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Abstract 

Tick-borne encephalitis virus (TBEV) causes Tick-borne encephalitis (TBE) which is an 

infection of the central nervous system that can lead to encephalitis. TBE cases are increasing 

in Scandinavia over the last few decades posing a concern to public health. The geographical 

spread of TBEV can be caused by favourable climatic conditions due to ongoing climatic 

changes. This PhD thesis aims to gain a comprehensive understanding on the status of TBEV 

distribution in Norway, Sweden, and Denmark. 

TBEV distribution differs along geographical regions in Scandinavia due to distinct climatic 

and ecological conditions. TBEV circulation was found to be widespread in coastal and lowland 

areas, with multiple foci capable of initiating endemic regions. In alpine regions, where little is 

known about tick distribution, reindeer were sero-screened as sentinel animals. Antibodies 

against TBEV was not detected in reindeer populations indicating that tick that carry TBEV 

may not have reached in reindeer foraging regions. However, the inclusion of recent data and 

other deer species as sentinels for monitoring could be helpful.  

Human incidence of TBE clusters around specific coastal regions despite widespread 

geographical distribution of TBEV. The TBEV-Eu strain often presents with mild symptoms, 

that can be mistaken as flu or other illness. Retrospective sero-analysis of patients with CNS 

symptoms found one underreported case that show loopholes in TBE reporting system. This 

resonates with underestimation of TBE cases concluded from earlier studies. 

A whole genome sequencing methodology for TBEV strains was established in the reference 

laboratory for TBE in Norway. This approach facilitates bioinformatic and phylogenetic 

analysis which are important for tracking TBEV spread and its future trajectory in Scandinavia. 

This established technique can serve as a reference for sequencing low viral load strains typical 

from ticks and human cases.  

Keywords: tick-borne encephalitis virus, zoonoses, climate, whole genome sequencing, 

sentinel. 
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antibodies against TBEV. None of the reindeer were positive for TBEV specific antibodies. 
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cDNA Complementary deoxyribonucleic acid made by reverse 

transcription of RNA 

CNS Central nervous system 

Co-feeding 

transmission 

When an infected tick and uninfected tick(s) are feeding in 

close proximity, or in quick succession, the transmission of 

TBEV through co-feeding may occur independently of host 

viremia.  

Counties There are 11 counties in Norway (Troms and Finnmark, 

Nordland, Trøndelag, Møre og Romsdal, Vestland, Rogaland, 

Agder, Vestfold og Telemark, Viken, Oslo, Innlandet), 21 
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Ct Cycle threshold 

CSF Cerebrospinal fluid 

DNA Deoxyribonucleic acid 

ECDC European Centre for Disease Prevention and Control 
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if human TBE cases occur on a regular basis. 

Enzootic region A TBE enzootic region is an area where TBEV infection is 

consistently present in tick and animal populations. 

Foci TBEV exists in foci, which are confined regions where the 

virus circulates among tick vectors and reservoir hosts.  

FFA Focus forming assay  

GDD Growing degree days represent a measure of accumulated heat 

units over time, typically used in agriculture to estimate plant 

growth and development based on temperature data. 

GSL The length of growing season is the time period between the 

last and first frost dates when the climate is suitable for plant 

growth. 

HI Haemagglutination inhibition test 
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Surveillance System for Communicable diseases) 
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PRNT Plaque reduction neutralization test  

RCP Representative concentration pathways are climate models 

predicting future greenhouse gas levels and climate impacts. 

“RCP8.5” predicts high emissions without human intervention, 

“RCP6” assumes stabilization with technology by 2100, 

“RCP4.5” assumes emission reductions after 2040, and 

“RCP2.6” represents drastic cuts in emissions starting in 2020. 

qPCR Quantitative polymerase chain reaction is a technique for 

amplifying and quantifying DNA often referred to as real-time 

PCR where amplification can be monitored in real time. 

Reservoir host A reservoir host is an organism that carries a pathogen without 

getting sick and can pass it to other species, often through 

vectors like tick and mosquitoes. 

RH Relative humidity 
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growing 

Vector Vectors transmit pathogen from one host to another. Ticks 

qualify as a vector as it: (i) can consume blood from infected 

hosts; (ii) can acquire pathogen during the blood-feeding; (iii) 
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RNA Ribonucleic acid 
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1. Introduction 

Tick-borne encephalitis (TBE) is a tick-borne zoonosis and a public health concern in Europe 

(Riccardi et al., 2019; Slunge et al., 2022). The causative agent is tick-borne encephalitis virus 

(TBEV) which can lead to a spectrum of clinical outcomes from mild flu like symptoms to 

severe neurological complications (Gritsun et al., 2003; Kaiser, 2002). 

Scandinavia is the northern limit of habitat tolerance range for tick due to its cooler climate and 

distinct ecosystems (Jaenson & Wilhelmsson, 2019; Soleng et al., 2018). TBE is endemic in 

the coastal regions of southern Norway and the south-central parts of Sweden (MSIS, 2023; 

Public Health Agency of Sweden, 2023b). In recent decades, there has been a notable increase 

in TBE cases in Scandinavia indicating a shift in the epidemiological landscape of TBE (MSIS, 

2023; Public Health Agency of Sweden, 2023a; Statens Serum Institut, 2023). This could be 

due to increased recreational activity in tick abundant areas or improved diagnostics and 

reporting of TBE (Slunge et al., 2022). It could also be due to changes in climatic conditions 

due to the global climate change (Tokarevich et al., 2011;Van Oort et al., 2020). As 

temperatures rise and precipitation patterns alter, tick habitats might be expanding, potentially 

ushering in a new epidemiological landscape for TBE (Alkishe et al., 2017; Lindgren et al., 

2012). TBE may have the potential to spread to new areas or populations, and this spread might 

not be solely due to changes in the environment but could also be due to the virus evolution and 

host adaptation (Helmová et al., 2020; Liebig et al., 2020, 2021). 

TBEV is enzootic along the coastline of Norway and Sweden (Pettersson et al., 2014; Soleng 

et al., 2018; Vikse et al., 2020). Antibodies against TBEV have been detected in both animals 

and healthy blood donors, suggesting broader exposure than the restricted known endemic areas 

(Andreassen et al., 2012; Larsen et al., 2014; Marvik et al., 2021; Paulsen et al., 2020). The 

future climate predictions project conditions that are both warmer and wetter in Scandinavia ( 

Box et al., 2019; Christensen et al., 2022; Easterling et al., 2000; Hanssen-Bauer et al., 2017). 

Such climatic shifts could offer conducive environment for tick proliferation (Cayol et al., 2017; 

J. S. Gray et al., 2009; E. Korenberg, 2009; Lindgren et al., 2012; Van Oort et al., 2020; Zeman 

& Beneš, 2004). The warmer conditions implies a potential increase in abundance and 

geographical distribution of tick and TBEV throughout Scandinavia, subsequently, escalating 

the risk of human TBEV-infections in future (Daniel et al., 2018; Heyman et al., 2010; Lindgren 

et al., 2012).  
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1.1 Tick-borne encephalitis virus  

The medical history of TBEV started from 1937 when it was first discovered  by Professor LA 

Zilber in the Russian far-east (Kahl et al., 2023). Earlier, TBE was known as Russian spring-

summer encephalitis in Russia and far-eastern Asia, and as central European encephalitis in 

Europe (Calisher et al., 1989; Ruzek et al., 2019). It is transmitted to humans mostly via infected 

tick bites but can also infect humans via consumption of unpasteurized dairy (Klaus et al., 2012; 

Omazic, et al., 2023; Paulsen et al., 2019). 

Genomic structure  

TBEV is a (+) sense, single-stranded RNA virus with an approximate genome size of 11 kb. 

The TBEV genome encodes a single polyprotein which is processed into three structural 

proteins (C, M and E) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, 

NS4B, and NS5) by cellular and viral proteases (Figure 1) (Barrows et al., 2018; Kutschera & 

Wolfinger, 2022). The genome of TBEV-EU has conserved 5' and 3' untranslated regions 

(UTR),  which have roles in replication, genome packaging, affect immune response, virulence 

and pathogenicity (Barrows et al., 2018; Kutschera & Wolfinger, 2022; Pulkkinen et al., 2018). 

 

Figure 1: TBEV genome encodes a single polyprotein that is subsequently cleaved into three structural 

proteins and seven non-structural proteins. The 5' and 3' untranslated regions (UTRs) flank the coding 

region and play vital roles in viral replication and translation. The structural proteins facilitate viral 

entry and assembly while the non-structural proteins are primarily involved in replication and evasion 

of host immune responses. (Kindly provided by Martin Palus, with permission). 

 



Lamsal: Tick-borne encephalitis virus, an emerging virus in Scandinavia   

 

3 

The envelope protein plays an important role in infection allowing virus binding to recept ors 

on the surface of susceptible host cells (Barrows et al., 2018). The non-structural protein  (NS) 

play a role in the viral pathogenicity and can be a determinant in triggering immune responses 

(Pulkkinen et al., 2018; Starodubova et al., 2023). RNA viruses including TBEV exhibit high 

mutation rates, attributed to the absence of proofreading mechanisms during virus replication 

(Domingo, 1997; Helmová et al., 2020).TBEV can develop distinct viral variants demonstrating 

its genomic flexibility and ability to form quasispecies within a virus population (Asghar et al., 

2014; Helmová et al., 2020; Schneider & Roossinck, 2001). 

Subtypes 

TBEV is classified into several subtypes: European (TBEV-Eu), Siberian (TBEV-Sib), Far 

Eastern (TBEV-Fe), Baikalian (TBEV-Bkl) and Himalayan TBEV (TBEV-Him) (Ecker et al., 

1999). The TBEV-Sib, TBEV-Fe and TBEV-Bkl subtypes are primarily transmitted by I. 

persulcatus (Demina et al., 2010; Kovalev & Mukhacheva, 2017; Kozlova et al., 2013). The 

Himalayan TBEV (TBEV-Him) is hosted by the Himalayan marmot (Marmota himalayane) 

which is found in the western part of China (Dai et al., 2018). TBEV-Eu can be vectored by I. 

ricinus and I. persulcatus and hybrid between these two (Belova et al., 2023; Kovalev et al., 

2016). 

Clinical manifestations  

The clinical manifestations of TBE vary by subtype. The European subtype typically induces a 

milder form of the disease, and with a mortality below 2% (Gritsun et al., 2003; Kaiser, 2002; 

Ruzek et al., 2019). The Far Eastern and Siberian subtypes lead to a more severe form of illness 

(Ruzek et al., 2019). TBE can present asymptomatically; as a brief febrile illness; or as a central 

nervous system infection, often following a two-phase pattern (Kaiser, 2002; Lindquist & 

Vapalahti, 2008). The median incubation period is eight days, with the initial phase include 

fever and flu-like symptoms followed by a symptom-free period of one week. Then symptoms 

recur, indicative of central nervous system inflammation, such meningitis, 

meningoencephalitis, or, more rarely, encephalomyelitis (Lindquist & Vapalahti, 2008). Even 

though initial symptoms like fever, headache, muscle pain, and fatigue are common in viral 

infections, in severe cases the European subtype, can lead to encephalitis causing confusion, 

seizure, paralysis and potentially death (Gritsun et al., 2003). Clinical TBE cases are common 

between April and November peaking in autumn (ECDC, 2021; MSIS, 2023). 
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 There are no specific treatments for TBE. Supportive care to manage symptoms remains the 

primary approach. TBEV vaccines have been developed and are recommended for those 

residing in or travelling to areas where the virus is endemic (Amicizia et al., 2013; Kunze et al., 

2022). Despite the vaccine's effectiveness, challenges in achieving extensive coverage, 

particularly in high-risk areas and groups, persist (Kunze et al., 2022). 

1.2 The tick vector 

Tick serves as vector for transmission of TBEV. Infected tick carry TBEV in their midgut and 

salivary glands and transmit it to hosts during bites (Benda, 1958; Lejal et al., 2019). There are 

over 700 species of hard tick (Ixodidae) and 190 species of soft tick (Argasidae) (Madder et al., 

2014). Tick species such as Ixodes ricinus, Ixodes persulcatus, Dermacentor reticulatus, Ixodes 

trianguliceps, Ixodes hexagonous are detected in Scandinavia. I. ricinus is the main carrier of 

TBEV in this region (Asghar et al., 2014, 2014; Jaenson & Wilhelmsson, 2019). Some of the 

details of the life cycle, particularly with reference to environmentally determined 

developmental diapause apply only to I. ricinus, which is more developmentally flexible than 

I. persulcatus (Korenberg et al., 2021). Thus, I. ricinus is preferable to 'tick' in the subsequent 

sections. 

Life cycle  

Tick undergoes a life cycle comprising egg, larvae, nymph, and adult stages (Figure 2). 

Excluding egg, each stage requires a blood meal to transition to the next stage. After feeding, 

tick find refuge in leaf litter for protection against sunlight and dehydration. They favour 

deciduous forested areas particularly those with oak (Quercus spp.) and beech trees (Fagus 

sylvatica). Deciduous trees serve as optimal habitats due to shade and humidity in Europe (Tack 

et al., 2012; Zając et al., 2021). 
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Figure 2: Life cycle of tick. Egg hatches into six-legged larva which after feeding molts to the eight-

legged nymph. After feeding nymph molts into adult tick. Adult male dies after mating and female dies 

after laying eggs completing the life cycle. The choice of hosts for each developmental stage can be 

different depending on the questing height. (Figure kindly provided by Martin Palus, with permission). 

The host-seeking behaviour of tick is known as “questing” where they remain stationary on 

vegetation, extend their front legs and latch onto passing hosts. Tick have unique physiological 

mechanisms to detect and feed on their hosts. They can detect the presence of hosts from 

changes in temperature and carbon dioxide levels in the surrounding with the help of Haller’s 

organ situated on the front pair of their legs (Carr & Salgado, 2019; Süss, 2003).  

Tick can feed on over 300 vertebrate species including mammals, birds, reptiles and humans 

(Anderson, 1991). Their mouthparts, adapted for blood-feeding, and saliva, which contains 

compounds to counteract host responses such as blood clotting, pain, itching, and inflammation, 

enable them to feed efficiently (Chitimia-Dobler et al., 2020; Sonenshine, 2005; Suppan et al., 

2018). Each life stage has specific feeding duration and growth capacity. Larvae feed for 2-4 

days and gain mass up to 20 times. Nymphs feed for 3-5 days and expand up to 40 times in 

size. Adult females feed for 7-10 days and gain mass up to 200 times (Sonenshine, 2005; Kahl 
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& Gray, 2023). Larvae typically feed on small mammals and nymph and adult feed on larger 

vertebrates like deer (Hillyard, 1996)(Figure 2). Adult female die post oviposition while males 

generally die after mating (Kahl, 1991; Süss, 2003). 

Tick activity is closely linked to humidity, being most active when the relative humidity (RH) 

levels exceed 80-85% (Gray, 1991). Their questing peaks in the spring and autumn, aligning 

with optimal humidity levels (Cayol et al., 2017). Tick activity diminishes in hot, dry conditions 

or when there is high saturation deficit (SD) (Burri et al., 2011; Perret et al., 2004; Randolph & 

Storey, 1999). Excessively moist environments can be harmful, and tick do not quest during 

rain and wet conditions. The detachment from the host is influenced by host and environmental 

factors generally targeting optimal conditions for development to subsequent life stage (Kahl 

& Gray, 2023) . 

Seasonal activity 

Tick seasonal activity is influenced by climatic factors like temperature and humidity (Cayol et 

al., 2017).Tick is sensitive to environmental changes and have adaptations to increase their 

chances of survival in unfavourable conditions. Unfed tick undergo a behavioural diapause by 

halting their questing activity in anticipation of adverse winter conditions (Gray et al., 2016). 

Engorged tick undergoes a development diapause to improve survival through winter. Under 

unexpected environmental changes like cold snaps or droughts tick undergo quiescence with 

reduced metabolic activity for survival until favourable conditions return (Belozerov, 2009).  

Typically, tick resume activity in the spring after the winter diapause. The timing of their blood-

meal dictates their development. For example, spring-fed larvae molt into nymphs within a few 

months and those feeding late in the summer might delay molting until next summer, extending 

their life cycle (Kahl & Gray, 2023). In regions like Central and Northern Europe, molting 

predominantly occurs  during the warmer months (Kahl & Gray, 2023). Tick activity pattern 

varies across Europe due to latitudinal and altitudinal differences. In Central Europe, nymph 

show a bimodal activity pattern, with two distinct peaks, one in May–June and another in 

September-October (Estrada-Peña et al., 2004). Meanwhile in Northern Europe, tick typically 

show single model of activity due to a cooler climate (Lindgren et al., 2000). Similarly, altitude 

affects tick activity. Nymph activity in lower elevation sites, show bimodal patterns and those 

in higher elevation show a single peak due to low temperature in high altitude areas (Bregnard 

et al., 2021).  
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1.3 Tick hosts  

Tick are dependent on hosts for survival and dispersal over geographical areas (Sonenshine, 

2005). Small mammals such as bank voles (Myodes glareolus), yellow-necked mice (Apodemus 

flavicollis), wood mice (Apodemus sylvaticus), and common shrews (Sorex araneus) are 

primary hosts for larvae and nymph (Achazi et al., 2011; Daniel et al., 2018). Many rodents in 

endemic areas exhibit both prenatal and postnatal TBEV transmission (Bakhvalova et al., 2009; 

Benda, 1958; Danielová & Holubová, 1991). Rodents usually have high tick aggregation and 

"20/80 " is associated with it- approximately 80% of tick feed on 20% of rodents (Esser et al., 

2016). In natural ecosystems, these mammals sustain tick and act reservoirs of TBEV and this 

makes them suitable sentinel for TBEV monitoring (Achazi et al., 2011; Michelitsch et al., 

2019).  

Large vertebrates such as roe deer (Capreolus capreolus), fallow deer (Dama dama), and red 

deer (Cervus elaphus) are important hosts for adult tick (Imhoff et al., 2015). Habitats rich in 

deer are noted to have abundant tick populations (Gilbert et al., 2000; Jaenson et al., 2012; 

Tälleklint & Jaenson, 1998). Large vertebrates like deer including sheep and goats show 

detectable antibody response after TBEV infection (Kiffner et al., 2012; Klaus et al., 2012; 

Labuda et al., 1993). Cervids like roe deer, red deer, moose are distributed throughout 

Scandinavia and are used as sentinel for TBEV monitoring (Imhoff et al., 2015; Jaenson et al., 

2012; Paulsen et al., 2020). The role of cervids in ecosystems and sustaining tick population 

has been discussed in many studies (Mysterud, 2000; Mysterud et al., 2014, 2018; Ruiz-Fons 

et al., 2012; Tagliapietra et al., 2011).  In Scandinavian mountain regions, reindeer are abundant 

which have large habitat coverage from coastal to mountain regions (Paulsen et al., 2020; 

Sánchez Romano et al., 2019; Shakya et al., 2022).  

Hosts, particularly birds may also serve as agents for dispersal of infected tick that are capable 

of starting an independent TBEV foci. Birds of species like dunnock (Prunella modularis), 

redstart (Phoenicurus Phoenicurus), song thrush (Turdus philomelos), mistle thrush (Turdus 

viscivorus), fieldfare (Turdus pilaris), common Blackbird (Turdus merula), willow warber 

(Phylloscopus trochilus), tree pipit (Anthus trivialis) were found to transport infected tick to 

Northern Norway (Hasle et al., 2009; Waldenström et al., 2007). Migratory birds often rest at 

specific sites during their seasonal migration, where they either may become infested with tick 



Lamsal: Tick-borne encephalitis virus, an emerging virus in Scandinavia   

 

8 

or drop off engorged tick (Hasle et al., 2009; Sándor et al., 2014; Waldenström et al., 2007; 

Wilhelmsson et al., 2020).  

1.4   TBEV transmission 

TBEV transmission routes 

TBEV circulates within tick populations through several transmission routes that can be directly 

within tick lifecycle or by involving hosts (Havlíková et al., 2013).  

 

Figure 3: Modes of TBEV transmission in tick. Human infection occurs by infected tick bite or through 

the consumption of infected dairy products. Figure adapted from (Ličková et al., 2021).  
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TBEV transmission can occur through both viremic and non-viremic routes involving hosts. 

Viremic transmission can occur by blood-feeding on viremic hosts. Rodents from endemic 

areas were found to have considerable amount of viremia in their blood which supports their 

role as reservoir hosts for TBEV (Achazi et al., 2011; Bregnard et al., 2021). Non-viremic or 

cofeeding transmission occurs when larvae and nymph feed on the same host in proximity, 

where the virus moves from infected tick to uninfected tick using the host as a bridge for 

transmission (Labuda et al., 1993). Here, the tick itself is a reservoir of the virus and the host is 

merely a bridge for transmission (Figure 4). Larvae acquiring TBEV from an infected female 

through the egg is known as transovarial transmission. Once acquired, the TBEV can persist 

through all life stages. This is known as transstadial transmission (Figure 3) (Danielova et al., 

2002; Nuttall & Labuda, 2003). 

Nymphs tend to attract more larvae on specific host body regions like ears, underlining the 

importance of specific host body regions in co-feeding transmission (Esser et al., 2016; 

Randolph & Storey, 1999). Generally, climatic conditions are conducive for simultaneous 

questing of larvae and nymphs from spring to autumn in Europe (Burri et al., 2011; Cayol et 

al., 2017). The feeding synchrony can vary between years depending on annual variations in 

climate and/or host abundance. Rodent populations of the Apodemus and Myodes genera peak 

in summer or autumn in temperate European forests (Crespin et al., 2002; Pucek et al., 1993; 

Stenseth et al., 2002). Correspondingly, larvae and nymph activity peak in spring, and autumn 

(Gray et al., 2016; Perez et al., 2017; Randolph et al., 2000). Changes in the small mammal 

community structure (relative density and proportion of rodent species) over time can affect 

TBEV transmission. For example, tick burden and transmission-competence may differ 

between species, for example Apodemus flavicollis and Myodes glareolus (Dizij & Kurtenbach, 

1995; Kurtenbach et al., 1995). The relative importance of these transmission pathways remains 

uncertain (Michelitsch et al., 2019). 
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Figure 4: Reservoir hosts for TBEV. (1) An infected tick-bite transmits the virus to a host, (2) leading it 

to viremia, (3) uninfected tick acquires TBEV by consuming the blood of the viremic host, (4) this route 

of transmission is blocked by circulating antibodies as soon as the viremia is off, (5) co-feeding tick 

pass the TBEV among themselves without the viremic host using it as a transmission bridge (6) this can 

occur despite the host has antibodies against TBE. Figure adapted from (Michelitsch et al, 2019). 

 

 TBEV foci 

Areas where TBEV-infected tick are regularly found over a number of years are known as 

“TBEV foci”. In nature, a TBE focus can be “enzootic” or “endemic”. A stable presence of 

circulation of the virus in tick and reservoir hosts causing minimal or no disease is called the 

enzootic mode. In endemic mode, enzootic circulation with regular infection in human and 

animals occurs (Süss, 2011). For TBEV foci to form  and sustain, several conditions must apply 

including the introduction of virus by tick or hosts, optimal microclimatic conditions, sufficient 

reservoir hosts, and the virus's ability to multiply and endure in tick (Burri et al., 2011; Dobler 

et al., 2011). If these conditions are met, a TBEV focus can establish and persist autonomously 

(Dobler et al., 2011; Süss, 2003). The identification of TBEV foci can be done by screening 

tick, conducting serosurveys of humans and sentinel animals (Imhoff et al., 2015). 
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TBE foci generally have abundant tick and reservoir hosts with conducive microclimate and 

vegetation (Dobler et al., 2011). These foci can be dynamic with new foci emerging, or can 

become dormant or reactivated depending on conditions (Dobler et al., 2011; Lukan et al., 

2010). For variation in TBEV prevalence over time, factors like food availability of rodent 

hosts, suitable microclimatic conditions play a major role (Crespin et al., 2002; Gray et al., 

2016; Perez et al., 2017; Pucek et al., 1993; Randolph et al., 2000; Stenseth et al., 2002). Inter-

annual variation in seed production (masting) by deciduous trees like beech and oaks were 

found to affect the density of vertebrate hosts (Bregnard et al., 2021). Increased seed and berry 

production were observed to trigger high rodent populations (Selås, 2006; Selås et al., 2019).  

1.5 Scandinavia and climate change 

Geography and vegetation 

Scandinavia lies in northern Europe, encompassing Norway, Sweden, and Denmark. It has 

diverse climatic conditions and vegetation due to wide latitudinal coverage, central 

Scandinavian mountains, and influence of adjacent water bodies. The central mountain range 

separates Norway and Sweden, making central highland areas and lowland coastal areas. 

Southern Sweden and Denmark is mostly flat with a few low hills, and low-lying regions. The 

Gulf stream exerts a moderating influence on the Norwegian  coastlines with maritime climate 

(Hurrell & Van Loon, 1997). The southern coastal regions including Denmark and parts of 

Norway and Sweden are influenced by the Skagerrak, Øresund and Kattegat straits. While the 

Skagerrak has relatively stable climatic conditions, Kattegat, situated between Jutland and 

Sweden's western coast, lies at the confluence of the North Sea and the Baltic Sea, influencing 

its weather pattern (Rosenberg et al., 1996). Additionally, the Swedish coastline along the Baltic 

Sea transitions from maritime to continental climate, with scanty rainfall (Christensen et al., 

2022). 

The northern regions of Scandinavia hosts worlds northernmost birch forests comprising of 

mountain birch (Betula pubescens subspecies czerepanovii) (Kullman, 1997). The birch treeline 

marks the transition from boreal forest to alpine regions (Bandekar & Odland, 2017; Hallang 

et al., 2022; Kullman & Öberg, 2022). As one moves north or rises in elevation, the dense birch 

forests become shorter and sparser (Moen et al., 2004). With the exception for southern nemoral 

zone, most of Norway and Sweden lies within boreal region (Bandekar et al., 2020).While 
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temperature is a key factor in determining the types of vegetation, other factors like topography 

and wind pattern may have more pronounced role (Bandekar & Odland, 2017). For instance, in 

the mountainous regions even if the temperature is relatively mild for the latitude, the 

landscape's elevation and steep terrain can create conditions more typical of a colder climate. 

Similarly, in certain coastal areas, strong winds from the sea can influence the types of plants 

that thrive there, even if the overall temperature is moderate. The southern and western parts of 

Scandinavia including Denmark, Southern Sweden and parts of Norway’s south coast, belong 

to nemoral zone characterized by deciduous forests with predominance of beech (Fagus 

sylvatica). The boreo-nemoral zone is a transitional zone that lies between the boreal zone and 

the nemoral zone. The boreo-nemoral zone covers many parts of southern and central Sweden 

and parts of eastern Norway with conifer forests comprising Norway spruce (Picea abies) and 

Scots pine (Pinus sylvestris) (Kullman, 1997). 

Climate change impacts 

Climate change in this context refers to the increase in the surface temperature of earth in past 

few decades primarily due to anthropogenic greenhouse gas emissions. These emissions mainly 

stem from activities like fossil fuel usage, land-use changes, and agriculture. According to the 

Intergovernmental Panel on Climate Change (IPCC), the average global temperatures have 

risen by 1.5°C above preindustrial times (1720–1800) (Field et al., 2014). The ‘climate’ refers 

to average atmospheric conditions of a place over a period of time while 'weather', refers to 

short-term like day-to-day variation in an area. There are considerable variations in the weather 

patterns over decades leading to climate change in the long term (Field et al., 2014). For 

instance, a few hot summer days in a place, like Oslo do not indicate climate change, but a 

decade of increasing summer temperature does. 

The impacts of climate change in Scandinavia are of particular interest because of its wide 

latitudinal coverage, and colder ambient temperature which acts as a natural barrier for various 

vector-borne diseases (Van Oort et al., 2020). Northern areas and mountainous regions are more 

vulnerable to the impacts of climate change than southern and coastal regions due to factors 

like amplified warming due to snow cover and permafrost, and altered precipitation patterns 

(Rizzi et al., 2018; Thoman et al., 2022).  
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Changes in vegetation 

Scandinavia has experienced on average a 1°C rise in annual temperature compared to the 

preindustrial times (Hanssen-Bauer et al., 2017; Lind & Kjellström, 2008; The Danish 

Government, 2008). Complementing this rise, an increase in precipitation has been reported 

from Norway and Sweden (Hanssen-Bauer et al., 2017; Lind & Kjellström, 2008). Due to 

changes in these abiotic factors, noticeable changes in the biotic communities have been 

observed as discussed in subsequent sections. 

Changes in temperature and precipitation patterns have resulted in earlier onset of spring and 

delayed autumn in Scandinavia (Bird, 2017; Hanssen-Bauer et al., 2017; Norden, 2009; 

Räisänen & Alexandersson, 2003). This has extended the length of the vegetation period (GSL) 

and increased warmth by altering growing seasons and growing degree days (GDD) leading to 

changes in vegetation period (Chamberlain & Wolkovich, 2023).  

Treelines, marking the upper boundary where trees can grow due to factors such as temperature, 

altitude, and climate, have moved up both latitudinally and altitudinally. Tree species have 

extended northward by 50 to 300 km and there is an increase in both canopy cover and 

vegetation density (Kullman, 2008). Birch treelines, indicative of climate suitable for plant 

growth, have migrated to areas previously characterized as tundra (Truong et al., 2007). This 

change is accompanied by the northward spread of thermophilus broadleaved trees like Downy 

Birch (Betula pubescens), Birch (Betula pendula), Oak (Quercus robur), Elm (Ulmus glabra), 

Maple (Acer platanoides), Alder (Alnus glutinosa), and  into previously colder areas (Kullman, 

2008).  

 Phenological studies have observed earlier onset of natural events such as flowering and 

leafing (Menzel et al., 2006). For example, birch trees are beginning their pollen season earlier  

and birds are adjusting their migration and breeding times (Gregory et al., 2009; Norden, 

2009).Tick are extending their range northward where northernmost viable population were 

found at Dønna approx 80 km north of Brønnøy (Hvidsten et al., 2020; Jore et al., 2011; Soleng 

et al., 2018). There is notable change in vegetation with dwarf-shrubs dominating over lichens 

(Vanneste et al., 2017). Bryn (2008) found that while forest expansion from 1959-1995 was 

largely due to reduced human and animal activity, climatic changes have played significant role 

since 1995, suggesting a potential for further forest migration. In central Norway, a shift in 

mountain vegetation over 22 years, marked by an increase in evergreens and herbs, has been  
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related to increasing temperatures (Løkken et al., 2020). While climate change is a driving 

factor, land use changes also significantly influence these vegetation dynamics (Roessler et al., 

2008). 

Projections  

The IPCC Representative Concentration Pathways (RCPs) outline future climate scenarios 

based on varying greenhouse gas levels, ranging from RCP2.6 (low), RCP4.5 (moderate) to 

RCP8.5 (high).  

• Temperature and precipitation projections 

Upcoming climatic shifts, especially in northern and high-altitude regions, are expected to 

intensify (Hanssen-Bauer et al., 2017; The Danish Government, 2008). Northern Europe may 

see summers extending by a month under RCP4.5 by mid-21st century (Ruosteenoja et al., 

2020). Norway’s temperature could rise up to 4.5°C by 2100, with north experiencing 

significant warming (Figure 5). Northern Sweden anticipates a 6°C temperature increase and 

25% more precipitation, while Southern Sweden expects a 4°C rise in temperature and 11% 

more precipitation (Lind & Kjellström, 2008). The Baltic Sea northern part will also warm 

considerably (Christensen et al., 2022). A study on sea level changes in Denmark projects a 

significant rise in relative sea level in the Skagerrak-Kattegat Seas, exceeding 40 cm by the end 

of the twenty-first century. This rise, under the RCP8.5 scenario, will outpace the 

Fennoscandian post-glacial land-uplift (Su et al., 2021).  
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Figure 5: (a) Projections of temperature and (b) precipitation changes in Norway under different 

emission scenarios (with the reference period 1971-2000). Observed data from 1900-2014 in black 

curve while red and blue curves show median projections for RCP4.5 and RCP8.5. The RCP4.5 and 

RCP8.5 scenarios project an increase in temperature and precipitation by 2100. Figure adapted from 

(Hanssen-Bauer et al., 2017). 

 

• Vegetation and growing season projections 

The growing seasons are predicted to be longer and warmer between 2021 and 2050 (Hanssen-

Bauer et al., 2017; Skaugen & Tveito, 2004)). By 2100,  GSL in northern Norway could extend 

from current range of 30 to 180 days to 90 to 300 days driven by shorter snow-cover durations 

(Figure 6).Warmer seasons in northern Scandinavia may facilitate the northward migration of 

temperate species, increasing forest undergrowth (Bryn, 2008; Hallang et al., 2022; Langvall 

& Ottosson Löfvenius, 2021; Vanneste et al., 2017). The Swedish mountain treelines might rise 

by 233-667m altering mountain ecosystems (Moen et al., 2004). These vegetational shifts could 

impact tick populations positively (Alkishe et al., 2017; Ogden et al., 2021; Van Oort et al., 

2020). 

 



Lamsal: Tick-borne encephalitis virus, an emerging virus in Scandinavia   

 

16 

 

Figure 6: Historical and projected length of growing seasons in Norway. (a) During the reference 

period 1971-2000, the coast of Western Norway experiences the longest growing season (210-240 days) 

while mountainous regions have <60 days; an area of ~37,000 km2 has a growing season over six 

months. (b) For RCP4.5 by 2100, the growing season extends by one to two months for much of the 

country, and >2 months for north-western coastal regions, increasing the >6-month season area to 

105,000 km2. (c) RCP8.5 predicts an even longer season, with the >6-month area expanding to 165,000 

km2 by the end of the century. Figure adapted from (Hanssen-Bauer et al., 2017). 
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1.6 Overview of TBEV studies from Scandinavia 

1.6.1 Norway 

Tick is predominantly found in coastal areas of Norway up to 66° N and at altitudes up to 1000 

meters above sea level (De Pelsmaeker et al., 2021; Mehl, 1983; Soleng et al., 2018). TBEV-

infected tick are reported, from coastal regions, from the Swedish border in the southeast to 

Brønnøy at 65.2°N (Soleng et al., 2018; Vikse et al., 2020). There is no notable tick presence 

in the inland mountain regions (Andreasen et al., 2020; Qviller et al., 2014; Soleng et al., 2018; 

Vikse et al., 2020). A positive moose sample from Steinkjer in central Norway represents the 

northernmost detection of a large TBEV seropositive animal in Norway (Paulsen et al., 2019). 

The history of TBE in Norway officially started in 1997 when a TBE case caused by TBEV-

EU subtype was reported from Tromøy island in Southern Norway (Skarpaas et al., 2004, 

2006). A TBEV prevalence of 0.2% to 0.3% was found in tick near the site where the tick-bite 

occurred (Skarpaas et al., 2006). Although the first human TBE case was reported in 1997 from 

southern Norway, a serological evidence for its presence was reported much earlier from 

western Norway (Traavik, 1979). Suspensions of questing tick were injected into mice, and 

infected serum (from mice that showed clinical signs) were analysed. Five positive samples 

with a close serological relationship to the TBEV complex were detected showing circulation 

of TBEV or a related flavivirus in the western coast as early as around the 1970s (Traavik et 

al., 1978). 

Human cases  

Human cases occur from southern and south-eastern Norway in the counties of  Agder, Vestfold 

and Telemark, and Viken (Figure 7) (Andreassen et al., 2012; MSIS, 2023; Vikse et al., 2020). 

The reported TBEV prevalence estimates  in tick in these endemic regions ranges from 0.1 to 

3.3% in nymphs and up to 20% in adult tick (Table 1). TBE incidence in humans show a 

seasonal pattern with most infections caused by tick bites from summer and autumn (MSIS, 

2023).TBE has been notifiable to the Norwegian Surveillance System for Communicable 

Diseases (MSIS) since 1994.  
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Figure 7: Total number of TBE reported cases in Norway by geographical area MSIS 1994-2021. 

(adopted from https://www.fhi.no/en/in/smittevernveilederen/sykdommer-a-a/tick-borne-encephalitis--tbe-virus-infections/) 

 

Antibodies against TBEV was detected in cervids ,cows, blood donors, suggests a regular TBE 

infection (Larsen et al., 2014; Paulsen et al., 2019, 2020). Presence of antibodies against TBEV 

in unvaccinated individuals may indicate past TBE infections (Larsen et al., 2014; Marvik et 

al., 2021). Endemic regions may have circulation of virulent strains causing symptomatic 

infections. In parts where TBEV has been detected in ticks, but no human cases have been 

reported, this may be due to viral loads too low to trigger symptomatic reaction or circulation 

of milder strains. The first Norwegian TBEV strain “Mandal 2009” was isolated from Norway 

which shared similarities with virulent Hypr strain suggesting circulation of a virulent strain in 

southern Norway (Asghar, 2014, 2017). Climate change is expected to make the inland and 

northern regions habitable for tick (Jore et al., 2014).  

https://www.fhi.no/en/in/smittevernveilederen/sykdommer-a-a/tick-borne-encephalitis--tbe-virus-infections/
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Table 1: Overview of human cases and TBEV prevalence in I. ricinus in Norway 

 

Regions of 

Norway 

 

County 

Reported 

human 

TBE 

cases 

I.ricinus 

life 

stage 

Prevalence range 

% (number of 

positive 

samples/total) 

 

 

Reference 

Below arctic 

circle 

Nordland No Nymphs 0.1-3.0 Soleng et al. 2018 

   - Adults 0-9.0 Soleng et al. 2018 

Central  Trøndelag No Nymphs 0.1-0.41 Vikse et al. 2020; Paulsen et al. 2015; 

Soleng et al. 2018 

   - Adults 0-8.6 Vikse et al. 2020; Paulsen et al. 2015; 

Soleng et al. 2018 

Central Møre og 

Romsdal 

No Nymphs 0-0.6 Vikse et al. 2020 

   - Adults 0-4.7 Vikse et al. 2020; Paulsen et al. 2015 

Central Hordaland No Nymphs 0-1.3 Vikse et al. 2020 

   - Adults 0-15.4 Vikse et al. 2020 

Central Rogaland No Nymphs 0-3.5 Vikse et al. 2020 

   - Adults 0-20.6 Vikse et al. 2020 

Southern Agder         

  Vest-

Agder 

Yes Nymphs 0.2-0.3 Skarpaas et al. 2006 

 Vestfold 

og 

Telemark 

        

 - Aust-

Agder 

Yes Nymphs 0.1-3.3 Vikse et al. 2020; Andreassen et al. 

2012; Skarpaas et al. 2006; Sidorenko 

et al. 2018; Kjelland et al. 2018 

   - Adults 0-20 Vikse et al. 2020;  Sidorenko et al. 

2018 

 - Vest-

Agder 

Yes Nymphs 0-1.2 Vikse et al. 2020; Andreassen et al. 

2012; Skarpaas et al. 2006;  Kjelland et 

al. 2018 

   - Adults 0-20 Vikse et al. 2020;  Sidorenko et al. 

2018 

 - 

Telemark 

Yes Nymphs 0-0.6 Vikse et al. 2020 

   - Adults 1.4-9.5 Vikse et al. 2020 

South-eastern Viken         

 - Østfold No Nymphs 0-0.4 Vikse et al. 2020, Larsen et al. 2014 

   - Adults 0-15 Vikse et al. 2020 

 - Vestfold Yes Nymphs 0-0.9 Vikse et al. 2020 

   - Adults [Data issue] Vikse et al. 2020 

 - 

Akershus 

No Nymphs 0-0.4 Vikse et al. 2020 

 - 

Buskerud 

Yes Adults 0-8.6 Vikse et al. 2020 

 

 

 



Lamsal: Tick-borne encephalitis virus, an emerging virus in Scandinavia   

 

20 

1.6.2 Sweden  

TBE cases in Sweden have been reported from southern and central regions. National surveys 

show that cattle and sheep are exposed to TBEV in large parts of the country (Omazic, et al., 

2023; Wallenhammar et al., 2020). Two tick species, I. ricinus and I. persulcatus are reported 

from northern Sweden along the Bothnian Bay (Jaenson & Wilhelmsson, 2019; Omazic, et al., 

2023). It has been reviewed that prior to the early 1980s, the distribution of I. ricinus, was 

geographically confined to the south of the Limes Norrlandicus line in Central Sweden. This 

boundary marks the division between the southern nemoral zone and the northern boreal zone 

(Jaenson et al., 2012). The expansion of tick habitats in Sweden is attributed to change in host 

population mainly cervids like roe deer and climate (Jaenson et al., 2012). TBEV circulation in 

several areas south of central Sweden including Jönköping and western Sweden has been 

reported (Brinkley et al., 2008; Pettersson et al., 2014). Infected tick were found in passerine 

migratory birds like Anthus trivialis (tree pipit), Turdus philomelos (song thrush), Phoenicurus 

phoenicurus (redstart), Erithacus rubecula (robin) showing the role of migratory birds in 

dispersal of TBEV infected tick (Waldenström et al., 2007).   

TBE is a long-standing disease in Sweden with regular human incidence (Figure 8). Most of 

the central and south-eastern Sweden is endemic to TBEV (Brinkley et al., 2008; Fält et al., 

2006; Pettersson et al., 2014; Stjernberg et al., 2008; Wallenhammar et al., 2020). At Torö 

island south-east of Stockholm, the TBEV prevalence (MIR) was 0.5% in nymphs and 4.5% in 

adults (Pettersson et al., 2014).TBEV was commonly contracted by residents and visitors along 

Stockholm area, which is still a hotspot for TBEV infections (Pettersson et al., 2014; Public 

Health Agency of Sweden, 2023b). TBEV prevalence in tick within few locations near large 

water bodies from western Sweden varied between 0.1% and 0.4%, comparable to endemic 

areas (Andreassen et al., 2012; Brinkley et al., 2008; Dobler et al., 2011). Southernmost Sweden 

possibly has endemic regions as showed by retrospective serosurveys (Fält et al., 2006; 

Stjernberg et al., 2008; Svensson et al., 2021; Waldeck et al., 2022). Genetic data from a TBE 

patient in western Götaland and other TBEV sequences obtained from ticks and humans show 

the prevalence of the TBEV-EU subtype (Asghar et al., 2017; Brinkley et al., 2008; Elväng et 

al., 2011; Melik et al., 2007). TBE is a notifiable disease to the Public Health Agency of Sweden 

from 1969 (Holmgren & Forsgren, 1990; Lundkvist et al., 2011). 
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Figure 8: Incidence (per 100 000 inhabitants) of notified cases of tick-borne encephalitis in humans in 

Sweden 1986–2022. Figure adapted from (National Veterinary Institute of Sweden, SVA:s report series 

89 1654-7098 2022) 

 

TBEV strains like Toro 2003, Saringe 2009, JP-296 and JP-554, Habo and 1993-783 has been 

characterised from Sweden and belong to the TBEV-EU subtype (Asghar et al., 2017; Elväng 

et al., 2011; Haglund, et al., 2003, 2003; Melik et al., 2007; Paulsen et al., 2021). TBE cases 

are increasing in Sweden and warmer climate due to climate changes is expected to support tick 

expansion in previously inhospitable regions (Slunge et al., 2022).  
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1.6.3 Denmark 

Although the Danish Island of Bornholm is a known endemic region, TBE infections in 

Denmark are relatively rare (Kristiansen, 2002). In 2009, two TBE clinical cases were reported 

from Northern Zealand and it was found to be caused by the European subtype of TBEV 

(Andersen, et al., 2019; Fomsgaard et al., 2009). In 2018, TBEV was contracted by two 

individuals from Northern Zealand (Tisvilde Hegn) (Andersen, et al., 2019). Strains isolated 

from there clustered with strains from Sweden and Norway (Andersen, Bestehorn, et al., 2019). 

By 2022, five hospitalized TBE cases have been reported from these areas (Statens Serum 

Institut, 2020). The genetic makeup of the TBEV strain from Bornholm, which historically 

mirrored strains from the Baltics, now resembled strains from Switzerland and Finland 

(Andersen, et al., 2019). 

The geography of Denmark predominantly consists of lowlands surrounded by water bodies 

and connecting straits. TBEV prevalence in tick from several regions was suspected as long 

back as before in 2005 where roe deer tested positive for TBEV complex, but the results could 

not be confirmed due to the potential for cross-reactions with the Louping ill virus 

(Skarphédinsson et al., 2005). Later in 2019, presence of  multiple TBEV positive sites in 

Denmark was confirmed with deer study was shown (Andersen, Larsen, et al., 2019).   

1.7 Knowledge gaps 

While many studies have examined TBEV prevalence in Scandinavia, there are knowledge 

gaps that need to be addressed. Given the impacts of ongoing global climatic changes and 

geographical range expansion of tick, surveillance of TBEV in regions where it already exists 

and in regions where it does not exist i.e., on both coastal and alpine regions is important. TBEV 

screening in tick allow direct detection of virus in its vector population which can potentially 

be transmitted to humans. This provides information about geographic distribution, prevalence 

rates, and changes in infection prevalence over time which is important for TBEV surveillance 

and diagnostics. 

Detection and reporting of TBE cases is an inseparable part to the understanding of TBEV. 

TBEV-Eu often presents mild symptoms that can be overlooked. Despite widespread TBEV 

enzootic circulation along coastal regions, reporting of human cases from specific regions 

makes it important to explore this to gain a more comprehensive understanding on its impact 
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on human health.  The impact of climatic changes on virus distribution and evolution of is 

largely unknown. Development of sensitive detection method for TBEV in ticks which 

generally has a low viral load is important to properly gauge the disease's prevalence and 

impact. 

1.8 Aims of the study 

The objective of this thesis was to gain comprehensive understanding on TBEV in Scandinavia 

by gaining insights into TBEV distribution and diagnostics in the light of ongoing climatic 

changes. 

The specific aims were: 

1. Examine the distribution of TBEV infected tick in coastal lowland regions by analysing 

questing tick and inland mountainous regions using reindeer serum (Paper I and II), 

2. To evaluate possible underreporting of TBE by analysing antibodies against TBEV in 

serum samples from patients with CNS symptoms (Paper III). 

3. To establish a WGS method for two TBEV strains and perform bioinformatics and 

phylogenetics for understanding the strains (Paper IV). 
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2. TBEV detection and surveillance  

Broadly, two groups of methods are used for TBEV detection and diagnosis: molecule based 

(those targeting the virus) and serology (those detecting the host's immune response to the 

virus). 

2.1 Molecular methods 

Polymerase chain reaction (PCR) 

PCR is a widely used technique for TBEV detection due to its ability to amplify minute 

quantities of viral genetic material. PCR can be used to detect TBEV nucleic acids in tick 

homogenates, and in blood, cerebrospinal fluid and tissue samples (Ergunay et al., 2016; 

Paulsen et al., 2020). The E-gene is commonly targeted for virus specific envelope protein 

(Andreassen et al., 2012; Schwaiger & Cassinotti, 2003; Skarpaas et al., 2006). NS proteins and 

UTR regions are also targeted due to their conserved roles in virus replication and regulation 

for broader strain identification  (Achazi et al., 2011; Brinkley et al., 2008; Schwaiger & 

Cassinotti, 2003). A common method is the RT real-time PCR where TBEV-RNA is reversely 

transcribed to complementary DNA followed by PCR (Andreassen et al., 2012; Brinkley et al., 

2008; Schwaiger & Cassinotti, 2003). One-step PCR combines reverse transcription and PCR 

in the same buffer system (Brinkley et al., 2008; Ergunay et al., 2016; Gäumann et al., 2010; 

Patel et al., 2013). While this can enhance sensitivity, it carries a risk of false positives due to 

contamination during amplification (Ergunay et al., 2016). In Multiplex PCR, different sets of 

primers can be used for simultaneous amplification of several targets in a single reaction (Quick 

et al., 2017). 

The amplified PCR fragments are often subjected to sequencing for confirmation to rule out the 

chances of false positives in the PCR reaction. Methods like sanger sequencing or 

pyrosequencing can be used depending on the target size. Sanger sequencing is a chain 

termination method where DNA synthesis stops when special nucleotides without a hydroxyl 

group at the 3' end are randomly incorporated. Pyrosequencing is based on the principle of 

'sequencing by synthesis'. It detects pyrophosphate (PPi) released during DNA synthesis, 

generating a light signal that is proportional to the number of incorporated nucleotides (Ronaghi 

et al., 2007). Pyrosequencing is usually used for sequencing smaller fragments of DNA (Achazi 

et al., 2011; Ronaghi et al., 2007). Its limitations include short read lengths (100-500 base pairs), 



Lamsal: Tick-borne encephalitis virus, an emerging virus in Scandinavia   

 

25 

making the sequencing of larger fragments challenging. It requires precise interpretation of the 

generated light signal to avoid potential errors. Pyrosequencing has been used for confirmation 

of PCR positive TBEV pools in earlier studies (Achazi et al., 2011; Andreassen et al., 2012; 

Paulsen et al., 2015; Vikse et al., 2020). 

Whole genome sequencing  

Whole Genome Sequencing (WGS) retrieves whole genome sequences of an organism which 

allows comprehensive understanding of genetic diversity, evolution, and pathogenesis. A 

number of studies have successfully retrieved complete genome of TBEV-Eu strains 

(Agergaard et al., 2019; Asghar et al., 2017; Zakotnik et al., 2022). WGS comprises of several 

approaches like amplicon, shotgun, targeted or metagenomic sequencing. Next-generation 

sequencing (NGS) is a high-throughput method that can be complemented by bioinformatics 

tools for data processing (Dahui, 2019). 

Direct TBEV detection in ticks and serum is difficult due to low viral load, which is a major 

challenge in TBEV genome studies (Gäumann et al., 2010; Vikse et al., 2020). A majority of 

WGS for TBEV strains from Europe have been developed by cultivating TBEV in cell culture 

samples to increase virus amount (Asghar et al., 2017; Jaaskelainen et al., 2010). A recent study 

utilized an amplicon-based strategy with specific overlapping primers to directly sequence the 

complete TBEV genome from clinical samples (Zakotnik et al., 2022). 

2.2 Serological methods 

Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA is a widely used method for sero-screening of human and sentinel animals for TBEV 

surveillance (Klaus et al., 2014; Larsen et al., 2014; Marvik et al., 2021; Paulsen et al., 2020; 

Waldeck et al., 2022). Specific IgG antibodies against TBEV in blood samples are screened to 

see past TBE infection (Ergunay et al., 2016). The major limitation for this technique is that it 

may produce false negatives if conducted prematurely post-infection where antibodies have not 

reached to detectable levels in blood (Ergunay et al., 2016). False positives are often reported 

among flaviviruses due to cross-reactivity with other viruses of the same serogroup (Rathore & 

St. John, 2020; Stiasny et al., 2021). 
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Neutralisation Test (NT) 

NT is used to detect TBEV infection by detecting neutralizing antibodies directed against 

TBEV (LitzbaNadine et al., 2014; Stiasny et al., 2021). It is often used as confirmatory test to 

validate specific antibodies detected through ELISA (Lamsal et al., 2023; Marvik et al., 2021; 

Paulsen et al., 2020). Plaque reduction neutralization test (PRNT) measures the reduction in 

viral plaques and is used to assess the neutralizing capability of antibodies against specific 

viruses (LitzbaNadine et al., 2014). The focus forming assay (FFA) is a specialized method for 

quantifying infectious viral particles that initiate the formation of localized foci in cell culture, 

particularly suited for viruses with focal infections (Lindqvist et al., 2018). The technical 

complexity and long procedures often limit extensive screening using SNT compared to the 

ELISA tests. 

Immunofluorescence Assay (IFA) 

IFA is a laboratory technique that uses antibodies tagged with a fluorescent dye to detect 

specific viral antigens in a sample to identify viral infection (Girl et al., 2021; Kvapil et al., 

2021). It combines a serum sample with flavivirus-infected cell culture to detect specific 

antibodies. IFA technique can directly detect antigens using fluorescently labelled antibodies. 

Its indirect variant (IIFA) uses secondary antibodies with a fluorescent label to detect specific 

antibodies in a sample (Shakya et al., 2022). IFA requires additional diagnostic tests for 

definitive flavivirus confirmation due to potential cross reaction with other flaviviruses (Girl et 

al., 2021). Therefore, IFA is often employed as a confirmatory or complementary test for 

visualisation and to provide confidence in the results (Kvapil et al., 2021). 

2.3 Surveillance of TBEV 

Surveillance of TBEV involves monitoring tick populations and their hosts, as well as human 

cases of TBE. This includes: 

Estimating TBEV prevalence in tick population 

Tick screening is an important method to estimate TBEV prevalence in a tick population. This 

method involves collecting ticks by flagging or dragging and screening ticks with molecular 

methods (Estrada-Peña et al., 2013). It is used for the identification of TBEV focus (Agergaard 

et al., 2019; Pettersson et al., 2014; Soleng et al., 2018; Vikse et al., 2020). This can be 
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expensive and labour-intensive and the detection of TBEV in tick doesn't inherently signal an 

immediate threat to humans, as the infection risk is also influenced by human activities, tick 

density and viral load in the tick. While tick screening can show viral circulation and 

maintenance in tick populations, it is often complemented with other surveillance methods like 

human and sentinel studies for identification of TBE endemic foci (Gaëlle Gonzalez et al., 

2022; Larsen et al., 2014; Stjernberg et al., 2008). 

Sentinel animal surveillance 

Sentinel animal surveillance involves identifying previous TBEV infection in animals (like 

deer, moose, goat, cow, sheep and various rodent species) that are often bitten by tick (Achazi 

et al., 2011; Imhoff et al., 2015; Klaus et al., 2012). Monitoring these "sentinel" animals can 

provide information about the status of enzootic circulation of TBEV in tick populations in a 

particular area. This approach is non-invasive, often more cost-effective than monitoring 

humans, and gives insights into large areas. However, it may underestimate the actual spread 

of TBEV since it doesn't cover all susceptible animal species (Imhoff et al., 2015). Therefore, 

it is usually paired with other methods such as human case reports and TBEV prevalence 

estimation in tick (Paulsen et al., 2020). 

Human case reporting 

Human case reporting involves the systematic recording and tracking of TBE infections in 

individuals. It plays a significant role in understanding the spread and public health impact of 

TBE, and it can be carried out retrospectively or prospectively (Fält et al., 2006; Larsen et al., 

2014; Marvik et al., 2021; Waldeck et al., 2022). . By maintaining a record of TBE cases, health 

authorities can identify patterns, recognize high-risk regions, and evaluate the effectiveness of 

disease control strategies (Lindgren et al., 2000, 2012; Slunge et al., 2022). Data from animal 

surveillance along with human cases provide a comprehensive understanding of TBEV 

transmission and epidemiology. 
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3. Results and discussion 

The geographic spread of Tick-borne encephalitis virus (TBEV) is a concern (Heyman et al., 

2010; Slunge et al., 2022).TBEV may cause infection with symptoms ranging from subclinical 

to severe neurological disease. Ongoing climate change can influence tick distribution and 

TBEV infection rates in Scandinavia, potentially escalating the number of TBE cases. This PhD 

thesis aimed to investigate the epidemiology of TBEV in Scandinavia by studying tick vectors, 

sentinel animals and diagnostic methods. The study was conducted in four parts: Paper I and 

Paper II were aimed to understand the spread across Scandinavia and Paper III and IV were 

designed improve TBEV diagnostics.  

3.1 Distribution TBEV infected tick in Scandinavia  

The I. ricinus, vector for TBEV-Eu is widespread in Scandinavia (Kjær et al., 2019). TBEV 

was detected in 20 of the 50 collection sites, with overall prevalence of 0.1% in Norway and 

Denmark and 0.2% in Sweden in nymphs (Paper I). This finding is in line with previous studies 

which have confirmed TBEV circulation through tick screenings, serosurveys and sentinel 

studies (Agergaard et al., 2019; Andersen, et al., 2019; Andreassen et al., 2012; Fält et al., 2006; 

Larsen et al., 2014; Marvik et al., 2021; Paulsen et al., 2020; Stjernberg et al., 2008; Vikse et 

al., 2020; Waldeck et al., 2022). The ØKS region in Scandinavia is significant due its high 

population and regional cooperation (Agder fylkeskommune, 2021). Notably, several TBEV 

positive sites (Paper 1) corresponded to reported human TBE cases. Earlier, TBE cases occurred 

in known endemic foci in southern Norway (Andreassen et al., 2012). Recent trends show an 

expanding range of the foci from southern to south-eastern regions in Norway (MSIS 2022). 

This underscore expanding TBE endemic regions in southern Norway. Sentinel studies and tick 

prevalence studies suggested enzootic circulation of TBEV in these areas (Paulsen et al., 2020, 

Vikse et al., 2020). 

The overall estimated TBEV prevalence was 0.1% (29/2957) (Paper I), indicating a low overall 

prevalence. Certain regions in Norway and Sweden, showed prevalence above 0.5%, suggesting 

an increased risk of TBEV transmission. At two locations on either side of the Oslofjord, the 

TBEV prevalence was higher (0.7%, and 0.5%) than previously reported (Vikse et al., 2020). 

The coastline around the Oslo fjord is among the most populated areas in Norway. There have 

been TBEV studies on blood donors and human cases from south-eastern Norway in the last 

five years (Larsen et al., 2014; Marvik et al., 2021; MSIS, 2023). In 2022, 68 cases of TBEV 



Lamsal: Tick-borne encephalitis virus, an emerging virus in Scandinavia   

 

29 

infection originated from tick bitten persons in Agder, Viken, Vestfold, and Telemark counties 

(MSIS, 2023). 

TBE cases in Sweden doubled from 2013 to 2022, despite increased vaccinations (Public Health 

Agency of Sweden, 2023a). TBE infections have been consistent in Sweden for many years, 

mainly around Stockholm, region adjacent to lakes such as Vänern, and along the southern 

coastal areas (Kjær et al., 2023; Public Health Agency of Sweden, 2023b, 2023a). This confirms 

presence of TBEV in these areas. The findings from paper I reinforces that TBEV is prevalent 

in tick in several locations along Skåne, Kronoberg, Jönköping, Blekinge and Kalmar counties. 

Antibodies against TBEV were reported from milk from cows and goats from several dairy 

farms from Sweden underlining a continued risk to individuals who are exposed to tick in these 

areas (Omazic, et al., 2023; Wallenhammar et al., 2020). Supporting this finding, Waldeck et 

al., (2023) reported an increase in human TBE cases compared to previous data from 

retrospective studies. Thus, the number of TBE cases from the endemic regions is increasing 

(Public Health Agency of Sweden, 2023a). These retrospective studies have found antibodies 

against TBE in human serum samples from southern regions (Fält et al., 2006; Pettersson et al., 

2014; Stjernberg et al., 2008; Svensson et al., 2021; Waldeck et al., 2023; Waldenström et al., 

2007). The presence of these antibodies is a strong indication that TBE infections have occurred 

in these regions.  

Interestingly, there is lack of comprehensive understanding as to why TBE cases were not 

reported earlier from these southern regions. One explanation is the introduction of TBEV into 

previously unaffected regions. Due to its proximity to the southeastern coast of Sweden, this 

region acts as a corridor for migratory birds, which could potentially carry tick from other areas 

thereby introducing TBEV to new environments (Waldenström, et al., 2007; Wilhelmsson et 

al., 2020).  

In Denmark, Paper I identified 12 TBEV positive sites, where seven were from Jutland, three 

from Zealand and two from Bornholm and Falster each (Paper I, Figure1). The island of 

Bornholm is a long identified TBE endemic region in Denmark, and human cases are regularly 

reported from here. The risk areas for TBE in Denmark are considered Bornholm and forested 

areas in North Zealand (specifically Tisvilde, Asserbo, and Hareskoven) (Andersen, et al., 

2019; Statens Serum Institut, 2020). A new TBEV micro focus was discovered in Denmark 

after several infections near a nature playground, with evidence suggesting the virus was 
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brought by migratory birds and spread locally (Agergaard et al., 2019; Statens Serum Institut, 

2023). In 2020 and 2021, all reported TBE infections in Denmark were locally acquired, with 

North Zealand emerging as a hotspot (Statens Serum Institut, 2023). Rising temperatures and 

deer presence may contribute to the virus's spread in Denmark, while in Sweden, climate change 

and changes in human behaviour are considered as factors (Jaenson et al., 2018; Jaenson et al., 

2012; Statens Serum Institut, 2023). Sentinel studies have historically reported the presence of 

TBE antibodies in roe deer sera in Denmark. TBE seropositive roe deer were reported from 

various parts of Denmark as early as 2005 and in 2015, 8.7% and 6.9%, respectively 

(Skarphédinsson et al., 2005; Andersen, Larsen, et al., 2019). Our study, along with previous 

studies, suggests that TBEV is enzootic  in various regions of Denmark (Agergaard et al., 2019; 

Andersen, Bestehorn, et al., 2019; Andersen, Larsen, et al., 2019; Fomsgaard et al., 2013; 

Skarphédinsson et al., 2005). 

The impact of distinct geographical and ecological landscapes of Scandinavia on TBEV 

distribution is largely unknown. Denmark is primarily characterized by mostly sandy, low-

elevation topography, predominantly used for agriculture (about 75% of the landmass). Norway 

and Sweden have extensive forested areas (over 80%) along with central mountain ranges in 

both coastal and inland regions. These varying geographical features could have a significant 

impact on tick populations and circulation of TBEV in these regions. While Denmark’s flat 

agricultural landscape may offer different habitat conditions for tick and their hosts compared 

to forested terrains of Sweden and Norway, the exact effects of these topographical differences 

on distribution and behaviour of tick and hosts, and consequently on TBEV circulation are not 

fully understood. Moreover, factors such as wind direction and climatic conditions in Skagerrak 

and Kattegat remains yet to be investigated.  

Inland highlands and northern areas 

None of the reindeers tested in Paper II were positive for antibodies against TBEV. This is 

likely due to their habitat preferences in higher altitude areas where tick are rare or absent 

(Hvidsten et al, 2020, Qviller et al., 2014). Monitoring these regions is important as a baseline 

for detecting potential shifts in TBEV distribution due to climate change (Figure 5,6) 

(Holzmann et al., 2009; Lukan et al., 2010; Tokarevich et al., 2017; Tokarevich et al., 2011).  

Studies have shown that increasing altitude limits the questing period and development rates of 

the tick and TBEV, probably due to climatic effects (Materna et al., 2005; Qviller et al., 2014). 
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Shift of TBE foci to higher altitude in Czech Republic has been reported showing that increase 

in tick density in higher altitude regions can support enzootic cycles of TBE (Daniel et al., 

2003). Factors such as rising temperatures and changing humidity levels can create 

environments more conducive to tick survival and expansion (Alkishe et al., 2017) .  

In similar studies using other cervids like moose, red deer, roe deer as sentinels have reported 

prevalence of TBEV in areas which overlaps with reindeer foraging areas (Paulsen et al., 2020). 

Moose and roe deer also forage in areas outside the reindeer foraging range and it could be 

there that they are exposed to tick and TBEV. This study supports the importance of considering 

a variety of wildlife hosts and environmental factors in tick studies (Imhoff et al., 2015). The 

samples analyzed in this study were collected in 2013-2014 and the conditions might have 

evolved with changing climatic conditions. Therefore, while coastal and lowland areas continue 

to report higher TBEV prevalence, our study suggests that mountainous regions appear less 

affected.  

3.2 Climate, tick and TBEV in Scandinavia 

Tick was collected simultaneously across the three countries within six weeks to minimise the 

impact of seasonal factors. In paper I, we showed that TBEV was detected in 20 of 50 analysed 

sites. Currently, TBE is limited to specific regions in Scandinavia, predominantly in southern 

Norway and Sweden as well as in Bornholm and Zealand in Denmark. A region-specific 

correlation between the TBEV prevalence and relative humidity (RH) was observed. Given the 

evolving climate conditions, TBE may emerge into new areas where it currently is absent 

(Ogden et al., 2021; Van Oort et al., 2020). 

Microclimate and TBEV 

Climate change is anticipated to bring more humid conditions in Scandinavia, potentially 

enhancing the transmission of TBEV (Alkishe et al., 2017; Hanssen-Bauer et al., 2017; 

Ruosteenoja et al., 2020). The circulation of TBEV in nature is shaped by various abiotic and 

biotic factors (Sirotkin & Korenberg, 2019).  Results from paper I show the influence of RH on 

TBEV prevalence in tick populations suggesting that RH plays an important role in shaping 

TBEV dynamics. This is in accordance to earlier studies which suggested that RH, modulated 

by seasonal and local climatic changes, has the major influence on TBEV prevalence in tick 

(Danielová, 1990; Danielová et al., 1983). In a previous study from endemic regions of southern 
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Norway a correlation between TBEV prevalence and high humidity and low saturation deficit 

was shown (Andreassen et al., 2012).  

 The effect of humidity on TBEV prevalence are shown to be regional specific. The different 

humidity levels correlate with TBEV prevalence in southern inland regions of Sweden with a 

continental climate and the Oslofjord area with coastal climate. This suggests that the 

transmission dynamics of TBEV may be locally specific and consistently linked to humidity. 

In Denmark, no clear association between climate TBEV positive sites across the country was 

observed. A limitation of this study is that the data from the nearest meteorological stations 

were used. These might not fully capture the local microclimatic conditions influencing the 

tick’s life conditions (Estrada-Peña et al., 2004; Randolph & Storey, 1999). Additionally, the 

conclusions of this study are drawn from a limited number of positive sites in Norway and 

Sweden. A higher number of ticks collected at each site including larger geographic sampling 

areas might provide a more comprehensive understanding of the relationship between RH and 

TBEV prevalence.  

Changes in microclimate due to longer seasons are associated with higher TBEV circulation in 

tick and rodents. This might be caused by changes in human activity and less grazing animals 

leading to denser vegetation and a more humid microclimate. Longer season results in higher 

abundance of larva and nymphs creating opportunities for TBEV transmission and maintenance 

within the tick and rodent population (Nah et al., 2020). Increasing humidity leads to a higher 

ratio of larval to nymphal tick feeding on rodents, affecting the seasonal and geographical 

transmission pattern of tick-borne disease (Randolph & Storey, 1999). A study reported the role 

of specific environmental conditions mainly humidity on increased TBE cases in Örebro 

County, Sweden, from 2010 to 2021(Kjær et al., 2023). This is supported by the correlation 

between number of nymphs and TBE cases, emphasizing the impact of tick abundance on TBE 

incidence (Borde et al., 2021). 

Rising temperatures and humidity may increase the viral load of TBEV within the tick (Daniel 

et al., 2018; Danielová et al., 1983; Lindblom et al., 2014). Studies have reported that TBEV 

may replicate more rapidly in tick during feeding compared to when 

 they are unfed (Daniel et al., 2018; Lindblom et al., 2014). During this process, the virus 

replication may increase due to ingestion of the warm blood. Warmer temperatures in summer 

and autumn may also promote increased virus replication in tick, increasing the risk of 
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contracting TBE from tick bites (Daniel et al., 2018; Danielova 1983). The viral load may 

influence the severity of symptoms, a person bitten by a tick with a high viral load experienced 

symptoms, while another bitten by a tick with a low viral load remained asymptomatic 

(Lindblom et al., 2014). We hypothesised that increasing temperatures and humidity may lead 

to higher TBE viral load in tick. If the virus is more prevalent during autumn compared to 

spring, this suggests that increasing temperatures and humidity could lead to a higher number 

of TBE cases with symptoms. Although, there may be several other confounding biological 

factors, the effect of climate on viral load is supported. 

In northern Europe, tick habitats are expanding due to climate and environmental changes, 

prolonged growing seasons, and changes in vegetation patterns (Gray et al., 2009; Hvidsten et 

al., 2020; Jaenson & Lindgren, 2011; Lindgren et al., 2000; Lindquist & Vapalahti, 2008; 

Qviller et al., 2014). These changes have also led to an increase in  hosts like rodents and deer, 

contributing to tick proliferation (Achazi et al., 2011; Hauser et al., 2018; Hedenås et al., 2016; 

Jaenson et al., 2012; Selås, 2006; Selås et al., 2019; Vanneste et al., 2017). Recently increase 

in I. persulcatus in its sympatric region with I.ricinus was observed in northern Sweden 

(Omazic, et al., 2023). This suggests a potential for changes in TBEV dynamics in the region 

(Belova et al., 2023; Kovalev et al., 2016).  

3.3 Challenges in addressing TBEV 

True TBE incidence  

The prevalence of TBE infections in Europe is probably higher than currently known (Kunze 

et al., 2022; Schley et al., 2023). In our study, we detected one seropositive TBE case among 

137 hospitalized cases with CNS symptoms with unknown cause. This suggests that TBEV 

could be overlooked. 

A recent report suggests that the actual number of TBE cases in Scandinavia is higher than 

currently diagnosed or reported (Waldeck et al., 2022). The findings in Paper I, is in accordance 

with previous studies identifying TBEV foci at multiple locations (Paulsen et al., 2020; Vikse 

et al., 2020). In a comprehensive study, TBEV was found to circulate in areas with high tick 

density along the Norwegian coastline from Østfold to Nordland County. The findings showed 

an overall TBEV prevalence of 0.3% in nymphs and 4.3% in adults (Vikse et al., 2020). This 

suggests a broader distribution of TBEV than previously understood. Similar findings from 
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Germany and Sweden supports that underdiagnosis are more common than previously known 

(Haglund, Settergren, et al., 2003; Haglund, Vene, et al., 2003; Schley et al., 2023).  

In southern Norway, antibodies against TBEV have been detected in unvaccinated blood donors 

implying the existence of subclinical or asymptomatic infections (Larsen et al., 2014; Marvik 

et al., 2021). Likewise, TBE antibodies were retrospectively detected in hospitalised cases, 

implying missed or undiagnosed TBE cases in studies from southern Sweden (Fält et al., 2006; 

Pettersson et al., 2014; Stjernberg et al., 2008; Svensson et al., 2021; Waldeck et al., 2023; 

Waldenström et al., 2007). Additionally, in Sweden Lindbolm et al., (2014) identified tick 

bitten individuals with TBE antibodies, indicating asymptomatic infections. In Denmark, 

TBEV circulation is confirmed in many regions, however, human cases are rare, a situation 

similar to Norway (Fomsgaard, 2020; MSIS, 2023; Vikse et al., 2020).   

Diagnosing TBE can be challenging due to the non-specific nature of the initial symptoms and 

is typically based on detecting specific IgM antibodies in serum and cerebrospinal fluid (CSF). 

Once the antibodies develop, the viral genome cannot be detected, making early detection of 

TBE difficult. The fact that our single Norwegian TBE case was not reported to the MSIS 

system, suggests loopholes in the current reporting system. This gap can be attributed to various 

factors like communication problems between the laboratory and healthcare providers, 

misunderstood responsibilities, or unclear reporting protocols. Several other factors may 

contribute to underreporting, such non-mandatory reporting of TBE cases (as in Denmark), less 

virulent virus strains, low viral loads in infected tick, or a potential lack of awareness among 

healthcare providers and the general public (Schley et al., 2023). The focus of Paper III was on 

hospitalized CNS cases in Oslo, where residents frequently visit endemic areas for recreational 

purposes. Expanding this study by including more regions, including endemic areas, and larger 

sample sizes, would provide a more comprehensive picture of TBE incidence especially in 

cases with CNS symptoms of unknown origin.   

Genetic changes and phylogenetics 

In Paper IV, we established a method for WGS of European TBEV by using two cultured 

strains: Hochostervitz and 1993/783. The whole polyprotein sequence was retrieved, and 

phylogenetic analysis showed that Hochostervitz is genetically related to strains endemic in 

South Korea, while the 1993/783 is related to strains from the Netherlands (Paper IV, Figure 

I). The introduction of TBEV to new suitable areas by hosts, like cervids and birds, is an 
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important factor for tick dispersal (Hasle et al., 2009; Jaenson et al., 2012; Paulsen et al., 2020; 

Waldeck et al., 2022; Wilhelmsson et al., 2020).  Due to the geographical distance, migratory 

birds possibly introduced TBEV-Eu strains into regions like South Korea, where the TBEV-Fe 

subtype is more common. The involvement of Ixodes tick, acquired by migratory birds or 

potentially dispersed through international trade routes involving rodent reservoirs, suggests 

complex mechanisms of virus distribution (Carpi et al., 2008; Demina et al., 2010; Klaus et al., 

2016; Nuttall & Labuda, 2003; Waldenström et al., 2007; Yun et al., 2011). Additionally, the 

analysis indicates that the 1993/783 strain clusters with strains from diverse European locations, 

indicating that TBE variants are not geographically confined as has been observed by other 

studies (Grubaugh et al., 2019; Heinze et al., 2012). 

In Paper IV, we identified 52 ambiguous nucleotides in the TBEV Hochosterwitz and eight in 

the 1993/783 (Supplementary table 1, Paper IV). A potential source to the ambiguities within 

the polyprotein could be due to errors during genome replication, technical errors, such as PCR 

or primer induced errors or errors due to cultivation passages. In our study, the Hochosterwitz 

strain exhibits genetic variation in the whole polyprotein with similar percentage across the 

different fragments. These variations may affect interactions with host cells and their immune 

system (Kofler et al., 2002). The 1993/783 strain shows genetic variations in non-structural 

proteins that may affect viral replication and immune evasion (Pulkkinen et al., 2018). The 

observed differences between the Hochosterwitz strain, isolated from a tick, and the 1993/783 

strain, isolated from a human, could stem from their distinct origins or cultivation histories 

(Helmová et al., 2020; Henningsson et al., 2016). The Hochosterwitz strain exhibits higher 

genomic diversity with four transition and four transversion mutations. It underwent two 

passages in mouse brain and eight passages in Vero E6. In the 1993/783 strain, which was 

initially passaged once in suckling baby mice and three times in Vero E6 cells, there were five 

amino acid changes. These mutations, 3 transitions and 2 transversions, are all in the non-

structural regions regulating the expression and replication of the virus. One ambiguous 

mutation was related to primer error in the Hochosterwitz strain (Supplementary table 1, Paper 

IV). Among the other 52 mutations, most of them coded for the same amino acid. However, 

eight of these 52 mutations were amino acid changes that introduced an amino acid with 

different function. A consistent percentage of ambiguities across different fragments of the 

whole polyprotein suggests that these are inherited during the RNA replication of the virus 

(Supplementary table 1, Paper IV). If the ambiguous percentage were randomly distributed in 
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the polyprotein at different percentages, it is more likely to be PCR amplification errors or other 

random mistakes. A plausible explanation to the evenly distributed errors is the genetic 

variability within the virus population, indicative of the virus adaptive strategies as a response 

to different environmental pressures, host interactions or possible quasispecies of the 

virus(Helmová et al., 2020; Henningsson et al., 2016; Kofler et al., 2002; Pulkkinen et al., 2018; 

Schneider & Roossinck, 2001). However, we cannot exclude the possibility that the sequence 

ambiguities arise from mutations that accumulated during in vitro passage of the virus in the 

absence of selection pressure. 

3.4 Methodological considerations 

This study can add knowledge in understanding the distribution and genetic variations of 

TBEV, underscoring the virus adaptability and potential for environmental adjustments. But it 

has some limitations, including a limited number of samples, study locations and sequenced 

strains, that may limit the generalizability of the findings. 

In Paper I, a consistent methodology for tick collection was important for obtaining comparable 

results. The study collected nymphs; the most abundant life stage responsible for TBE 

infections. This approach of excluding adults could potentially lead to underestimation of actual 

prevalence of TBEV in tick, given a higher infection rates in adult tick (Vikse et al., 2020). 

Nonetheless, our study represents an improvement in consistency and facilitates a better 

comparative analysis than previous studies with varied pooling methods and life stages 

(Pettersson et al., 2014).  

Estimating TBEV prevalence in tick is complex. Paper I followed a TBEV estimation approach 

where one positive pool in 74 pools analysed, with a pool size of 10, indicates a TBEV positive 

site (Andreassen et al., 2012; Ebert et al., 2010). However, since only 60 tick pools from each 

site were analysed, there is a possibility of underestimating the prevalence.  

The discrepancy observed in Paper II and III, where samples tested positive in ELISA and 

negative in Serum Neutralization Test (SNT), can be explained by two main factors related to 

the characteristics of flavivirus diagnostics. ELISA is known for its sensitivity, but it can also 

exhibit cross-reactivity among flaviviruses due to their shared antigenic similarities (Calisher 

et al., 1989). This means that antibodies raised against one flavivirus may react to antigens of 

other flaviviruses in the ELISA, leading to a false-positive result. Such cross-reactivity is a 
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well-documented issue in flavivirus serology and can result in false-positive ELISA results 

when testing for a specific flavivirus like TBEV (Chan et al., 2022; Krzysiak et al., 2021; Lim 

et al., 2018; Marvik et al., 2021; Paulsen et al., 2020). The SNT, on the other hand, is more 

specific as it directly measures the ability of serum antibodies to neutralize TBEV. If a sample 

tests negative in SNT but positive in ELISA, it suggests that while there are flavivirus-reactive 

antibodies present detected by ELISA, these antibodies may not be specific to TBEV (Klaus et 

al., 2014; Stiasny et al., 2021). This suggests exposure to other flaviviruses closely related to 

TBE (Stegmüller et al., 2023; Stiasny et al., 2021; Tonteri et al., 2016).  

Whole genome sequencing would be valuable for monitoring the spread and adaptation of 

TBEV variants in Norway (MSIS, 2023). We successfully developed a WGS method at the 

Norwegian Institute of Public Health for samples with higher viral load (Paper IV). However, 

field collected samples typically have low viral loads, and enhanced sensitivity and accuracy of 

our method for detecting viruses at lower concentrations are needed (Andreassen et al., 2012; 

Vikse et al., 2020). 

One issue here is RNA extraction. While we could use relatively gentle, standardises 

commercially available methods for extraction of RNA from cell culture supernatants, efficient 

RNA extraction from tick involves mechanical disruption; in addition, it is necessary to freeze 

the tick. Both these treatments tend to fragment the RNA.  Based on decades of experience it 

has been observed that freshly extracted TBEV RNA are more likely to yield positive PCR 

results (Personal communication with Professor Åshild K Andreassen).  

In our study, primers generating long overlapping fragments were used for WGS to provide 

thorough genome coverage of cultivated high viral load samples. A limitation in this study was 

that we were not able to sequence low viral load samples. For such samples, shorter amplicons 

or combine overlapping fragments of various amplicon lengths would be advantageous 

(Barandika et al., 2006; Quick et al., 2017; Shi et al., 2021; Zakotnik et al., 2022).  
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4. Conclusion  

This PhD study casts light on TBEV as an emerging virus providing insights on the 

geographical distribution, prevalence, human incidence, and detection in Scandinavia. Our 

study indicates a widespread geographical distribution of TBEV in southern Scandinavia that 

is influenced by climatic conditions. The developed WGS method and bioinformatic analysis 

provided knowledge of the genetic diversity, evolution, and distribution of two TBEV strains, 

providing a deeper understanding of the pathogen. The developed WGS methodology lays a 

foundation for TBEV genomic research in Norway. 
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5. Future perspectives 

Future perspectives for TBEV in Scandinavia include three key points: 

Continued surveillance and public awareness 

 This involves continued surveillance of TBEV in both established and newly emerging tick 

areas using suitable indicators. The surveillance scope should extend beyond I. ricinus and 

TBEV to encompass other tick species and flaviviruses and capable of TBEV transmission. For 

example, I. persulcatus, is found in northern parts of both Finland and Sweden which can play 

an important role in the transmission of the TBEV in the region.  

Assessment of climate change on TBEV spread 

Climate change is expected to alter the distribution of vector borne diseases including TBEV 

in Scandinavia. Integrating localized microclimate data for TBEV analysis can provide 

comprehensive understanding of how TBEV transmission is influenced by environmental 

factors. Future studies should assess the impacts of climate change including relative humidity 

that could play an important role in TBEV prevalence, more closely and monitor TBE foci 

within the region, considering the implications for disease transmission.  

Focused genetic research and development of improved vaccines 

Given the dynamic nature of TBEV and its potential resilience to impacts of climate change, 

focused genetic research could comprehend knowledge on evolution of TBEV for potential 

endemic regions. TBEV is prone to adaptation, and this can have implications for genetic 

variants and higher viral load in tick that could lead to symptomatic infections in future. 

Advancing the development of vaccines is important, especially considering the genetic 

variability of TBEV in Scandinavia.  
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Abstract
Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus 
(TBEV), which infects many people annually. The aims of the present study were 
(i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected 
within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, 
southern Sweden and Denmark; (ii) to analyse whether there are potential spatial pat-
terns in the TBEV prevalence; and (iii) to understand the relationship between TBEV 
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1  |  INTRODUC TION

The incidence of tick-borne encephalitis (TBE) has been increasing 
in Sweden, Norway and Denmark in the last few decades (Jaenson 
et al.,  2018; MSIS,  2022; Public Health Agency of Sweden,  2021; 
Slunge et al., 2022; Statens Serum Institut, 2020). Sweden had the 
highest incidence of human cases, with 520 cases in 2021 (Public 
Health Agency of Sweden,  2021). The number of reported TBE 
cases in Norway has doubled from 2020 to 2021, with 72 cases re-
ported in 2021 (MSIS, 2022). The incidence of human TBE cases in 
Denmark has also increased, where 13 TBE cases, the highest num-
ber until now, were reported in 2019 (Statens Serum Institut, 2020). 
TBE is caused by different geographically distributed subtypes of 
tick-borne encephalitis virus (TBEV). Five subtypes of TBEV have 
been identified so far: the European (TBEV-Eu), Siberian (TBEV-
Sib), Far Eastern (TBEV-Fe), Himalayan (TBEV-Him) and Baikalian 
(TBEV-Bkl) (Dai et al.,  2018; Kovalev & Mukhacheva,  2017). In 
Scandinavia, I. ricinus is the most common tick species and is the 
primary vector for the European subtype of TBEV (TBEV-Eu). The 
virus is transmitted to humans by tick bites, mainly by nymphs, 
and occasionally through the consumption of unpasteurized dairy 
products (Caini et al., 2012; Hudopisk et al., 2013). TBEV has also 

been detected in raw milk from cows and sheep (Cisak et al., 2010; 
Paulsen et al.,  2019; Wallenhammar et al.,  2020). TBEV infection 
may vary from being asymptomatic to fatal meningitis, encephalitis, 

prevalence and meteorological factors in southern Scandinavia. Tick nymphs were 
collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 
10 nymphs, with RT real-time PCR, and positive samples were confirmed with py-
rosequencing. Spatial autocorrelation and cluster analysis was performed with Global 
Moran's I and SatScan to test for spatial patterns and potential local clusters of the 
TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to corre-
late parameters such as minimum, mean and maximum temperature, relative humidity 
and saturation deficit with TBEV pool prevalence. The climatic data were acquired 
from the nearest meteorological stations for 2015 and 2016. This study confirms the 
presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, 
three from Zealand and two from Bornholm and Falster counties. In total, five out of 
nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 
0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern 
Skåne region (one site), indicating a potential concern for public health. We report an 
overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern 
Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern 
Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local 
clusters was found in the study region. We found a strong correlation between TBEV 
prevalence in ticks and relative humidity in Sweden and Norway, which might suggest 
that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging 
tick-borne pathogen in southern Scandinavia, and we recommend further studies to 
understand the TBEV transmission potential with changing climate in Scandinavia.

K E Y W O R D S
climate change, flaviviruses, I. ricinus, Nordic, tick-borne encephalitis virus

Impacts

•	 This is one of the most extensive studies aimed to de-
scribe the prevalence of TBEV in southern Scandinavia, 
screening 29,570 questing Ixodes ricinus nymphs.

•	 The virus was detected at 20 out of 50 locations, dem-
onstrating that it is widespread in this region. The study 
confirms the presence of TBEV in ticks in Denmark, with 
a higher prevalence in Norway's Oslofjord and Sweden's 
southern Skåne County.

•	 This study also highlights the possible influence of rela-
tive humidity in sustaining TBEV in the region. TBEV 
was detected from regions with and without previously 
reported human TBE cases, which is highly relevant 
information for public health considerations and risk 
evaluation.
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meningoencephalitis and meningoencephalomyelitis (Kaiser, 1999); 
however, infections with TBEV-Eu are often reported to be asymp-
tomatic (Gritsun et al., 2003; Larsen et al., 2014; Marvik et al., 2021; 
Svensson et al., 2021; Thortveit et al., 2020).TBE has been a notifi-
able disease in Sweden and Norway since 1969 and 1994, respec-
tively, but is not at present notifiable in Denmark.

In Southern Scandinavia, the spatial distribution of TBE cases 
does not fully coincide with the known distribution of TBEV in 
ticks. TBEV has been detected in ticks from coastal counties in 
Norway, from Viken in the southeast to Nordland in the north 
(Andreassen et al., 2012; Paulsen et al., 2015; Soleng et al., 2018; 
Vikse et al., 2020). However, all human TBE cases from Norway are 
reported from the southernmost parts of the country, specifically 
from the counties Agder, Vestfold and Telemark, and Viken (former 
Buskerud) (MSIS, 2022). The south-western coast of the Oslofjord is 
a known endemic area with several reported cases, while there are 
few reported cases on the eastern side, although TBEV has been de-
tected in ticks within the eastern side since 2015 (Larsen et al., 2014; 
Marvik et al., 2021; MSIS, 2022; Vikse et al., 2020). Studies report 
TBEV seroprevalence in healthy blood donors from both the eastern 
and western sides of the Oslofjord with seroprevalence of 0.65% 
and 0.4%, respectively, suggesting that TBEV infections within the 
population might have been asymptomatic or undiagnosed (Larsen 
et al., 2014; Marvik et al., 2021). TBE might not have been diagnosed 
due to a lack of awareness of tick bites and the distribution range of 
the virus (Paulsen et al., 2015).

Tick-borne encephalitis virus may be present at very low, po-
tentially undetectable concentrations in questing ticks but might 
replicate and become detectable under favourable conditions in 
engorged ticks (Belova et al.,  2012; Pettersson et al.,  2014). This 
might explain the lack of correspondence between TBEV sentinel 
studies and TBEV prevalence estimation from ticks. In Denmark, 
although TBEV seropositive deer are reported from multiple sites 
(Andersen, Bestehorn, et al., 2019; Andersen, Larsen, et al., 2019; 
Skarphédinsson et al., 2005), several tick pools collected in 2010–
2011 from northern Zealand, Funen and Jutland were negative for 
TBEV (Fomsgaard, 2020). Very few human cases have been reported 
in Denmark, mostly from the Island of Bornholm and sporadic 
cases from northern Zealand (Agergaard et al.,  2019; Fomsgaard 
et al., 2009). Locally acquired human TBE cases were reported from 
Jutland and southern Funen in 2018 and one from the island of 
Falster in 2020.

Sweden has wider known TBEV endemic areas from where 
human TBE cases, seropositive cervids and TBEV prevalence in 
ticks have been reported (Jaenson et al.,  2012, 2018; Jaenson & 
Wilhelmsson, 2019; Lundkvist et al., 2011; Pettersson et al., 2014; 
Wilhelmsson et al.,  2020). Human TBE cases are widely reported 
from the coastal and central areas of Sweden around Stockholm, 
Örebro and the western Götaland region. The human TBE cases are 
typically reported from places with high population densities, such 
as the Swedish capital of Stockholm and lately from around the great 
Swedish lakes, where TBEV in ticks previously has been reported 
(Brinkley et al., 2008; Melik et al., 2007).In the later 2010s, studies 

reported TBEV endemic foci from inland central Sweden to southern 
and western Sweden (Brinkley et al., 2008; Stjernberg et al., 2008). 
The virus has been detected in ticks up to Norrbotten in the Gulf 
of Bothnia in northern Sweden (Jaenson & Wilhelmsson,  2019; 
Pettersson et al.,  2014). However, TBEV prevalence estimation in 
ticks is still limited in southernmost Sweden (Pettersson et al., 2014).

Tick-borne encephalitis virus primarily circulates among tick 
populations and rodent hosts that act as reservoirs to persist in 
the environment (Michelitsch et al., 2019). Climatic factors, such as 
temperature, humidity, snow cover and rainfall, can influence the 
distribution of ticks and their hosts, potentially leading to the ex-
pansion of TBEV's geographical range as a result of climate change 
(Jaenson et al., 2012). TBEV transmission in ticks is attributed to tick 
seasonal activity, which is dependent on the tick life cycle (Randolph 
et al., 2000). Ticks can acquire infection by feeding on viremic hosts, 
mostly rodents (Achazi et al.,  2011). Larvae can be infected with 
TBEV from infected adult females through eggs known as transo-
varial transmission. Mathematical models have shown that when lar-
vae and nymphs feed in close proximity, nonviremic transmission of 
TBEV can occur from infected to uninfected ticks known as cofeeding 
transmission (Randolph, 2011; Randolph et al., 1996). This has been 
identified as a major route of TBEV transmission within a tick popula-
tion in eastern Europe (Nah & Wu, 2021). Once infected with TBEV, a 
tick remains infected throughout its life (Jaenson et al., 2012; Kozuch 
& Nosek, 1980). The prevalence of TBEV in ticks depends on a variety 
of other factors such as the availability of hosts for feeding opportu-
nities, the type of vegetation for suitable moulting environments and 
opportunities for transboundary transmission via for example migra-
tory birds. Studies have reported a higher tick abundance in forested 
areas compared with open meadow areas, due to humid conditions 
found in forested areas, protecting against desiccation, while open 
habitats are more exposed to the effects of sun and wind (Jaenson 
et al., 2018; Lindström & Jaenson, 2003; Medlock et al., 2013). The 
increase in tick host species, for example, roe deer (Capreolus capreo-
lus), has been suggested to cause the increase in human TBE incidence 
in Sweden (Jaenson et al.,  2012). Other studies have found TBEV-
infected ticks on migratory birds (Kazarina et al., 2015; Waldenström 
et al., 2007) thus, migrating birds may play a role in the geographical 
dispersal of TBEV-infected ticks, and their potential to start a new 
TBEV foci (Waldenström et al., 2007).

The vector, I. ricinus ticks are greatly influenced by tempera-
ture and show analogous seasonal variation; however, very less 
is known about the variation of TBEV and its relationship with 
the prevailing microclimate (Daniel et al., 2018). The vegetation 
period has been prolonged in Scandinavia, which has been identi-
fied as a key factor contributing to the increased abundance and 
activity of ticks in Sweden and Norway (Hvidsten et al.,  2020; 
Jaenson et al.,  2012). The impacts of climate change in Nordic 
countries are estimated by wetter and warmer climate with an 
increase in the length of growing season in the future (Hanssen-
Bauer et al., 2017; Randolph, 2001). Although I. ricinus may expand 
its northern range in Scandinavia with climatic changes, it was 
also found that a potential range expansion in Scandinavia would 
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only affect a small additional fraction of the human population as 
most of the population already live close to established tick areas 
(Kjær et al., 2019). TBEV poses a health risk to people living close 
to areas with TBEV presence in ticks (Vikse et al.,  2020). TBE 
is a climate-sensitive disease, and the risk of virus transmission 
can be influenced by environmental factors such as temperature, 
humidity and saturation deficit (Jaenson et al.,  2012; Medlock 
et al., 2013; Randolph et al., 2000). It is important to note that the 
direct effect of temperature and humidity conditions on TBEV is 
practically unknown (Korenberg, 2009). It is usually agreed that 
microorganisms in ticks are generally well adapted to the vari-
ability of temperature and humidity as well as other environmen-
tal conditions that are important for reproduction, vertical and 
horizontal transmission (Sirotkin & Korenberg,  2019). Although 
the TBEV infection in ticks is affected by both temperature and 
relative humidity (RH), RH has been suggested to be the major de-
terminant for infection rate rather than temperature (Danielová 
et al., 1983). This highlights the importance of identifying regions 
with high pathogen prevalence. This study aims to provide up-
dated knowledge on TBEV distribution and prevalence in ticks 
in relation to climatic parameters in southern Norway, southern 
Sweden and Denmark.

2  |  MATERIAL S AND METHODS

2.1  |  Tick collection and stratification of study sites

We collected ticks at each site between 15 August and 30 
September 2016, from 11 sites along the Oslofjord and southern 
Norway, 30 sites in Denmark and nine sites in southern Sweden 
as part of the ScandTick Innovation project. Ticks were collected 
from areas below 450 m above sea level (masl). A total of 29,570 
tick nymphs were collected according to the tick identification 
key by Hillyard (1996) while larvae and adult ticks were excluded 
from the analysis. The collected nymphs were pooled in groups 
of 10, totaling 2957 tick pools. The procedures for vegetation 
stratification, site selection, tick collection and storage have 
been described in previous studies (Jung Kjær et al., 2019; Kjær 
et al., 2019, 2020). In short, each country within the study region 
was divided into a northern and southern part (of equal sizes) and 
furthermore divided into high and low values of the maximum 
normalized difference vegetation index (NDVI, from Fourier pro-
cessed satellite imagery 40). Lastly, these stratified regions were 
further divided into forest and meadow, using Corine land cover 
(all one × 1 km resolution 40), based on the Corine definitions; 
forest: broad-leaved forest, coniferous forest, mixed forest and 
meadow: land principally occupied by agriculture with signifi-
cant areas of natural vegetation, natural grasslands, moors and 
heathland, transitional woodland-shrub (Jung Kjær et al., 2019; 
Kjær et al., 2019, 2020). Tick collection sites were then selected 
at random within the stratified regions (80% forest and 20% 
meadow).

2.2  |  Laboratory methods

2.2.1  |  TBEV detection

Tick-borne encephalitis virus was detected as previously de-
scribed by Andreassen et al.  (2012). Briefly, ticks were homog-
enized as described previously by Klitgaard et al. (2019) and sent 
to the Norwegian Institute of Public Health on dry ice. The sam-
ples were stored at −80°C until further analysis. Total RNA was 
extracted from homogenized nymphs using the RNeasy mini kit 
(QIAGEN Inc.) with an automated QIAcube instrument (Qiagen). 
Immediately after the extraction process, the RNA was reversely 
transcribed to cDNA with random primers (High-Capacity cDNA 
Reverse Transcription Kit, Applied Biosystems). An in-house real-
time reverse transcriptase RT-PCR was performed targeting a 54-
base pair (bp) fragment on the envelope gene of TBEV. As positive 
controls, RNA from the TBEV strains ‘Soukup’ or ‘Hochosterwitz’ 
(kindly provided by Christian Beuret, Spiez lab, Switzerland and 
Franz-Xaver Heinz, University of Vienna, Austria, respectively) 
were used, and nuclease-free water was used as a negative con-
trol. All the RT-PCR-positive TBEV pools were pyro-sequenced 
and compared with a positive control for confirmation as de-
scribed earlier (Andreassen et al., 2012). A pyro run was deemed 
valid when all TBEV controls were positive, all water controls were 
negative, and PCR-positive pools show pyrogram plots, which fol-
lowed the positive control pattern. PCR-positive pools that could 
not be confirmed by pyrosequencing were excluded from the 
prevalence calculation. A few PCR-positive samples could not 
be confirmed by pyrosequencing due to technical errors. These 
comprised 8 tick pools from Denmark. The total number of pools 
included in the study was 2957 (1790 from Denmark, 660 from 
Norway and 507 from Sweden).

2.2.2  |  TBEV prevalence in ticks

We calculated Estimated Pooled Prevalence (EPP) using the on-
line Epitools epidemiological calculator with fixed pooled size and 
perfect test (https://epito​ols.ausvet.com.au/ppfre​qone). We used 
EPP in all further analysis except for the spatial analyses. To test 
for differences in TBEV pool prevalence between sites, we used 
Pearson's chi-squared test statistics (test of equal or given pro-
portions). This test is nonspatial and only tests whether there is a 
statistically significant difference between the site-specific pool 
prevalences.

2.3  |  Spatial analyses

We tested Global clustering, in the context of a regional study 
‘global clustering refers to the identification of larger-scale pat-
terns or trends within the study area’, by Global Moran's I to test 
spatial patterns between the TBEV pool prevalence at each of the 
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50 sites. Global Moran's I measure spatial autocorrelation based 
on site location and the TBEV prevalence at the sites and evalu-
ates whether the observed prevalence patterns are clustered, dis-
persed or random.

To identify potential local clusters of TBEV within the study 
region, we used the program SatScan (Kulldorff,  2018) and the 
package rsatscan (Kleinman, 2015) in R 3.5.2 (R Development Core 
Team, 2018). We selected an elliptical scanning window and the 
Bernoulli probability model along with a maximum spatial window 
size of less than or equal to 50% of the total population at risk. 
The analysis looks for significant geographical clusters within cir-
cular or ellipsoid areas and tests whether EPP at sites included in 
the cluster on average has higher (hotspots) or lower (cold spots) 
prevalence compared with sites outside the clusters. The relative 
risk was used as a measure of clustering, which is the estimated 
risk within the cluster divided by the estimated risk outside the 
cluster. We used the Gini coefficient (Han et al., 2016) to evaluate 

the clusters, which measures the heterogeneity of the clusters, 
and thus determines whether to report multiple smaller clusters 
or a large joint cluster. In this analysis, we used the observed pro-
portion of TBEV (RT real-time-PCR) positive pools rather than the 
estimated pooled prevalence (EPP). Before running the analysis, 
we transformed site coordinates into a flat UTM projection (UTM 
zone 32 N).

2.4  |  Climatic analysis

We obtained climatic data from the Norwegian Meteorological 
Institute (www.met.no/), the Swedish Meteorological and 
Hydrological Institute (www.smhi.se) and the Danish Meteorological 
Institute (www.dmi.dk/) and compiled the data over the period 
2015–2016. We chose data from weather stations, based on the 
closest distance to the sampling site. From these weather stations, 

TA B L E  1  Tick-borne encephalitis virus (TBEV) in Ixodes ricinus tick nymphs in southern Scandinavia.

Country
Number of PCR-positive pools/
total tick pools analysed

Positive sites/
total sites tested

Number of confirmed TBEV-
positive pools by pyrosequencing

Estimated pooled 
prevalence (%) by country

Southern Norway 10/660 3/11 8 0.1 (0.1–0.2)

Southern Sweden 11/507 5/9 8 0.2 (0.1–0.3)

Denmark 21/1790 12/30 13 0.1 (0.1–1.5)

Total 42/2957 20/50 29 0.1 (0.1–0.2)

F I G U R E  1  Visualization of TBEV-positive areas in Denmark, southern Norway and southern Sweden. Areas with unconfirmed TBEV-
positive sample are marked in black, blue dots are negative sites and red dots are positive sites.
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we acquired air temperatures (°C) and RH (%) along with their 
monthly extremes (mean, maximum and minimum) and we calculated 
saturation deficit (SD), which is the measurement of drying power 
of the air according to Randolph and Storey  (1999) (Andreassen 
et al., 2012; Estrada-Peña et al., 2004; Perret et al., 2004; Randolph 
& Storey, 1999). Months were grouped into the following seasons: 
March, April and May were considered Spring; June and July were 
considered Summer; August, September and October were consid-
ered Autumn and November, December, January and February were 
considered Winter. A Pearson's Correlation analysis was conducted 
to examine the correlation between the EPP and several meteoro-
logical factors: temperature, RH and SD, as well as the extremes of 
these factors. This analysis included only TBEV-positive sites and 
classified the variables according to country, season and year. The 
analysis was conducted using SPSS version 22, and statistical signifi-
cance was assessed at either p < 0.05 or p < 0.01.

3  |  RESULTS

3.1  |  TBEV prevalence in southern Scandinavia

Of the 50 sites tested, 20 (40% of sites) were found to be positive for 
TBEV (Table 1). In total, we tested 2957 tick pools of which 29 pools 
were positive resulting in an overall TBEV prevalence of 0.1% in 
questing I. ricinus nymphs in southern Scandinavia (Figure 1, Table 2). 
The nonspatial Pearson's chi-squared test statistics testing for dif-
ferences in EPP between sites was statistically significant (�2

49
 = 70.9, 

p = 0.02) and thus not randomly distributed. All the TBEV-positive 
pools came from forested habitats.

3.2  |  TBEV prevalence in tick nymphs from 
southern Sweden

In southern Sweden, five of nine sites were positive for TBEV. A large 
proportion of the positive pools (five out of eight) came from two 
sites in northern Skåne County located only 11 km apart. Blekinge, 
Kalmar and Jönköping Counties all had one positive site. Among the 
two real-time RT-PCR-positive pools from Blekinge, one was lost 
due to technical errors during pyrosequencing. The overall TBEV 
prevalence in ticks in southern Sweden was 0.2%.

3.3  |  TBEV prevalence in tick nymphs from 
southern Norway

Tick-borne encephalitis virus was detected in eight pools out of 660 
pools tested giving an EPP of 0.1% in southern Norway. A total of 
three of 11 sites were positive for TBEV and two of those sites from 
Oslofjord showed a relatively high EPP of 0.7% and 0.5%, respec-
tively (Table 2). One positive tick pool came from the coastal area of 
Agder County in the southern part of Norway.

3.4  |  TBEV prevalence in tick nymphs 
from Denmark

In Denmark, a total of 12 of 30 sites were positive and 13 tick pools 
out of 1790 were positive, resulting in an overall TBEV prevalence of 
0.1% (Table 1). Seven of the positive sites were from Jutland, three 
from Zealand, one from Falster and one from Bornholm. Among the 
12 positive sites, 11 sites had one positive pool, while the last loca-
tion from southern Denmark, close to the North Sea, had two posi-
tive pools (Figure 1, Table 2). We lost five positive pools from three 
additional sites in Denmark during pyrosequencing (shown by black-
filled dots, Figure 1). These contained two pools from one site on 
Funen, two pools from one site from western Zealand and one pool 
from one site from northern Jutland (Table  2). We also lost three 
pools out of four from one site on Bornholm, which site is included 
in the 12 positive sites above.

3.5  |  Spatial patterns in TBEV prevalence

We found no evidence of global clustering (Moran's I = 0.017, 
z = 0.38, p = 0.71) for site-specific pool prevalence, and none of the 
local clusters found within the study region using SatScan were 
statistically significant (p > 0.1). The results show that the amount 
of prevalence varied between the sites, but it did not seem to be 
grouped in any specific area within the region.

3.6  |  Correlation analysis of TBEV prevalence in 
ticks with meteorological factors

We used Pearson's correlation analysis to investigate the relation-
ship between EPP with meteorological factors on data from the au-
tumn and winter of 2015 and spring, summer and autumn of 2016. 
The meteorological factors included mean, minimum and maximum 
of temperature; mean, minimum and maximum of RH; and mean, 
minimum and maximum of SD during the autumn and winter of 2015 
and spring, summer and autumn of 2016.

We found a statistically significant correlation between the EPP 
and RH in Sweden and Norway. There was a positive relationship 
between EPP and monthly minimum RH in all seasons in Sweden: 
autumn of 2016 (df = 13, r = 0.7, p = 0.01), winter (df = 18, r = 0.6, 
p = 0.00), spring (df = 13, r = 0.6, p = 0.02), summer (df = 8, r = 0.63, 
p = 0.05) and autumn (df = 13, r = 0.58, p = 0.02). This relationship was 
also present for mean RH in winter 2015 (df = 18, r = 0.7, p = 0.01) 
and autumn 2016 (df = 13, r = 0.6, p = 0.02) (Table S1). In Norway, the 
EPP showed statistically significant negative correlation with maxi-
mum RH and statistically significant positive correlation with min-
imum SD in the spring, summer and autumn of 2016. Specifically, 
in spring (df = 7, r = −0.9, p = 0.00; df = 7, r = 0.8, p = 0.00), summer 
(df = 4, r = −0.9, p = 0.00; df = 4, r = 0.7, p = 0.01) and autumn (df = 7, 
r = −0.9, p = 0.00; df = 7, r = 0.9, p = 0.00), there was a strong nega-
tive relationship with monthly maximum RH and a strong positive 
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    |  7LAMSAL et al.

relationship with minimum SD. There was also a statistically signifi-
cant positive correlation between EPP and mean temperature (df = 4, 
r = 0.89 and p = 0.02) and minimum SD (df = 4, r = 0.98 and p = 0.00) 
in summer (Table S2). In Denmark, we did not see any clear pattern. 
However, during the winter of 2015/2016, we observed a weak 
negative correlation between EPP and mean RH (df = 46, r = −0.33, 
p = 0.02) and a weak positive correlation between EPP and mean SD 
(df = 46, r = 0.41, p = 0.00). There was also a weak positive correlation 
between EPP and mean SD (df = 34, r = 0.366, p = 0.03) in the spring 
of 2016 (Table S3).

4  |  DISCUSSION

This is the first study of TBEV in Scandinavia covering the whole 
Øresund-Kattegat-Skagerrak (ØKS) region. TBE is an emerging zo-
onosis in Scandinavia, which constitute the northernmost part of 
the distribution range of I. ricinus (Riccardi et al., 2019; Süss, 2011). 
Colder and dry winters and limited vegetation periods are a limiting 

factor for sustainable tick populations (van Oort et al.,  2020) and 
thus the presence of TBEV in most of this region. The possible expan-
sion of ticks into new regions in Scandinavia has been documented 
in earlier studies (Hvidsten et al., 2020; Lindquist & Vapalahti, 2008; 
Randolph, 2001). This study reports the presence of TBEV in tick 
populations in most parts of Denmark, which to our knowledge is 
reported for the first time. According to our analyses, TBEV preva-
lence in ticks in Denmark is widespread as we found 12 confirmed 
TBEV-positive sites, seven sites were in Jutland, three on Zealand 
and one each on Lolland and Bornholm (Figure 1, Table 2). Our PCR 
results suggest TBEV presence at several other sites, but these could 
not be confirmed due to technical issues (Table 2).

It appears that TBEV circulation in Denmark is not a recent de-
velopment. Roe deer (C. capreolus) serum from 2003 to 2005 was 
analysed for the prevalence of tick-borne encephalitis complex virus 
and positives were found from southern Jutland, Lolland, Falster, 
northern Zealand and Bornholm (Skarphédinsson et al., 2005). The 
researchers indicated that although the TBE complex virus had 
emerged in new areas, the infection was still rare and focal in its 

TA B L E  2  Detailed description of the sites where TBEV was detected in host-seeking Ixodes ricinus nymphs in southern Scandinavia.

Country County SiteID Longitude Latitude Habitat type

No. of PCR-
positive pools/
pools tested

No. of 
confirmed 
PCR poolsa

EPP% (range 
of EPP)

Norway Vestfold and Telemark NO-124 8.92 58.61 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Norway Viken O-111 11.1 59.19 Forest, high NDVI 4/60 3 0.5 (0.10–1.5)

Norway Viken O-238 10.51 59.53 Forest, low NDVI 4/60 4 0.7 (0.20–1.8)

Denmark Jutland DK-002 8.22 55.79 Forest, low NDVI 2/60 2 0.3 (0.0–1.2)

Denmark Zealand DK-025 11.55 55.42 Forest, low NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Falster DK-120 9.56 54.92 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Zealand DK-121 11.59 55.33 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Bornholm DK-123 14.96 55.11 Forest, high NDVI 4/60 1, 3 lostb 0.2 (0.0–0.9)

Denmark Zealand DK-124 11.5 55.44 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Falster DK-201 11.32 54.92 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Jutland DK-485 9.36 55.93 Forest, low NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Jutland DK-521 10.68 56.26 Forest, low NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Jutland DK-554 9.65 56.04 Forest, low NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Jutland DK-604 9.27 56.3 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Denmark Jutland DK-616 9.33 56.08 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Sweden Skåne SE-005 14.44 56.45 Forest, low NDVI 3/60 3 0.5 (0.10–1.5)

Sweden Skåne SE-011 14.26 56.43 Forest, low NDVI 2/60 2 0.3 (0.04–1.2)

Sweden Jonkoping SE-064 14.99 57.2 Forest, low NDVI 1/60 1 0.2 (0.0–0.9)

Sweden Kalmar SE-122 15.61 56.72 Forest, high NDVI 1/60 1 0.2 (0.0–0.9)

Sweden Karlskrona SE-221 15.64 56.45 Forest, low NDVI 2/44 1, 1 lostb 0.2 (0.0–0.9)

Denmark Central Zealand DK-237 11.81 55.51 Forest, high NDVI 2/60 2 lostb -

Denmark Western Funen DK-122 9.98 55.22 Forest, high NDVI 2/60 2 lostb -

Denmark North Jutland DK-721 8.74 57.09 Meadow, low 
NDVI

1/60 1 lostb -

aPyrosequencing.
bTBEV RT-PCR-positive pools that were lost due to failure in pyrosequencing and could not be confirmed.
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8  |    LAMSAL et al.

distribution (Skarphédinsson et al.,  2005). A follow-up study on 
the same deer species, roe deer sampled in 2013–2014 found that 
TBEV seropositive deers were found all over Denmark with a na-
tional seropositivity of 6.9%. Compared with the results from the 
study conducted in 2005, the seropositive roe deers had expanded 
to most areas of northern and central Jutland and Funen (Andersen, 
Larsen, et al., 2019; Skarphédinsson et al., 2005). The sentinel study 
also reported the presence of roe deer sera with high antibody titers 
from northern and central Jutland, which shows that the infection 
response in the deer could be a recent infection or it can be trig-
gered by bites from multiple positive ticks. Our results confirm the 
findings that TBEV is more widespread in Denmark than previously 
anticipated. This study found seven positive sites from Jutland and 
supports TBEV foci being prevalent in Jutland. A seropositive roe 
deer was found on Funen (Andersen, Larsen, et al.,  2019). In the 
present study, one PCR-positive pool was detected from Funen. 
Although the PCR-positive pool could not be confirmed positive 
due to technical difficulties during sequencing, this indicates that 
further assessment is needed to identify TBEV foci. The island of 
Bornholm in the Baltic Sea is a well-known TBEV endemic area 
since the 1950s (Kristiansen,  2002). The phylogenetic analysis of 
TBEV strains isolated from TBEV-infected patients from Bornholm 
showed relatedness to the eastern and central European strains in-
dicating the expansion of TBEV infection from around the Baltics 
(Andersen, Bestehorn, et al., 2019). Besides Bornholm, human TBE 
cases have been reported from Tokkekøb Hegn and Tisvilde Hegn 
in northern Zealand, where the infecting TBEV strain clustered with 
the Norwegian strain, Mandal 2009 indicating possible expansion of 
TBEV from southern Norway or vice versa (Agergaard et al., 2019; 
Fomsgaard et al., 2013).

The previous roe deer and tick studies combined with the present 
study show that TBEV is circulating in Denmark and is more wide-
spread than previously anticipated, although human TBE cases are 
rare. The low amount of human TBE cases could potentially be ex-
plained by TBEV not being a notifiable disease in Denmark. However, 
in Norway, TBEV is also prevalent in ticks and cervids (C. capreo-
lus, Cervus elaphus, Alces alces) along the coast until 65°N (Paulsen 
et al., 2020; Soleng et al., 2018; Vikse et al., 2020), but human cases 
occur only in restricted foci along the southern coast (Andreassen 
et al., 2012; MSIS, 2022). Jutland and the western coast of Norway 
are both influenced by the North Sea, and it might be important to 
understand climatic influences on ticks and TBEV that can have spe-
cial relevance to climate-sensitive zoonoses in the future. It is possi-
ble that a virus strain causing less severe disease circulates in these 
areas (Paulsen et al., 2015; Soleng et al., 2018; Vikse et al., 2020). 
The awareness of the general practitioners on the presence of TBEV 
might also play a role when diagnosing milder cases. TBEV detection 
methods also play a role in the detection of TBEV from questing ticks 
as the virus concentration is low (Schwaiger & Cassinotti, 2003). The 
length of the target sequence in the PCR might also be important to 
consider when the virus concentration is low in samples (Andreassen 
et al., 2012; Schwaiger & Cassinotti, 2003). False negatives due to 
limitations in the detection methods might be a reason for the lack of 

coherence in TBEV prevalence studies in ticks and sentinel studies in 
Denmark and Norway.

The present study found several new sites with relatively high 
TBEV prevalence along the Oslofjord in Norway. The Oslo and 
Viken counties in Norway are heavily populated areas where people 
drive to the city for work and live away from city areas. One loca-
tion 45 km south of Oslo centrum showed EPP of 0.7% and another 
location near Sarpsborg, showed EPP of 0.5%. Both these locations 
are new locations where ticks were not screened for TBEV before. 
In the last few years, the incidence of TBE has been reported from 
new areas in Viken County (MSIS, 2022). As mentioned earlier, TBEV 
is endemic on the southern coast of Norway and there is a concern 
about the virus establishing in ticks in the more northeastern parts 
where Oslo is located. TBEV EPP of 0.2%–0.4% has been reported 
in Viken County from the former counties of Østfold, Akershus and 
Vestfold (Vikse et al., 2020) and the present study reports higher 
TBEV EPP along the Oslofjord in Norway than previously detected.

Although the presence of TBEV endemic foci along the west-
ern and southeastern coast was reported long ago, TBE foci in 
the inland part of southern Sweden is still a new emergence area 
(Brinkley et al., 2008; Fält et al., 2006; Lundkvist et al., 2011; Melik 
et al., 2007; Pettersson et al., 2014; Stjernberg et al., 2008; Waldeck 
et al., 2022). The nine sites in this study are from the seven neigh-
bouring counties; Skåne, Kronoberg, Halland, Jönköping, Blekinge, 
Kalmar and Västragötaland (Figure 1). We found two positive sites 
from the northern part of Skåne County with five of eight positive 
pools resulting in TBEV EPP of 0.5% (Table 1). Several human TBE 
cases have also been reported in this area (Fält et al., 2006). A TBEV 
prevalence above 0.5% in questing ticks for more than 1 or 2 years 
has been used to define an endemic focus (Andreassen et al., 2012; 
Gäumann et al., 2010; Pettersson et al., 2014). Endemic foci refer to 
a geographical location in space and time where TBEV circulation is 
persistent in nature (Dobler et al., 2011). In other words, this area 
may be a risk area for possible TBEV infections in the future.

The positive sites in Blekinge and Kalmar counties in Sweden 
are close to the southeastern coast, where migrating birds may 
have introduced TBEV to the areas. Öland Island along the coast of 
Kalmar County, is a well-known bird migration stop (Waldenström 
et al., 2007) and it could potentially be a hotspot for the dispersal of 
TBEV-infected ticks by birds. TBEV isolated from a patient in Kalmar 
in 1993 has been whole genome sequenced and showed the clos-
est resemblance to the NL/UH strain, isolated from I. ricinus ticks in 
the Netherlands and the Ljubljana strain, isolated from a patient in 
Slovenia (Paulsen et al., 2021). This suggests that there is a relation-
ship between the long transport of ticks with TBEV infection and 
tick/human infection.

A potential study limitation is the single sampling between 
August 15th and September 30th, possibly missing peak infection 
rates in ticks due to differences in feeding cycles and how it aligns 
with seasonal spikes in reported cases. We might not capture peak 
infection rates within the ticks since these differences in detection 
rates may be based on feeding cycles in April to July versus August 
to November. However, according to the Norwegian Surveillance 
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System for Communicable Diseases (MSIS), TBE cases in Norway 
starts to appear in May, but the peak season is typically in August 
and September. This makes the timing of our sampling particularly 
fitting, as it aligns with the peak of TBE incidence.

We did not find any geographical clustering of TBEV in southern 
Scandinavia, unlike other tick-borne pathogens (Kjær et al., 2020). 
This could be attributed to a unique transmission potential of TBEV 
during cofeeding. Cofeeding transmission is identified as one of the 
major routes of TBEV transmission and maintenance in foci despite 
the low prevalence in tick population (Nah & Wu, 2021; Randolph 
et al., 2000). The formation of TBEV foci is a result of the complex 
interaction between ticks, their host species and the environment 
and hence might not exhibit a specific pattern.

Relative humidity is a crucial factor in deciding tick survival as 
ticks are very sensitive to desiccation, which might also affect the 
virus in the tick; however, very little is known about the effect of RH 
in TBEV prevalence in ticks (Danielová, 1990; Danielová et al., 1983; 
Korenberg, 2009; Sirotkin & Korenberg, 2019). This study suggests 
that humidity may play a major role in influencing TBEV prevalence 
in ticks in southern Scandinavia. In the northern part of Skåne in 
Sweden, TBEV prevalence in ticks was positively correlated with 
minimum humidity levels in all seasons. This suggests that higher air 
humidity may support more TBEV-positive ticks in areas with a con-
tinental climate like Sweden. TBEV virus was negatively correlated 
with maximum humidity and positively correlated with minimum 
dryness in coastal regions of southeastern Norway. This suggests 
that in regions where humidity levels are already high, lower hu-
midity levels may be favourable. Overall, the study suggests that 
humidity might play an important role in TBEV virus prevalence; 
however, the effect may vary according to local microclimatic con-
ditions. Further studies on understanding the influence of climatic 
parameters particularly the RH might be of special relevance under 
changing climatic conditions in Scandinavia. It is important to note 
that the obtained climatic parameters were from the nearest mete-
orological stations and provide a general relationship. The impact 
of the difference in scales in climate and microclimate has been dis-
cussed as ticks mostly live close to the ground where microclimatic 
conditions are modified by vegetation (Estrada-Peña et al.,  2004; 
Randolph & Storey, 1999). It is important to consider that the rela-
tionship observed is based on few positive sites from Norway and 
Sweden and a larger number of study locations might give more in-
formation. It may be necessary for future studies to consider envi-
ronmental data from local microclimate measurements rather than 
an aggregation of data collected from the national meteorological 
stations covering larger areas. This study confirms that TBEV is cir-
culating in many locations throughout southern Scandinavia, point-
ing out that people acquiring tick bites in these areas are at risk of 
developing TBE and as such implying a public health concern. Future 
studies should aim to assess the impacts of climate change and mon-
itor TBE foci in the region.
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Abstract
Tick-borne encephalitis virus (TBEV) is found in Ixodes ricinus ticks throughout the 
area where viable tick populations exist. In Norway, TBEV is found in I. ricinus from 
the south coast until Brønnøy municipality in Nordland County and the range of the 
vector is expanding due to changes in climate, vegetation, host animals and environ-
mental conditions. TBEV might thus have the potential to establish in new areas when 
I. ricinus expand its geographical distribution. At present, there is little knowledge on 
the status of the virus in high-altitude areas of inland regions in Norway. It has previ-
ously been indicated that reindeer may be an important sentinel species and indicator 
of the spread of ticks and TBEV in high-altitude regions. In this study, 408 semi-
domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) from eight herds, 
from Tana in Troms and Finnmark County in northern Norway to Filefjell in Innlandet 
and Viken Counties in southern Norway, were screened for TBEV antibodies using a 
commercial enzyme-linked immunosorbent assay (ELISA). We found 16 TBEV reac-
tive reindeer samples by ELISA; however, these results could not be confirmed by the 
serum neutralization test (SNT). This could indicate that a flavivirusand not neces-
sarily TBEV, may be circulating among Norwegian semi-domesticated reindeer. The 
results also indicate that TBEV was not enzootic in Norwegian semi-domesticated 
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The burden of vector-borne flaviviruses like tick-borne encephalitis 
virus (TBEV), West Nile virus, Usutu virus, as well as other vector-
borne viruses like picornaviruses, Sindbis virus and Inkoo virus, is 
increasing in northern Europe (Lim et al., 2018; Shakya et al., 2022; 
Slunge et al., 2022; Tingström et al., 2016). Ticks and mosquitoes, 
along with their avian and mammalian hosts, facilitate the enzootic 
maintenance of these viruses in nature (Esser et al., 2019). The arc-
tic and subarctic regions are facing impacts of climate change faster 
than the global average (Box et al., 2019). Climate change is upsurg-
ing favourable conditions for circulation of these viruses in nature 
by modifying microclimatic conditions, thus facilitating changes in 
vegetation and in the population density and geographical distribu-
tion of animal hosts. All together, these changes increase the risk of 
zoonotic infections (Chala & Hamde, 2021; Esser et al., 2019). There 
is, however, little knowledge on the geographical spread of these 
flaviviruses in colder arctic regions.

TBEV is a medically important flavivirus that causes encephalitis 
in humans and animals with possible fatal neurological symptoms 
(Kaiser, 2002). The severity of the disease is broad, ranging from as-
ymptomatic, to mild fever and headache, and to meningitis or menin-
goencephalitis (Lindquist & Vapalahti, 2008). Five subtypes of TBEV 
have been identified: European (TBEV-Eu), Siberian (TBEV-Sib), Far 
Eastern subtype (TBEV-Fe), Baikalian (TBEV-Bkl) and Himalayan 
(TBEV-Him) (Dai et al.,  2018; Kovalev & Mukhacheva,  2017). The 
European subtype is present in the coastal areas of Norway with 
Ixodes ricinus ticks as the main vectors (Andreassen et al.,  2012; 
Paulsen et al., 2015; Soleng et al., 2018; Vikse et al., 2020).

Although infected ticks are reported as far north as Brønnøy 
Municipality in Nordland County, human incidence is limited to 
the south. This may be related to underdiagnosis or circulation of a 
milder strain in the northern region (Vikse et al., 2020). In Norway, 
TBEV foci are identified by the presence of infected cervids such as 
moose (Alces alces), red deer (Cervus elaphus) and roe deer (Capreolus 
capreolus) (Paulsen et al., 2020; Ytrehus et al., 2013). These cervids 
are hence important sentinels to identify TBEV foci in particular 
areas, and the results can thereafter be coupled with screening of 
ticks and other animals (Balling et al.,  2014; Paulsen et al.,  2020; 
Skarphédinsson et al., 2005; Ytrehus et al., 2013).

Reindeer is a key cervid species with broad social and ecolog-
ical value in Norway and are mostly herded by indigenous Sami 
herders (Riseth et al.,  2019). Reindeer are adapted to colder cli-
mates than other deer species, having a wider distribution from 

the coast to higher altitudes, both in the Taiga and Tundra areas 
(Nowak,  1999). Reindeer have been documented to support en-
zootic maintenance of viruses like herpesvirus, pestivirus and 
Hepatitis E virus (Rinaldo et al.,  2021; Romano et al.,  2021; 
Sacristán et al.,  2021; Tryland et al.,  2021). Recently, antibodies 
against Inkoo virus and Inkoo virus-specific RNA were detected in 
reindeer for the first time in Norway which indicates that reindeer 
are exposed to a wide range of viruses (Shakya et al., 2022). The 
aim of the present study was to use semi-domesticated reindeer 
from eight regions as sentinels to evaluate TBEV distribution from 
northern to southern Norway.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Serum samples (n = 480) from semi-domesticated reindeer were col-
lected (Tryland et al.,  2021) from eight different reindeer herding 
regions: Tana, Lakselv, Tromsø, Lødingen, Hattfjelldal, Fosen, Røros 
and Filefjell during the winter seasons (October–April) of 2013, 
2014 and 2015 (Table 1, Figure 1). The serum samples were stored 
at −80°C until further analysis.

2.2  |  Serological methods

The serum samples were screened for TBEV immunoglobulin G (IgG) 
antibodies by a modified commercial enzyme-linked immunosorb-
ent assay (ELISA), Enzygnost® Anti-TBE virus IgG, (Siemens) at The 
Norwegian Institute of Public Health, Oslo. The ELISA method was 

reindeer in 2013–2015. This knowledge is important as an information base for future 
TBEV and flavivirus surveillance in Norway.

K E Y W O R D S
climate change, flavivirus, Ixodes ricinus, sentinels, serology, TBEV, ticks

Impacts

• This study contributes to a better understanding of the
TBEV-status in areas of Norway where ticks are pre-
sent, but not abundant.

• This study supports previous findings for TBEV in ticks
in Norway, that is, that TBEV is present in coastal areas
and not in inland areas.

• We recommended further research to identify potential
flaviviruses circulating in reindeer in the future.
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    |  3LAMSAL et al.

modified using peroxidase-labelled affinity purified antibody to deer 
IgG (H + L) in rabbit (TriChem ApS-interkemi) and adapted for deer 
samples as described previously (Paulsen et al.,  2020). Previously 
confirmed TBE IgG positive and negative moose and roe deer serum 
samples by SNT were used as internal controls (Paulsen et al., 2020). 
Positive TBE ELISA results were re-tested by a TBEV-specific SNT 

at the Medical University of Vienna, Centre for Virology (Austria) 
as described previously (Malafa et al.,  2020; Stiasny et al.,  2009). 
The virus neutralization titre was defined as the reciprocal of the 
serum dilution that gave 90% reduction in the absorbance readout 
compared with the control without antibody. An SNT titre ≥10 was 
considered positive.

TA B L E  1  Seroprevalence of tick-borne encephalitis virus or a similar flavivirus by ELISA in Eurasian tundra reindeer (Rangifer tarandus 
tarandus) from eight different herding districts in.

4County Location

TBEV positive (borderline)/total tested

2013 2014 2015 Total

Troms and Finnmark Tana 0 (0)/20 0 (0)/20 2 (0)/20 2 (0)/60

Troms and Finnmark Lakselv 0 (1)/20 0 (1)/20 0 (1)/20 0 (3)/60

Troms and Finnmark Tromsø 0 (0)/21 0 (1)/20 0 (0)/20 0 (1)/61

Nordland Lødingen 0 (0)/22 2 (1)/20 – 2 (1)/42

Nordland Hattfjelldal 0 (0)/30 0 (0)/20 0 (1)/20 0 (1)/70

Trøndelag Fosen 0 (0)/20 0 (0)/20 0 (0)/20 0 (0)/60

Trøndelag Røros 0 (1)/22 1 (1)/20 2 (1)/20 3 (3)/62

Innlandet and Viken Filefjell 0 (0)/25 0 (0)/20 0 (0)/20 0 (0)/65

Total 0 (2)/180 3 (4)/160 4 (3)/140 7 (9)/480

F I G U R E  1  Map of Norway illustrating 
reindeer sampling locations. Map 
created using the Free and Open Source 
QGIS. Map data: © OpenStreetMap-
Mitwirkende, SRTM | Map position: © 
OpenTopoMap 129 (CC-BY-SA). Reindeer 
pastures data source: NIBIO.
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3  |  RESULTS AND DISCUSSION

A total of 229 adult and 251 calf («calves of the year») reindeer 
serum samples, from eight different reindeer herding districts 
distributed geographically from north to south of Norway, were 
screened for antibodies against TBEV using ELISA and SNT. Seven 
serum samples (1.5%) were classified as positive and nine (1.9%) 
as borderline for TBEV by the ELISA (Table 1). The reindeer classi-
fied as positive were sampled in Tana (n = 2; 2015), Lødingen (n = 2; 
2014) and Røros (n = 1; 2014 and n = 2; 2015) (Table  1). Reindeer 
classified as borderline were detected in the other herding districts, 
except for Fosen and Filefjell. None of the samples were positive 
by the SNT (Table S1); hence, the TBEV infection in reindeer could 
not be confirmed.

The lack of coherence between the ELISA and the SNT in this 
study might be due to serological cross-reactions among similar fla-
viviruses based on close antigenic similarity (Krzysiak et al., 2021; 
Lim et al., 2018; Marvik et al., 2021; Paulsen et al., 2020). A pre-
vious study also showed that TBEV ELISA reactive reindeer were 
negative in the SNT (Paulsen et al., 2020). Thus, these ELISA results 
are probably reflecting an exposure of reindeer to a virus closely 
related to TBEV, which could be tick-borne or mosquito-borne 
in origin. Louping ill virus (LIV), a tick-borne flavivirus closely re-
lated to TBEV, has been found in sheep in Norway in the 1980s, 
and antibodies against LIV have been found in willow ptarmigan 
(Lagopus lagopus lagopus) and deer species like red deer, but not in 
reindeer (Paulsen et al., 2020; Ulvund, 1987; Ytrehus et al., 2013). 
Mosquito-borne flaviviruses like West Nile virus (WNV) and 
Lammi virus (LAMV) show serological cross reactivity with TBEV 
(Huhtamo et al., 2009; Tonteri et al., 2016). Although WNV have 
been found to infect deer and cause clinical disease, this is prob-
ably rare (Palmer et al., 2004; Tonteri et al., 2016). In the study by 
Tonteri et al.  (2016), 1371 cervids (moose, white-tailed deer and 
roe deer) were tested for TBEV in Finland, of which 10 were posi-
tive for TBEV and two of these were positive for LAMV. In addition, 
two TBEV negative were positive for LAMV. None of the deer were 
infected by WNV (Tonteri et al.,  2016). Based on these findings, 
LAMV is shown to circulate in deer species. This could be due to 
cross reaction or double infection LAMV is detected in mosquitoes 
from Finland (Huhtamo et al., 2009) and as the cervids are known to 
be exposed to both tick and mosquito vectors, Tonteri et al. (2016) 
deemed it necessary to include the examination of both WNV and 
LAMV in their study. Notably, a subset of the deer samples tested 
were seropositive for LAMV and TBEV (Tonteri et al., 2016). In our 
study, the positive TBEV ELISA results that were negative in SNT 
(Table 1) may suggest reactivity with other flaviviruses as a result 
of exposure to mosquito bites.

Previous studies have shown that an unidentified flavivirus 
closely related to TBEV and LIV, may be circulating far north along 
the western coast of Norway (Ytrehus et al., 2013). Unlike ticks, 
mosquitoes are found all over Norway, including the inland re-
gions (Shakya et al., 2022). Sequencing of RNA from reindeer nasal 

and/or rectal swabs have identified viral sequences represent-
ing the Flaviviridae family in reindeer in Norway, which is hosted 
mainly by arthropod vectors like ticks and mosquitoes (Romano 
et al.,  2021). Furthermore, the mosquito-borne virus INKV was 
detected in mosquitoes collected from Røros and INKV-specific 
antibodies were detected in reindeer from all the reindeer herding 
areas included in this study (Shakya et al.,  2022). In the present 
study, the TBE ELISA-positive samples came from six out of eight 
locations from north to south of Norway where viable mosquito 
populations have been reported by Sánchez Romano et al. (2021) 
and Shakya et al.  (2022) (Figure  1, Table  1). Most of the posi-
tive samples came from Røros in Trøndelag County, followed by 
Lødingen in Nordland County and Lakselv in Troms and Finnmark 
County (Table  1). These findings support that reindeer in these 
areas are exposed to mosquito-bites. Therefore, we report that 
Norwegian semi-domesticated reindeer are in some areas, ex-
posed to a TBEV-related flavivirus, that might be a mosquito-borne 
flavivirus (Table 1). This highlights the need for additional study to 
determine the prevalence of LAMV and other flavivirus infections 
among mosquitoes and cervids in Norway.

Reindeer herding covers large geographic areas, typically in 
mountain tundra regions of Norway, with long winter migration to 
pastures in inland regions (Riseth et al., 2019; Tryland et al., 2021). 
However, in a few areas, like in Nordland County, reindeer herds are 
more oriented to the coastal regions using snow free areas for pas-
ture during the winter (Riseth et al., 2019). The inland regions are 
dryer, colder and generally geographically elevated compared with 
the coastal regions (Hanssen-Bauer et al.,  2017), and hence sus-
tainable tick populations cannot thrive (De Pelsmaeker et al., 2021; 
Qviller et al., 2014). Therefore, TBEV infection in tick populations 
is reported mostly from coastal regions of Norway (Andreassen 
et al.,  2012; Soleng et al.,  2018; Vikse et al.,  2020). TBEV sero-
positive moose, roe deer and red deer have been detected in the 
southern and western parts of Norway (Paulsen et al.,  2020). 
Reindeer, have, however, to our knowledge, never been reported 
seropositive for TBEV, which might be due to absence of TBEV 

TA B L E  2  Distribution by gender and age of reindeer classified 
as Positive and Borderline for anti-TBEV antibodies using a 
commercial ELISA (Enzygnost® Anti-TBE virus IgG).

Number 
of reactive 
samples for 
TBEV ELISA 
test Borderline Positive

Adult female 7/189 3 4

Calfa female 5/102 3 2

Adult male 0/40 0 0

Calfa male 2/135 2 0

Unknown 2/14 1 1

Total 16/480 9 7

aCalf of the year (born in April–May, sampled in October–April).
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infected ticks in the reindeer pasture areas. However, climate 
change is expected to modify existing environmental conditions 
in northern and inland regions of Norway in the future (Hanssen-
Bauer et al., 2017). This might promote circulation of flaviviruses 
in new environments by supporting life cycles of arthropod hosts 
such as ticks and mosquitoes. Therefore, surveillance of flavivirus 
circulation should be continued and should include key indicator 
species such as reindeer.

The seroprevalence for TBEV was higher in female reindeer 
(4.1%) compared with males (1.1%) (Table 2). Similar to this study, a 
higher number of INKV-seropositive female reindeer were reported 
in an earlier study, based on the same sample collection (Shakya 
et al., 2022). The sample collection is, however, biased, due to a re-
stricted availability of bulls during the sampling period. Thus, only 40 
adult males were included compared with 189 adult females, which 
may have had impact on the results.

This study is an important baseline study for future research in-
volving reindeer and ticks in Norway. General knowledge on climate 
change effects and adaptation strategies has increased significantly 
in recent years, but there is still a substantial information gap regard-
ing the influence of climate change on zoonotic diseases. Changes in 
climate may give opportunities for vectors and flaviviruses to occur 
in new areas of Norway. It is, therefore, important to continue the 
surveillance of both vectors and viruses.
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A B S T R A C T   

Tick-borne encephalitis virus (TBEV) is a medically important arbovirus, widespread in Europe and Asia. The 
virus is primarily transmitted to humans and animals by bites from ticks and, in rare cases, by consumption of 
unpasteurized dairy products. The aim of this study was to sequence and characterize two TBEV strains with 
amplicon sequencing by designing overlapping primers. The amplicon sequencing, via Illumina MiSeq, covering 
nearly the entire TBEV genome, was successful: We retrieved and characterized the complete polyprotein 
sequence of two TBEV strains, Hochosterwitz and 1993/783 from Austria and Sweden, respectively. In this study 
the previous phylogenetic analysis of both strains was confirmed to be of the European subtypes of TBEV (TBEV- 
Eu) by whole genome sequencing. The Hochosterwitz strain clustered with the two strains KrM 93 and KrM 213 
from South Korea, and the 1993/783 strain clustered together with the NL/UH strain from the Netherlands. Our 
study confirms the suitability and rapidness of the high-throughput sequencing method used to produce complete 
TBEV genomes from TBEV samples of high viral load giving high-molecular-weight cDNA with large overlapping 
amplicons.   

1. Introduction 

Tick-borne encephalitis virus (TBEV) is a medically important 
arthropod-borne virus (arbovirus), which is widespread across large 
parts of Europe and Asia. TBEV is the causative agent of the disease tick- 
borne encephalitis (TBE) in humans and animals (Lindquist and Vapa
lahti, 2008; Suss, 2011). TBEV is mainly transmitted to humans and 

animals through bites from Ixodes ricinus and Ixodes persulcatus ticks, and 
in rare cases through ingestion of unpasteurized dairy products (Balogh 
et al., 2010; Brockmann et al., 2018; Holzmann et al., 2009; Hudopisk 
et al., 2013; Kerlik et al., 2018; Paulsen et al., 2019; Ruzek et al., 2019). 
Some small mammals are proven reservoirs for the TBEV, while 
migratory birds and large mammals are important for distribution of 
ticks and the virus (Carpi et al., 2008; Mlera and Bloom, 2018; Nuttall 
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and Labuda, 2003; Waldenström et al., 2007). 
Taxonomically, TBEV belongs to the genus Flavivirus within the 

family Flaviviridae. The TBEV genome consist of approximately 11 kb 
positive-sense single-stranded RNA. The viral RNA encodes one single 
open reading frame (ORF) of about 3400 amino acids, flanked by 5′ and 
3′ non-coding regions (NCRs), three structural proteins; envelope (E), 
precursor membrane (PrM) and capsid (C), and seven non-structural 
proteins (NS1, NS2A, NS2B, NS3, NS4A-2K-4B complex and NS5) 
(Heinz and Mandl, 1993; Kaufusi et al., 2014; Plaszczyca et al., 2019; 
Ruzek et al., 2019; Slavik et al., 1970). Based on phylogenetic grouping 
and geographical distribution five subtypes of TBEV are known: the 
European, Siberian, Far Eastern, Baikalian and Himalayan subtypes 
(Adelshin et al., 2019; Dai et al., 2018; Ecker et al., 1999; Kovalev and 
Mukhacheva, 2017). These five subtypes are distributed over the 
Eurasian continent from Europe, Russia, Japan, China and South Korea 
(Demina et al., 2010; Dobler et al., 2012; Yoshii et al., 2017). The Eu
ropean TBEV subtype (TBEV-Eu) is prevalent across Europe and Asia, 
from England, France, the Netherlands, to east Sibiria in Russia and 
South Korea (Dekker et al., 2019; Demina et al., 2010; Dobler et al., 
2012; Holding et al., 2019; Ruzek et al., 2019; Velay et al., 2018). Most 
of the available TBEV-Eu sequences originate from ticks. Conversely, 
few sequences are available from clinical TBE cases because they often 
are PCR-negative on the onset of neurological symptoms (Haglund et al., 
2003; Saksida et al., 2005). 

In this work we sequenced two cultured TBEV strains; one origi
nating from a Swedish patient (1993/783) (Haglund et al., 2003) and 
one from an Austrian tick collected in 1971 (Hochosterwitz) (Heinz and 
Kunz, 1981). The aim of this study was to characterize the two TBEV 
strains. We established a high-throughput amplicon sequencing method 
with overlapping primers on Illumina MiSeq, based on a protocol 
developed by Quick et al. (2017). 

2. Materials and methods 

2.1. Virus strains and virus-cultivation 

The Hochosterwitz strain was isolated from an I. ricinus tick collected 
in 1971 near the Hochosterwitz palace in Austria, which is considered a 
highly endemic TBE area. The strain 1993/783 originated from a patient 
hospitalized in 1993 at Kalmar Hospital, Sweden, with a moderate form 
of TBE with symptoms such as fever, malaise, myalgia and headache 
(Haglund et al., 2003). The Hochosterwitz strain had been passaged two 
times in mouse brain and then passaged several times in African green 
monkey kidney Vero E6 cells. Strain 1993/783 had initially been 
passaged once in suckling baby mice and once in Vero E6 cells. Prior to 
the experiments, Hochosterwitz were passaged eight times and 
1993/783 three times in Vero E6 cell culture. The viral titre for 
Hochosterwitz was approximately 6.5 × 106 focus forming units ac
cording to the protocol by Stiasny et al. (2009) per ml, while the titre for 
1993/783 was unknown (Stiasny et al., 2009). 

2.2. RNA extraction and reverse transcription (RT) of viral RNA 

Viral RNA was extracted from the cultivated virus stocks of the 
strains using QIAamp® Viral RNA mini kit (QIAGEN GmbH, Hilden, 
Germany) according to the manufacturer’s recommendations. Immedi
ately after extraction, the viral RNA was reversely transcribed to cDNA 
using SuperScript III reverse transcription kit (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) with random primers and RNase inhib
itor (Applied Biosystems, Foster City, California, USA) according to the 
manufacturers’ protocol. 

2.3. Primer design, polymerase chain reaction and gel electrophoresis 

To recover the complete coding TBEV genome, we followed the 
“Primal Scheme” as described in Quick et al. (2017). Briefly, 54 TBEV 

genomes representing the European TBEV genetic diversity were 
retrieved from NCBI GenBank and aligned using Muscle 3.8.425 (Edgar, 
2004). Primers were designed using the online resource “Primal 
Scheme” (Quick et al., 2017), with amplicon length set to 2000 nt and 
overlap to 200 nt (Table 1). PCR was performed following the protocol 
with the Q5 high fidelity polymerase enzyme described in Quick et al. 
(2017). 

2.4. Library preparation and high-throughput sequencing 

The PCR products were cleaned using 1.8x Ampure XP beads 
(Beckman Coulter Life Sciences, Indianapolis, Indiana) according to the 
Kapa HyperPlus Kit clean-up protocol (KAPA Biosystems, Roche, Basel, 
Switzerland). Library preparation and amplification were performed 
using KAPA HyperPlus (KAPA Biosystems, Roche, Basel, Switzerland) 
and sequenced using a MiSeq using 2 × 300 v3 (Illumina, San Diego, 
California), following to the manufacturers’ recommendations. 

2.5. High-throughput sequence data processing and assembly 

Sequencing reads from the separate products representing each 
strain were concatenated, reads smaller than 50 nt and poor quality 
reads were removed using Trim Galore v0.4.1 (a wrapper by Felix 
Krueger at the Babraham Institute using Cutadapt v1.18 (default quality 
trimming; Q < 30) (Martin, 2011) and FastQC (Simon Andrews also at 
the Babraham Institute)). Reads from each of the two strains were 
mapped to a library of TBEV sequences (Table S1) using BowTie2 
v2.3.4.3 (with the local alignment option) (Langmead and Salzberg, 
2012). Aligned reads were further processed using Samtools v1.9 (Li, 
2011) and weeSAM v1.4 (Centre for Virus Research, Glasgow, UK). The 
highest number of reads from the sequenced Hochosterwitz strain 
mapped to KrM 93 (HM535611.1), and the 1993/783 strain to NL/UH 
(MH021184.1), consequently these two were used as references for a 
second round of reference-based assembly using the same software. 
Consensus sequences of Hochosterwitz and 1993/783 were called from 

Table 1 
Primer pairs used to sequence the two tick-borne encephalitis virus strains 
Hochosterwitz and 1993/783.  

Primer name Position* Sequences (5’ to 3’) Primer pair 

JK_1_Forward 35-57 AGC ATT AGC AGC GGT TGG 
TTT G Primer pair 

1 
JK_1_Reverse 1998-1976 

GAC TGG GAT CCT ACA GGG 
CTT T 

JK_2_Forward 1742-1764 
CGG AGA CCA GAC TGG AGT 
GTT A Primer pair 

2 
JK_2_ Reverse 3770-3748 

AAC ACA GCC TGG AGT AGC 
ATC A 

JK_3_ Forward 3511-3533 TTG CGG ACA ACG GTG AAT 
TAC T Primer pair 

3 
JK_3_ Reverse 5343-5321 

GAA CCT GAC CCG TTT CCC ATT 
C 

JK_4_ Forward 5077-5099 
ATG AGA CCT ACG TCA GCA 
GCA T Primer pair 

4 JK_4_ Reverse 6918-6896 CAT CTC ATT GGC TGC AAC CAG 
T 

JK_5_Forward 6671-6693 CTT CGT CGT CCG GAC TTC AAT 
C Primer pair 

5 
JK_5_ Reverse 8660-8638 

GGC CAG CTG AGA AGT TTC 
ACA A 

JK_6_ Forward 8384-8406 
ACT TTT GGC TCG GTT TGG 
AGA C Primer pair 

6 JK_6_ Reverse 10261- 
10239 

CCC AGA TGT TCT TGG CCC ATT 
C 

JK_7_ Forward 9347-9369 GCA CAA ACA ATT GGC AAC 
CAC A Primer pair 

7 
JK_7_ Reverse 

11197- 
11175 

ATT TCT CTC TTC CCT CCT CCC 
G  

* The positions correspond to the consensus alignment of 54 TBEV genomes, 
representing European TBEV genetic diversity, retrieved from NCBI GenBank. 
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the resulting alignment using the built-in consensus caller in Geneious 
Prime v2020.1, calling bases matching at least 50% of the reads, only 
reads mapping the region corresponding to the amplified products 
JK1–JK7 were considered (entire region had >1000 coverage). 

2.6. Multiple sequence alignment and phylogenetic analysis 

Multiple sequence alignment was performed using Muscle 3.8.425 
(Edgar, 2004) on genomes described in (Table S1) in addition to one 
strain from Denmark (Andersen et al., 2019), and 14 sequences from 
Finland (Smura et al., 2019). 

Nucleotide model selection was performed in ModelFinder inte
grated in IQ-TREE 1.6.11 (Nguyen et al., 2015). The evolutionary his
tory of the complete polyprotein alignment was inferred using the 
maximum likelihood method with the GTR + F+I + G4 model of 
nucleotide substitution using IQ-TREE 1.6.11. Branch support expressed 
as Shimodaira–Hasegawa approximate likelihood-ratio test (SH-aLTR) 
and ultrafast bootstrap were both calculated by computing 1000 repli
cates. The Louping ill virus (GenBank accession number: NC_001809.1, 
strain 369/T2) a closely related flavivirus, was chosen as an outgroup. 

3. Results and discussion 

The use of amplicon sequencing with overlapping primers has pre
viously been documented as a successful approach to sequence the 
whole genome of clinical Zika virus samples (Quick et al., 2017). In this 
study, we designed seven TBEV-Eu primer pairs with fragments of 
approximately 2000 nt based on the protocol of Quick et al. (2017) and 
sequenced two TBEV-Eu strains: Hochosterwitz (GenBank accession 
number MT311861) and 1993/783 (GenBank accession number 
MT311860). Summary of the sequencing coverage and number of reads 
is given in Table S2. Since we were sequencing cultivated viruses with 
high viral load, we designed primers for amplification of longer frag
ments than Quick et al. (2017). The use of shorter amplicon length, such 
as 400 nt may be useful for samples with low viral load and/or degraded 
viral RNA. The amplicon approach allows for multiplexing of samples, 
and affordable sequencing of the low abundance virus RNA in tick and 
patient samples. 

Both the Hochosterwitz and the 1993/783 sequences contained 
10,871 nt, consisting of 76 nt 5’ NCR, 10,245 nt polyprotein, and 551 nt 
3’ NCR. The poly(A) tract was mostly deleted (or truncated) but had 
retained the same pattern of (A)3C(A)6 in both strains. This is identical 
to the short poly(A) tract retained in the Toro 2003 and Habo 2011 
strains. The role of the heterogenic poly(A) tracts in the life cycle of the 
virus is not clear. However, deep sequencing of Toro 2003 clones after 
passaging in cell culture or mouse brain revealed mutations in specific 
genomic regions, indicative of culture driven selection. In addition, 
mutations within the poly(A) tract are suggested to be an important 
virulence determinant for TBEV or related to virus cultivation. A longer 
sequence of the poly(A) tract seemed more common in virus cultivated 
in mice compared to cell culture (Asghar et al., 2016; Asghar et al., 2014; 
Mandl et al., 1991). Our sequence result of the NS5 region of 1993/783 
showed 100% identity with a previously published sequence of the same 
region (GenBank accession number KF991109). 

Phylogenetic analysis of the complete coding region of Hochos
terwitz and 1993/783 confirmed that both strains belong to the TBEV- 
Eu subtype (Fig. 1). The Hochosterwitz strain grouped together with 
two endemic South Korean strains, KrM 93 and KrM 213, both belonging 
to the TBEV-Eu subtype (Yun et al., 2011). This is surprising due to the 
geographical distance from Europe, and the observation that the 
neighbouring countries Japan and China mainly harbour the far eastern 
(TBEV-Fe) subtype (Ko et al., 2010; Yoshii et al., 2017). Migratory birds 
may have introduced TBEV-Eu strains into South Korea (Carpi et al., 
2008; Mlera and Bloom, 2018; Nuttall and Labuda, 2003; Waldenström 
et al., 2007). Tick populations with TBEV-Eu are found both in Western 
and Eastern Siberia of Russia (Demina et al., 2010). Considering the 
relatively short feeding time (five to nine days), it is possible that Ixodes 
ticks may have been acquired by migratory birds at stopovers or trans
ported non-stop over this long-distance (Klaus et al., 2016). There is also 
a possibility of rodent reservoirs being involved in virus distribution 
through international sea trade. 

The phylogenetic analysis demonstrated that the strain 1993/783 
clustered with both the NL/UH strain from the Netherlands, and with 
the strains from Slovenia (Ljubljana) and Finland (Isosaari) (Fig. 1). The 
strain 1993/783 and the Slovenia (Ljubljana) strain both originated 
from human cases. The Swedish patient (1993/783) with a moderate 

Fig. 1. Maximum likelihood tree showing the TBEV-Eu diversity. Node numbers represent bootstrap values (SH-aLRT support (%) / ultrafast bootstrap support (%)). 
Scale bar show number of nucleotide changes. Samples in this study show in red, TBEV-Eu reference strain Neudoerfl shown in blue. 
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TBE disease was presumably infected in the Kalmar municipality in 
Sweden (Haglund et al., 2003), while the strain from Slovenia (Ljubl
jana) originated from a severe human TBE case, most likely infected by 
aerosols while working with TBEV in the laboratory (Avsic-Zupanc 
et al., 1995). 

The various European TBEV strains do generally not display any 
geographical clustering with regards to their host origin. Strains from 
the Netherlands, Sweden and Finland belong to different clusters though 
they all originated from ticks. The 1993/783 strain from the patient did 
not cluster with the other Nordic strains originating from ticks, like the 
Finnish (Sipoo and Espoo) or the Swedish strains (Saringe, Torö, JP-296 
and JP-554) (Fig. 1). The overall genetic variation of TBEV does not 
seem to be host dependent since the strains isolated from patients cluster 
with the tick strains and vice versa (Fig. 1) (Grubaugh et al., 2019). We 
do not find any geographic clustering in this study, confirming previous 
studies suggesting a lack of a distinct phylogeographic pattern in 
TBEV-Eu strains (Heinze et al., 2012). 

We identified 52 and eight ambiguous nucleotide positions in the 
sequence reads of the Hochosterwitz and 1993/783 strains, respectively 
(Table S3). One of the ambiguous nucleotides, at position 1923, were 
primer induced. Exchange of amino acids with different biochemical 
properties affecting polarity or charge due to different folding or protein 
function, might be critical for the survival, transmission and replication 
of TBEV. The main ambiguous nucleotides can be explained by either 
PCR, sequencing induced errors, passage history in laboratory mice and 
mammalian cell lines or indicate sub-populations or quasispecies (Gru
baugh et al., 2019; Romanova et al., 2007). However, the same ampli
fication methods were used for both TBEV strains and, if the minority 
populations detected here were due to polymerase or sequencing errors, 
one might expect similar rates in both TBEV strains (Potapov and Ong, 
2017). It is difficult to explain the higher number of ambiguous sites in 
structural genes of Hochosterwitz strain compared to non-structural 
genes or 1993/783 strain by PCR-errors. We would expect that 
PCR-errors were more or less evenly distributed in the genome. 

In summary, the amplicon sequencing of two TBEV-Eu strains was 
successful. We retrieved and characterized the complete polyprotein 
sequence of Hochosterwitz and 1993/783 from Austria and Sweden, 
respectively. 

4. Conclusions 

Our study confirms a method for high-throughput sequencing of 
TBEV samples of high viral load giving high-molecular-weight cDNA 
with large overlapping amplicons. This offers an improved tool for TBEV 
sequencing and diagnostics of TBE. The multiplex PCR protocol has 
advantages as it reduces the cost of reagents and minimises the possi
bility of laboratory errors. Studying virus populations within naturally 
infected humans and ticks can lead to breakthrough in our under
standing of virus-host interactions and novel approaches for 
surveillance. 
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Paper IV, Supplementary table 1 

Table 1: Ambiguous nucleotides (<2%) for the virus strains Hochosterwitz and 1997/783 compared with their 
respective consensus genome 

Position 
Hochosterwitz* Region** Coverage  

Ambiguous 
nucleotides 

(variant frequency) 

Amino acid 
change 

21 NCR 20217 TC (25.1%) NCR 
23 NCR 20316 GA (25.1%) NCR 

186 Capsid 20367 TC (24.7%) Same 

250 Capsid 18414 CT (25.6%) LeuSer y 
(transition) 

276 Capsid 16853 TC (22.7%) Same 
300 Capsid 21299 AG (18.4%) Same 

334 Capsid 23295 GA (17.9%) ValIle r 
(transition) 

339 Capsid 23216 CT (4.8%) Same 
354 Capsid 23416 GA (2.4%) Same 

399 Capsid 18634 TC (21.8%) TyrHis y 
(transition) 

             522 Pr. membrane 17450 CT (25.7%) Same 

528 Pr. membrane 17159 TC (25.7%) Same 

562 Pr. membrane 16513 GT (25.3%) AlaSer k 
(transversion) 

759 Membrane 13305 TC (26.5%) Same 
783 Membrane 13527 AG (26.6%) Same 
831 Membrane 13398 CT (27.4%) Same 
855 Membrane 13343 AG (26.9%) Same 
858 Membrane 13344 CT (26.9%) Same 
897 Membrane 13302 T C (25.6%) Same 
898 Membrane 13275 TC (25.6%) Same 

1008 Envelope 13456 CT (27.1%) Same 
1044 Envelope 13174 GA (27.5%) Same 
1053 Envelope 13350 TC (27.2%) Same 
1077 Envelope 13266 TC (27.3%) Same 
1152 Envelope 13526 GA (27.6%) Same 
1167 Envelope 13692 AG (27.2%) Same 
1179 Envelope 13716 CT (27.5%) Same 
1329 Envelope 15049 AG (25.6%) Same 
1386 Envelope 15318 CT (26.8%) Same 
1407 Envelope 15785 CT (27.0%) Same 
1419 Envelope 15700 AT (26.3%) Same 
1435 Envelope 15651 TC (26.8%) Same 
1440 Envelope 15536 CT (26.9%) Same 
1464 Envelope 14891 TC (27.1%) Same 
1503 Envelope 14631 GA (28.6%) Same 
1506 Envelope 14659 CT (28.6%) Same 

1616 Envelope 15822 AC (25.9%) AsnThr m 
(transversion) 

1746 Envelope 55618 AG (25.4%) Same 
1767 Envelope 58355 GA (25.9%) Same 
1797 Envelope 61695 AG (25.8%) Same 
1821 Envelope 61892 TC (26.8%) Same 
1875 Envelope 57905 TC (27.4%) Same 
1887 Envelope 56154 CT (27.6%) Same 



1923 Envelope 50913 AG (46.1%) Same (reverse 
primer 1) 

3290 NS1 33633 GT (11.4%) GlyVal k 
(transversion) 

6569 NS4A 31961 TC (2.4%) ValAla y 
(transition) 

6633 NS4A 93546 GA (28.8%) Same 
6757 NS4A 134707 CT (3.7%) Same 

9711 NS5 107274 TA (2.6%) PheLeu w 
(transversion) 

10591 NCR 12771 GA (3.3%) NCR 
10650 NCR 15066 TC (3.5%) NCR 
10866 NCR 46679 CT (3.0%) NCR 

Position 
1993/783* Region** Coverage 

Ambiguous 
nucleotides 

(variant frequency) 

Amino acid 
change 

3042 NS1 24742 TC (25.6%) Same 

3148 NS1 27381 GA (5.0%) AlaThr r 
(transition) 

3290 NS1 37129 GT (6.7%) GlyVal k 
(transversion) 

6221 NS3 67624 CT (26.8%) ThrMet y 
(transition) 

8337 NS5 67537 TC (33.7%) Same 

8927 NS5 61799 GA (2.9%) ArgLys r 
(transition) 

10114 NS5 118538 GT (2.6%) AspTyr k 
(transversion) 

10865 NCR 5114 AG (10.0%) NCR 
The positions correspond to the respective strains consensus sequence. GenBank Accession number: MT311861.1 
and MT311860.1 
**NCR: non coding region, NS: non-structural proteins 
*** Leu= Leucine, Ser=Serine, Val=Valine, Ile=Isoleucine, Tyr=Tyrosine, His=Histidine, Ala=Alanine, 
Asn=Asparagine Thr= Threonine, Gly=Glycine, Met=Methionine, Arg= Arginine, Lys= Lysine, Phe= 
Phenylalanine, Asp= Aspartic Acid. Amino acids with different function are in bold 
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