min–max MPC (MM), multi-stage MPC (MS),
and the proposed method min–max with constraint modification (MMCM) to the
plant with the nominal realization of uncertain parameters.

Table 2
The mean execution time of iterations for three cases (I), (II), and (II).

Min–max Multi-stage Proposed novel method

Case (I) 0.030 3.01 0.029
Case (II) 0.042 2.85 0.038
Case (III) 0.037 3.38 0.029

has been plotted in Fig. 7. It shows that the computational costs
for min–max MPC and the proposed novel method are more or
less the same; however, the multi-stage MPC is computationally
expensive. The average execution time for each method is also
presented in Table 2 and reflects the same fact. Table 2 apparently
shows that the proposed novel method is approximately 100
times faster than multi-stage MPC, yet it is less conservative.

5. Conclusion

All the robust methods are inherently conservative when the
ncertainties take other values rather than their worst-case real-
zation. Therefore, an efficient, robust nonlinear model predictive
ramework, particularly for real-time production maximization
f the gas lifted well network under the presence of parametric
9

Fig. 6. Case (III): Applying standard min–max MPC (MM), multi-stage MPC (MS),
and the proposed method min–max with constraint modification (MMCM) to the
plant with the safe realization of uncertain parameters.

uncertainty was presented in this paper to mitigate the problem
of conservativeness. The conservativeness in our problem can be
interpreted as the unutilized resources to increase production. So,
the performance of the proposed framework is evaluated in this
regard through several simulation cases.

The proposed optimal control framework of this paper consists
of traditional open-loop min–max MPC with constraint modifi-
cation. In particular, the error between measured and predicted
output is used as a correction factor to modify the upper bound
of the constraint. The design is based on the worst-case real-
ization of the uncertainty; therefore, when the parameters take
their worst-case realization, the error between measurement and
prediction is zero, which means that the formulation reduces
to a standard min–max MPC. Otherwise, the error term mod-
ifies the constraint that, consequently, leads to a reduction in
conservativeness.

Several simulation cases have been conducted to demonstrate
the promising advantages of the proposed novel method over
open-loop min–max MPC and multi-stage MPC. All the compet-
ing methods are applied to a gas-lifted oil field with two oil
wells in three simulation cases. It has been shown that when
the uncertain parameters of the process take their worst-case
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Fig. 7. Execution time for three cases. Case(I): worst-case realization of uncertainty, Case(II): nominal realization of uncertainty, Case(III): safe case realization of
ncertainty.
ealizations, all three methods are able to satisfy the constraints,
.e., all methods are robust within the uncertainty region. How-
ver, when the uncertain parameters take other realizations, the
roposed method is significantly less conservative than min–max
nd multistage methods; therefore, the proposed method is su-
erior to both min–max and multistage methods because it pre-
erves the robust performance and reduces the conservativeness
ignificantly. The method’s superiority in terms of complexity is
lso investigated by comparing the execution times. It has been
hown that the complexity of the method is at the level of min–
ax MPC, and it is considerably more straightforward and more
fficient than multistage MPC.
Despite the significant benefits of the developed method, there

re some limitations that give rise to further improvement in
uture works. First, some a priori knowledge about the process
as been used to simplify the min–max MPC; however, the worst-
ase realization of the parameter might not be known a priori
or other processes. Although this is a valid argument, it should
e noted that the method at least does not impose any further
omplexity on the original min–max formulation. While on the
ontrary, multi-stage MPC introduces too much complexity with
ess reward in terms of conservativeness.

The next and most critical limitation which should be ad-
ressed in future works is that the method needs the active con-
traints to be directly measurable. The future direction in this re-
ard is to generalize this work for the cases where constraints are
ot directly measurable by using other outputs/measurements to
odify the constraints.
In fact, this method falls somewhere between the adaptive

nd robust methods. This is because, in the adaptive approach,
he measurements are used to estimate the uncertain parameters,
nd then the estimated parameters will be used in a certainty
quivalence deterministic MPC. However, the measurements in
ur method are used to directly modify the active constraints.
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