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Abstract

This work presents a novel framework providing the abil-
ity to control an Unmanned Aerial System (UAS) while de-
tecting objects in real-time with visible detections, contain-
ing class names, bounding boxes, and confidence scores,
in a changeable high-fidelity sea simulation environment,
where the major attributes like the number of human vic-
tims and debris floating, ocean waves and shades, weather
conditions such as rain, snow, and fog, sun brightness and
intensity, camera exposure and brightness can easily be ma-
nipulated. Developed using Unreal Engine, Microsoft Air-
Sim, and Robot Operating System (ROS), the framework
was firstly used to find the best possible configuration of
the UAS flight altitude, and camera brightness with high
average prediction confidence of human victim detection,
and then only autonomous real-time test missions were car-
ried out to calculate the accuracies of two pretrained You
Only Look Once Version 7 (YOLOv7) models: YOLOv7
retrained on SeaDronesSee Dataset (YOLOv7-SDS) and
YOLOv7 originally trained on Microsoft COCO Dataset
(YOLOv7-COCO), which resulted in high values of 97.8%
and 93.79%, respectively. Furthermore, it is proposed that
the framework developed in this study can be reverse en-
gineered for autonomous real-time training with automatic
ground-truth labeling of the images from the gaming en-
gine that already has all the details of all objects placed in
the environment for rendering them onto the screen. This
is required to be done to avoid the cumbersome and time-
consuming manual labeling of large amount of synthetic
data that can be extracted using this framework which could
be a groundbreaking achievement in the field of maritime
computer vision.

1. Introduction
Unforeseeable in nature, disasters involving ships at sea

not only inflict costly economic and environmental damage,
but also jeopardize the invaluable life of crew and passen-
gers onboard. According to [20], there were a total of 892
shipping losses worldwide between 2012 to 2021 with 54
total mishaps alone in 2021. Even though the total number
of global vessel hazards declined by around 57% over the
decade, it is still a substantial amount with each case neces-
sitating prompt and costly deployment of Search and Res-
cue (SAR) teams to rapidly curb down the resulting harm.
And, naturally, the primary focus of all rescue missions is
to first scour the inhospitable post-disaster region for vic-
tims and safeguard their lives. All this substantiates the re-
search interest to effectively and efficiently utilize the exist-
ing cutting-edge scientific innovations to alleviate the threat
on human life emanating from unpredictable maritime acci-
dents.

However, the abundance of all the applicable contem-
porary technologies introduces perplexity in deciding the
perfect combination between them for optimum perfor-
mance. In general, almost all major research conundrums
are resolved with the thorough comprehension of the prob-
lem domain and taking inspirations from the phenomenon
already occurring in nature. On breakdown of present
real-life search and rescue operations, intuitively most of
the associated expense including time and money is at-
tributed to the transportation of human first responders in
boats, helicopters, and aircrafts [16]. In addition, the in-
volvement of humans, pursuant to [3], brings upon var-
ious errors due to estimation biases of different physical
quantities such as under-estimation of horizontal distance,
over-estimation of height when looking down and under-
estimation when looking up. These drawbacks can be over-
come using Unmanned Aerial Systems (UAS) that have
small-size, lower operational cost, flexible aerial maneu-
verability, wireless communication, and mathematical com-
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putation ability. UAS equipped with simple RGB and/or
thermal cameras and either onboard or cloud-based pro-
cessing capability which facilitates the use of deep convolu-
tional neural networks (CNN) based object detection mod-
els, as discussed by the authors in [25], [27], [18], [14],
[11] and [17], can best mimic the action of rescue person-
nel flying in helicopters or aircrafts for finding the victims
in hazardous territories, making the rescue process more ef-
ficient. Furthermore, among different modern deep learn-
ing based object detection models [26], the state-of-the-art
YOLOv7 that transcends all other recognized object detec-
tors in speed and accuracy [23] is here considered the most
suitable one because in critical real-time SAR missions both
response time and accuracy are equally important for sav-
ing human life. Therefore, the starting scientific dilemma
is now narrowed down to the paramount research question
that forms the main basis for this work which is: How to
find the best possible configurations of the UAS and state-
of-the-art object detection models for working together in
real-time with optimal accuracy of victims detection at an
erratic post-disaster ship scenario?

With this question in mind, simulation seems to be the
only plausible path forward initially because of the risk,
price, time, and effort involved to set up the physical test en-
vironment at sea with real persons and UAS with cameras,
not to mention the absurd complications in the re-enactment
of the alternating scenario in the aftermath of an actual ship
accident. Moreover, the general prerequisites of the sim-
ulation platform to be used can also be deduced from the
research question as: (1) It should be able to produce de-
tailed reproduction of a disaster-struck ship surroundings
with high quality of graphics; (2) It should allow the replica
of UAS with various sensors to be spawned and controlled
in the fabricated environment; (3) It should have an inter-
face to a mechanism capable to control as well as read and
process sensor data from a real UAS, and execute object
detection models, enabling transferability to real-world ap-
plications; and (4) It should have the ability to pass a contin-
uous image stream from the replicated UAS that can be fed
as input to object detection models for real-time processing.

Unreal Engine 4 [7] with the integration of AirSim [19],
and Robot Operating System (ROS) [21], on the basis of
[5], [2], [15], [12] and [24], has the potential to fulfill all
the requirements of the simulation platform for this work
as mentioned above. But when the requirements are actu-
ally materialized with the combination of Unreal Engine,
AirSim, ROS, and Object Detection Models, a novel frame-
work originates that answers the research question.

Therefore, this work follows the steps according to the
requirements to firstly develop the framework. Then, using
this framework, the object detection models are evaluated
to find the finest configurations for achieving high accuracy
of victim detection in real-time.

Hence, the main contributions of this paper are summa-
rized as:

• The creation of a high-fidelity changeable sea simu-
lation environment, where the deep-rooted challenges
in the maritime computer vision such as the dif-
ferent light conditions, altitudes, sea colors, buoy-
ancy, objects movement, camera exposures, bright-
ness, weather, size of the objects, among many oth-
ers, can be easily controlled. This also allows to inex-
haustibly generate synthetic data for training new mod-
els.

• The development of a framework with the constructed
simulation environment to evaluate the performance of
the cutting-edge object detection models with the input
images from the UAS in real-time autonomous SAR
missions, which can directly be transferred to real-
world UAS applications.

• The proposal to reverse engineer the created frame-
work for autonomous real-time training of object de-
tection models with the automatic ground-truth label-
ing of the desired objects in the images from the UAS
which could be a breakthrough in maritime computer
vision.

2. Development of the Novel Framework

This section describes the overall steps carried out based
on the requirements of the simulation platform mentioned
in the previous section.

2.1. Virtual Environment

In this section, all the steps to build the simulated envi-
ronment will be presented.

The simulation environment is composed of a oil tanker,
objects and people in water, and a small boat where the
drones are deployed from.

In Figure 1, the environment is presented, highlighting
the oil tanker. Another angle of the environment, highlight-
ing the objects and people can be seen in Figure 2.

Figure 1: Simulated environment from oil tanker side.
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Figure 2: Simulated environment from objects side.

2.1.1 Environment Project

The EnvironmentProject [6] is an open source environment
simulation project for Unreal Engine 4. It is the continu-
ation of the OceanProject, and has many features, such as
ocean simulation, sky simulation, buoyancy, time and fish
plugins. In this work, the simulation environment was built
on top of an existing example world that is made available
by the EnvironmentProject.

Two important configurations that are only present when
building sea environments are the color of the ocean and
the waves. It is possible to choose a darker or brighter
ocean or more blue or green, for example. Regarding the
waves, it is possible to choose the height, direction, among
others, to make a more stormy or calm sea. In the Environ-
mentProject world, these configurations are in the Blueprint
”BP Ocean”. Additionally, the various environmental as-
pects like sunlight intensity, brightness, atmospheric light,
fog, and others were present in the blueprint ”BP Sky”.

In addition, it is possible to configure weather parameters
such as wind, rain, among others, which are also present in
any world of Unreal Engine 4, but have their own plugin in
the EnvironmentProject.

2.1.2 Post-Disaster Oil Tanker

The first element that was added in the environment was a
post disaster ship.

Figure 3: Post Disaster Oil Tanker.

Unreal Engine 4 Marketplace has much content avail-
able for download, both free and paid. The content that
was chosen for this work is called ”Post-Apocalyptic Oil
Tanker” and was made available for purchase in 2017 by
the content creator ”mikkotahtinen”. An illustration of the
ship can be seen in Figure 3. It is important to note that the
content that is downloaded is composed by many separate
blueprints (Figure 4). The creator of the world needed to
build the oil tanker with the desired content. One advantage
was that in the content there were many other interesting ob-
jects such as containers, that were added in the environment
developed by this work.

Figure 4: Blueprints available in the ”Post-Apocalyptic Oil
Tanker” product.

2.1.3 People

As the goal of this proposed framework was to provide a
realistic environment, it was required to populate it with
people. This work focused on including people treading
water to simulate victims in a sea disaster. However, it is
also possible to include people walking in the ship or swim-
ming. Many characters and animations can be downloaded
for free at Mixamo [1] by Adobe.

In this work, around six different characters were used,
all of them with the animation of treading water.

After downloading the animation, the physics aspects
must be properly configured. The two configurations that
allow the person to properly tread water and be affected
by the water movement are to enable collision and choose
the ”SK Mannequin PhysicsAsset” as the ”Physics Asset
Override”. This was implemented with the proper under-
standing of similarity in the bone structure and hierarchy of
the ”SK Mannequin” Asset which is the default third person
character of Unreal Engine, and the Mixamo character. This
also allows the manual control of the Mixamo characters us-
ing the physics control capability of the ”SK Mannequin”.

2.1.4 Buoyancy Configuration

One of the main aspects of this work is to have objects
which are affected by the stream and waves of the envi-
ronment. Therefore, the buoyancy must be correctly con-
figured, otherwise, the objects would just be with a static
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position, frozen in the 3D space, without following the wa-
ter movement.

To configure the buoyancy, first the ”BuoyantForce”
component was added to the Blueprint, then, the buoyancy
points were decided with the assistance of the arrow tool.
Therefore, it is possible to know the exact position to add
the buoyancy in the ”Test Points” configuration element.
For the swimmer, three buoyancy points were added. This
varies for different objects.

Figure 5: Buoyancy points configuration.

Finally, Figure 6 presents the three test points which
were included for the swimmer blueprint.

Figure 6: Buoyancy points placement.

It is important to note that the same procedure must be
performed for all objects placed on the sea, such as the oil
tanker, containers,oil barrels, buoys, among others. Never-
theless, the buoyancy points should be added to only one
blueprint of any object, and then the same object can be
easily replicated with the same settings.

2.1.5 Other aspects

In addition, buoys and other objects, such as containers and
oil barrels with buoyancy added following the same proce-
dure as people, were placed as seen in Figure 7.

2.2. Initial Setup of the UAS

Firstly, the AirSim plugin was integrated into the cus-
tom Unreal environment following the procedures as ex-
plained in the AirSim documentation [13]. All settings, ex-
cept for camera, were kept as default. A single multirotor
UAS named ”Drone 1” was spawned in the environment

Figure 7: Top view with objects.

with ”PlayerStart” placed on top of a rescue fishing boat as
shown in Figure 8.

Figure 8: Initial UAS Setup in the Virtual Environment.

The camera settings were modified facilitating the UAS
to have a single camera of resolution 640x640, which is the
YOLOv7 model standard image resolution, field of view
(FOV) of 90 degrees, and gimbal enabled with perfect sta-
bilization of 1 and pitch of -90 degrees making the camera
face vertically downward. In addition, the sensors like IMU,
Magnetometer, GPS, and Barometer were also enabled au-
tomatically if the settings were left unchanged for the Mul-
tirotor sim mode as mentioned in the AirSim documentation
[13].

Furthermore, complying with the directives specified,
Airsim ROS wrapper was setup for Noetic version of
ROS inside Windows Sub-system for Linux (WSL) 2 with
Ubuntu 20.04 as Linux distribution on a Windows 10
computer having NVIDIA GeForce RTX 2080 Ti Graph-
ical Processing Unit (GPU). It primarily contained two
nodes among which the mostly used first node named ”air-
sim node” was a wrapper over AirSim’s multirotor C++
client library that was comprised of various publishers, sub-
scribers, services, and parameters.
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2.3. Manual Control of the UAS

Next, using the ”Twist” ROS message type, the veloc-
ity command subscriber topic from the wrapper allowed the
movement of the UAS in all directions with the input of
both linear and angular velocities in x, y, and z coordinates.
For utilizing this feature to manually move the UAS in a
desired way in the simulation environment, a ROS package
named ”AS RoS Teleop” was used that linked the different
keyboard keys with separate control commands to publish
velocity twist messages in the chosen topic.

2.4. Implementation of YOLOv7 in ROS

Subsequently, the effort of implementing YOLOv7 in
ROS was eased with the ready-made ROS package titled
”yolov7 ros” which was a ROS wrapper built over the orig-
inal framework by the official developers of YOLOv7 [23].
After that, the weights of the chosen pretained YOLOv7
models were downloaded, and the class names for the re-
spective models in the required txt file format were saved in
separate folders. Then, the path to the model weights, class
names, and the image topic were specified accordingly in
the launch file to initiate the node for the real-time detection
and visualization of the detections along with the bounding
boxes, class names, and confidence scores using the desired
YOLOv7 model one at a time.

3. Evaluation of Object Detection Models

This section explains the different procedures adopted to
evaluate the performance of the object detection models for
real-time detection of human victims in autonomous UAS
missions.

3.1. Selection of Pretained YOLOv7 Models on Dif-
ferent Datasets for Evaluation

As this study was in its early phase, it was decided to
utilize the ready-to-use YOLOv7 models that were already
trained on datasets containing people because the focus of
this study was to detect human victims with high accuracy
in the post-disaster scenarios.

The first obvious choice was the originally trained
YOLOv7 model on Microsoft COCO (Common Objects in
Context) [10] which was a large-scale dataset developed for
object detection, classification and segmentation with 91 la-
beled objects constituting also people designated as ”per-
son” class. Due to the core nature of any Deep CNN based
models including YOLOv7 to learn patterns in the training
image using shifting convolution operations, it was impor-
tant to assess the type of human images in this dataset. So
on further scrutiny, it was found that the majority of the im-
ages were taken in canonical perspective [8] with different
viewing angles.

Secondly, in search of datasets specially concentrat-
ing on the marine environment and aerial images, SeaD-
ronesSee [22] was found, which was also a large-scale
dataset from different aerial perspectives developed with fo-
cus on SAR operations on the sea using UAS. This was
completely relevant for this work. In addition, the SeaD-
ronesSee team had also trained YOLOv7 in their own
dataset, and made the model freely available in project
GitHub [9]. The output labels in this model were swim-
mer (people floating with stretched hands and legs), boat,
jetski, buoy, and life saving appliance (life jacket/lifebelt).

3.2. Experimentation with Various Configurations

The main beauty of the developed framework was that it
enabled numerous experiments with minimal efforts which
otherwise would have been either impossible or extremely
difficult in real-life.

However, to make the study more focused in accordance
with all other experimental studies, the variables to be con-
sidered in this work were also reduced from the plethora of
the manipulable variables. Thus, keeping constant the envi-
ronmental factors such as dark blue ocean shade, low wave
amplitude and velocity, normal level of atmospheric and
other lights, only the UAS position, especially height, and
camera brightness was manipulated. The camera brightness
was altered by changing the post-process settings present
inside the camera component of the main parent blueprint of
AirSim Camera named ”BP PIPCAMERA”. Also, to fur-
ther reduce the variables involved in this study, the camera
brightness was changed as very low, low, normal, high, and
very high. When the environment is executed in AirSim
Game Mode, the images rendered on the screen are from
the external camera which is also a child of the parent Air-
Sim Camera. Hence, when the brightness of the camera was
changed,it affected the image displayed on the viewport as
seen in 10.

Therefore, the starting experiment was carried out by
freely traversing the UAS in the environment with differ-
ent camera brightness and YOLOv7 models. On doing so,
some interesting phenomenon of human victim detection
were observed for both the models.

With the YOLOv7-SDS model selected, all the objects
were detected as ”boat” class in low or normal camera
brightness for all heights of the UAS. But when the bright-
ness was high, the model started to detect floating peo-
ple with hands and legs moving as ”swimmers” whereas
other objects still as ”boat”. Meanwhile, with the YOLOv7-
COCO model chosen, the human buoyant victims were cor-
rectly classified as ”person” class mostly in low heights with
low or normal brightness.

For concretizing these observations, a separate test area
with just the imported six characters was created as shown
in Figure 9.
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Figure 9: Isolated test region with just humans.

After that, the UAS was manually flown to the centre of
the testing region, and slowly only the altitude of the UAS
was elevated from low to high and vice versa with differ-
ent camera brightness each time for both YOLOv7-SDS and
YOLOv7-COCO models. Concurrently, the detections with
bounding boxes and confidence scores, the average predic-
tion confidences and the altitude were closely monitored as
shown in Figure 10.

Figure 10: Illustration of the experimental procedures fol-
lowed in the testing region.

Finally, after exhaustive trials it was found that the
YOLOv7-SDS model had the highest average prediction
confidence of detecting human victims as ”swimmers” class
at 8 meters from the sea level with a very high camera
brightness, whereas the the YOLOv7-COCO model had the
highest average prediction confidence of detecting human
victims as ”person” class at 2 meters from the sea level with
low camera brightness.

3.3. Path Planning for the Autonomous Mission

As the primary objective of this study was to evaluate the
performance of the models for victim detection by skipping
the arduous process of deploying the UAS in actual post-
disaster scenarios with a simulated one, there was a need
to replicate the mission that would have been employed in
real-life, which could be used to gather the test images after
detection by the models for empirical accuracy calculation.

Moreover, the predetermination of the specific height
and camera settings of the UAS also laid the foundation for

the autonomous surveillance mission. Using the distributed
node processing capability of the ROS framework, the re-
sponsibilities of taking the UAS to the appropriate location
in the environment, and then covering the desired locality
fully were assigned to separate nodes. The point-to-point
transfer of the UAS was implemented by modifying the sec-
ond node present in the AirSim ROS wrapper named ”Sim-
ple PID Controller Node” from service node into an action
server node waiting for the position goal asynchronously
where the controller parameters proportional gain (K p) and
derivative gain (K d) were set after heuristic tuning to 0.5,
and 2 respectively.

For full coverage of the desired post-disaster region by
the UAS, the boustrophedon path [4], as shown in Figure
11, was deemed to be the most straightforward and effec-
tive option for this work, where the width in each step was
selected to be:

width = 2× ZUAS × tan (
FOV

2
), (1)

where ZUAS is the altitude of the UAS and FOV is the field
of view of the camera.

Figure 11: Boustrophedon Path.

Here, the boustrophedon path was implemented in a
node where the odometry sensor topic was subscribed for
current UAS position and the required velocities were pub-
lished to the velocity command topic in world frame.

Furthermore, an additional path planner node was cre-
ated for the autonomous systematic execution of both the
nodes.

3.4. Final Mission Execution

Lastly, the autonomous reconnaissance operations were
carried out, where the drone independently takes off, goes
to the specified starting point of the desired area, covers the
area for predefined mission time, and returns back to land in
the initial position. All these actions were executed by the
collaboration between the different nodes discussed in the
previous sections as shown in Figure 12.

Also, using the ”image view” package in ROS, the real-
time images with detections published during the mission
by the ”yolov7 ros” node in the visualization topic were ob-
served and some chosen images at strategic locations con-
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Figure 12: Collaboration between the nodes during the mis-
sion obtained using ”rqt graph”.

taining people were saved by simple right-click of mouse-
button for both the models which ensured proper represen-
tative sampling for statistical calculation. This was mainly
done to limit the number of images gathered for numeri-
cal testing due to high frame rate without losing substantial
features from the data.

4. Results and Discussion
This section presents the results from the statistical met-

rics calculation of the selected output test images from the
real-time detection models along with the relevant discus-
sions.

Table 1 illustrates the flight altitude and camera bright-
ness of the UAS for each model in addition to the number of
test images gathered for evaluation. The number of images
sampled was lower when using the YOLOv7-SDS because
the flight elevation was higher, and as each time the altitude
is doubled, the area covered is quadrupled, so less images
were needed for the representative analysis of the same area.

Model Altitude Brightness Images
YOLOv7-COCO 2 m Low 130
YOLOv7-SDS 8 m Very High 26

Table 1: Overview of the datasets collected and assessed.

The confusion matrix of the detections in the YOLOv7-
COCO model can be seen in Table 2. There were 129 ob-
jects detected. Of these 129 objects, 110 were correctly de-
tected as ”person”, 2 were incorrectly classified as another
object and 6 people were not detected at all. Therefore, the
number of false negatives is equal to 8. That gives an ac-
curacy of 93.79%. Among the correctly detected people,
the average confidence level was of 84%, the minimum was
27% and the maximum 96%.

The confusion matrix of the detections in the YOLO-
SDS model can be seen in Table 3. There were 142 objects
detected. Of these 142 objects, 36 were correctly detected
as swimmers, there were 1 incorrectly classified as other
object and 2 swimmers were not detected at all. Therefore,

Predicted
Person Not Person

Actual Person 110 8
Not Person 0 11

Table 2: Confusion Matrix of the detections in the collected
images for the Yolov7 model trained on the COCO2017
dataset (YOLOv7-COCO).

the number of false negatives is equal to 3. That gives an ac-
curacy of 97.8%. Among the correctly detected swimmers,
the average confidence level was of 69%, the minimum was
38% and the maximum 82%.

Predicted
Swimmer Not Swimmer

Actual Swimmer 36 3
Not Swimmer 0 103

Table 3: Confusion Matrix of the detections in the collected
images for the Yolov7 model trained on the SeaDronesSee
dataset (YOLOv7-SDS).

Now, the first point to be discussed is the very fact that
the models trained on real images were able to detect the
synthetic objects with high accuracies provides a strong
proof-of-concept for the interchangeability of real and vir-
tual SAR missions, justifying the importance of this work.

Secondly, although the accuracies achieved by both
models were high, there was a huge difference in the na-
ture of the input images fed into the models. This inspired
further contemplation on the working of the deep CNN it-
self. As, in deep learning the patterns in pixel level from
the input images are encoded into the model, so the behav-
ior of the model is dependent on the normalized pixel in-
tensities in the three RGB color channels which is actually
the numerical input into the model. With this comprehen-
sion, the results from the YOLOv7-model, as seen in Fig-
ure 14, made complete sense because the patterns in train-
ing images of MS COCO Dataset [10] matched with the
pixel-level patterns in the input images due to the adjusted
flight altitude of the UAS. But, the result from the YOLOv7-
SDS, as observed in Figure 13, was a surprising discovery
which was only possible due to the rigorous experiments
with various configurations of altitude and camera settings
allowed by this framework. Comparing this result to the im-
ages with people in the SeaDronesSee Dataset [22], it could
only be hypothesized that the matching of the pixel-level
pattern of a human floating in water with stretched hands
and legs along with high uniform intensities of the bright
pixels triggered the neural network to output ”swimmer”
class. This intriguing phenomena needs more research and
can be particularly interesting for training with high altitude
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or satellite images.

Figure 13: Detection with YOLOv7-SDS in mission.

Lastly, another captivating observation highlighting the
significance of real-time detection in SAR is that with a
high frame rate of input images, the footprint underneath
the UAS is always overlapping with the UAS moving for-
ward only small distance in each iteration resulting in multi-
ple chances of detection. So, even if a victim is not detected
in one image, there is still a high probability that it might
have been detected in the earlier or will be detected in the
subsequent image which is clearly exemplified by Figure
14. This also results in the actual false omission rate (FOR)
being lower than what was observed with the test images.

(a) Frame 40 (b) Frame 41

Figure 14: Detections with YOLOv7-COCO in mission.

5. Conclusion
In this work, a framework was developed using Un-

real Engine, Microsoft AirSim, and ROS that enabled the
control of the UAS in a desired way based on velocity
commands while detecting objects in an alternating post-
disaster ship simulation environment. After that, two pre-
tained YOLOv7 models were selected: YOLOv7-SDS and
YOLOv7-COCO. Then, using the created framework, ex-
tensive manual testing was implemented by changing the
UAS altitude along with the camera brightness to discover

the best possible combination with high average prediction
confidence of detecting human victims naturally floating in
water with moving hands and legs. This allowed to plan
and implement autonomous UAS missions using the same
framework yielding high accuracies of real-time victim de-
tection calculated as 97.8% for YOLOv7-SDS when the
UAS was deployed in an altitude of 8m with high camera
brightness, and 93.79% for YOLOv7-COCO when the UAS
was employed at a height of 2m from the sea-level with
lower camera brightness.

Furthermore, the developed framework has immense po-
tentiality for further work. Due to the limitation of time and
difficulty of accommodating all the things in a single paper,
only few experiments were carried out in this study. But
extensive experimentations will be performed in near future
with various object detection models in different configu-
rations accompanied by the implementation of the findings
physically with a real UAS. Additionally, other researchers
are also encouraged to utilize the detailed steps of repro-
ducing the framework fabricated in this work to carry out
experiments according to their respective needs.

Moreover, a small modification in the research question
proposed in this work to ”How to make any configuration
of the UAS and object detection models to work together
in real-time with optimal accuracy of detecting any desired
object in a dynamic marine environment?” suddenly demys-
tifies the true potential of this framework. By reverse engi-
neering the images in the UAS camera to have the precise
automatic ground truth labeling from the gaming engine,
the same framework has the capability of training new ob-
ject detection models in real-time in different imaginable
configurations for any thinkable objects overcoming all the
traditional challenges in maritime computer vision.
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