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A B S T R A C T

In order to address the issues that arise in modern power systems, such as system dynamics, stability, control,
efficiency, reliability, economy, planning and policy, and so on, efforts have been made to develop new tools and
techniques, components, methodologies, and scientific innovations in a variety of fields. These efforts have been
undertaken to address these issues. The term “digital twin” (DT) refers to one of the most reliable and rapidly
developing technologies that have recently been incorporated into a variety of applications, platforms, and real-
time projects. The authors of this study offered a scoping review of DT technologies with a primary emphasis on
power systems. It has been established that the underlying notion behind this technology, as well as its operating
principle, types, communication channels and protocols, and standards, have all been thoroughly examined. In
addition, the possibility of integrating other technologies with DT has also been considered, along with the po-
tential benefits of doing so and the potential difficulties that may arise. Based on the information gained from the
current projects, the finished projects, the research publications, as well as the research and industry insights, a
critical discussion has been made.
1. Introduction

1.1. Background

With the introduction of rapidly growing power electronic converter
(PEC)-based technologies and information and communication technol-
ogies (ICTs), the modern power system is adopting a significant trans-
formation in the generation, transmission, and distribution processes, as
well as in utilization levels. This is being done in order to tackle the
associated problems such as cost, reliability, system dynamics, stability,
control, efficiency, security, and so on [1]. It is presumed that the pow-
er/energy systems will be able to handle the difficulties that have been
described as a result of these changes; nevertheless, these trans-
formations have brought complications with their operation, trans-
mission, storage, and even security concerns [2]. The contemporary
power system is a complex system, and appropriate tools and method-
ologies are necessary to assess the power/energy systems both during the
design phases and the operation stages.

To handle the difficulties that come up in contemporary power sys-
tems, efforts have been made to create new tools and methods, compo-
nents, methodologies, and scientific inventions in a range of domains.
.M. Yassin).
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These innovations have been produced in an attempt to meet the issues
that come up in modern power systems. There are several tools and
techniques that have been developed using the most up-to-date concepts
and that cover the majority of the ground in terms of research, imple-
mentation, and operation while delivering satisfactory results. Machine
learning (ML), blockchain technology, the internet of things (IoT), big
data (BD), and cyber-physical systems (CPS) are a few of the prominent
techniques that have been combined with power system research and
implementations, which have been widely employed in the last decade.
All of these technologies give chances for the integration of the physical
world and the digital world, which is an unavoidable development that
must be addressed to meet the expanding complexity and high market
expectations [3,4].

The digital economy and internet applications are gradually taking
over various sectors. Numerous significant strategic actors will step up
their efforts in search of novel solutions as a result of the need to enhance
consumer engagement, product distribution, and operational efficiency
in retail, service, and other sectors [5,6]. Numerous variables may
contribute to lengthier analysis times and slower digital rollout timelines
across numerous industries. The conversion point from data into useable
information still appears to be more manual than automated, despite the
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Fig. 1. Trend on DT-based research works (2014–22/05/2023).
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fact that a digital strategy is in place and a team of professionals is being
organized to tackle these problems. These issues include but are not
limited to, the fact that the data is dispersed across the business, is of low
quality, and lacks context (i.e., the capacity to translate and correlate the
available data) [7,8]. With the fast expansion, various problems occur,
particularly in the energy industry. The penetration of intermittent
renewable energy sources is one example of this difficulty, as is the high
estimated future energy consumption (which is expected to rise by 50%
by 2050), the deployment of new equipment and controllers, and
financial and regulatory restrictions [9,10]. These difficulties are causing
the global energy business to relentlessly look for greener, more
dependable, cost-effective, self-healing, and more secure energy opera-
tions. One possible answer to these problems is to use “digital twin” DT
technology to help power systems switch quickly and make them more
flexible [8,9].

1.2. Literature review

The necessity to access and examine satellites after they had been
launched into orbit led NASA to use the word “Digital Twin” for the first
time in 1970 [11]. Dr. Michael Grieves first proposed the DT concept in
2002 [6,12]. By including “an integrated multiphysics, multiscale,
probabilistic simulation of an as-built vehicle or system that uses the best
available physical models, sensor updates, fleet history, etc., to mirror the
life of its corresponding flying twin”, Dr. Grieves' presentation went
beyond the traditional Product Life-cycle Management (PLM) model
[13]. This indicates that the currently used methodologies (i.e., simula-
tion and modeling) need to take a more comprehensive approach by
obtaining real-time feedback from the physical system, including it in the
simulation, processing the data, and feeding the system with the newly
processed data. Since Dr. Greives's presentation, the work in the DT
sector has advanced, concentrating on this two-way relationship between
the simulation and physical components [14–17]. DT technology is now a
hot topic in research and is recognized by Gartner, Inc., a leading
worldwide provider of research and consulting services [18,19], as one of
the most touted technologies of the 2020s. A comprehensive analysis of
the databases (Scopus, ScienceDirect, Google Scholar, and Web of Sci-
ence) shows that there is still debate about a single definition of DT
technology. In Ref. [5], six distinct definitions of DT are provided, while
[20] has sixteen further meanings. The precise definition, however, de-
pends on the application area and shares similar key terms and aims (a
virtual equivalent or a dynamic digital representation of a genuine sys-
tem) [21]. Here are two examples of “generic” and “accurate” definitions
to provide a better idea of what they mean [22] have defined the DT as “a
digital representation of an active unique product (a real device, object,
machine, service, or intangible asset) or unique product-service system (a
system consisting of a product and a related service) that comprises its
selected characteristics, properties, conditions, and behaviors by means
of models, information, and data within a single or even distributed
computing environment.” On the flip side, [23] has presented
twenty-two different definitions with a focus on DT concepts on process
heat, energy, and decarbonization. A more specific definition in the
context of power systems derived from the literature list would be: in
power systems, DT is a visual copy of the power grid used to monitor and
simulate the power system to maximize the components' performance,
reduce safety risks, predict power outages, optimize the economy, and
comply with requirements [24–26].

In the last two decades, DT has been implemented in several in-
dustries such as manufacturing [27,28], smart cities and healthcare [29,
30], agriculture and smart farming [31], automobiles and smart
manufacturing [32], 3D printing [33], product design and development
[34,35], and several others. On the contrary, in the power system and
energy industry, the implementation of DT is still limited [9,23,36,37].
Although the implementation of DT is still in its infancy stage, the
research platforms are showing steady growth. A search of the keyword
‘‘digital twin’’ and “digital twins” on Scopus (limited to abstract, title,
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and keywords) for the last ten years (2014–22/05/2023) revealed a total
of 14,180 documents on several research fields, as shown by Fig. 1 (a). As
evidenced by Fig. 1 (a), the publication rate has been exponentially on
the rise in the last five years. In 2019, the number of publications has
tripled and has had a steady increase of around 70% in 2020 and 2021.
By May 22, the number of publications for 2023 is on track with 1,688
publications. When the publications are analyzed by the origin countries,
China is identified as the leader. For simplicity, the authors just took the
top ten countries that publish scientific papers on DT. After China, Ger-
many, the USA, the UK, and Italy are the leading countries that contribute
publications on DT technology. The overall distribution of these ten
countries is given in Fig. 1 (b). Similarly, Fig. 1 (c) provides the distri-
bution of the publications concerning the subject area, which indicates
that most of the DT-based publications were based on the engineering
domain. The main concern of the authors is power or/and energy
application; the focus area is energy. When the data is categorized for this
domain, the application of DT technologies seems to be increasing
significantly, as shown in Fig. 1(d). In this study, the author considered
the publications which are directly inclined with energy; 1,681 publi-
cations related to energy are considered out of the 14,180 documents.

1.3. Research gap and contributions

In the realm of research and development, the concept of DT has
emerged as a significant and promising tool, capturing the attention of
both academia and industry. However, despite its potential, the devel-
opment of DT technology is still in its nascent stages. A lack of stan-
dardized definitions, protocols, and implementation frameworks persists
[38]. Furthermore, existing studies on DT have revealed a deficiency in



Fig. 2. The adopted process of systematic literature review.
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comprehensive and in-depth investigations, particularly in terms of
ideas, technologies, and industrial applications. Although DT's use is
currently limited, its growth is evident, particularly within the power
system research and development field, demanding careful exploration in
the near future.

With a specific focus on power and energy systems, the authors of this
manuscript aim to examine and utilize DT technology. The incorporation
of a growing proportion of PEC into the grid adds complexity to today's
power infrastructure. This integration, among other factors, necessitates
the modification of power system operational principles to align with the
dynamics and characteristics of RES. The authors express concern about
the future direction and safety levels of power system operation. This
article primarily delves into the underlying concept of DT, exploring its
various types, operating principles, communication channels, protocols,
and industry standards. Additionally, it contemplates the feasibility and
implications of combining DT with other technologies. Through detailed
analysis, the paper offers the following key contributions:

a) An up-to-date overview of DT-based research, categorized by date,
country, and research area. The focus lies specifically on the appli-
cation of DT technologies within energy and power systems,
providing insights into the current status and emerging trends based
on comprehensive research database analysis.

b) In-depth exploration of the working principles, communication
channels, protocols, and standards of DT technologies within power
systems. The study investigates the importance and potential inte-
gration of concepts such as the Internet of Things (IoT), Big Data (BD),
Cyber-Physical Systems (CPS), and Machine Learning (ML).

c) A critical analysis, leveraging the authors' expertise and an extensive
review of relevant literature, to discuss and examine the various as-
pects of DT technologies.

1.4. Paper organization

In the beginning, this paper discusses the problems and significance
of modern energy/power systems as well as the difficulties associated
with system dynamics, stability, control, efficiency, dependability, eco-
nomics, planning and policy, and other factors. The processes used to
conduct this assessment are thoroughly described in section 2. Section 3
introduces the core idea of DT technologies with an emphasis on the
power system. This section has covered several DT technology categories
and how they relate to other ideas like the IoT, BD, CPS, ML, and stan-
dards and regulations. In Section 4, a thorough explanation of previous
research and potential future applications of DT technologies on the
power system has been covered. Section 5 summarizes the challenges and
research gaps of DT within the power systems domain based on the
research material. Based on the research materials that were used and the
authors' expertise, a critical analysis has been conducted highlighting the
future recommendation in Section 6. Finally, depending on the current
limits, conclusions have been discussed in Section 7.

2. Methodology

To gather insights from the latest advancements in the field, we
employed a hierarchical approach known as a Systematic Literature
Review (SLR) [39]. The SLR involves a series of sequential steps, which
encompass: (a) defining the research scope, (b) formulating the research
question, (c) devising the search strategy, (d) establishing inclusion and
exclusion criteria, (e) conducting screening and selection, and (f) per-
forming data extraction and quality assessment.

Initially, we delineated the scope of our research as “DT technologies
in power and energy systems.” Within this defined scope, we formulated
our research question as follows: “How does DT technology contribute to
the modern power system, which is predominantly dominated by PEC-
based technologies?” As outlined in subsection 1.2, we conducted a
search on Scopus using the keywords “digital twin” and “digital twins”
3

limited to the abstract, title, and keywords fields, spanning the past ten
years (2014–22/05/2023). This search yielded a total of 14,180 docu-
ments across various research domains, as illustrated in Fig. 1. However,
our primary focus was on the modern power system. Therefore, we
categorized the database into different topics, revealing 1,681 publica-
tions directly related to energy/power systems, as depicted in Fig. 1(d).

Although sifting through 1,681 relevant documents seemed like a
formidable task, we began by manually screening a subset of records. By
reviewing the titles, abstracts, and keywords, we selected the relevant
documents. During the screening process, we considered factors such as
duplication of publications, language (English), availability of open-
access publications, and direct relevance to our research interests.
Through these steps, we ultimately identified 141 documents for our
final evaluation. Additionally, we also considered online information
from technology companies and governmental policies to gather updated
information, protocols, rules, and regulations. These sources provided
valuable insights to complement our literature review.

Fig. 2 presents a detailed outline of the process we followed with the
selected number of documents, while Fig. 3 visually represents the key
terms extracted from our chosen documents. The font size in Fig. 3 re-
flects the probability of word occurrence, with larger font sizes indicating
higher probabilities.

3. Fundamental concept of digital twin with a focus on the power
system

Increased interconnection and intelligent automation have been
introduced in response to the complexity of the energy market, economic
volatility, rising demand, and inclination to delocalize production. The
Fourth Industrial Revolution, often known as Industry 4.0, is defined by
these answers [40,41]. This has led to the development of several tech-
nologies, including the IoT, BD, and CPS. The major technologies of In-
dustry 4.0 have been identified and are the subject of much discussion
[42]. DT technology has benefited from the development of the afore-
mentioned three technologies (IoT, CPS, and BD) [43]. First off, IoT
systems enable massive amounts of data to be collected from physical
systems and sent in real-time, enabling seamless integration between
them [44]. The CPS technology, which functions at virtual and physical
levels, interacting with and regulating physical devices, perceiving the
environment, and taking appropriate action, enables us to obtain a
deeper understanding of the data related to physical assets [42,45].
Thirdly, BD technologies include Hard-loop and Cloud-Based Analytics,
which may assess data collection and generate projections, optimize
digital twins based on data acquired, and calibrate the general model and
its particulars. Industry 4.0 opens the door to real-time connectivity and
the synchronization of physical actions with the virtual environment in
this way [46].
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As proposed by Dr. Greives, DT was defined to include three layers: a)
the physical product, b) the virtual product, and c) their connections in
the form of data and information. Two more layers have recently been
added to form the five-dimensional layers of DT. The two added layers
are data and services [46–53]. Fig. 4 shows a simplified representation
architecture of the five-dimensional layers from a power system DT
perspective. Each layer plays a distinct role in enabling a comprehensive
digital representation and management of a power system. A detailed
overview of the technologies utilized in each layer of the presented ar-
chitecture is described below [3,54–58]:

(a) Physical Layer: The physical layer is the representation of the
objective existence of the power system. It encompasses a variety
of features, including system behavior, rules, and data regarding
physical space. This layer makes use of a variety of cutting-edge
technologies, such as the Supervisory Control and Data Acquisi-
tion (SCADA) system, IoT devices, and the Geographic Informa-
tion System (GIS). SCADA systems provide for real-time
monitoring and control of the processes involved in the genera-
tion, transmission, and distribution of electrical power. They
collect data from remote devices, which enables operators to
monitor the performance of the system and respond to events in
an effective manner. The architecture of the electricity system is
littered with IoT devices, such as sensors and smart meters, in
order to collect real-time data on variables such as voltage,
Fig. 4. Simplified architecture of D
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current, temperature, and environmental factors. GIS technology,
as a final point of consideration, records and evaluates spatial data
connected to the infrastructure of power systems. It offers a
graphical depiction of the physical network, which is comprised of
power plants, substations, transmission lines, and distribution
networks.

(b) Virtual Layer: The virtual layer acts as a reflection or model of the
physical layer. It is similar to the physical layer in many ways. It
does this by employing cutting-edge simulation and modeling
techniques to produce a digital copy of the power system. The
power system simulation software and DT technology are both
important technologies that are utilized at this tier. The operation
of the power system is simulated using these various software
tools, which are guided by mathematical models and equations.
They make it possible for engineers and operators to study the
dynamics of the system, carry out contingency analysis, and
optimize the operation of the system. In a similar manner, DT
technology integrates real-time data with simulation models to
produce a digital representation of the physical power system. It
makes it possible to synchronize the virtual and physical systems,
which in turn makes it easier to perform real-time monitoring,
predictive analysis, and scenario testing.

(c) Connection Layer: The connection layer creates a communica-
tion link that can travel in both directions between the digital
representation of the power system and the physical power sys-
tem. Communication protocols and data collection systems are
involved in this process. The transfer of data between devices,
control centers, and the DT is made possible by a variety of
communication protocols. Some examples of these protocols
include IEC 61850, DNP3, and Modbus. These protocols ensure
that the various components of the power system can integrate
with one another and work together without any problems. On the
other hand, data acquisition systems are responsible for the
collection, preprocessing, and real-time transmission of data from
the physical layer to the digital counterpart. They make it easier to
extract essential information and allow for decisions to be made
on time.

(d) Data Layer: The data layer is responsible for managing the
massive amount of data that is transferred between the physical
and digital layers. This makes use of several technologies for the
processing, storing, and analyzing of data, such as BD analytics
T technology in power system.
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and a data management system. For processing and analyzing
massive volumes of real-time and historical data obtained from
the physical layer, approaches from BD analytics are utilized. To
accomplish this, data must first be cleaned, then aggregated,
patterns must be recognized, and lastly, ML techniques must be
applied. Likewise, reliable data management systems, which may
include databases and data warehouses, are used to store and
organize the data that has been acquired. These technologies
assure the integrity of data, as well as its security and accessibility,
for a variety of applications operating inside the DT framework.

(e) Service Layer: The service layer enables decision-making, and
control of the physical power system based on specified goals, and
it also provides security for the other layers. Technology such as
advanced analytics and optimization, as well as control systems,
are utilized in its operation. The processes of decision-making can
benefit from the application of advanced analytics techniques
such as ML, optimization algorithms, and AI. They do data anal-
ysis on the data layer and provide insights that can be used to
improve system performance, boost productivity, cut down on
interruptions, or save expenses. On the other hand, control sys-
tems are constantly receiving updated parameters and instructions
that are derived from the virtual model and analytics tools. They
are responsible for putting control plans into action, regulating
system components, andmanaging operational facets of the power
system following the planned outcomes.

The power system DT framework offers greater monitoring, analysis,
decision-making, and management of the physical power system. This, in
turn, leads to improvements in the system's efficiency, dependability, and
resilience. The framework works through the iterative interplay of these
layers and the technologies deployed within them. The following sub-
sections describe variants, integrated technologies, communication
channels, protocols, and standards for additional information on their
respective subjects:

3.1. Classification of DT variants

There is a possibility that a uniform definition of DT has not yet been
agreed upon. Nevertheless, each description acknowledges that the
connection/integration layer is an essential part of the process of defining
the DT. The classification of DT based on modelling techniques can be
done in several ways, considering the level of detail, the purpose of
modelling, and the availability of data used. The following classifications
of DT variants provide a framework for understanding the different
modelling techniques used in DT implementations. However, it's
important to note that the boundaries between these categories are not
always strict, and hybrid approaches that combine multiple techniques
are common in practice. Here are some classifications of DT:

(a) Physics-Based Modelling: The physics-based modelling can be
two types such as static models and dynamicmodel. The static DTs
use geometric and physical properties to create a static represen-
tation of the physical object or system. They focus on capturing
the structure, dimensions, and material properties of the entity.
An example of is shown in Ref. [59], where the article investigates
the use of graphene nanoplatelets (GNPs) nanofluids in enhancing
the performance of thermoelectric generators (TEGs) and ther-
moelectric coolers (TECs). A numerical model is developed to
analyze the effects of nanofluid weight concentration and Rey-
nolds numbers on heat transfer, electricity generation, and cooling
capability. Whereas the dynamic DTs incorporate the physics and
dynamics of the physical object or system. They simulate the
behaviour, motion, and interactions of the entity over time,
considering forces, constraints, and environmental factors, as
shown in Ref. [60]. In this article, the authors discuss the imple-
mentation of a consistency retention method for a CNC machine
5

tool digital twin (DT) model. The DT model is a high-fidelity
replica of the physical machine tool that can provide a
time-varying representation of its performance.

(b) Data-DrivenModelling: The data-driven modelling also can be of
two types such as data replica models and statisticalmodels. The
data replica DTs are created by replicating and synchronizing the
data from the physical object or system. They focus on capturing
and analysing real-time data streams, allowing for monitoring,
analysis, and prediction based on historical patterns. [61] pro-
vides a historical perspective on the evolution of manufacturing
data and discusses the data lifecycle in manufacturing. Similarly,
the statistical DTs use statistical techniques and algorithms to
model the behaviour of the physical object or system based on
historical data. They focus on identifying correlations, trends, and
patterns to make predictions and optimize performance[62]

(c) Hybrid Modelling: The hybrid modelling is of two types: Inte-
grated and Multi-Level. The integrated DTs combine physics-
based models and data-driven models to create a comprehensive
representation of the physical object or system. They leverage the
strengths of both approaches to provide a more accurate and
realistic simulation. Several articles ([63,64]) have been identi-
fied discussing this category. On the other hand, Multi-Level DTs
employ multiple modelling techniques at different levels of detail.
They may use physics-based models for macro-level behaviour
and data-driven models for micro-level analysis, allowing for a
holistic understanding of the entity. For instance, Ref. [65] focuses
on modelling the proportional-integral control link of a voltage
source converter (VSC) and uses the time convolution neural
network (TCN) algorithm to accurately describe the
high-frequency switching states of power electronic devices and
the operation states of renewable energy units.

(d) Domain-Specific Modelling: In the context of power systems
domain, several articles are discovered on three levels of the
power system DTmodelling: (a) Product Twins, (b) Process Twins,
and (c) System Twins.

For the detailed analysis and classification, the authors categorized
the research articles that based in different applications and listed in
section 4.

3.2. IoT communication channels and their protocols

In conjunction with the different sensing technologies, the connection
layer serves as the fundamental building block of the IoT in DT. This layer
necessitates a high-fidelity connection between IoT devices in order to
ensure that information is sent accurately and on time [66,67]. As can be
seen in Fig. 5, the connection layer is responsible for the collection and
transmission of data coming from and going to the physical layer. Using
technologies such as radio frequency identification devices (RFID),
cameras, sensors, software application programming interfaces (APIs),
QR codes, open database interfaces, and other IoT technologies [68],
real-time data from the physical system and its subcomponents are being
sensed in this connection. The transmission of data is the second
fundamental component of the IoT, and it supplies data to both the data
layer and the virtual system. This transmission makes use of a variety of
communication technologies, protocols, and standards so that it may
interact with transmissions on higher levels, which may include wired
and wireless transmissions. Some examples of technology for trans-
mitting data across wires include twisted-pair cable transmission, sym-
metric cable transmission, coaxial cable transmission, and fiber optic
transmission [68].

The protocol that is used to link physical sensors to DT data across
wires depends on the interfaces and communication capabilities that the
sensors themselves offer. Such frequently used physical sensor wired-
based protocols are: (a) Modbus that allows for reading sensor data
and sending control commands over a serial connection, such as RS-485;
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(b) the 4–20 mA current loop where the output is converted to a current
signal, where 4 mA represents the lowest value and 20 mA represents the
highest value. This current is then measured by the receiving device,
typically a data acquisition system or a controller; (c) Highway
Addressable Remote Transducer (HART) which allows for simultaneous
analog signal transmission (typically 4–20 mA) along with digital data
encoded in the signal. HART-enabled sensors can provide additional in-
formation beyond the analog value, such as diagnostics, calibration data,
and configuration parameters; (d) Controller Area Network (CAN) which
allows for reliable communication between multiple devices over a
shared bus. CAN is often utilized for integrating sensors into DTs in
scenarios where sensors support the CAN interface; (e) Ethernet/IP that
enables communication between sensors, actuators, and control systems
over Ethernet networks. It provides real-time control and data exchange
capabilities and is commonly used in automation and manufacturing
environments [32].

Similarly, wireless transmission technologies that could be used for
CPS include Wi-Fi, Bluetooth, Zig-Bee, Ultra-Wideband (UWB), and Near
Field Communication (NFC), as well as General Packet Radio Service/
Code-division Multiple Access (GPRS/CDMA), digital radio, spread
spectrummicrowave, wireless bridge, satellite communication, machine-
to-machine (M2M) communications, and supervisory control and data
acquisition (SCADA) [67,68]. On the back end of these different tech-
nologies, different protocols can be identified, such as Hypertext Transfer
Protocol (HTTP), REpresentational State Transfer (REST), WebSocket,
Simple (or Streaming) Text Oriented Messaging Protocol (STOMP),
Simple Object Access Protocol (SOAP), Message Queuing, Telemetry
Transport (MQTT), Open Platform Communications Unified Architecture
(OPC UA), and so on. A comprehensive overview of the transmission
protocols and their standards together with vulnerability and attack
possibilities could be found in Refs. [69,70]. Data is being stored using
BD technologies such as distributed file storage (DFS), NoSQL database,
NewSQL database, and cloud storage [68,71]. Further, the data is pro-
cessed (normalized and cleaned) with the help of ML algorithms [72].
After that, the analyzed, normalized, and cleaned data is forwarded to the
Fig. 5. Communication chan

6

service layer for further utilization.

3.3. Machine Learning integration in DT technology

ML is a branch of AI that is used to instill learning behavior in com-
puters through the use of a software model that improves its capabilities
through training on historical data [73]. Fig. 6 represents a simple visual
of ML-integration into DT highlighting the main learning techniques
summarized from the literature list. As can be seen in Fig. 6, ML algo-
rithms have been divided into distinct groups depending on the learning
techniques that they employ: supervised learning, unsupervised learning,
semi-supervised learning, reinforced learning, deep learning, transfer
learning, ensemble learning, and online learning [74–76]. In this
straightforward design, the ML integration in DT is denoted by the
symbol shown in Fig. 6. Depending on the kind of result that is required,
input from the physical world is compiled and fed into the ML algorithm.
After the historical and real-time data have been processed (normalized,
cleaned, and compressed) [74,77], the data is then used to train and
evaluate the model [78]. This processed data is used by the virtual system
in order to iterate, update, and test the functionality of the physical
system in a variety of unexpected scenarios. After that, real-time data
from physical systems and outcomes from virtual systems are compared
at the service layer [79], where they are employed even further. The
virtual system is adjusted and modified appropriately in accordance with
the desired output, which may include visualization, prediction, opti-
mization, adaptability, or control. Last but not least, the actuators are
used to bring the physical system up to date and regulate it.

Machine learning integration techniques in DT technology involve
the application of various ML algorithms and approaches to enhance the
functionality and performance of DT. Depending on the data type, the
availability of data, and the particulars of the issue, several ML algorithm
approaches might be used. Some of the detailed descriptions are given as
follows:
nels in DT technology.
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(a) Supervised learning: Supervised learning algorithms are used
when historical data with known labels or outcomes is available.
These algorithms learn from the labelled data to make predictions
or classifications. In the context of DT, supervised learning can be
employed to develop models that predict system behaviour, detect
anomalies, or optimize system performance based on labelled
training data [80]. By analysing data from IoT sensors and using
ML algorithms, the DT can predict the risk probability of accidents
in oil pipelines [81]. Prognostic algorithms are used to detect
failure precursors by estimating risk conditions based on pressure
data. Clustering techniques are then applied to identify abnormal
pressure behaviour. The extracted features are evaluated using a
kernel-based Support Vector Machine (SVM) algorithm to provide
control actions in real-time.

(b) Unsupervised learning: Unsupervised learning techniques are
used when there is no labelled data available. These algorithms
aim to discover patterns, structures, or clusters in the data without
prior knowledge of the outcomes. Unsupervised learning can be
applied in DT to identify hidden patterns, detect anomalies, or
segment data for further analysis [82]. In this particular scenario,
the authors of [83] explore the effects of DT deployment strategies
on predictive maintenance activities in a distributed collaborative
prognosis framework. Collaborative prognosis is a technique that
allows assets to learn from similar assets in a fleet and improve
their prognosis models. The study analyses the performance of
distributed and heterarchical multi-agent system architectures for
large fleets of assets with varying failure rates and noise levels in
the failure data.

(c) Semi-supervised learning: Semi-supervised learning is a ML
technique that combines labelled and unlabelled data to improve
model performance [84]. In the context of DT, semi-supervised
learning can be utilized when a limited amount of labelled data
is available, but there is a larger amount of unlabelled data. This
technique can be particularly useful when it is expensive or
time-consuming to obtain labelled data [74]. [85] discusses the
application of cluster-adaptive active learning to structural health
monitoring (SHM) strategies for aircraft experiments. SHM in-
volves observing a structure over time to determine its health
status. However, obtaining diagnostic labels for the measured data
is often costly and impractical. The researchers applied the
cluster-adaptive active learning method to measured data from
Fig. 6. ML integra
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aircraft experiments and found that it successfully demonstrated
the advantages of using active learning tools for SHM.

(d) Reinforcement learning: Reinforcement learning involves
training an agent to make decisions and take actions in an envi-
ronment to maximize a reward signal [76]. In the context of DT,
reinforcement learning can be used to develop control policies
that optimize system behaviour. The DT can simulate the envi-
ronment, and the reinforcement learning algorithm can learn from
trial and error to determine the best actions or policies for
achieving desired outcomes [86]. Several issues within DT
application such as the requirement for a feedback loop in pre-
dictive maintenance approaches to change dynamically with the
asset could be solved by employing reinforcement learning tech-
niques like Hidden Markov Models [71].

(e) Deep learning: A subset of machine learning, utilizes artificial
neural networks with multiple layers to learn complex patterns
and representations from data. Deep learning algorithms, such as
convolutional neural networks (CNNs) or recurrent neural net-
works (RNNs), are powerful tools for tasks like image recognition,
natural language processing, and time series analysis. Deep
learning techniques can be applied in digital twins to analyze
sensor data, images, or textual information for various applica-
tions such as anomaly detection, predictive maintenance, or
optimization. Examples of this learning technique ([9,24,65,87])
are discussed in detail in section 4.

(f) Transfer learning: Transfer learning involves leveraging knowl-
edge or models learned from one domain to another related
domain. In DT, transfer learning can be beneficial when data is
limited or scarce. Pre-trained models from similar systems or do-
mains can be used as a starting point and fine-tuned using avail-
able data. It can accelerate the development and improve the
performance of machine learning models within digital twins.
[88] presents several use cases that demonstrate the potential of
cross-phase industrial transfer learning using intelligent digital
twins. These use cases include training deep neural networks,
deploying algorithms, injecting rare faults, and enabling rein-
forcement learning.

(g) Ensemble learning: Ensemble learning combines multiple ML
models to make more accurate predictions or classifications.
Different models or algorithms are trained on the same data or
subsets of data, and their outputs are combined to generate a final
tion with DT.
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prediction or decision. Ensemble learning techniques, such as
bagging, boosting, or stacking, can be employed in digital twins to
improve prediction accuracy, reduce model bias or variance, and
handle uncertainty [89]. [90] proposed approach combines DT
technology with multiple time series stacking (MTSS) to improve
the accuracy and timeliness of pavement performance prediction.
The approach includes the establishment of an MTSS prediction
model with multiple component learners, the extraction of mul-
tiple time series features, and the optimization of hyper-
parameters. The results demonstrate the feasibility and
effectiveness of the prediction method based on DT and MTSS.

(h) Online learning:Also known as incremental learning, enables the
model to continuously update and adapt to new data as it becomes
available. In DT, online learning can be valuable when the system
dynamics change over time or when real-time data streams need
to be processed. The model can be updated with new observa-
tions, allowing the digital twin to adapt and improve its pre-
dictions or control strategies [91].

Research articles [66,71,74,79], provide a comprehensive overview
of the implementation of ML algorithms in DT, which you can read more
about here.

3.4. Standards and regulations

A DT of a power system acts as a mirror image of an extremely large
number of the system's sub-systems and individual components. Each
component of the DT has to be able to share information with its physical
counterpart, which necessitates interoperability, which in turn necessi-
tates the cooperation of several different technologies and tools. In order
to accomplish this goal, it is necessary to standardize data and models
and provide them in a manner that is compatible with other protocols
and standards [68]. Even though the DT first appeared as a tool for
monitoring and managing distant physical items as early as 1970 (i.e.,
NASA), the worldwide formats and standards are still in the process of
being developed and are not known to the general public for general uses
[32,66,92]. To the best of the authors' knowledge, there were no stan-
dards discovered that was specifically devoted to the power systems area.
Nevertheless, the International Organization for Standardization (ISO)
has produced a standard for four-series DT for use in production; this
standard is known as ISO 23247 [93]. This series offers a framework and
accompanying papers to assist in the creation of observable
manufacturing DT by regularly updating the data about its employees,
equipment, materials, manufacturing processes, facilities, and environ-
ment. This framework does not define data formats or communication
protocols, which is something that should be brought to your attention.
In addition, the international organization IPC published an international
standard called IPC-2551 at the beginning of 2021. This standard is made
up of the DT product framework, as well as the manufacturing and life-
cycle frameworks [94]. At the moment, the technical body ISO/IEC JTC
1/SC 41 is working on DT standards, and the primary areas of attention
for these standards are the DT concept, nomenclature, and application
cases [95].

4. Digital twin in power system research and development

Research in digital twin technology is critical for advancing knowl-
edge, driving innovation, solving complex problems, validating models,
fostering interdisciplinary collaboration, generating economic benefits,
and shaping policies and standards. It is through research that we can
unlock the full potential of digital twin technology and its transformative
impact on various industries and domains. As discussed in the preceding
sections, DT research on power systems is still in the preliminary stages of
development. In the context of progressing research in the field of DT,
various power systems companies, utilities, and research institutions
have recognized the potential of digital twins and have initiated projects
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and collaborations to develop tools/platforms and implement them.
These initiatives focus on areas such as grid optimization, asset man-
agement, renewable energy integration, and operational efficiency.
Table 1 provides case studies of power system DT implementations in
different regions of the world. These case studies highlight the diverse
approaches and applications of power systems DT across different re-
gions. They demonstrate how cultural and technological differences
shape the implementation strategies, emphasizing factors such as
renewable energy integration, grid reliability, resilience, and efficient
energy management in specific regions.

Similarly, several articles are discovered on the application of DT on
three levels of the power system: generation, transmission, and distri-
bution system. These scientific works can be categorized into three
groups such as monitoring, visualizing, analysis, and prediction; opti-
mization processes; and tools and platforms, as shown in Fig. 7. For the
detailed analysis and classification, the authors categorized the research
articles that based in different applications.

Fig. 8 provides an overview of research articles focusing on moni-
toring, visualization, and prediction within the power system using
digital twin (DT) technology. The articles can be classified into four
categories, as depicted in Fig. 8.

In one study [102], an online analysis digital twin (OADT) approach
is proposed to enhance power grid online analysis, with a specific focus
on the Chinese national power grid. The approach utilizes a Complex
Event Processing engine to support both model-driven and data-driven
online analysis applications. It successfully tracks the operation state of
the power grid with a sub-second delay. Another article [103] presents
the OADT method for power grid online analysis, employing advanced
modeling techniques, in-memory computing, grid stability assessments,
and complex event processing engines. The goal is to detect anomalies
and potential failures, thereby improving power grid reliability and
resilience. For power system simulations, a real-time interactive simu-
lation architecture based on DT technology is introduced [104]. This
architecture incorporates twin bodies for power systems, voltage and
current sensors, and control units. It provides a framework for the
application of digital twins in power systems and highlights potential
benefits for the wider power industry. A measurement-based dynamic
model identification technique using artificial neural networks (ANNs) is
proposed [91]. This method focuses on developing a digital twin that
models the dynamics of smart grids. The literature also mentions other
applications, such as OADT approaches for improving power grid online
analysis, the use of Complex Event Processing engines for situation
awareness analysis, integration of advanced modeling techniques,
in-memory computing, and grid stability assessments, as well as the
application of machine learning-based techniques for fast security
assessment and anomaly detection. Furthermore, it emphasizes the
importance of tracking the power grid's operation state and detecting
anomalies or potential failures.

In another study [105], an advanced digital twin artifact system
(DTAS) technology is introduced to enhance the resilience and plasticity
of systems by integrating physical and numerical models. This includes
an inspection technique for detecting material degradation and opti-
mizing inspection timings. DTAS is particularly useful for evaluating the
structural integrity of various artifacts, ranging from nuclear power
plants to home appliances. A DT modeling method is proposed for
monitoring and diagnosing power electronic transformers using a
real-time field-programmable gate array-digital twin (FPGA-DT) tech-
nique [106]. The method demonstrates effectiveness and accuracy in
analyzing and identifying faults in power electronic transformers. The
literature also highlights other applications, such as the development of
advanced DTAS technology for evaluating structural materials, the
integration of physical and numerical models for monitoring and
detecting material degradation, the optimization of inspection timings
and modification of operational plans, and the applicability of DT tech-
nology to various artifacts.

In [107], a DT model derived from Dynamic Digital Mirroring (DDM)



Table 1
DT implementation case studies in power system domain by country.

General application trends and
support

Application scenarios Reference

Germany showcases expertise in
renewable energy and advanced
grid management. The country
emphasizes environmental
sustainability and cross-border
collaboration.

Wind farm optimization, remote
monitoring, condition-based
maintenance.

[96]

The United States rapidly
transitions towards green energy
reliance. Companies like General
Electric (GE) pioneer DT
technology, optimizing wind
farms. The country focuses on
grid modernization and resilience
against natural disasters.

Wind farm optimization, cloud-
based DT platforms, grid
reliability improvement.

[97,98]

The Netherlands relies on DT to
predict environmental issues like
water problems. Collaborations
between companies like Siemens
and IBM optimize service
lifecycle management.

Environmental monitoring,
water condition prediction,
asset management.

[99,100]

China's cultural perspective
emphasizes technological
advancement, data-driven
decision-making, and integration
of AI and IoT. The adoption of DT
aligns with China's ambitions to
become a global technology
leader.

Coal-fired power plant
optimization, thermal efficiency
improvement.

[101]

Finland focuses on increasing
renewable energy generation and
reducing carbon emissions.
Citizen participation and
engagement in the energy sector
are emphasized. Siemens' DT
applications improve automation,
data utilization, and decision-
making.

Power system optimization,
energy-efficient asset
maintenance.

[34,35]

Fig. 7. Categories of the DT based scientific works.
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is proposed for real-time simulation, fast system analysis, and control
feedback in power system assets. This approach enables advanced ana-
lytics beyond standard SCADA databases by reflecting the real-time
operating condition of assets. A hybrid modeling and simulation DT
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method is introduced for the thermal system of in-service thermal power
plants [64]. This method leverages system models and historical opera-
tion data to achieve high precision in simulation and support the
development of digital twins. Other applications discussed in the litera-
ture include the use of dynamic digital mirroring (DDM) modeling for
real-time simulation, system analysis, and control feedback in power
system assets, hybrid modeling methods combining operation data and
first-principle mechanisms for performance monitoring of control stage
systems, calculation of flow rate and efficiency characteristics in control
stages of steam turbines, and the development of control stage digital
twins for online performance monitoring.

A review of DT in power plants is provided in Ref. [9], along with a
DT for predicting power plants using dynamic system models (DSM),
anomaly detection, deep learning, and distributed sensor networks. The
proposed 5-level autoregressive DT architecture has the potential to
transform the energy production industry and improve energy efficiency.
In Ref. [24], deep learning convolutional neural networks are integrated
into the Automatic Network Guardian for Electrical systems (ANGEL) DT
environment to detect faults in power systems. The framework exhibits
high accuracy in fault detection and can be scaled up for larger power
systems. The literature mentions various applications, including the use
of DT frameworks for predicting power plant performance and opti-
mizing cost savings, the incorporation of dynamic system models,
anomaly detection, deep learning, and distributed sensor networks,
consideration of energy system cybersecurity, and the integration of all
components for a robust digital twin. The potential of these applications
to revolutionize the energy production industry and enhance energy ef-
ficiency is also highlighted.

Similarly, DT offer significant potential in optimizing operations and
reducing costs across various industries. One of the key applications is in
the field of power systems, where DT models enable optimization and
cost reduction strategies. A detailed information is listed in Table 2. For
instance, in solar power plants, DT models of power inverters can be
created to compare and analyze their efficiency and economic benefits.
This allows for the identification of more efficient inverters that can
provide economic advantages, particularly during periods of high elec-
tricity prices. Additionally, DT can be utilized in power networks to
predict grid conditions, balance grids, and prevent blackouts, leading to
improved operational efficiency and cost savings. In the construction of
nuclear plants, DT can help save expenses, avoid unexpected outages, and
optimize maintenance. By simulating and analyzing different scenarios,
DT enables informed decision-making and cost-effective strategies.
Furthermore, DT facilitates the optimization of energy demand and uti-
lization in Net Zero Energy Buildings (ZEB) by integrating energy-saving
improvements and renewable technologies, resulting in reduced energy
costs. Overall, the use of DT in optimization and cost reduction appli-
cations holds immense potential for enhancing operational efficiency and
achieving substantial savings across various industries within the power
systems domain.

On the other hand, Table 3 provides a comprehensive analysis of the
controlling and testing applications of DT in power systems. It includes
key features, advantages, and challenges associated with each work. The
key features highlight the unique aspects and technologies employed in
each application, while the advantages showcase the benefits and im-
provements brought by the use of DT. The challenges column addresses
the potential obstacles and areas that require attention for successful
implementation. This table offers a detailed overview of the various
works, enabling a comprehensive understanding of the controlling and
testing applications of DT in power systems.

These tables provide evidence that the DT technologies are being
strongly used for research and development operations within the power
system domain, even though the technique and the objectives are distinct
from one another. After a careful inspection, it is observed that there are
many ways to make use of it. For the sake of convenience, the tools and
platforms that were utilized in these research works can be categorized
into several distinct areas, including monitoring, visualization, analysis,



Fig. 8. Overview of DT applications.

M.A.M. Yassin et al. Energy Reviews 2 (2023) 100039
prediction, optimization, and cost-saving applications. Creating, man-
aging, and making use of DT for power systems has inspired the devel-
opment of several commercial tools and platforms with the goal of
providing full solutions for these challenges. For example, there are some
tools and platforms which were developed to monitor, analyze, predict
and visualize the power system states: (a) Oracle provides a cloud-based
DT simulator where configurable live data could be generated, alerts, and
events for these simulated devices [122]; (b) Beijing BKC Technology
Co., Ltd. developed an intelligent power plant management and control
system based on a five-dimension DT [96]; (c) ETAP provides a DT
platform for real-world power systems under various physical and
operational conditions [123]; (d) SEWIO provides Ultra-wideband based
hardware and software DT platform for real-time monitoring and pre-
diction of assets [124]; (e) Functional Mock-up Interface (FMI) is an
open-source platform supported by 170þ tools allowing the creation,
storage, exchange, and (re-) use of dynamic system models of different
simulation systems for cyber-physical systems, and other applications
[125]; (f) PTC has developed an IoT-based DT platform called ThingWorx
IIoT platform [126]. On the other hand, Signify Philips is investing in
developing DT for lighting systems. They claim that the DT will contin-
uously optimize lighting to improve occupant comfort, energy efficiency,
or safety. In addition, they provide DT for biomedical equipment such as
Magnetic Resonance Imaging (MRI), and computerized tomography (CT)
scans to get early signs of warning regarding technical issues [127].
Among the reviewed scientific works, some documents [28,66,128]
mention other important and emerging platforms such as: (a) Ansys Twin
Builder, provided by Ansys, Inc., (b) Altair ONE TOTAL TWIN, provided
by Altair Engineering Inc., (c) 3Dexperience, provided by Dassault Sys-
tems, (d) Unity Pro, provided by Unity Software Inc., (e) APEX, provided
by BP, and so on.

5. Challenges and research gaps of DT in power systems

Stakeholders in the power system sector are working feverishly to
improve flexible power plant operations, cut downtime, lower O&M
costs, and boost efficiency, productivity, and profitability. In this
framework, the DT technology is presented and used (as indicated in
section 3) in the literature list as a crucial enabling technology to
accomplish these objectives. Even though there has been a noticeable
increase in the research of DT over the last ten years, there are still
several obstacles that need to be overcome before DT can be successfully
realized and implemented across a variety of different sectors. According
to Dr. Greives' explanation, the universal DT is composed of the same
fundamental building blocks regardless of the industrial area it is applied
to. However, during the phase of implementation, the domain-specific
DT will face several challenges, including the following: degree of
complexity; integration challenges; the number of components; required
resources; data scale; performance evaluation metrics; interoperability
issues; feasibility; and domain expertise [66]. In addition to this study
[66], different articles [28,47,129,130] have analyzed and discussed the
universal difficulties associated with DT modeling in a variety of con-
texts. An article [32], describes some of the challenges that may be
encountered in the manufacturing sector. Similarly, challenges are
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explored in Ref. [131] concerning both the healthcare industry and smart
cities. Challenges and a paradigm based on standards are discussed in
Ref. [132] with regard to the shipping sector. The difficulties that DT
creates in supply chains and food logistics are discussed in Ref. [133].
The application of DT is still in the theoretical phase globally in the
power systems domain, and as a result, this domain shares many of the
issues that are faced in other domains. The difficulties in using DT
technology within the power systems domain are outlined in Fig. 9, along
with the research gaps that exist in this area.

(a) Modeling and simulation: ML models used in digital twins may
produce complex and non-intuitive outputs; Model interpret-
ability and explainability. Understanding and explaining how
these models arrive at their predictions or decisions is crucial,
especially in critical applications where human operators need to
trust and comprehend the reasoning behind the model's behavior.
Lack of multi-physics modeling knowledge and complexity of
large power systems and components represent obstacles in
implementing DT for monitoring and maintenance [10,46]. The
time-consuming process of accepting and replacing old ones is
considered a social challenge facing DT [46,129]. The lack of a
generic model building and validation criteria is another chal-
lenge facing DT. Many studies have investigated specific parts of
the DT (modeling, IoT, ML, cloud computing, visualization), but
an ideal, unified architecture of DT is still yet to come [66,131].

(b) Connectivity and processing: Interoperability with existing
technologies. A delay in implementation might occur due to the
incompatibility of data acquiring (IoT), speed of communication
channels, processing infrastructure (ML), and the interaction be-
tween the sub-systems in the existing facilities with DT [9,130,
134,135]. Scaling ML models to handle such volumes of data
(large-scale power systems) in real time can be computationally
intensive and may require distributed computing architectures or
specialized hardware. For large-scale power systems, the twinning
and bidirectional data flow and synchronization require domain
knowledge, resources, and high-stream IoT connection [66,136].
In the research sector, a common understanding of what AI/ML
can achieve in DT and how to use them generically poses some
challenges for implementing DTs. For example, it might be cost
added and less valued by using advanced ML technologies for
research of DT for monitoring [23,66].

(c) Standardization: Many DT studies (including studies in other
domains) have underlined the necessity of having global stan-
dards and a consistent framework for building a robust DT. This
will help overcome many of today's challenges such as IoT infra-
structure, interoperability of sub-systems, information exchange,
transparency, data analysis, privacy, and security. Data quality
and reliability: ML models heavily rely on the quality and reli-
ability of the data they receive. In digital twins, ensuring the ac-
curacy, completeness, and consistency of data can be challenging,
as sensor measurements may be noisy, missing, or subject to
various uncertainties [9,23,66,137].



Table 2
DT-based publications in the optimization and cost saving applications.

Application Summary Contributions References

Solar power
plant

DT model of a three-phase
dual system power
inverter (DSPI) for solar
power plants.

DSPI has higher
efficiency (0.22–0.27%
higher) compared to the
conventional inverter.
DSPI provides economic
benefits during daylight
hours. Incorporating
DSPI simplifies filter
systems and improves
power system quality.

[108]

Power
network

DT for optimizing power
networks in various
industries.

DT allows predicting
grid conditions,
balancing grids, and
preventing blackouts.
Challenges include lack
of standards,
regulations, and
security concerns.

[96]

Nuclear
plants

DT to save expenses,
avoid outages, and
optimize maintenance in
constructing new nuclear
plants.

DT helps save costs,
prevent outages, and
optimize maintenance
in nuclear plant
construction.

[109]

Net zero
energy

DT/BIM study of the
techno-economic
feasibility of a Net Zero
Energy Building (ZEB).

DT/BIM model shows a
6.76% reduction in
energy demand and
feasibility of renewable
technologies. Clear
definitions, site-to-
source factors, and
government support are
needed.

[110]

Green
hydrogen

DT for optimizing the
operation of an alkaline
water electrolysis (AWE)
system for green
hydrogen production.

Optimal operating
pressure for AWE
process is between 10
and 30 bar considering
hydrogen compression.
Critical to consider
hydrogen compression
to storage pressure
when determining
optimal conditions.

[111]

Load
balancing

DT algorithm for
optimizing load balancing
of simulation computing
tasks in multi-energy
system DT cloud clusters.

Algorithm balances
heavy simulation tasks
among available nodes,
resulting in improved
matching and
accelerated simulation
computation.

[112]

AC/DC
hybrid

DT model for
characterizing unmodeled
dynamics and uncertainty
of AC/DC hybrid
interconnection systems
in renewable energy
systems.

Hybrid-driven model
combines linearized
modeling mechanisms
with deep learning
methods. Time
Convolution Neural
(TCN) network provides
accurate and efficient
data-driven models.
Highly accurate and
robust against
validation sample sets.

[113]

Seaport
energy

DT for energy-saving and
increased energy
efficiency in a seaport,
using wind and solar
energy.

Solar and wind energy
can fully cover the port's
energy requirement.
CO2 emissions are
reduced. Integration of
multi-scale digital data
sources, BIM, and GIS
enables simulation for
achieving a Zero Energy
District.

[114]
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(d) Security and privacy: Today, DTs are faced with cybersecurity
challenges as it links multiple industrial sectors. The same applied
on the IoT components level, where real-time data from the sen-
sors could be leaked. Protecting sensitive data within digital twins
is crucial, as they may deal with intellectual property, trade se-
crets, or personal information Ensuring robust security and pri-
vacy mechanisms for ML models and data is a challenge [66,137].
The Authentication process of the sender poses a challenge in
today's communication channels and protocols of IoT
resource-constrained devices; possible threats registered like Sybil
attacks [69,137].

6. Observations and future recommendations

Many benefits of DT implementations within the power systems
domain have been discussed, such as less planning & designing time,
prediction & monitoring, better visualization, better control & testing,
easier optimization & cost reduction mechanisms, and so on. However, a
spontaneous observation is that DT is far from being globally categorized
as a plug-and-play technology as neither the academic nor the industrial
sector has yet agreed on a unified definition or generic architecture. In
the last ten years, however, segment-level progress in DT realization has
been observed. In the area of modeling and simulation, it has been
observed that relying either only on research or industry in conceptual-
ization and design (DT) is a challenging, time-consuming track and
doesn't address the rapid transformation of power systems. To overcome
this issue, several experts (hardware, software, operations, and business)
must work together. This means boosting industrial and academic
collaboration is the fastest track toward the fast implementation of a
holistic DT. Advancing research on explainable AI techniques for digital
twins is essential. This includes developing methods to explain ML model
outputs, provide insights into decision-making processes, and build trust
between human operators and the digital twin.

The current practical utilization of DT in power systems is mainly for
monitoring, visualizing, analysis, and prediction maintenance. On the
component level, wind turbines, as a representative of green power, are
the most used component in DT research. In addition, photovoltaics ap-
plications and transformers share a considerable portion of the DT
research. For large power grids, some progress was observed in moni-
toring and online analysis. However, many research areas such as com-
ponents modeling, real-time data acquisition, and processing, IoT sensing
devices, components aging, etc. should be considered. A good approach
for unlocking DT for large power grids is to practice microgrids. To that
end, several papers for microgrid, DT had found promising results.
Nevertheless, detailed optimization techniques and generic architecture
are worth further research. GE and Siemens were at the forefront of
implementing DT in wind farms and machine-human interfaces in power
systems in the industrial sector. However, it is a competitive environment
in which techniques and methods are restricted to the public and
research domains. Investigating privacy-preserving ML techniques can
enable secure data sharing and collaborative modeling within digital
twins while preserving the privacy of sensitive information. Techniques
such as federated learning and differential privacy can be explored. In
addition, integrating human expertise and feedback into the digital twin
environment can improve model performance and decision-making.
Research should focus on developing human-in-the-loop approaches
that facilitate effective collaboration between humans and ML models.

Connectivity and processing are crucial defining factors of DT. In
power grids, the number of components and the complexity of a huge
amount of real-time data sensing and processing place the DT in the
theoretical phase. Many studies have managed to establish this bidirec-
tional interaction between the physical and virtual systems. However, on
the one hand, challenges such as sensor failure (i.e., damaged data),
subsystem communication, or network speed are worth further research.
Some studies suggest developing specific sensors considering the aging of
the existing ones. Other research suggests that the 5G network and



Table 3
DT-based publications in the controlling and testing applications.

Objective Summary Key Features Advantages Challenges References

Nuclear Power
Plant Control
and Testing

Highlights the benefits of using
DT in nuclear power plants for
controlling, testing, and
diagnosing plant equipment.

Optimal control theory, fuzzy
logic and machine learning.

*Improved system design, safety,
and efficiency. *Reduced need for
costly physical testing.

*Lack of knowledge about
neural network decision-
making. *Safety concerns.

[115]

Integrated Nuclear
Digital
Environment
(INDE)

Conceptual framework for an
INDE connecting prototype
design, operation,
decommissioning, storage, and
waste disposal.

Computational modeling, data
acquisition, high-performance
computing systems.

*Shortened development times,
reduced costs, increased
credibility, operability,
reliability, and safety.

*Technological gaps in
implementing INDE.

[116]

Adaptive Control
in Wind Turbine
Systems

Adaptive control system based on
DT for pitch angle control in wind
turbines.

Software-in-loop (SIL),
hardware-in-loop (HIL), active
disturbance rejection control
(ADRC), deep deterministic
policy gradient (DDPG)

*Improved settling time and
overshooting, better control
performance, *Enhanced DT-
based system compared to state-
of-the-art schemes

*Need for fine-tuning
parameters

[87]

*Requirement of real-time
computational.

IoT-based Digital
Twin for
Microgrid
Management

An IoT-based DT model for the
communication topology of a
cluster of microgrids.

IoT, cloud computing *Improved energy cyber-physics
systems (ECPS) functionality
*Enhanced intelligent and
efficient operation of microgrids

*Stability, reliability, and
resiliency of interconnected
power systems *Integration of
deep learning for situational
awareness

[36]

Virtual Laboratory
for Microgrid
Management

Virtual laboratory framework for
developing, testing, and
debugging tools for microgrid
management.

Virtual laboratory framework for
microgrid management

*Optimized grid operation *Coordination of various
technologies and modules
*Integration of communication
services

[117]
*Cost reduction through
flexibility analysis
*Seamless information sharing
between geographically
separated nodes

Fault Diagnosis in
Building
Integrated PV

Estimation, fault signature
calculation, fault isolation

DT-based fault diagnosis
approach for building-integrated
photovoltaics (BIPV).

*Early fault detection and
isolation *Improved performance
and safety of distributed PV
systems

*Generation of accurate error
residuals and fault signatures

[118]

Real-Time
Simulation of
Combustion
Engine Plants

Real-time simulation of a
combustion engine-based power
plant with battery storage and
grid coupling.

Real-time simulation, physics-
based modeling

*Self-optimizing grid-power plant
control

Real-time simulation challenges
for combined engine-electrical
models

[119]

*Superior efficiency and grid
response time control strategies
beyond conventional approaches

Multiscale Fusion
Simulation for
GIS Faults

Multiscale fusion simulation
method for analyzing the
influence of temperature on GIS
insulation void defects

Micro-level streamer simulation,
macro-level circuit simulation

Comprehensive and precise
online monitoring, controlling,
and optimization of GIS condition

Integration with online
monitoring and control systems

[120]

DT Model for
Power
Transformer
Fault Diagnosis

DT model for fault diagnosis of
power transformers using the
LabView platform

Data gathering, simulation,
performance verification

Investigation of automated DT
diagnostics techniques for
electrical equipment

Selection of appropriate model
coefficients

[121]

Fig. 9. Challenges and research gaps of DT in the power systems domain.
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vehicular networks will support bidirectional communication. On the
other hand, a common understanding of AI and ML methods and their
capabilities should be addressed. In the future, more research on M2M
communication should be conducted to pave the way for quick DT
implementation. Another major obstacle observed is the lack of frame-
work and common standards in building a holistic DT for power systems
considering existing facilities such as new renewable energy penetration,
autonomous operation, energy storage, load management, etc. As a
starter, a reference framework for M2M communication and CPS inte-
gration and fusion of data are agreed on in many studies as power system
DT enablers. Exploring distributed ML techniques and edge computing
architectures can address scalability and real-time processing challenges
12
in digital twins. Efficient utilization of computational resources and
minimizing data transfer can enable real-time decision-making in
distributed systems.

Like any emerging technology, DT is surrounded by privacy and se-
curity concerns. This topic is barely discussed in detail in the power
system DT. Data leakage and cyber-attacks are examples of these con-
cerns. Some studies suggest multi-layered active security systems for DT,
meaning the DT itself can monitor and mitigate cyber hazards. Other
studies suggest processing the data locally near the physical system
before transmitting it further. It has also been observed that blockchain
technology and federated learning, and secure multi-party computation
can enable collaboration and data sharing while preserving the privacy of
sensitive information. These methods should get more research attention
as they could provide privacy solutions in IoT-based applications. From
all the above, it's clear to see that transparency and standardization are
the key words in overcoming most of the challenges observed.

7. Conclusions

This article presents an in-depth examination and analysis of the use
of Digital Twin (DT) technology in power systems. It has provided
numerous helpful insights and outlined some significant problems. In
order to overcome these obstacles and make further progress in the
implementation of DT, certain ideas that can be put into practice are
offered. First and foremost, it is necessary to focus research efforts on
comprehending the core concept and application framework of DT in
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power systems. It is possible to build a strong foundation for the suc-
cessful implementation of this plan by puttingmore emphasis on research
in these areas. Second, the establishment of global standards is absolutely
necessary in order to facilitate the wide-scale implementation of DT. It
will be much easier to achieve seamless integration and interoperability
if industry players, researchers, and regulatory agencies work together to
develop standardized methodologies in modeling, communication pro-
tocols, data storage and interchange, and privacy protection. Thirdly, it is
essential to provide opportunities for collaboration between the scientific
community and industry. It is possible to build validation and verification
criteria for DT models through the formation of partnerships and the
exchange of expertise. This will increase the reliability and accuracy of
these models, particularly when they are applied to large-scale power
systems. In addition, it is encouraged to support commercially available
tools and platforms that make DT adoption easier. Accelerating the
adoption of DT in the power sector will require both the encouragement
of its development and the maintenance of interoperability with various
modeling and AI methodologies. In conclusion, it is essential to make
investments in the modeling of major power systems using the DT
framework. It is possible to create more accurate simulations and pre-
dictions if research efforts are concentrated on resolving the complexities
and difficulties that are unique to power grids. The modeling of large-
scale systems requires specialized knowledge that can be gained
through collaborative efforts with the scientific community. The identi-
fied problems can be effectively overcome by applying these practical
recommendations, which will enable the realization of the full potential
benefits of DT technology in power systems. This will lead to increased
levels of standardization, collaboration, and innovation in the power
industry, which will ultimately result in increased levels of efficiency,
reliability, and sustainability. The advancement and successful integra-
tion of DT in power systems will be driven by further research, collabo-
ration with industry, and the creation of best practices for DT; this will
shape the future energy landscape.
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